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Abstract. Attribute Based Broadcast Encryption (ABBE) is a combi-
nation of Attribute Based Encryption (ABE) and Broadcast Encryption
(BE). It allows a broadcaster (or encrypter) to broadcast an encrypted
message that can only be decrypted by the receivers who are within a pre-
defined user set and satisfy the access policy specified by the broadcaster.
Compared with normal ABE, ABBE allows direct revocation, which is
important in many real-time broadcasting applications such as Pay TV.
In this paper, we propose two novel ABBE schemes that have distinguish-
ing features: the first scheme is key-policy based and has short ciphertext
and constant size decryption key; and the second one is ciphertext-policy
based and has constant size ciphertext and short decryption key. Both of
our schemes allow access policies to be expressed using AND-gate with
positive, negative, and wildcard symbols, and are proven secure under
the Decision n-BDHE assumption without random oracles.

Keywords: Attribute based encryption · Broadcast encryption · AND-
gate · Wildcard

1 Introduction

Broadcast encryption (BE), introduced by Berkovits [1] and Fiat and Naor [2], is
a very useful tool for securing a broadcast channel. In a traditional BE scheme,
a broadcaster can specify a subset of privileged users (out of the user universe)
as the legitimate receivers of a message. Due to the practicality of broadcast
encryption in real-world applications, many BE schemes have been proposed in
various settings since its introduction (e.g., [3–9]).

Attribute Based Encryption (ABE), first introduced by Sahai and Waters
[10], allows an encrypter to embed a fine-grained access policy into the ciphertext
when encrypting a message. There are two types of ABE. In a Ciphertext Policy
(CP) ABE system, each user secret key is associated with a set of user attributes,
and every ciphertext is associated with an access policy. A ciphertext can be
c© Springer International Publishing Switzerland 2015
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decrypted by a secret key if and only if the attributes associated with the secret
key satisfy the access policy in the ciphertext. Key Policy (KP) ABE is the
dual form of CP-ABE, where attributes are used in the encryption process, and
access policies are used in the user secret key generation. ABE systems can
provide fine-grained access control of encrypted data, and has been extensively
studied in recent years (e.g., [11–16]).

Since ABE gives a one-to-many relationship between a ciphertext and the
corresponding valid decryption keys, it can be considered as a natural broad-
cast encryption where the legitimate decryptors are defined by the access poli-
cies (CP-ABE) or the attributes (KP-ABE) associated with the ciphertext. As
pointed out in [11,17], ABE is useful in some broadcasting systems, such as Pay
TV, which require dynamic and flexible access control. For example, the broad-
casting company can specify an access policy ((Location: City A) AND (Age:
>18)) when generating an encrypted data stream for a TV program, and the
access policy may be changed to ((Location: City A) AND (Age: *)) (here ‘*’
denotes the wildcard symbol, meaning “don’t care”) for the next program. How-
ever, one drawback of using ABE for broadcasting is that the cost of revoking a
user (e.g., those fail to pay the subscription fee for Pay TV) is very high, since
the secret keys of all the other non-revoked users must be updated.

Attribute Based Broadcast Encryption (ABBE) is a combination of ABE and
BE. Specifically, in a CP-ABBE scheme, a user secret key SK is associated with
a user identity (or index) ID and a set of user attributes L, and a ciphertext CT
generated by the broadcaster is associated with a user list S and an access policy
W . The ciphertext CT can be decrypted using SK if and only if L satisfies W
(denoted by L |= W ) and ID ∈ S. KP-ABBE is the dual form of CP-ABBE
where the positions of the attributes and the access policy are swapped. We
can see that similar to normal ABE, ABBE also allows fine-grained and flexible
access control. On the other hand, ABBE can provide direct revocation, which is
difficult or expensive to achieve in normal ABE systems. Direct revocation means
the broadcaster can directly exclude some revoked users without affecting any
non-revoked users, and ABBE can easily achieve this by removing the revoked
users from the receiver set S. As highlighted in [17,18], direct revocation is
important for real-time broadcasting applications such as Pay TV.

Existing ABBE Constructions. Several ABBE schemes [17–19] have been
proposed in the literature. In [19], Lubicz and Sirvent proposed a CP-ABBE
scheme which allows access policies to be expressed in disjunctive normal form,
with the OR function provided by ciphertext concatenation. Attrapadung and
Imai [18] proposed two KP-ABBE and two CP-ABBE schemes, which are con-
structed by algebraically combining some existing BE schemes (namely, the
Boneh-Gentry-Waters BE scheme [5] and the Sahai-Waters BE scheme [20]) with
some existing ABE schemes (namely, the KP-ABE scheme by Goyal et al. [11]
and the CP-ABE scheme by Waters [14]). Junod and Karlov [17] also proposed
a CP-ABBE scheme that supports boolean access policies with AND, OR and
NOT gates. Junod and Karlov’s scheme achieved direct revocation by simply
treating each user’s identity as a unique attribute in the attribute universe.
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This Work. In order to use ABBE in real-time applications such as Pay TV,
the bandwidth requirement and the decryption cost are the most important
factors to be considered. Unfortunately, the ciphertext size of the existing ABBE
schemes reviewed above is quite high (See Table 1). The motivation of this work
is to construct efficient ABBE schemes in terms of ciphertext and key size, as
well as decryption cost.

