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Efficient Non-interactive Range Proof

Tsz Hon Yuen', Qiong Huang?, Yi Mu!, Willy Susilo?,
Duncan S. Wong?, and Guomin Yang?

! University of Wollongong, Australia
{thy738,ymu,wsusilo}Quow.edu. au
2 City University of Hong Kong, China
{csqhuang@student. ,duncan@, csyanggm@cs. }cityu.edu.hk

Abstract. We propose the first constant size non-interactive range proof
which is not based on the heuristic Fiat-Shamir transformation and
whose security does not rely on the random oracle assumption. The
proof consists of a constant number of group elements. Compared with
the most efficient constant-size range proof available in the literature,
our scheme has significantly reduced the proof size. We showed that our
scheme achieves perfect completeness, perfect soundness and compos-
able zero-knowledge under a conventional number-theoretic assumption,
namely the Subgroup Decision Problem.

1 Introduction

Proving in zero-knowledge that a committed value lies within a specified integer
range is called range proof. Consider the following scenario: suppose that there
is a firewall which grants the access of some private network only to users from
a specific range of IP addresses, say with the same class A IP prefix “10.*.*.*7,
Each user when accessing the private network has to prove to the firewall that he
has a valid credential corresponding to his IP address, while he does not want to
reveal his actual IP address to the firewall due to some privacy concern. Suppose
that the user’s IP address is 10.168.0.1 and he is holding an anonymous credential
for his corresponding IP value 178782209 = 10 x 256° 4 168 x 2562 + 1. The
user can prove to the firewall, using the range proof, that his IP value lies in the
range [10 x 2563, 10 x 2563 + 255 x 2562 + 255 x 256 -+ 255], without revealing
exactly what his IP address is.

Range proof has many other applications. For example, in some anonymous
credential system [20] and e-cash system, [7], a prover can show that he is old
enough (e.g. age > 18) to access some sensible information; or show that the
sequence number of an e-cash lies within a specified range, respectively.

In the literature, there are a number of range proof schemes available
[5,9,18,4,17,12,6]. Most of the schemes are interactive and have to use the
Fiat-Shamir transformation [13] for converting to their non-interactive versions.
The security of the transformation relies on the random oracle [1] assumption,
which is considered to be heuristic. The security may not preserve when the
random oracle is replaced by a hash function, even if the security of a scheme is
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reduced to some complexity (or number-theoretic) assumptions [8]. In addition
to this, each of the schemes has a number of additional limitations (see Sec. 1.2
for details). Some of them may be inefficient: the proof size is linear to that
of either some desirable security level ( [5]) or the range ( [18,12,6]). At the
security aspect, some schemes do not achieve perfect completeness ( [9,4,12]),
perfect soundness ( [18,5,9,4,17,12,6]), or only have statistical zero-knowledge
(19,4,17,6]).

A natural question which remains unanswered is whether it is possible to
build a non-interactive range proof scheme which does not rely on the random
oracle assumption, while at the same time, is efficient (i.e. constant size) and
achieves perfect completeness, perfect soundness and desirably a stronger notion
of zero-knowledge.

1.1 Our Results and Techniques Used

In this paper, we answer this question affirmatively, by proposing a constant size
non-interactive range proof scheme. The scheme is not based on the Fiat-Shamir
transformation and its security does not rely on the random oracle assumption.
To the best of our knowledge, our scheme is the first constant size non-interactive
range proof without relying on the random oracle assumption. In addition to this,
the proof contains a constant number of group elements and is more efficient
than all the comparable schemes.On the security, the scheme achieves perfect
completeness, perfect soundness and by far, one of the strongest zero-knowledge
notions, namely the composable zero-knowledge (which implies unbounded zero-
knowledge) [15].

Regarding the techniques used in our constructions, we have borrowed ideas
from some of the previous range proof schemes and also made use of some tech-
niques from other types of zero-knowledge proof systems, but putting them to-
gether in an interesting way for achieving those desirable properties mentioned
above. In particular, our scheme follows the typical approach for range proof:
suppose a prover P wants to prove that a committed secret u is in some integer
interval [a, b]. P will show that both y—a and b—p are non-negative. To do so, the
scheme first applies the classic Lagrange’s theorem that any positive integer can
be written as the sum of four squares, which can be found using the Rabin-Shallit
algorithm [19]. Then, we borrow some of the techniques from Groth and Sahai’s
non-interactive witness-indistinguishable (NIWT) proof for bilinear groups [16]
and turn it into the final non-interactive range proof scheme. The security proof
of our scheme is done in the traditional common reference string model. The
number theoretic assumption that our scheme relies on is the Subgroup Decision
Problem, which was first proposed by Boneh, Goh and Nissim [3].

