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Abstract. Public Key Encryption with Keyword Search (PEKS), intro-
duced by Boneh et al. in Eurocrypt’04, allows users to search encrypted
documents on an untrusted server without revealing any information.
This notion is very useful in many applications and has attracted a lot
of attention by the cryptographic research community. However, one lim-
itation of all the existing PEKS schemes is that they cannot resist the
Keyword Guessing Attack (KGA) launched by a malicious server. In this
paper, we propose a new PEKS framework named Dual-Server Public
Key Encryption with Keyword Search (DS-PEKS). This new framework
can withstand all the attacks, including the KGA from the two untrusted
servers, as long as they do not collude. We then present a generic con-
struction of DS-PEKS using a new variant of the Smooth Projective
Hash Functions (SPHFs), which is of independent interest.

Keywords: Dual-server public key encryption with keyword search ·
Smooth projective hash function

1 Introduction

To enable encrypted documents searchable on an untrusted server without
revealing any information, Boneh et al. [10] introduced the notion of public key
encryption with keyword search (PEKS) in Eurocrypt’04. A PEKS system has
many potential applications including private databases and data mining where
the users are concerned about their data privacy. In a PEKS system, a sender
attaches some encrypted keywords (referred to as PEKS ciphertexts) with the
encrypted data. The receiver then sends the trapdoor of a to-be-searched key-
word to the server for data searching. Given the trapdoor and the PEKS cipher-
text, the server can test whether the keyword underlying the PEKS ciphertxt
is equal to the one selected by the receiver. If so, the server sends the matching
encrypted data to the receiver.
c© Springer International Publishing Switzerland 2015
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Inside Keyword Guessing Attack. A PEKS scheme is considered secure if it
reveals no information about the data to the server. To be more precise, the server
can only locate the message specified by the receiver but cannot learn anything
else. Nevertheless, none of the existing PEKS schemes is secure against Keyword
Guessing Attack (KGA) launched by a malicious server, which is also known as
inside KGA. Specifically, given a trapdoor, the adversarial server can choose a
guessing keyword from the keyword space and then use the keyword to generate
a PEKS ciphertext. The server then can test whether the guessing keyword is
the one underlying the trapdoor. This guessing-then-testing procedure can be
repeated until the correct keyword is found. Such a guessing attack has also
been considered in many password-based systems. However, the attack can be
launched more efficiently against PEKS since the keyword space is roughly the
same as a normal dictionary (e.g., all the meaningful English words), which has
a much smaller size than a password dictionary (e.g., all the words containing 6
alphanumeric characters).

Unfortunately, we see that the inside KGA is an inherent vulnerability of the
existing PEKS framework which only involves one server. This is essentially due
to the following facts.

– Public Generation of PEKS Ciphertexts. The generation of a PEKS
ciphertext only involves public information; hence the server can generate
the PEKS ciphertext for any keyword.

– Stand-alone Testing. The server can independently check whether a PEKS
ciphertext is consistent with a trapdoor from the receiver.

– Correctness/consistency of PEKS. The correctness required by PEKS
ensures that the test function always outputs the correct answer.

It is obvious that we should not sacrifice the correctness of PEKS; otherwise we
will essentially lose the search functionality. One possible solution to overcome
the problem is to disable the public generation of PEKS ciphertexts, which
means the PEKS encryption performed by a sender should also take as input
some secret information only known by the sender (e.g., the sender’s private
key). However, this solution is not practical either, since the receiver will need
to embed some information of the sender (e.g., the public key) in the generation
of a trapdoor. But the receiver may not be aware of the identity of the sender
when performing the search, and multiple trapdoors for a keyword need to be
generated for all the potential senders in the system.

Our Contributions. The contributions of this paper are two-fold. Firstly, based
on the above observations, we propose to overcome the inside KGA by disallow-
ing the stand-alone testing performed by a server. Specifically, we formally define
a new PEKS framework named Dual-Server Public Key Encryption with Key-
word Search (DS-PEKS). Secondly, we show a generic construction of DS-PEKS
using a newly defined variant of Smooth Projective Hash Function (SPHF) which
maybe of independent interest.

Overview of Techniques. The key idea of the new framework is to split the
testing functionality of the PEKS system into two parts which are handled by
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two independent servers: front server and back server. Upon receiving a query
from the receiver, the front server pre-processes the trapdoor and all the PEKS
ciphertexts using its private key, and then sends some internal testing-states to
the back server with the corresponding trapdoor and PEKS ciphertexts hidden.
The back server can then decide which documents are queried by the receiver
using its private key and the received internal testing-states from the front server.
We show that under such a setting neither the front server nor the back server
can launch the keyword guessing attack. It is worth noting that in the above
process, we require that the two servers do not collude since otherwise it goes
back to the one-server setting in which inside KGA cannot be prevented.

