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Abstract. Optimistic fair exchange (OFE) is a protocol for solving the
problem of exchanging items or services in a fair manner between two
parties, a signer and a verifier, with the help of an arbitrator which
is called in only when a dispute happens between the two parties. In
almost all the previous work on OFE, after obtaining a partial signature
from the signer, the verifier can present it to others and show that the
signer has indeed committed itself to something corresponding to the
partial signature even prior to the completion of the transaction. In some
scenarios, this capability given to the verifier may be harmful to the
signer. In this paper, we propose the notion of ambiguous optimistic fair
exchange (A-OFE), which is an OFE but also requires that the verifier
cannot convince anybody about the authorship of a partial signature
generated by the signer. We present a formal security model for A-OFE in
the multi-user setting and chosen-key model. We also propose an efficient
construction with security proven without relying on the random oracle
assumption.

1 Introduction

Optimistic Fair Exchange (OFE) allows two parties to fairly exchange information
in such a way that at the end of a protocol run, either both parties have obtained
the complete information from one another or none of them has obtained anything
from the counter party. In an OFE, there is a third party, called Arbitrator, which
only gets involved when a dispute occurred between the two parties. OFE is a
useful tool in practice, for example, it can be used for performing contract signing,
fair negotiation and similar applications on the Internet. Since its introduction [1],
there have been many OFE schemes proposed [2, 3, 4, 12, 13, 14, 18, 21, 23, 24]. For
all recently proposed schemes, an OFE protocol for signature typically consists of
three message flows. The initiator of OFE, Alice, first sends a message σP , called
partial signature, to the responder, Bob. The partial signature σP acts as Alice’s
partial commitment to her full signature which is to be sent to Bob. But Bob needs
to send his full signature to Alice first in the second message flow. After receiving
Bob’s full signature, Alice sends her full signature to Bob in the third message
flow. If in the second message flow that Bob refuses to send his full signature back
to Alice, Alice’s partial signature σP should have no use to Bob, so that Alice has
no concern about giving away σP . However, after Bob has sent his full signature to
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Alice while Alice refuses to send her full signature in the third message flow, then
Bob can ask the Arbitrator to retrieve Alice’s full signature from σP after sending
both σP and Bob’s full signature to the Arbitrator. To the best of our knowledge,
among almost all the known OFE schemes, there is one common property about
Alice’s partial signature σP which has neither been captured in any of the security
models for OFE nor been considered as a requirement for OFE. The property is
that once σP is given out, at least one of the following statements is true.

1. Everyone can verify that σP must be generated by Alice because σP , sim-
ilar to a standard digital signature, has the non-repudiation property with
respect to Alice’s public key;

2. Bob can show to anybody that Alice is the signer of σP .

For example, in the schemes proposed in [12, 18], the partial signature of Alice
is a standard signature, which can only be generated by Alice. In many OFE
schemes in the literature, Alice’s signature is encrypted under the arbitrator’s
public key, and then a non-interactive proof is generated to show that the cipher-
text indeed contains a signature of Alice. This is known as verifiably encrypted
signature. However, this raises the question of whether a non-interactive proof
that a signature is encrypted is really any different from a signature itself, since
it alone is sufficient to prove to any third party that the signer has committed
to the message [10].

This property may cause no concern in some applications, for example, in
those where only the full signature is deemed to have some actual value to
the receiving party. However, it may be undesirable in some other applications.
Since σP is publicly verifiable and non-repudiative, in practice, σP may not be
completely useless to Bob. Instead, σP has evidently shown Alice’s commitment
to the corresponding message. This may incur some unfair situation, to the
advantage of Bob, if Bob does not send out his full signature. In contract signing
applications, this could be undesirable because σP can already be considered as
Alice’s undeniable commitment to a contract in court while there is no evidence
showing that Bob has committed to anything.

In another application, fair negotiation, the property above may also be un-
desirable. Suppose after obtaining σP from Alice on her offer, Bob may show
it to Charlie, who is Alice’s competitor, and ask Charlie for making a better
offer. If Charlie’s offer is better, then Bob may stop the OFE protocol run with
Alice indicating that Bob is unwilling to conclude the negotiation with Alice,
and instead carrying out a new OFE protocol run with Charlie. Bob can play
the same game iteratively until that no one can give an even better offer. Then
Bob can resolve the negotiation by sending his service (i.e. his full signature as
the commitment to his service) to the highest bidder.