The contribution of this paper are two efficient ABBE schemes allowing
access policies to be expressed using AND-gate with positive (+), negative (−),
and wildcard (∗) symbols. To give a high-level picture of our constructions, we
use the positions of different symbols (i.e., positive, negative, and wildcard) to
do the matching between the access structure (containing wildcards) and the
attribute list (containing no wildcard) in the ABE underlying ABBE schemes.
We put the indices of all the positive, negative and wildcard attributes defined
in an access structure into three sets. By using the Viète’s formulas [21], based
on the wildcard set, the decryptor can remove all the wildcard positions, and
obtain the correct message if and only if the remaining positive and negative
attributes have a perfect position match. We then incorporate the technique of
Boneh-Gentry-Waters broadcast encryption scheme [5] into our ABE scheme to
enable direct revocation.

Our first ABBE scheme is key policy based, and achieves constant key size
and short ciphertext size. The second scheme is ciphertext policy based, achiev-
ing constant ciphertext size1 and short key size. Both schemes require only con-
stant number of pairing operations in decryption. A comparison between our
ABBE schemes and the previous ones is given in Table 1.

Table 1. Performance comparison among different ABBE schemes

CP-ABBE Ciphertext Private Key Dec. (Pairing) Access Structure Assumption

[19] O(r)|G| + 1|GT | O(t)|G| O(1) DNF GDHE

[18] O(n)|G| + 1|GT | O(t)|G| O(t) LSSS n-BDHE, MEBDH

[17] O(n)|G| + 1|GT | O(m + t)|G| O(1) DNF, CNF GDHE

Ours O(1)|G| + 1|GT | O(N)|G| O(1) AND Gates + wildcard n-BDHE

KP-ABBE Ciphertext Size Private Key Dec. (Pairing) Access Structure Assumption

[18] O(t)|G| + 1|GT | O(n)|G| O(t) LSSS n-BDHE, MEBDH

Ours O(N)|G| + 1|GT | O(1)|G| O(1) AND Gates + wildcard n-BDHE

In the table, we compare our ABBE schemes with the previous ones in terms
of ciphertext and private key size, decryption cost, access structure, and security
assumption. We use “p” to denote the pairing operation, “n” the number of
1 We should note that in our CP-ABBE scheme the wildcard positions should be

attached with the ciphertext. A naive way to do this is to include an n-bit string
where a bit “1” indicates wildcard at that position. Similar to the previous works
on BE [5] and ABBE [18], this information together with the target receiver set S
are not counted when measuring the ciphertext size in Table 1.
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attributes in an access structure, “t” the number of attributes in an attribute list,
“m” and total number of attributes in the system, “r” the number of revoked
users in the system, and “N” the maximum number of wildcard in an access
structure in our proposed ABBE schemes.

Paper Organisation. In the next section, we review some primitives that will
be used in our constructions, and the formal definition and security model of
KP- and CP-ABBE. We then present our KP- and CP-ABBE schemes in Sects. 3
and 4, respectively. We give the formal security proofs for our proposed schemes
in Sect. 5, and conclude the paper in Sect. 6.

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and
g a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

1. Bilinearity: e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy: e(g, g) �= 1.

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Decision n-BDHE Assumption. The Decision n-BDHE problem in G is
defined as follows: Let G be a bilinear group of prime order p, and g, h two
independent generators of G. Denote −→y g,α,n = (g1, g2, . . . , gn, gn+2, . . . , g2n) ∈
G

2n−1 where gi = gαi

for some unknown α ∈ Z
∗
p. We say that the n-BDHE

assumption holds in G if for any probabilistic polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,n, e(gn+1, h)) = 1] − Pr[A(g, h,−→y g,α,n, T ) = 1]| ≤ ε(k)

where the probability is over the random choive of g, h in G, the random choice
α ∈ Z

∗
p, the random choice T ∈ GT , and ε(k) is negligible in the security para-

meter k.

2.2 The Viète’s formulas

Both of our schemes introduced in this paper are based on the Viète’s formulas
[21] which is reviewed below. Consider two vectors −→v = (v1, v2, . . . , vL) and−→z = (z1, z2, . . . , zL). Vector v contains both alphabets and wildcards, and vector
z only contains alphabets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote the positions
of the wildcards in vector −→v . Then the following two statements are equal:

vi = zi ∨ vi = ∗ for i = 1 . . . L
L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
L∑

i=1

zi

∏

j∈J

(i − j). (1)
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Expand
∏

j∈J

(i−j) =
n∑

k=0

akik, where ak are the coefficients dependent on J , then

(1) becomes:
L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
n∑

k=0

ak

L∑

i=1

zii
k (2)

To hide the computations, we choose random group elemen Hi and put vi, zi

as the exponents of group elements: Hvi
i ,Hzi

i . Then (2) becomes:

L∏

i=1,i/∈J

H
vi

∏
j∈J (i−j)

i =
n∏

k=0

(
L∏

i=1

Hzii
k

i )ak (3)

Using Viète’s formulas we can construct the coefficient ak in (2) by:

an−k = (−1)k
∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik
, 0 ≤ k ≤ n. (4)

where n = |J |. If we have J = {j1, j2, j3}, the polynomial is (x−j1)(x−j2)(x−j3),
then:

a3 = 1
a2 = −(j1 + j2 + j3)
a1 = (j1j2 + j1j3 + j2j3)
a0 = −j1j2j3.