1.2 Related Work

Below is a brief review of the related range proof schemes. In the description,
we use P and V to denote a prover and a verifier, respectively. If P proves that a
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committed secret u falls in an interval I while V is convinced that p belongs to
an interval J O I, then we say that the expansion rate of the range proof scheme
is |J]/|1].

In 1987, Brickell et al. [5] proposed the BCDG range proof that prove a
committed secret lying in [0, B] for some positive integer B. The scheme has
perfect completeness and perfect zero-knowledge. It achieves “computational”
soundness, that is, the probability that a cheating prover can succeed is bounded
by 2% where t is the number of times that the proof is iterated. The expansion
rate of the scheme is three and the proof size is proportional to the value of t.

In 1998, Chan, Frankel and Tsiounis [9] improved the BCDG range proof.
We call this scheme as CFT range proof. CE'T range proof range achieves “com-
putational” completeness with probability greater than 1 — 2! for some security
parameter [ € N. The soundness achieved is also computational, where a cheating
prover can succeed with probability bounded by 27¢. Regarding zero-knowledge,
the scheme achieves honest-verifier statistic zero-knowledge (HVSZK). The ex-
pansion rate is 2¢¥!*1. The CFT range proof improves the BCDG range proof
by having the proof size independent of the value of ¢.

With similar range structure to that of BCDG and CFT range proofs, Mao [18]
proposed a range proof in 1998 for ranges in the form of [0, 2% — 1] where k € N.
Mao’s proof size is proportional to the size of the range. The scheme has perfect
completeness, perfect zero-knowledge, and “computational” soundness.

The first range proof scheme for the general range [a,b] was proposed by
Boudot in 2000 [4]. In addition, its expansion rate is exactly one. In other words,
it is the first range proof which solves the expansion rate problem. The scheme
has “computational” completeness and soundness, and the level of HVSZK with
respect to zero-knowledge.

In 2003, Lipmaa [17] propose a range proof for committed secrets lying in
[0, B] where B is some positive integer. In Lipmaa’s proof, the following classic
Lagrange’s theorem from the year 1770 was employed.

Theorem 1. For an integer p, there exist (efficiently computable) integers wy,
wa, w3, wy such that p = w? + w3 + w? + w3, if and only if u > 0.

For finding the four squares in the theorem, Rabin and Shallit’s algorithm [19]
can be used. Lipmaa’s scheme has perfect completeness, while the soundness is
“computational” and the zero-knowledge is HVSZK.

Di Crescenzo, Herranz and Séez [12] proposed a non-interactive range proof
without random oracles in 2004. We call this scheme as DHS range proof. The
DHS range proof decomposes the committed number using Mao’s method, and
uses the NIZK proof for Blum integers and quadratic residue [11]. The DHS range
proof has perfect zero-knowledge, while the completeness and the soundness are
“computational”. The disadvantage of this scheme is that the communication
complexity is proportional to the size of the range.

Groth [14] proposed a variation of Lipmaa’s method in 2005. It is based on an
observation from number theory that the only numbers that cannot be written
as the sum of three squares are of the form 4™ (8% + 7) for some integers m and
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k. Specifically, 4u 4+ 1 can be written as a sum of three squares, which implies
to be non-negative.

Recently in [6], Camenisch, Chaabouni and shelat proposed a new range proof.
Their scheme is constructed from a set membership proof which is based on
the Boneh-Boyen signature scheme [2]. This also implies that their scheme’s
security relies on the g-Strong Diffie-Hellman assumption, while the other range
proofs are generally relying on the strong RSA assumption. Furthermore, their
scheme has perfect completeness while having HVSZK in zero-knowledge and
“computational” soundness. The proof size also depends on the size of the range.

2 Definitions and Number-Theoretic Assumption

2.1 Non-interactive Proof System

We review the definition for non-interactive proof based on the one given by
Groth and Sahai recently in [16]. Let R be an efficiently computable ternary
relation. For triplets (gk,z,w) € R we call gk the setup, = the statement and w
the witness. Let L be the language such that

Lr(gk) = {z | Gw)l(gk, =, w) € R]}.

The standard definition of an NP-language often has gk omitted. In [16] and in
this paper, gk is the description of a bilinear group.