For making OFE be applicable to more applications and practical scenarios,
in this paper, we propose to enhance the security requirements of OFE and
construct a new OFE scheme which does not have the problems mentioned above.
One may also think of this as an effort to make OFE more admissible as a viable
fair exchange tool for real applications. We will build an OFE scheme which not
only satisfies all the existing security requirements of OFE (with respect to the
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strongest security model available [18]), but in addition to that, will also have
σP be not self-authenticating and unable for Bob to demonstrate to others that
Alice has committed herself to something. We call this enhanced notion of OFE
as Ambiguous Optimistic Fair Exchange (A-OFE). It inherits all the formalized
properties of OFE [12, 18] and has a new property introduced: signer ambiguity.
It requires that a partial signature σP generated by Alice or Bob should look
alike and be indistinguishable even to Alice and Bob.

(Related Work): There have been many OFE schemes proposed in the past
[2, 3, 4, 12, 13, 18, 21, 23, 24]. In the following, we review some recent ones
by starting from 2003 when Park, Chong and Siegel [24] proposed an OFE
based on sequential two-party multi-signature. It was later broken and repaired
by Dodis and Reyzin [13]. The scheme is setup-driven [25, 26], which requires
all users to register their keys with the arbitrator prior to any transaction. In
[23], Micali proposed another scheme based on a CCA2 secure public key en-
cryption with the property of recoverable randomness (i.e., both plaintext and
randomness used for generating the ciphertext can be retrieved during decryp-
tion). Later, Bao et al. [4] showed that the scheme is not fair, where a dishon-
est party, Bob, can obtain the full commitment of another party, Alice, with-
out letting Alice get his obligation. They also proposed a fix to defend against
the attack.

In PKC 2007, Dodis, Lee and Yum [12] considered OFE in a multi-user set-
ting. Prior to their work, almost all previous results considered the single-user
setting only which consists of a single signer and a single verifier (along with
an arbitrator). The more practical multi-user setting considers a system to have
multiple signers and verifiers (along with the arbitrator), so that a dishonest
party can collude with other parties in an attempt of cheating. Dodis et al. [12]
showed that security of OFE in the single-user setting does not necessarily imply
the security in the multi-user setting. They also proposed a formal definition of
OFE in the multi-user setting, and proposed a generic construction, which is
setup-free (i.e. no key registration is required between users and the arbitrator)
and can be built in the random oracle model [5] if there exist one-way functions,
or in the standard model if there exist trapdoor one-way permutations.

In CT-RSA 2008, Huang, Yang, Wong and Susilo [18] considered OFE in
the multi-user setting and chosen-key model, in which the adversary is allowed
to choose public keys arbitrarily without showing its knowledge of the corre-
sponding private keys. Prior to their work, the security of all previous OFE
schemes (including the one in [12]) are proven in a more restricted model, called
certified-key (or registered-key) model, which requires the adversary to prove its
knowledge of the corresponding private key before using a public key. In [18],
Huang et al. gave a formal security model for OFE in the multi-user setting
and chosen-key model, and proposed an efficient OFE scheme based on ring sig-
nature. In their scheme, a partial signature is a conventional signature and a
full signature is a two-member ring signature in additional to the conventional
signature. The security of their scheme was proven without random oracles.
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Liskov and Micali [22] proposed an online-untransferable signature scheme,
which in essence is an enhanced version of designated confirmer signature, with
the extra property that a dishonest recipient, who is interacting with a signer,
cannot convince a third party that the signature is generated by the signer.
Their scheme is fairly complex and the signing process requires several rounds
of interaction with the recipient. Besides, their scheme works in the certified-key
model, and is not setup-free, i.e. there is a setup stage between each signer and
the confirmer, and the confirmer needs to store a public/secret key pair for each
signer, thus a large storage is required for the confirmer.

In [14], Garay, Jakobsson and MacKenzie introduced a similar notion for op-
timistic contract signing, named abuse-freeness. It requires that no party can
ever prove to a third party that he is capable of choosing whether to validate
or invalidate a contract. They also proposed a construction of abuse-free opti-
mistic contract signing protocol. The security of their scheme is based on DDH
assumption under the random oracle model. Besides they did not consider the
multi-user setting for their contract signing protocol.

(Our Contributions): In this paper we make the following contributions.

1. We propose the notion of Ambiguous Optimistic Fair Exchange (Ambiguous
OFE or A-OFE in short) which allows a signer Alice to generate a partial
signature in such a way that a verifier Bob cannot convince anybody about
the authorship of this partial signature, and thus cannot prove to anybody
that Alice committed herself to anything prematurely. Realizing the notion
needs to make the partial signature ambiguous with respect to Alice and
Bob. We will see that this requires us to include both Alice and Bob’s public
keys into the signing and verification algorithms of A-OFE.

2. For formalizing A-OFE, we propose a strong security model in the multi-
user setting and chosen-key model. Besides the existing security require-
ments for OFE, that is, resolution ambiguity1, security against signers,
security against verifiers and security against the arbitrator, A-OFE has
an additional requirement: signer ambiguity. It requires that the verifier can
generate partial signatures whose distribution is (computationally) indistin-
guishable from that of partial signatures generated by the signer. We also
evaluate the relations among the security requirements and show that if a
scheme has security against the arbitrator and (a weaker variant of) signer
ambiguity, then it already has (a weaker variant of) security against veri-
fiers.