2.3 Access Structure

Let U = {Att1, Att2, ..., AttL} be the universe of attributes in the system.
Each attribute Atti has two possible values: positive and negative. Let W =
{Att1, Att2, ..., AttL} be an AND-gates access policy with wildcards. A wildcard
‘*’ means “don’t care” (i.e., both positive and negative attributes are accepted).
We use the notation S |= W to denote that the attribute list S of a user satis-
fies W .

For example, suppose U = {Att1 = CS, Att2 = EE, Att3 = Faculty, Att4 =
Student}. Alice is a student in the CS department; Bob is a faculty in the
EE department; Carol is a faculty holding a joint position in the EE and CS
department. Their attribute lists are illustrated in Table 2. The access structure
W1 can be satisfied by all the CS students, while W2 can be satisfied by all CS
people.

2.4 KP-ABBE Definition

Let U denote the set of all user indices, and N the set of all user attributes. A key-
policy attribute based broadcast encryption scheme consists of four algorithms:

– Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
outputs the public parameters PK and a master key MSK.
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Table 2. List of attributes and policies

Attributes Att1 Att2 Att3 Att4

Description CS EE Faculty Student

Alice + − − +

Bob − + + −
Carol + + + −
W1 + − − +

W2 + − ∗ ∗

– Encrypt(S,L,M,PK): The encryption algorithm takes as input the public
parameters PK, a message M , a set of user index S ⊆ U and a set of attributes
L ⊆ N , and outputs a ciphertext CT .

– Key Generation(ID,W,MSK,PK): The key generation algorithm takes
as input the master key MSK, public parameters PK, a user index ID ∈ U ,
and an access structure W , and outputs a private key SK.

– Decrypt(PK, CT , SK): The decryption algorithm takes as input the pub-
lic parameters PK, a ciphertext CT , and a private key SK, and outputs a
message M or a special symbol ‘⊥’.

Security Definition for KP-ABBE. We define the Selective IND-CPA secu-
rity for KP-ABBE via the following game.

– Init: The adversary commits to the challenge user indices S∗ and target
attribute set L∗.

– Setup: The challenger runs the Setup algorithm and gives PK to the adver-
sary.

– Phase 1: The adversary queries for private keys with pairs of user index and
access structure (ID,W ) such that L∗ �|= W or ID /∈ S∗.

– Challenge: The adversary submits messages M0,M1 to the challenger. The
challenger flips a random coin β and passes the ciphertext ct∗ =
Encrypt(PK,Mβ , L∗, S∗) to the adversary.

– Phase 2: Phase 1 is repeated.
– Guess: The adversary outputs a guess β′ of β.

Definition 1. We say a KP-ABBE scheme is selective IND-CPA secure if for
any probabilistic polynomial time adversary

Adv
s-ind-cpa
kp (λ) = |Pr[β′ = β] − 1/2|

is a negligible function of λ.

2.5 CP-ABBE Definition

A ciphertext-policy attribute based broadcast encryption scheme consists of four
algorithms:
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– Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
outputs the public parameters PK and a master key MSK.

– Encrypt(S,W,M,PK): The encryption algorithm takes as input the public
parameters PK, a message M , an access structure W , a set of user index
S ⊆ U , and outputs a ciphertext CT .

– Key Generation(ID,L,MSK,PK): The key generation algorithm takes as
input the master key MSK, public parameters PK, a user index ID ∈ U ,
and a set of attributes L ⊆ N , and outputs a private key SK.

– Decrypt(PK, CT , SK): The decryption algorithm takes as input the pub-
lic parameters PK, a ciphertext CT , and a private key SK, and outputs a
message M or a special symbol ‘⊥’.

Security Definition for CP-ABBE. We define the Selective IND-CPA secu-
rity for CP-ABBE via the following game.

– Init: The adversary commits to the challenge user indices S∗ and target access
structure W ∗.

– Setup: The challenger runs the Setup algorithm and gives PK to the adver-
sary.

– Phase 1: The adversary queries for private keys with pairs of user index and
a user attribute list (ID,L) such that L∗ �|= W or ID /∈ S∗.

– Challenge: The adversary submits messages M0,M1 to the challenger. The
challenger flips a random coin β and passes the ciphertext ct∗ =
Encrypt(PK,Mβ ,W ∗, S∗) to the adversary.

– Phase 2: Phase 1 is repeated.
– Guess: The adversary outputs a guess β′ of β.