Smooth Projective Hash Function (SPHF) is originally introduced by by
Cramer and Shoup [13] for construction of CCA-secure public key encryption
schemes. Roughly speaking, an SPHF can be defined based on a domain X and
an NP language L, where L ⊂ X . The key property of SPHF is that the pro-
jection key uniquely determines the hash value of any word in the language L
(projective) but gives almost no information about the hash value of any point
in X \ L (smooth). In our paper, the SPHF used is based on the hard-on-the-
average NP-language and hence is also pseudo-random [15]. That is, given a
word W ∈ L, without the corresponding witness and the secret hashing key,
the distribution of its hash value is computationally indistinguishable from a
uniform distribution. Our newly defined variant, named Lin-Hom SPHF, addi-
tionally requires the underlying language and the hash function to be linear
and homomorphic. In a generic DS-PEKS construction, to generate the PEKS
ciphertext of a keyword, the sender picks a word randomly from L and computes
its two hash values using the witness and the public key (projection key) of the
front and back servers respectively. The keyword is then concealed with these
two hash values in the PEKS ciphertext. One can see that due to the pseudo-
randomness of the SPHF, given a PEKS ciphertext, the two servers cannot learn
any information about the underlying keyword individually as they do not know
the witness or the private key (secret hashing key) of each other. The receiver
generates the trapdoor in the same way and hence security of the trapdoor can
also be guaranteed. In the pre-processing stage, the front server first removes
the pseudo-random hash values in the trapdoor and the PEKS ciphertext for the
back server using its private key. Due to the linear and homomorphic properties
of Lin-Hom SPHF, the front server can re-randomise the internal testing-state
to preserve the keyword privacy from the back server who can only determine
whether the two keywords underlying the internal testing-state are the same or
not. We can see that in this way, the security of DS-PEKS against inside keyword
guessing attack can be obtained.

1.1 Related Work

Following Boneh et al.’s seminal work [10], Abdalla et al. [1] formalized anony-
mous IBE (AIBE) and presented a generic construction of searchable encryption
from AIBE. They also showed how to transfer a hierarchical IBE (HIBE) scheme
into a public key encryption with temporary keyword search (PETKS) where
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the trapdoor is only valid in a specific time interval. Waters [22] showed that
the PEKS schemes based on bilinear map could be applied to build encrypted
and searchable auditing logs. In order to construct a PEKS secure in the stan-
dard model, Khader [19] proposed a scheme based on the k-resilient IBE and
also gave a construction supporting multiple-keyword search. The first PEKS
scheme without pairings was introduced by Crescenzo and Saraswat [14]. The
construction is derived from Cock’s IBE scheme [12] which is not very practical.

Byun et al. [11] introduced the off-line keyword guessing attack against PEKS
as keywords are chosen from a much smaller space than passwords and users usu-
ally use well-known keywords for searching documents. They also pointed out
that the scheme proposed in Boneh et al. [10] was susceptible to keyword guessing
attack. Inspired by the work of Byun et al. [11], Yau et al. [23] demonstrated that
outside adversaries that capture the trapdoors sent in a public channel can reveal
the encrypted keywords through off-line keyword guessing attacks and they also
showed off-line keyword guessing attacks against the (SCF-)PEKS schemes in
[4,5]. The first PEKS scheme secure against outside keyword guessing attacks
was proposed by Rhee et al. [21]. In [20], the notion of trapdoor indistinguisha-
bility was proposed and the authors showed that trapdoor indistinguishability
is a sufficient condition for preventing outside keyword-guessing attacks.

Nevertheless, all the schemes mentioned above are found to be vulnera-
ble to keyword guessing attacks from a malicious server (i.e., inside keyword
guessing attacks). Jeong et al. [17] showed a negative result that the consis-
tency/correctness of PEKS implies insecurity to inside keyword guessing attacks
in PEKS. Their result indicates that constructing secure and consistent PEKS
schemes against inside keyword guessing attacks is impossible under the original
framework.

1.2 Organization

In Section 2, we propose the new framework, namely DS-PEKS, and present its
formal definition and security models. We then define a new variant of smooth
projective hash function (SPHF), which satisfies the linear and homomorphic
properties, for a special class of NP languages in Section 3. A generic construc-
tion of DS-PEKS from LH-SPHF is shown in Section 4 with formal correctness
analysis and security proofs. We then give a conclusion in Section 5.

2 Dual-Server Public Key Encryption with Keyword
Search

In this section, we formally define the Dual-Server Public Key Encryption with
Keyword Search (DS-PEKS) and its security model.