3. We propose the first efficient A-OFE scheme and prove its security in the
multi-user setting and chosen-key model without random oracle. It is based
on Groth and Sahai’s idea of constructing a fully anonymous group signature
scheme [15, 16] and the security relies on the decision linear assumption and
strong Diffie-Hellman assumption.

(Paper Organization): In the next section, we define A-OFE and propose a
security model for it. We also show some relation among the formalized security
1 Resolution ambiguity is just another name for the ambiguity considered in [12, 18].
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requirements of A-OFE. In Sec. 3, we introduce some preliminaries which are
used in our construction, which is described in Sec. 4. In Sec. 5, we prove the
security of our scheme in the standard model, and compare our scheme with
other two related work.

2 Ambiguous Optimistic Fair Exchange

In an A-OFE scheme, we require that after receiving a partial signature σP

from Alice (the signer), Bob (the verifier) cannot convince others but himself
that Alice has committed herself to σP . This property is closely related to the
non-transferability of designated verifier signature [19] and the ambiguity of
concurrent signature [11]. Similarly, we require that the verification algorithm in
A-OFE should also take as the public keys of both signer and (designated) verifier
as inputs, in contrast to that in the traditional definition of OFE [1, 2, 12, 18].

Definition 1 (Ambiguous Optimistic Fair Exchange). An ambiguous op-
timistic fair exchange (A-OFE in short) scheme involves two users (a signer
and a verifier) and an arbitrator, and consists of the following (probabilistic)
polynomial-time algorithms:

– PMGen: On input 1k where k is a security parameter, it outputs a system
parameter PM.

– SetupTTP: On input PM, the algorithm generates a public arbitration key
APK and a secret arbitration key ASK.

– SetupUser: On input PM and (optionally) APK, the algorithm outputs a pub-
lic/secret key pair (PK,SK). For user Ui, we use (PKi, SKi) to denote its
key pair.

– Sig and Ver: Sig(M,SKi, PKi, PKj, APK) outputs a (full) signature σF on
M of user Ui with the designated verifier Uj, where message M is chosen by
user Ui from the message space M defined under PKi, while Ver(M,σF , PKi,
PKj, APK) outputs accept or reject, indicating σF is Ui’s valid full signature
on M with designated verifier Uj or not.

– PSig and PVer: They are partial signing and verification algorithms respec-
tively. PSig(M,SKi, PKi, PKj , APK) outputs a partial signature σP , while
PVer(M,σP ,PK, APK) outputs accept or reject, where PK = {PKi, PKj}.

– Res: This is the resolution algorithm. Res(M,σP , ASK,PK), where PK =
{PKi, PKj}, outputs a full signature σF , or ⊥ indicating the failure of re-
solving a partial signature.

Note that we implicitly require that there is an efficient algorithm which given
a a pair of (SK,PK), verifies if SK matches PK, i.e. (SK,PK) is an output
of algorithm SetupUser. As in [12], PSig together with Res should be functionally
equivalent to Sig.

For the correctness, we require that for any k ∈ N, PM ← PMGen(1k),
(APK,ASK) ← SetupTTP (PM), (PKi, SKi) ← SetupUser(PM, APK),
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(PKj, SKj) ← SetupUser(PM, APK), and M ∈ M(PKi), let PK={PKi, PKj},
we have the following

PVer(M, PSig(M, SKi, PKi, PKj , APK),PK, APK) = accept,

Ver(M, Sig(M, SKi, PKi, PKj , APK), PKi, PKj , APK) = accept, and

Ver(M, Res(M, PSig(M, SKi, PKi, PKj , APK), ASK,PK), PKi, PKj , APK)=accept.

2.1 Security Properties

(Resolution Ambiguity): The resolution ambiguity property requires that any
‘resolved signature’Res(M,PSig(M ,SKi,PKi,PKj ,APK),ASK, {PKi, PKj})
is computationally indistinguishable from an ‘actual signature’ generated by the
signer, Sig(M,SKi, PKi, PKj, APK). It is identical to ‘ambiguity’ defined in
[12, 18]. Here we just use another name, in order to avoid any confusion, as we
will define another kind of ambiguity next.

(Signer Ambiguity): Informally, signer ambiguity means that given a partial
signature σP from a signer A, a verifier B should not be able to convince others
that σP was indeed generated by A. To capture this property, we use the idea of
defining ambiguity in concurrent signature [11]. We require that B can generate
partial signatures that look indistinguishable from those generated by A. This is
also the reason why a verifier should also have a public/secret key pair, and the
verifier’s public key should be included in the inputs of PSig and Sig. Formally, we
define an experiment in which D is a probabilistic polynomial-time distinguisher.