Definition 2. We say a CP-ABBE scheme is selective IND-CPA secure if for
any probabilistic polynomial time adversary

Advs-ind-cpacp (λ) = |Pr[β′ = β] − 1/2|

is a negligible function of λ.

3 KP-ABBE Scheme

In our KP-ABBE scheme, we assume that |U | ≤ n and |N | ≤ n where n is a
system parameter. Let N1, N2, N3 be three upper bounds for the user attributes:

– N1: the maximum number of wildcard in an access structure.
– N2: the maximum number of positive attribute in an attribute list L.
– N3: the maximum number of negative attribute in an attribute list L.

� Setup(1λ): The setup algorithm first generates bilinear groups G,GT with
order p, and selects random generators g, h1, . . . , hN ∈R G, and α ∈R Zp.
Then compute gi = gαi ∈ G for i = 1, 2, . . . , n, n+2, . . . , 2n, randomly choose
γ, δ, θ, x1, . . . , xN1 ∈R Zp, and set:
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ν = gγ , V0 = gδ, V1 = gθ,

V01 = (gδ)x1 , . . . , V0N1 = (gδ)xN1 ,

V11 = (gθ)x1 , . . . , V1N1 = (gθ)xN1 ,

The public key and master secret key are defined as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1, V01, . . . , V0N1 ,
V11, . . . , V1N1)

MSK = (α, γ, δ, θ, x1, . . . , xN1).

� Encrypt(S,L,M,PK): Given a user index set S ⊆ U , an attribute list L
which contains:
– n2 ≤ N2 positive attributes at positions V = {v1, . . . , vn2};
– n3 ≤ N3 negative attributes at positions Z = {z1, . . . , zn3};
the algorithm randomly chooses r ∈ Zp and computes:

C0 = M · e(gn, g1)r, C1 = gr, C2 = (ν
∏

j∈S

gn+1−j)r,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C3,0 = (V0

∏

i∈V

hi)r

C3,1 = (V01

∏

i∈V

hi
i)

r

. . .

C3,N1 = (V0N1

∏

i∈V

hiN1

i )r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C4,0 = (V1

∏

i∈Z

hi)r

C4,1 = (V11

∏

i∈Z

hi
i)

r

. . .

C4,N1 = (V1N1

∏

i∈Z

h
N1

i )r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The ciphertext is CT = (C0, C1, C2, C3,0, . . . , C3,N1 , C4,0, . . . , C4,N1).

� Key Generation(ID,W,MSK,PK): Suppose that the access structure W
contains:
– n1 ≤ N1 wildcards at positions J = {w1, . . . , wn1}.
– n2 ≤ N2 positive attributes at positions V ′ = {v′

1, . . . , v
′
n2

}.
– n3 ≤ N3 negative attributes at positions Z ′ = {z′

1, . . . , z
′
n3

}.
Randomly choose s1, s2 ∈ Zp, and apply the Viete formulas on J to compute

ak(0 ≤ k ≤ n1) and set t =
n1∑

k=0

xkak where x0 = 1. Then compute

D1 = gαIDγ+δs1+θs2 ,D2 = g
s1
t ,D3 = g

s2
t ,

D4 = (
∏

i∈V ′
h

n1∏

j=0
(i−wj)

i )
s1
t ,D5 = (

∏

i∈Z′
h

n1∏

j=0
(i−wj)

i )
s2
t .

and set the secret key SK = (D1,D2,D3,D4,D5).
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� Decrypt(PK,CT, SK): The decryption algorithm first applies the Viete for-
mulas on J included in the secret key to compute ak for 0 ≤ k ≤ n1, and

e(D1, C1) = e(gαIDγ+δs1+θs2 , gr)

= e(gαIDγ , gr)e(g, g)δs1re(g, g)θs2r

e(D4, C1) = e((
∏

i∈V ′
h

n1∏

j=0
(i−wj)

i )s1/t, gr)

e(D5, C1) = e((
∏

i∈Z′
h

n1∏

j=0
(i−wj)

i )s2/t, gr)

e(gID, C2) = e(gαID

, (ν
∏

j∈S

gn+1−j)
r)

= e(gαID

, ν)re(gαID

,
∏

j∈S

gn+1−j)
r

e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(
∏

j∈S, j �=ID

gn+1−j+ID, gr)

⇒ e(gID, C2)/e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(gαID

, ν)r · e(gn, g1)
r

e(D2,
n1∏

k=0

C
ak
3,k) = e(gs1/t, V

r
n1∑

k=0
xkak

0

∏

i∈V

h

n1∑

k=0
ikakr

i )

= e(g, V0)
s1re(

∏

i∈V

h

n1∏

j=0
(i−wj)r

i , gs1/t)

e(D3,
n1∏

k=0

C
ak
4,k) = e(gs2/t, V

r
n1∑

k=0
xkak

1

∏

i∈Z

h

n1∑

k=0
ikakr

i )

= e(g, V1)
s2re(

∏

i∈Z

h

n1∏

j=0
(i−wj)r

i , gs2/t)

If L |= W and ID ∈ S, then we have:

M =

C0·e(gαIDγ ,gr)e(g,g)δs1re(g,g)θs2re((
∏

i∈V ′
h

n1∏

j=0
(i−wj)

i )s1/t,gr)e((
∏

i∈Z′
h

n1∏

j=0
(i−wj)

i )s2/t,gr)

e(gαID
,ν)r·e(gn,g1)re(g,V0)

s1re(
∏

i∈V
h

n1∏

j=0
(i−wj)r

i ,gs1/t)e(g,V1)
s2re(

∏

i∈Z
h

n1∏

j=0
(i−wj)r

i ,gs2/t)

.