A non-interactive proof system for R consists of four probabilistic polynomial
time algorithms: a setup algorithm G, a common reference string (CRS) gener-
ation algorithm K, a prover P and a verifier V. G takes as input the security
parameter 1%, and outputs a setup gk. It may also output some auxiliary in-
formation sk, for example, the factorization of a group order. Note that sk can
simply be an empty string, meaning that the proof system is built upon a group
without knowledge of any trapdoor. The CRS generation algorithm K takes
(gk, sk) as input and produces a common reference string o. P takes as input
(gk, 0,2, w) and produces a proof 7, while V takes as input (gk, o, z, 7) and out-
puts 1 for accepting the proof, or 0 for rejecting the proof. We call (G, K, P, V)
a non-interactive proof system for R if it has the following properties.

Perfect Completeness. For all adversaries A, we have
Pr[(gk, sk) «— G(1%);0 — K(gk, sk); (z,w) «— A(gk,0); 7 «— P(gk,0,z,w) :
V(gk,o,z,7) =1 if (gk,z,w) € R] = 1.
Perfect Soundness. For all adversaries A, we have
Pr[(gk, sk) «— G(1%); 0 — K(gk, sk); (z,7) «— A(gk,0) :
V(gk,o,z,7) =0 if © ¢ Lr(gk)] = 1.

Composable Zero-Knowledge.! For this notion of zero-knowledge, there are two
aspects: first, an adversary should not be able to distinguish a real CRS from

! Composable zero-knowledge was first proposed by Groth [15]. In [15], Groth also
showed that composable zero-knowledge implies unbounded zero-knowledge.
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a simulated CRS; second, the adversary should not be able to distinguish real
proofs on a simulated CRS from simulated proofs, even if he gets access to the
secret simulation key 7. In other words, there exists a polynomial time simulator
(S1,52) that for all non-uniform polynomial time adversaries A, we have

Pr[(gk, sk) — G(1%);0 « K(gk, sk) : A(gk,0) = 1]
~ Pr((gk, sk) < G(1); (0, 7) « Si(gk, sk) : A(gk,0) =1],
and
Pr((gk, sk) — G(1*); (0,7) « Si(gk, sk); (z,w) — A(gk, 0, 7);
m«— P(gk,0,x,w) : A(m) = 1]
Pr[(gk, sk) < G(1"); (0,7) « Si(gk, sk); (z,w) — A(gk, 0, 7);
m— Sa(gk,o,7,xz) : A(m) = 1],

where (gk,z,w) € R.

2.2 Pairing and Intractability Problem

Let G,Gr be multiplicative groups of order n = pg, where p and ¢ are prime.
Let g be the generator of G. We denote G, as the subgroup of G with order g.

Definition 1. A map é : G x G — Gy is called a pairing if, for all g € G and
a,b € Z,, we have é(g%,g°) = é(g,9)*, and if g is the generator of G, then
é(g,9) generates Gr.

Definition 2 (Subgroup Decision Problem). Given (n,G,Gr, é) and a ran-
dom element u € G, output ‘1’ if the order of u is q and output ‘0’ otherwise.

The advantage of an algorithm A in solving the problem is defined as:

(p7Q7G7GT7é) — g(lk)
n =pq,u — G.
(p7q7G7GT7é) — g(lk)] !
n =pq,u — Gq. ’

Adva(k) = | Pr [A(n,G,Gr,é,u) =1

—Pr[A(n,G,Gr,é,u) =1

The subgroup decision assumption assumes that for any polynomial time al-
gorithm A, Adv(k) is a negligible function in k. This assumption was first
proposed by Boneh, Goh and Nissim [3].

3 Our Range Proof Scheme

As mentioned in Sec. 1.1, our approach is to prove that both p; = p—a and
1o = b—p are non-negative for a committed secret p which lies in [a, b]. To do
this, P applies Theorem 1 and represents p; = %2,1 +wi2,2 +wi2,3 +wi2,4 fori=1,2,



Efficient Non-interactive Range Proof 143

using the Rabin and Shallit algorithm [19]. Then, P performs a proof for the

statement . .
p=Y wi; A pp=) Wi (1)
j=1 j=1

using the witness ({w; j }1<i<2;1<j<4, 1t). We borrow some of the techniques from
Groth and Sahai’s NIWI proof [16] and turn it into the final non-interactive
range proof. In particular, we borrow the technique of commitment for pairings
from [16] that is based on the subgroup decision assumption.