PM ← PMGen(1k)

(APK,ASK) ← SetupTTP(PM)

(M, (PK0, SK0), (PK1, SK1), δ) ← DORes(APK)

b ← {0, 1}
σP ← PSig(M, SKb, PKb, PK1−b, APK)

b′ ← DORes(δ, σP )

success of D := [b′ = b ∧ (M, σP , {PK0, PK1}) �∈ Query(D, ORes)]

where δ is D’s state information, oracle ORes takes as input a valid2 partial sig-
nature σP of user Ui on message M with respect to verifier Uj , i.e. (M,σP , {PKi,
PKj}), and outputs a full signature σF on M under PKi, PKj , and Query
(D,ORes) is the set of valid queries D issued to the resolution oracle ORes. In this
oracle query, D can arbitrarily choose a public key PK without knowing the cor-
responding private key. However, we do require that there exists a PPT algorithm
to check the validity of the two key pairs output by D, i.e. if SKb matches PKb

for b = 0, 1, or if (PKb, SKb) is a possible output of SetupUser. The advantage of
D, AdvSA

D (k), is defined to be the gap between its success probability in the exper-
iment above and 1/2, i.e. AdvSA

D (k) = |Pr[b′ = b] − 1/2|.
2 By ‘valid’, we mean that σP is a valid partial signature on M under public keys

PKi, PKj , alternatively, the input (M, σP , PKi, PKj) of ORes satisfies the condition
that PVer(M, σP , {PKi, PKj}, APK) = accept.
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Definition 2 (Signer Ambiguity). An OFE scheme is said to be signer am-
biguous if for any probabilistic polynomial-time algorithm D, AdvSA

D (k) is negli-
gible in k.

Remark 1. We note that a similar notion was introduced in [14, 22]. It’s required
that the signer’s partial signature can be simulated in an indistinguishable way.
However, the ‘indistinguishability’ in [14, 22] is defined in CPA fashion, giving
the adversary no oracle that resolves a partial signature to a full one, while
our definition of signer ambiguity is done in the CCA fashion, allowing the
adversary to ask for resolving any partial signature except the challenge one to a
full signature, which is comparable to the CCA security of public key encryption
schemes.

(Security Against Signers): We require that no PPT adversary A should be
able to produce a partial signature with non-negligible probability, which looks
good to a verifier but cannot be resolved to a full signature by the honest arbitra-
tor. This ensures the fairness for verifiers, that is, if the signer has committed to
a message with respect to an (honest) verifier, the verifier should always be able
to obtain the full commitment of the signer. Formally, we consider the following
experiment:

PM ← PMGen(1k)

(APK,ASK) ← SetupTTP(PM)

(PKB, SKB) ← SetupUser(PM, APK)

(M, σP , PKA) ← AOB
PSig,ORes(APK, PKB)

σF ← Res(M, σP , ASK, {PKA, PKB})
success of A := [PVer(M, σP , {PKA, PKB}, APK) = accept

∧ Ver(M, σF , PKA, PKB , APK) = reject

∧ (M, PKA) �∈ Query(A,OB
PSig)]

where oracle ORes is described in the previous experiment, OB
PSig takes as input

(M,PKi) and outputs a partial signature on M under PKi, PKB generated
using SKB, and Query(A,OB

PSig) is the set of queries made by A to oracle OB
PSig.

In this experiment, the adversary can arbitrarily choose a public key PKi, and it
may not know the corresponding private key of PKi. Note that the adversary is
not allowed to corrupt PKB, otherwise it can easily succeed in the experiment by
simply using SKB to produce a partial signature under public keys PKA, PKB

and outputting it. The advantage of A in the experiment AdvSAS
A (k) is defined

to be A’s success probability.

Definition 3 (Security Against Signers). An OFE scheme is said to be
secure against signers if there is no PPT adversary A such that AdvSAS

A (k) is
non-negligible in k.

(Security Against Verifiers): This security notion requires that any PPT
verifier B should not be able to transform a partial signature into a full sig-
nature with non-negligible probability if no help has been obtained from the
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signer or the arbitrator. This requirement has some similarity to the notion of
opacity for verifiably encrypted signature [9]. Formally, we consider the following
experiment:

PM ← PMGen(1k)

(APK, ASK) ← SetupTTP(PM)

(PKA, SKA) ← SetupUser(PM, APK)

(M, PKB , σF ) ← BOPSig,ORes(PKA, APK)

success of B := [Ver(M, σF , PKA, PKB , APK) = accept ∧
(M, ·, {PKA, PKB}) �∈ Query(B,ORes)]

where oracle ORes is described in the experiment of signer ambiguity, Query(B,
ORes) is the set of valid queries B issued to the resolution oracle ORes, and
oracle OPSig takes as input a message M and a public key PKj and returns a
valid partial signature σF on M under PKA, PKj generated using SKA. In the
experiment, B can ask the arbitrator for resolving any partial signature with
respect to any pair of public keys (adaptively chosen by B, probably without
the knowledge of the corresponding private keys), with the limitation described
in the experiment. The advantage of B in the experiment AdvSAV

B (k) is defined
to be B’s success probability in the experiment above.