4 CP-ABBE Scheme

Our CP-ABBE scheme is the dual-form of our KP-ABBE scheme.

� Setup(1λ): The setup algorithm first generates bilinear groups G,GT with
order p, and selects random generators g, h1, . . . , hN ∈R G, and α ∈R Zp.
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Then compute gi = gαi ∈ G for i = 1, 2, . . . , n, n+2, . . . , 2n, randomly choose
γ, δ, θ ∈R Zp, and set:

ν = gγ , V0 = gδ, V1 = gθ.

The public key and master secret key are defined as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1)
MSK = (α, γ, δ, θ).

� Encrypt(S,W,M,PK): Given a user index set S ⊆ U , and an access struc-
ture W containing:
– n1 ≤ N1 wildcards at positions J = {w1, . . . , wn1};
– n2 ≤ N2 positive attributes at positions V = {v1, . . . , vn2};
– n3 ≤ N3 negative attributes at positions Z = {z1, . . . , zn3};
the algorithm randomly chooses r ∈ Zp and computes:

C0 = M · e(gn, g1)r, C1 = gr, C2 = (ν
∏

j∈S

gn+1−j)r,

C3 = (V0

∏

i∈V

h

n1∏

j=0
(i−wj)

i )r, C4 = (V1

∏

i∈Z

h

n1∏

j=0
(i−wj)

i )r.

The ciphertext is CT = (J,C0, C1, C2, C3, C4).

� Key Generation(ID,L,MSK,PK): Given a user identity ID and an
attribute list L which contains:
– n2 ≤ N2 positive attributes at positions V ′ = {v′

1, . . . , v
′
n2

};
– n3 ≤ N3 negative attributes at positions Z ′ = {z′

1, . . . , z
′
n3

};
randomly choose s1, s2 ∈ Zp and compute:

D1 = gαIDγ+δs1+θs2 ,D2 = gs1 ,D3 = gs2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D4,0 = (
∏

i∈V ′
hi)s1

D4,1 = (
∏

i∈V ′
hi

i)
s1

. . .

D4,N1 = (
∏

i∈V ′
hiN1

i )s1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D5,0 = (
∏

i∈Z′
hi)s2

D5,1 = (
∏

i∈Z′
hi

i)
s2

. . .

D5,N1 = (
∏

i∈Z′
hiN1

i )s2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and set the secret key SK = (D1,D2,D3,D4,0, . . . , D4,N1 ,D5,0, . . . , D5,N1).

� Decrypt(PK,CT, SK): The decryption algorithm first applies the Viete
formulas on J included in the ciphertext to compute ak for 0 ≤ k ≤ n1:
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e(D1, C1) = e(gαIDγ+δs1+θs2 , gr)
= e(gαIDγ , gr)e(g, g)δs1re(g, g)θs2r

e((
n1∏

k=0

Dak

4,k), C1) = e(
∏

i∈V ′
h

n1∑

k=0
ikaks1

i , gr)

= e(
∏

i∈V ′
h

n1∏

j=0
(i−wj)s1

i , gr)

e((
n1∏

k=0

Dak

5,k), C1) = e(
∏

i∈Z′
h

n1∑

k=0
ikaks2

i , gr)

= e(
∏

i∈Z′
h

n1∏

j=0
(i−wj)s2

i , gr)

e(gID, C2) = e(gαID

, (ν
∏

j∈S

gn+1−j)r)

= e(gαID

, ν)re(gαID

,
∏

j∈S

gn+1−j)r

e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(
∏

j∈S, j �=ID

gn+1−j+ID, gr)

⇒ e(gID, C2)/e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(gαID

, ν)r · e(gn, g1)r

e(D2, C3) = e(gs1 , (V0

∏

i∈V

h

n1∏

j=0
(i−wj)

i )r)

= e(gs1 , V r
0 )e(gs1 ,

∏

i∈V

h

n1∏

j=0
(i−wj)

i )r

e(D3, C4) = e(gs2 , (V1

∏

i∈Z

h

n1∏

j=0
(i−wj)

i )r)

= e(gs2 , V r
1 )e(gs2 ,

∏

i∈Z

h

n1∏

j=0
(i−wj)

i )r

If L |= W and ID ∈ S, then we have

M =
C0·e(gαIDγ ,gr)e(g,g)δs1re(g,g)θs2r·e( ∏

i∈V ′
h

n1∏

j=0
(i−wj)s1

i ,gr)e(
∏

i∈Z′
h

n1∏

j=0
(i−wj)s2

i ,gr)

e(gαID ,ν)r·e(gn,g1)re(gs1 ,V r
0 )e(gs1 ,

∏

i∈V

h

n1∏

j=0
(i−wj)

i )re(gs2 ,V r
1 )e(gs2 ,

∏

i∈Z

h

n1∏

j=0
(i−wj)

i )r

.
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5 Security Analysis

We prove that the proposed KP-ABBE and CP-ABBE schemes are selectively
secure under the Decision n-BDHE assumption.