We follow the notations for pairings denoted in Sec. 2.2. Let u be either a
generator of G or that of G,. We commit to w € Z,, by choosing p € Z, at
random and setting Ty, := g"u”. If u’s order is ¢, w is uniquely determined
in Zy, since T2 = ¢"%; but if u’s order is n, then we have a perfectly hiding
commitment to w. Under the subgroup decision assumption, the two types of
commitments are computationally indistinguishable.

3.1 The Construction and Its Security
Suppose that |b — a| < p, the non-interactive range proof scheme is as follows:

— G(1%): We define G such that it generates gk = (n,G,Gr, é) and sk = (p, q),
where p and ¢ are two random k-bit primes, n = pq, and é the pairing as
described in Def. 1.

— K(gk, sk): The CRS generation algorithm K takes as input gk = (n, G, Gr,
é) and sk = (p, q), randomly selects a generator g of G and a generator u of
Gy, and outputs o = (g, u).

— P(gk,0,2,w): The prover P takes as input gk = (n,G,Gr,é), o = (g,u),
x the statement (which is equation (1)) and w the witness of equation (1),
and carries out the following: for ¢ = 1,2,5 = 1,...,4, P randomly chooses
75,5 €r Zyn and computes T; ; = g“»7u"". Then P randomly picks r,, €r Zp
and computes T,, = g¥u". P calculates:

¢1 = g*Ter? DOEIRE R TR TN Dyt Tf,J,
¢2 — grw+22§=1 T2,jW2,5 u2§=1 T'g,j_
P sends the proof m = ({715, T%,j}jea), Tw, @1, @2) to the verifier V.
— V(gk,o,xz,7): The verifier V takes as input gk = (n,G,Gr,é), 0 = (g,u),

the statement (which is equation (1)) and 7 = ({715, T j}je4) Tw, 01, P2)
the proof, and checks if

-

e(g' Tyt g) - || ey, T y) = eu, ¢1),

1

<
o

e(Twg™" 9) - ] 612y, To,;) = e(u, ¢2).
j=1

V outputs 1 if the equations hold; otherwise, outputs 0.
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Our proof scheme described above can also be adapted to prove logical rela-
tions of ranges. Groth and Sahai [16] mentioned that logical operations like AND
and OR are easy to encode into their framework using standard techniques in
arithmetization. Therefore we can use our system to prove that z € [a,b] V a €
[c, d].

Theorem 2. The range proof scheme described above is a non-interactive proof
system satisfying perfect completeness, perfect soundness and composable zero-
knowledge if the subgroup decision assumption holds.

Proof. Perfect Completeness.

4
w ag H TL]’TLJ

J=1

4
= é(ga T H "-’1,;’ . é(u7g)27"111“’1,1 . é(u7 ur%,.i ))

[
—

= é(g, g)Z —1 Wi jta—w .é(u7g*7‘w+2?=1 2r1 w15, i T%,j)

= é(u (Z51)
4
a H é(Tz,5, T2,5)
j=1

4 2 2

=é(g" v, g) - [ (e(g.9)%2 - é(u, g)*r>999 - é(u,u))
j=1

= &g, g)= 0= Tl oy, gr e R i ey i T
= é(”a ¢2)

Perfect Soundness. Notice that u is in G,. Therefore when we try to power ¢
from both sides of the verification equations, the equations become:

~ a—w A (.UQ
“ (T1;,T15)" = (e(g° ", 9) - [ ] é(g,9)79)? =1,
=1

":le
>

<
Il
—_

<
Il

e(g Tyt 9)" -

4
~ _ A w?
(To5,To)* = (e(g" " 9) - [] é(g, 9)°29) = 1.
=1

é<ng_ba g)q

-
>

<
Il
N

<
Il

If ¢ L, then we have either g = p—aor po =b—p is negatlve Theorem 1
states that if u; is negative, then we cannot represent u; as Z i1 w .. Therefore

we have either p —a # ijl ij orb—pu # ZFl w27j. Therefore the proof
cannot pass the verification.

Composable Zero-Knowledge. First, we prove that a PPT adversary cannot dis-
tinguish a real CRS from a simulated CRS. The simulated CRS is generated
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as follows. Suppose the simulator S; takes as input gk = (n,G,Gr,é) and
sk = (p,q). The simulator .57 is also given u from the subgroup decision problem.
S7 randomly selects a generator g of G. Sy outputs the simulated CRS o = (g, u)
and the secret simulation key 7 = (p, ¢). If a PPT adversary A; can distinguish
a real CRS from o, then §; answers 0 to the subgroup decision problem. By the
subgroup decision assumption, no PPT adversary can distinguish a real CRS
generated by K from a simulated CRS generated by 5.