Definition 4 (Security Against Verifiers). An OFE scheme is said to be
secure against verifiers if there is no PPT adversary B such that AdvSAV

B (k) is
non-negligible in k.

(Security Against the Arbitrator): Intuitively, an OFE is secure against
the arbitrator if no PPT adversary C including the arbitrator, should be able
to generate with non-negligible probability a full signature without explicitly
asking the signer for generating one. This ensures the fairness for signers, that
is, no one can frame the actual signer on a message with a forgery. Formally, we
consider the following experiment:

PM ← PMGen(1k)

(APK, ASK∗) ← C(PM)

(PKA, SKA) ← SetupUser(PM, APK)

(M, PKB, σF ) ← COPSig(ASK∗, APK, PKA)

success of C := [Ver(M, σF , PKA, PKB , APK) = accept ∧
(M, PKB) �∈ Query(C,OPSig)]

where the oracle OPSig is described in the previous experiment, ASK∗ is C’s state
information, which might not be the corresponding private key of APK, and
Query(C,OPSig) is the set of queries C issued to the oracle OPSig. The advantage
of C in this experiment AdvSAA

C (k) is defined to be C’s success probability.

Definition 5 (Security Against the Arbitrator). An OFE scheme is said
to be secure against the arbitrator if there is no PPT adversary C such that
AdvSAA

C (k) is non-negligible in k.
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Remark 2. In A-OFE, both signer UA and verifier UB are equipped with pub-
lic/secret key pairs (of the same structure), and UA and UB can generate in-
distinguishable partial signatures on the same message. If the security against
the arbitrator holds for UA (as described in the experiment above), it should
also hold for UB. That is, even when colluding with UA (and other signers), the
arbitrator should not be able to frame UB for a full signature on a message, if
it has not obtained a partial signature on the message generated by UB.

Definition 6 (Secure Ambiguous Optimistic Fair Exchange). An A-OFE
scheme is said to be secure in the multi-user setting and chosen-key model if it is
resolution ambiguous, signer ambiguous, secure against signers, secure against
verifiers and secure against the arbitrator.

2.2 Weaker Variants of the Model

In this section, we evaluate the relation between the signer ambiguity and se-
curity against verifiers. Intuitively, if an A-OFE scheme is not secure against
verifiers, the scheme cannot be signer ambiguous because a malicious verifier
can convert with non-negligible probability a signer’s partial signature to a full
one which allows the verifier to win the signer ambiguity game. For technical
reasons, we first describe some weakened models before giving the proof for a
theorem regarding the relation.

In our definition of signer ambiguity (Def. 2), the two public/secret key pairs
are selected by the adversary D. In a weaker form, the key pairs can be selected
by the challenger, and D is allowed to corrupt these two keys. This is compa-
rable to the ambiguity definition for concurrent signature [11], or the strongest
definition of anonymity of ring signature considered in [6], namely anonymity
against full key exposure. We can also define an even weaker version of signer
ambiguity, in which D is given two public keys, PKA, PKB, the oracle access of
OPSig which returns UA’s partial signatures, and is allowed to corrupt PKB. We
call this form of signer ambiguity as weak signer ambiguity.

In the definition of security against verifiers (Def. 4), the verifier’s public key
PKB is adaptively selected by the adversary B. In a weaker model, PKB can
be generated by the challenger and the corresponding user secret key can be
corrupted by B. The rest of the model remains unchanged. We call this as weak
security against verifiers. Below we show that if an OFE scheme is weakly signer
ambiguous and secure against the arbitrator, then it is also weakly secure against
verifiers.

Theorem 1. In A-OFE, weak signer ambiguity and security against the arbi-
trator (Def. 5) together imply weak security against verifiers.