Theorem 1. Assume that the Decision n-BDHE assumption holds, then no
polynomial-time adversary against our KP-ABBE scheme can have a non-
negligible advantage over random guess in the Selective IND-CPA security game.

Proof: Suppose that there exists an adversary A which can attack our scheme
with non-negligible advantage ε, we construct another algorithm B which uses A
to solve the Decision n-BDHE problem. On input (g, h,−→y g,α,n = (g1, g2, . . . , gn,

gn+2, . . . , g2n), T ), where gi = gαi

and for some unknown α ∈ Z
∗
p, the goal of B

is to determine whether T = e(gn+1, h) or a random element of GT .

Init: A gives B the challenge user indices S∗ and the target attribute set L∗

with n2 ≤ N2 positive attributes which occur at positions V ∗ = {v∗
1 , . . . , v

∗
n2

},
and n3 ≤ N3 negative attributes which occur at positions Z∗ = {z∗

1 , . . . , z∗
n3

} at
the beginning of the game.

Setup: B chooses d, v0, v1, u1, . . . , un, x1, . . . , xN1 ∈ Zp and generates:

ν = gd(
∏

j∈S∗
g−1

n+1−j) = gd−∑j∈S∗ αn+1−j

= gγ ,

V0j = (gv0)xj
∏

i∈V ∗
gαn+1−iij

= (gv0)xj g
∑

i∈V ∗ αn+1−iij

, for j = 0, . . . , N1

V1j = (gv1)xj
∏

i∈Z∗
gαn+1−iij

= (gv1)xj g
∑

i∈Z∗ αn+1−iij

, for j = 0, . . . , N1

where x0 = 1, and hi = gui−αn+1−i

, then B sets public key as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1, V01, . . . , V0N1 , V11, . . . , V1N1).

Phase 1: A submits a pair of user index and access structure (ID,W ) in a
secret key query, which satisfies L∗ �|= W or ID /∈ S∗. Assume W consists
of n1 ≤ N1 wildcards which occur at positions J = {w1, . . . , wn1}, n2 ≤ N2

positive attributes which occur at positions V = {v1, . . . , vn2}, and n3 ≤ N3

negative attributes which occur at positions Z = {z1, . . . , zn3}. B applies the

Viete formulas on J = {j1, . . . , jn1} to get ak and set t =
n1∑

k=0

xkak. Consider the

following two cases in Phase 1:

– Case 1: ID /∈ S∗. B first selects a random number s1, s2 ∈ Zp, then computes:

D1 = gd
ID

∏

j∈S∗
(gn+1−j+ID)−1gv0s1

∏

i∈V ∗
(gn+1−i)s1gv1s2

∏

i∈Z∗
(gn+1−i)s2

= gαID(d−∑j∈S∗ αn+1−j)(gv0+
∑

i∈V ∗ αn+1−i

)s1(gv1+
∑

i∈Z∗ αn+1−i

)s2

= gαIDγ+δs1+θs2 .
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D2 = g
s1
t ,

D3 = g
s2
t ,

D4 = (
∏

i∈V

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)
s1
t = (

∏

i∈V

h

∏

j∈J

(i−wj)

i )
s1
t ,

D5 = (
∏

i∈Z

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)
s2
t = (

∏

i∈Z

h

∏

j∈J

(i−wj)

i )
s2
t .

– Case 2: ID ∈ S∗. In this case, due to the constraint L∗ �|= W , W has at least
one position i∗ which has a different attribute value from L∗, which means
{V ∪ Z∗} �= ∅ or {Z ∪ V ∗} �= ∅.

� If there exists an i∗ ∈ {V ∪ Z∗} �= ∅:
B selects two random numbers s′

1, s
′
2 ∈ Zp and implicitly sets s1, s2 as:{

s1 = s′
1

s2 = s′
2 + αi∗ by setting D2 = gs′

1 = gs1 ,D3 = gs′
2+αi∗

= gs2 . Then B
can compute D1,D4,D5 as follows:

D1 = gαIDγ+δs1+θs2 .