Second, we prove that a PPT adversary cannot distinguish real proofs on
a simulated CRS from simulated proofs, even if he gets access to the secret
simulation key 7. Suppose the simulator Sy takes as input gk = (n,G,Gr,é),
o= (g,u), 7= (p,q) and x is the proof statement. Ss picks a random w, from
the range [a,b]. By theorem 1, S can also represent w, — a and b — w, as sum
of four squares. Therefore Sy can calculate simulated commitments and proofs
with this randomly chosen witness w,..

Suppose there is a PPT adversary Ay can distinguish this simulated proof
and the real proof with witness ({w1 j, w2 ;}jep), w). The commitments ({77 j,
Ty} jea)s Te) are perfect hiding if u is the generator of G. They have the same
distribution no matter we use the witness ({w1,j,w2,;} e[, w) or the randomly
chosen witness (..., w,). Therefore Az cannot distinguish from the commitment
only.

Therefore A can only distinguish from the proofs (¢1, ¢2) given the commit-
ment. Theorem 3 of [16] tells us that the proofs (¢1, ¢2) made with either one
of the above witnesses are uniformly distributed over all possible choices of the
corresponding domain. Contradiction occurs. O

3.2 Comparison

We now compare our range proof with the existing ones found in the litera-
ture. During the comparison, we consider the security level comparable to 80-bit
symmetric or 1024-bit RSA.

Suppose that the underlying pairing with composite order is constructed from
a supersingular curve with embedding degree 2. The proof size (i.e. communica-~
tion overhead) of our scheme is

11G = 11 x 1025 = 11275 bits.
If we restrict the witness to have the form 4v + 1 for some integer v, then we

can have further reduce the proof size. For example, in the case of voting, we
can represent candidate A as number 1, candidate B as number 5 and so on.
Then we can represent the number of any candidate as the sum of three squares
(Sec. 1.2) and the proof size will be reduced to 9 G = 9216 bits, which is 18%
less than the original one.

Recently, Camenisch, Chaabouni and shelat [6] proposed a range proof with-
out relying on the strong RSA assumption. If the range is < k — 1 bits, then
the proof size is O(logkiﬁ)g lng). Using the example in their paper, a prover
wants to show that the committed secret lies between [347184000,599644800).
Cheon [10] proved that the security of the ¢-SDH problem on an abelian group
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of order p can be reduced up to O(logp - p'/?) (resp. O(logp - p'/?)) for large ¢
if p— 1 (resp. p + 1) has a divisor d = O(p'/?) (resp. d = O(p*/?)). Because of
this, Cheon suggested to use 220-bit prime p for 80-bit symmetric security level.
Suppose that we use a pairing with embedding degree 6. The proof size? is

5G + 8Gr 4 20Z, = 5 x 221 4+ 8 x 1321 + 20 x 220 = 16073 bits.

Our scheme has the proof size 30% less than that of Camenisch et al.’s scheme.
It is not hard to see that our scheme saves even more bandwidth if the range is
larger.

It is more natural to compare our scheme with the existing constant size range
proofs whose expansion rate equals to 1. We use the 1024-bit RSA security level
for communication complexity comparison. The proof size of our scheme is about
42% less than that of existing schemes.

Table 1. Comparison of range proofs with expansion rate equals to 1. Complexity
stands for the proof size. We omit the figure for Camenisch et al. [6] since it is not a
constant size range proof. PC stands for perfect completeness. PS stands for perfect
soundness. ZK stands for zero-knowledge. NI stands for non-interactive.

Scheme Complexity PC PS ZK Assumption  Proof System
Boudot 23544 bits X X HVSZK strong RSA interactive
Lipmaa 19536 bits / X HVSZK strong RSA interactive
Camenisch et al. - AVARR HVSZK ¢-SDH interactive
This paper 11275 bits +/ 4/ composable ZK subgroup decision NI

4 Conclusion

We proposed an efficient non-interactive range proof. To the best of our knowl-
edge, this is the first constant size range proof which is not based on the Fiat-
Shamir transformation and whose security does not rely on the random oracle
assumption. The proof consists of constant number of group elements and is the
most efficient range proof scheme in the literature. We showed that our scheme
achieves perfect completeness, perfect soundness and composable zero-knowledge
under the Subgroup Decision Problem.
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