Proof. Suppose that an A-OFE scheme is not weakly secure against verifiers. Let
B be the PPT adversary that has non-negligible advantage ε in the experiment of
weak security against verifiers and B make at most q queries of the form (·, PKB)
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to oracle OPSig. Due to the security against the arbitrator, B must have queried
OPSig in the form (·, PKB). Hence the value of q is at least one. Denote the
experiment of weak security against verifiers by Ex(0). Note that in Ex(0) all
queries to OPSig are answered with partial signatures generated using SKA. We
now define a series of experiments, Ex(1), · · · ,Ex(q), so that Ex(i) (i ≥ 1) is the
same as Ex(i−1) except that starting from the (q+ 1− i)-th query to OPSig up to
the q-th query of the form (·, PKB), they are answered with partial signatures
generated using SKB. Let B’s success probability in experiment Ex(i) be εi. Note
that ε0 = ε, and in experiment Ex(q) all queries of the form (·, PKB) to OPSig are
answered with partial signatures generated using SKB. Since B also knows SKB

(through corruption), it can use SKB to generate partial signatures using SKB

on any message. Therefore, making queries of the form (·, PKB) to OPSig does
not help B on winning the experiment if answers are generated using SKB. It is
equivalent to the case that B does not issue any query (·, PKB) to OPSig. Hence
guaranteed by the security against the arbitrator, we have that B’s advantage
in Ex(q) is negligible as B has to output a full signature without getting any
corresponding partial signature.

Since the gap, |ε0 − εq|, between B’s advantage in Ex(0) and that in Ex(q) is
non-negligible, there must exist an 1 ≤ i ≤ q such that |εi−1 − εi| is at least
|ε0 − εq|/q, which is non-negligible as well. Let i∗ be such an i. We show how
to make use of the difference of B’s advantage in Ex(i∗−1) and Ex(i∗) to build a
PPT algorithm D to break the weak signer ambiguity.

Given APK and PKA, PKB, D first asks its challenger for SKB, and then
invokes B on (APK,PKA, PKB). D randomly selects an i∗ from {1, · · · , q},
and simulates the oracles for B as follows. If B asks for SKB, D simply gives
it to B. The oracle ORes is simulated by D using its own resolution oracle.
If B makes a query (M,PKj) to OPSig where PKj �= PKB, D forwards this
query to its own partial signing oracle, and returns the obtained answer back
to B. Now consider the �-th query of the form (M,PKB) made by B to OPSig.
If � < q + 1 − i∗, D forwards it to its own oracle, and returns the obtained
answer. If � = q + 1 − i∗, D requests its challenger for the challenge partial
signature σ∗

P on M and returns it to B. If � > q + 1 − i∗, D simply uses SKB

to produce a partial signature on M . At the end of the simluation, when B
outputs (M∗, σ∗

F ), if B succeeds in the experiment, D outputs 0; otherwise, D
outputs 1.

It’s easy to see that D guesses the correct i∗ with probability at least 1/q.
Now suppose that D’s guess of i∗ is correct. If σ∗

P was generated by D’s chal-
lenger using SKA, i.e. b = 0, the view of B is identical to that in Ex(i∗−1).
On the other side, if σ∗

P was generated using SKB, i.e. b = 1, the view of B

is identical to that in Ex(i∗). Let b′ be the bit output by D. Since D outputs
0 only if B succeeds in the experiment, we have Pr[b′ = 0|b = 0] = εi∗−1 and
Pr[b′ = 0|b = 1] = εi∗ . Therefore, the advantage of D in attacking the weak
signer ambiguity over random guess is
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∣∣∣∣Pr[b′ = b] − 1
2

∣∣∣∣ =
∣∣∣∣Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1] − 1

2

∣∣∣∣
=
∣∣∣∣Pr[b′ = 0 ∧ b = 0] +

(
Pr[b = 1] − Pr[b′ = 0 ∧ b = 1]

)
− 1

2

∣∣∣∣
=

1
2

∣∣Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]
∣∣

≥ 1
2q

|εi∗−1 − εi∗ | ≥ 1
2q2 |ε0 − εq|

which is also non-negligible. This contradicts the weak signer ambiguity
assumption. ��

Corollary 1. In A-OFE, signer ambiguity (Def. 2) and security against the
arbitrator (Def. 5) together imply weak security against verifiers.

Letting an adversary select the two challenge public keys gives the adversary
more power in attacking signer ambiguity. Therefore, signer ambiguity defined
in Sec. 2.1 is at least as strong as the weak signer ambiguity. Hence this corollary
follows directly the theorem above.

3 Preliminaries

(Admissible Pairings): Let G1 and GT be two cyclic groups of large prime
order p. ê is an admissible pairing if ê : G1×G1 → GT is a map with the following
properties: (1) Bilinear : ∀R,S ∈ G1 and ∀a, b ∈ Z, ê(Ra, Sb) = ê(R,S)ab; (2)
Non-degenerate: ∃R,S ∈ G1 such that ê(R,S) �= 1; and (3) Computable: there
exists an efficient algorithm for computing ê(R,S) for any R,S ∈ G1.

(Decision Linear Assumption (DLN)[8]:) Let G1 be a cyclic group of large
prime order p. The Decision Linear Assumption for G1 holds if for any PPT
adversary A, the following probability is negligibly close to 1/2.