= gαID(d−∑j∈S∗ αn+1−j)gv0s1
∏

i∈V ∗
(gn+1−i)s1gv1s2

∏

i∈Z∗
(gn+1−i)s2

= gd
ID

∏

j∈S∗
(gn+1−j+ID)−1

(gv0)s′
1(g
∑

i∈V ∗ αn+1−i

)s′
1(gv1)s′

2+αi∗
(g
∑

i∈Z∗ αn+1−i

)s′
2+αi∗

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1 · g−αn+1

(gv0)s′
1(g
∑

i∈V ∗ αn+1−i

)s′
1

(gv1)s′
2+αi∗

(g
∑

i∈Z∗ αn+1−i

)s′
2(g
∑

i∈Z∗,i�=i∗ αn+1−i+i∗
)gαn+1

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1(gv0)s′
1(g
∑

i∈V ∗ αn+1−i

)s′
1

(gv1)s′
2+αi∗

(g
∑

i∈Z∗ αn+1−i

)s′
2(g
∑

i∈Z∗,i�=i∗ αn+1−i+i∗
),

D4 = (
∏

i∈V

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)s′
1/t = (

∏

i∈V

h

∏

j∈J

(i−wj)

i )s1/t,

D5 = (
∏

i∈Z

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)(s
′
2+αi∗

)/t = (
∏

i∈Z

h

∏

j∈J

(i−wj)

i )s2/t.

We should note that since i∗ /∈ Z, the item gαn+1
will not occur in the

calculation of D5.
� If there exists an i∗ ∈ {Z ∪ V ∗} �= ∅:

the simulation can be performed in a similar way by choosing two random

numbers s′
1, s

′
2 ∈ Zp and implicitly setting s1, s2 as:

{
s1 = s′

1 + αi∗

s2 = s′
2

. We

omit the details here.

B returns to A the secret key SK = (D1,D2,D3,D4,D5).
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Challenge: The adversary gives two messages M0 and M1 to B. Then B flips
a coin b and generate the challenge ciphertext by setting C1 = gτ = h for some
unknown τ and

C2 = hd = (gd)τ

= (gd
∏

j∈S∗
(gn+1−j)−1

∏

j∈S∗
(gn+1−j))τ = (ν

∏

j∈S∗
(gn+1−j))τ

C3,k = h
v0xk+

∑

i∈V ∗
uii

k

= (g
v0xk+

∑

i∈V ∗
uii

k

)τ ,

C4,k = h
v1xk+

∑

i∈Z∗
uii

k

= (g
v1xk+

∑

i∈Z∗
uii

k

)τ .

B then sends the following challenge ciphertext to A

CT ∗ = (MbT,C1, C2, {C3,k}, {C4,k}).

Phase II: Same as Phase I.

Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(gn+1, h), then the simulation is the same as in the real game.
Hence, A will have the probability 1

2 + ε to guess b correctly. If T is a random
element of GT , then A will have probability 1

2 to guess b correctly. Therefore, B
can solve the Decision n-BDHE assumption also with advantage ε. ��
Theorem 2. Assume that the Decision n-BDHE assumption holds, then no
polynomial-time adversary against our CP-ABBE scheme can have a non-negligible
advantage over random guess in the Selective IND-CPA security game.

Proof: Suppose that there exists an adversary A which can attack our scheme
with non-negligible advantage ε, we construct another algorithm B which uses A
to solve the Decision n-BDHE problem. On input (g, h,−→y g,α,n = (g1, g2, . . . , gn,

gn+2, . . . , g2n), T ), where gi = gαi

and for some unknown α ∈ Z
∗
p, the goal of B

is to determine whether T = e(gn+1, h) or a random element of GT .

Init: A gives B the challenge user indexes S∗ and the challenge access structure
W ∗ with n1 ≤ N1 wildcards which occur at positions J∗ = {w∗

1 , . . . , w
∗
n1

}, n2 ≤
N2 positive attributes which occur at positions V ∗ = {v∗

1 , . . . , v
∗
n2

}, n3 ≤ N3

negative attributes which occur at positions Z∗ = {z∗
1 , . . . , z∗

n3
} at the beginning

of the game.

Setup: B chooses d, v0, v1, u1, . . . , un ∈ Zp and generates:

ν = gd(
∏

j∈S∗
g−1

n+1−j) = gd−∑j∈S∗ αn+1−j

= gγ ,

V0 = gv0
∏

i∈V ∗
g

αn+1−i ∏

j∈J∗
(i−w∗

j )

= g
v0+

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

= gδ,

V1 = gv1
∏

i∈Z∗
g

αn+1−i ∏

j∈J∗
(i−w∗

j )

= g
v1+

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

= gθ,
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and hi = gui−αn+1−i

, then B sets public key as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1).

Phase 1: A submits (ID,L) in a secret key query, where L∗ �|= W “or” ID /∈ S∗.
Suppose the attribute set L contains n2 ≤ N2 positive attributes which occur
at positions V = {v1, . . . , vn2}, and n3 ≤ N3 negative attributes which occur at
positions Z = {z1, . . . , zn3}. We consider two cases in Phase 1:

– Case 1: ID /∈ S∗. B first selects random numbers s1, s2 ∈ Zp and computes:

D1 = gd
ID

∏

j∈S∗
(gn+1−j+ID)−1gv0s1

∏

i∈V ∗
(g

∏

j∈J∗
(i−w∗

j )

n+1−i )s1gv1s2
∏

i∈Z∗
(g

∏

j∈J∗
(i−w∗

j )

n+1−i )s2

= gαID(d−∑j∈S∗ αn+1−j)

(g
v0+

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s1(g
v1+

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s2

= gαIDγ+δs1+θs2 ,
D2 = gs1 ,
D3 = gs2 ,

D4,k =
∏

i∈V

(gui−αn+1−i

)iks1 =
∏

i∈V

hiks1
i ,

D5,k =
∏

i∈Z

(gui−αn+1−i

)iks2 =
∏

i∈Z

hiks2
i .

– Case 2: ID ∈ S∗. In this case, due to the constraint L∗ �|= W , L has at least
one position i∗ which has a different attribute value from W ∗, which means
{V ∪ Z∗} �= ∅ or {Z ∪ V ∗} �= ∅.

� If there exists i∗ ∈ {V ∪ Z∗} �= ∅:
B selects two random numbers s′

1, s
′
2 ∈ Zp and implicitly sets s1, s2 as:⎧

⎪⎨

⎪⎩

s1 = s′
1

s2 = s′
2 + αi∗

∏

j∈J∗
(i∗−w∗

j )

by setting D2 = gs′
1 = gs1 ,D3 =

g

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

= gs2 . Then B can compute D1,D4,k,D5,k as follows:

D1 = gαIDγ+δs1+θs2 .

= gαID(d−∑j∈S∗ αn+1−j)gv0s1
∏

i∈V ∗
(g

∏

j∈J∗
(i−w∗

j )

n+1−i )s1gv1s2
∏

i∈Z∗
(g

∏

j∈J∗
(i−w∗

j )

n+1−i )s2

= gd
ID

∏

j∈S∗
(gn+1−j+ID)−1(gv0)s′

1(g

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s′
1

(gv1)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

(g

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1g−αn+1

(gv0)s′
1(g

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s′
1

(gv1)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

(g

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s′
2
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(g

∑
i∈Z∗,i�=i∗ αn+1−i+i∗ ∏

j∈J∗
(i−w∗

j )

∏

j∈J∗
(i∗−w∗

j
)

)gαn+1

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1

(gv0)s′
1(g

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s′
1

(gv1)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

(g

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j )

)s′
2

(g

∑
i∈Z∗,i�=i∗ αn+1−i+i∗ ∏

j∈J∗
(i−w∗

j )

∏

j∈J∗
(i∗−w∗

j
)

)

D4,k =
∏

i∈V

(gui−αn+1−i

)iks′
1 =

∏

i∈V

hiks1
i

D5,k =
∏

i∈Z

(gui−αn+1−i

)

ik(s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)
)

=
∏

i∈Z

hiks2
i

� If there exists an i∗ ∈ {Z ∪ V ∗} �= ∅:
the simulation can be performed in a similar way by choosing two random numbers

s′
1, s

′
2 ∈ Zp and implicitly setting s1, s2 as:

⎧
⎪⎨

⎪⎩

s1 = s′
1 + αi∗

∏

j∈J∗
(i∗−w∗

j )

s2 = s′
2

. We omit the

details here.

B returns to A the secret key SK = (D1,D2,D3, {D4,k}, {D5,k}).

Challenge: The adversary gives two messages M0 and M1 to B. Then B flips a
coin b and generates the challenge ciphertext by setting C1 = gτ = h for some
unknown τ and

C2 = hd = (gd)τ

= (gd
∏

j∈S∗
(gn+1−j)−1

∏

j∈S∗
(gn+1−j))τ

= (ν
∏

j∈S∗
(gn+1−j))τ

C3 = h
v0+

∑

i∈V ∗
ui

∏

j∈J∗
(i−w∗

j )

= (g
v0+

∑

i∈V ∗
ui

∏

j∈J∗
(i−w∗

j )

)τ

C4 = h
v1+

∑

i∈Z∗
ui

∏

j∈J∗
(i−w∗

j )

= (g
v1+

∑

i∈Z∗
ui

∏

j∈J∗
(i−w∗

j )

)τ

B sends the following challenge ciphertext to A:

CT ∗ = (MbT,C1, C2, C3, C4).

Phase II: Same as Phase I.

Guess: A outputs b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(gn+1, h), then the simulation is the same as in the real game.
Hence, A will have the probability 1

2 + ε to guess b correctly. If T is a random
element of GT , then A will have probability 1

2 to guess b correctly. Therefore, B
can solve the Decision n-BDHE assumption also with advantage ε. ��
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6 Conclusion

We proposed two efficient Attribute Based Broadcast Encryption (ABBE)
schemes allowing access policies to be expressed using AND-gate with positive,
negative, and wildcard symbols. Our first key policy ABBE scheme achieves con-
stant secret key size, while the second ciphertext policy ABBE scheme achieves
constant ciphertext size, and both schemes require only constant number of pair-
ing operations in decryption. We also proved the security of our schemes under
the Decision n-BDHE assumption. One open problem is to construct an ABBE
scheme that has constant ciphertext and secret key, and we leave it as our future
work.
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