Pr[F, H,W←G1; r, s←Zp; Z0←W r+s; Z1← G1; d← {0, 1} : A(F, H,W, F r, Hs, Zd)=d]

(q-Strong Diffie-Hellman Assumption (q-SDH)[7]): The q-SDH problem
in G1 is defined as follows: given a (q + 1)-tuple (g, gx, gx2

, · · · , gxq

), output a
pair (g1/(x+c), c) where c ∈ Z∗

p. The q-SDH assumption holds if for any PPT
adversary A, the following probability is negligible.

Pr
[
x ← Z∗

p : A(g, gx, · · · , gxq

) = (g
1

x+c , c)
]

4 Ambiguous OFE without Random Oracles

In this section, we propose an A-OFE scheme, which is based on Groth and
Sahai’s idea of constructing a fully anonymous group signature scheme [15, 16].
Before describing the scheme, we first describe our construction in a high level.
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4.1 High Level Description of Our Construction

As mentioned in the introduction part, many OFE schemes in the literature
follows a generic framework: Alice encrypts her signature under the arbitrator’s
public key, and then provides a proof showing that the ciphertext indeed contains
her signature on the message. To extend this framework to ambiguous optimistic
fair exchange, we let Alice encrypt her signature under the arbitrator’s public key
and provide a proof showing that the ciphertext contains either her signature on
the message or Bob’s signature on it. Therefore, given Alice’s partial signature,
Bob cannot convince others that Alice was committed herself to something, as
he can also generate this signature.

Our concrete construction below follows the aforementioned framework, which
is based on the idea of Groth in constructing a fully anonymous group signa-
ture scheme [15]. In more details, Alice’s signature consists of a weakly secure
BB-signature [7] and a strong one-time signature. Since only the BB-signature is
related to Alice’s identity, we encrypt it under the arbitrator’s public key using
Kiltz’ tag-based encryption scheme [20], with the one-time verification key as
the tag. The non-interactive proof is based on a newly developed technique by
Groth and Sahai [16], which is efficient and doesn’t require any complex NP-
reduction. The proof consists of two parts. The first part includes a commitment
to Alice’s BB-signature along with a non-interactive witness indistinguishable
(NIWI) proof showing that either Alice’s BB-signature or Bob’s BB-signature
on the one-time verification key is in the commitment. The second part is non-
interactive zero-knowledge (NIZK) proof (of knowledge) showing that the com-
mitment and the ciphertext contains the same thing. These two parts together
imply that the ciphertext contains a BB-signature on the message generated
by either Alice or Bob. Both the ciphertext and the proof are authenticated
using the one-time signing key. Guaranteed by the strong unforgeability of the
one-time signature, no efficient adversary can modify the ciphertext or the proof.

The NIWI proof system consists of four (PPT) algorithms, KNI , PWI , VWI

and Xxk, where KNI is the key generation algorithm which outputs a common
reference string crs and an extraction key xk; PWI takes as input crs, the
statement to be proved x, and a corresponding witness w, and outputs a proof
π; VWI is the corresponding verification algorithm; and Xxk takes as input crs
and a valid proof π, outputs a witness w′. The NIZK proof shares the same
common reference string with the NIWI proof. PZK and VZK are the proving
and verification algorithms of the NIZK proof system respectively. Due to the
page limit, we refer readers to [16] for detained information about the non-
interactive proofs and to [15] for an introduction to the building tools needed
for our construction.

4.2 The Scheme

Now we propose our A-OFE scheme. It works as follows:

– PMGen takes 1k and outputs PM = (1k, p,G1,GT , ê, g) so that G1 and GT are
cyclic groups of prime order p; g is a random generator of G1; ê : G1×G1 →
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GT is an admissible bilinear pairing; and group operations on G1 and GT

can be efficiently performed.
– SetupTTP: The arbitrator runs the key generation algorithm of the non-

interactive proof system to generate a common reference string crs and an
extraction key xk, i.e. (crs, xk) ← KNI(1k), where crs = (F,H,U, V,W,U ′,
V ′,W ′). It also randomly selects K,L ← G1, and sets (APK,ASK) =
((crs,K, L), xk), where F,H,K,L together form the public key of the tag-
based encryption scheme [20], and xk is the extraction key of the NIWI proof
system [15, 16], which is also the decryption key of the tag-based encryption
scheme.

– SetupUser: Each user Ui randomly selects xi ← Zp, and sets (PKi, SKi)
= (gxi , xi).

– PSig: To partially sign a message m with verifier Uj, user Ui does the fol-
lowing:
1. call the key generation algorithm of S to generate a one-time key pair

(otvk, otsk);
2. use SKi to compute a BB-signature σ on H(otvk), i.e. σ ← g

1
xi+H(otvk) ;

3. compute an NIWI proof π1 showing that σ is a valid signature under ei-
ther PKi or PKj, i.e. π1 ← PWI(crs, (ê(g, g), PKi, PKj, H(otvk)), (σ)),
which shows that the following holds:

ê(σ, PKi · gH(otvk)) = ê(g, g) ∨ ê(σ, PKj · gH(otvk)) = ê(g, g)

4. compute a tag-based encryption ([20]) y of σ, i.e. y = (y1, y2, y3, y4,
y5) ← E .Epk(σ, tag), where pk = (F,H,K,L) and tag = H(otvk);

5. compute an NIZK proof π2 showing that y and the commitment C to σ
in π1 contain the same σ, i.e. π2 ← PZK(crs, (y, π1), (r, s, t));

6. use otsk to sign the whole transcript and the message M , i.e. σot ←
S.Sotsk(M,π1, y, π2).

The partial signature σP of Ui on message M then consists of (otvk, σot,
π1, y, π2).

– PVer: After obtaining Ui’s partial signature σP = (otvk, σot, π1, y, π2), the
verifier Uj checks the following. If any one fails, Uj rejects; otherwise, it
accepts.
1. if σot is a valid one-time signature on (M,π1, y, π2) under otvk;
2. if π1 is a valid NIWI proof, i.e. VWI(crs, (ê(g, g), PKi, PKj, H(otvk)),

π1)
?= accept;

3. if π2 is a valid NIZK proof, i.e. VZK(crs, (y, π1), π2)
?= accept;

– Sig: To sign a message M with verifier Uj , user Ui generates a partial signa-
ture σP as in PSig, and set the full signature σF as σF = (σP , σ).

– Ver: After receiving σF on M from Ui, user Uj checks if PVer(M,σP ,

{PKi, PKj}, APK) ?= accept, and if ê(σ, PKi · gH(otvk)) ?= ê(g, g). If any
of the checks fails, Uj rejects; otherwise, it accepts.

– Res: After receiving Ui’s partial signature σP on message M from user Uj ,
the arbitrator firstly checks the validity of σP . If invalid, it returns ⊥ to Uj .
Otherwise, it extracts σ from π1 by calling σ ← Xxk(crs, π1). The arbitrator
returns σ to Uj .
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5 Security Analysis

Theorem 2. The proposed A-OFE scheme is secure in the multi-user setting
and chosen-key model (without random oracle) provided that DLN assumption
and q-SDH assumption hold.

Intuitively, the resolution ambiguity is guaranteed by the extractability and
soundness of the NIWI proof of knowledge system. The signer ambiguity and
security against verifiers are due to the CCA security of the encryption scheme.
Security against signers and security against the arbitrator are guaranteed by
the (weak) unforgeability of BB-signature scheme. Due to the page limit, we
leave the detailed proof in the full version of this paper.

Remark 3. In our construction, the signer uses its secret key to generate a BB-
signature on a fresh one-time verification key, while the message is signed using
the corresponding one-time signing key. As shown by Huang et al. in [17], this
combination leads to a strongly unforgeable signature scheme. It’s not hard to
see that our proposed A-OFE scheme actually achieves a stronger version of
security against the verifier. That is, even if the adversary sees the signer UA’s
full signature σF on a message M with verifier UB, it cannot generate another
σ′

F on M such that Ver(M,σ′
F , PKA, PKB, APK) = accept. The claim can be

shown using the proof given in this paper without much modification.

(Comparison): We note that schemes proposed in [14, 22] have similar properties
as our ambiguous OFE, i.e. (online, offline) non-transferability. Here we make
a brief comparison with these two schemes. First of all, our A-OFE scheme is
better than them in terms of the level of non-transferability. In [14, 22], the
non-transferability is defined only in the CPA fashion. The adversary is not
given an oracle for converting a partial signature to a full one. While in our
definition of A-OFE, we define the ambiguity in the CCA fashion, allowing the
adversary to ask for resolving a partial signature to a full one. Second, in terms
of efficiency, our scheme outperforms the scheme proposed in [22], and is slightly
slower than [14]. The generation of a partial signature of their scheme requires
linear (in security parameter k) number of encryptions, and the size of a partial
signature is also linear in k. While in our scheme both the computation cost
and size of a partial signature are constant. The partial signature of ousr scheme
includes about 41 group elements plus a one-time verification key and a one-time
signature. Third, both our scheme and the scheme in [14] only require one move
in generating a partial signature, while the scheme in [22] requires four moves.
Fourth, in [22], there is a setup phase between each signer and the confirmer, in
which the confirmer generates an encryption key pair for each signer. Therefore,
the confirmer has to store a key pair for each signer, leading to a large storage.
While our scheme and [14] don’t need such a phase. Fifth, in terms of security,
our scheme and [22] are provably secure without random oracles. But the scheme
in [14] is only provably secure in the random oracle model.
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