2.1 Overview of DS-PEKS

As introduced in [10], a traditional PEKS scheme is defined by a tuple of algo-
rithms (KeyGen,PEKS,Trapdoor, Test). The KeyGen algorithm is used for the
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generation of public/private key pair for the receiver. The sender runs PEKS
to generate keyword ciphertexts which are attached to the data. A receiver
then uses Trapdoor to generate the trapdoor for any keyword he/she wants
the server to search for. Given the trapdoors, the server can run the algo-
rithm Test to locate the data containing the keywords specified by the receiver.
As shown previously, it is impossible to construct a PEKS scheme secure
against keyword guessing attack from the malicious server if we follow the tra-
ditional PEKS framework due to the public generation of PEKS ciphertexts,
stand-alone testing, and the correctness of PEKS. In our proposed framework,
namely DS-PEKS, we disallow the stand-alone testing to obtain the security
against inside keyword guessing attacks. Roughly speaking, DS-PEKS consists
of (KeyGen,DS-PEKS,DS-Trapdoor,FrontTest,BackTest). To be more precise, the
KeyGen algorithm generates the public/private key pairs of the front and back
servers instead of that of the receiver. Moreover, the trapdoor generation algo-
rithm DS-Trapdoor defined here is public while in the traditional PEKS definition
[5,10], the algorithm Trapdoor takes as input the receiver’s private key. Such a
difference is due to the different structures used by the two systems. In the tradi-
tional PEKS, since there is only one server, if the trapdoor generation algorithm
is public, then the server can launch an off-line guessing attack against a key-
word ciphertext to recover the encrypted keyword. As a result, it is impossible
to achieve the semantic security as defined in [5,10]. However, as we will show
later, under the DS-PEKS framework, we can still achieve semantic security
when the trapdoor generation algorithm is public. Another difference between
the traditional PEKS and our proposed DS-PEKS is that the test algorithm is
divided into two algorithms, FrontTest and BackTest run by two independent
servers. This is essential for achieving security against the inside keyword guess-
ing attacks.

2.2 Definition

Syntax. A DS-PEKS scheme is defined by the following algorithms.

– Setup(1λ). Takes as input the security parameter λ, generates the system
parameters P ;

– KeyGen(P ). Takes as input the systems parameters P , outputs the pub-
lic/secret key pairs (pkFS , skFS), and (pkBS , skBS) for the front server, and
the back server respectively;

– DS-PEKS(P, pkFS , pkBS , kw1). Takes as input P , the front server’s public
key pkFS , the back server’s public key pkBS and the keyword kw1, outputs
the PEKS ciphertext CTkw1 of kw1;

– DS-Trapdoor(P, pkFS , pkBS , kw2). Takes as input P , the front server’s public
key pkFS , the back server’s public key pkBS and the keyword kw2, outputs
the trapdoor Tkw2 ;

– FrontTest(P, skFS , CTkw1 , Tkw2). Takes as input P , the front server’s secret
key skFS , the PEKS ciphertext CTkw1 and the trapdoor Tkw2 , outputs the
internal testing-state CITS ;
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– BackTest(P, skBS , CITS). Takes as input P , the back server’s secret key skBS

and the internal testing-state CITS , outputs the testing result 0 or 1;

Correctness. It is required that for any keyword kw1, kw2, and CTkw1 ←
DS-PEKS(P, pkFS , pkBS , kw1), Tkw2 ← DS-Trapdoor(P, pkFS , pkBS , kw2), we
have that BackTest(P, skBS , CITS) = 1 if kw1 = kw2, otherwise 0.

2.3 Security Models

In this subsection, we formalise the security models for DS-PEKS. We define
the following security models for a DS-PEKS scheme against the adversarial
front and back servers, respectively. We should note that the following security
models also imply the security guarantees against the outside adversaries which
have less capability compared to the servers.

Adversarial Front Server. In this part, we define the security against an
adversarial front server. Precisely, we introduce two games, namely semantic-
security against chosen keyword attack and indistinguishability against key-
word guessing attack1 to capture the security of PEKS ciphertext and trapdoor,
respectively.
Semantic-Security against Chosen Keyword Attack (SS-CKA). In the following, we
define the semantic-security against chosen keyword attack which guarantees
that no adversary is able to distinguish a keyword from another one given the
corresponding PEKS ciphertext. That is, the PEKS ciphertext does not reveal
any information about the underlying keyword to any adversary.

– Setup. The challenger runs the KeyGen(λ) algorithm to generate key pairs
(pkFS , skFS) and (pkBS , skBS). It gives (pkFS , skFS , pkBS) to the attacker;

– Test query-I. The attacker can adaptively make the test query for any key-
word and any PEKS ciphertext of its choice. The challenger returns 1 or 0
as the test result to the attacker;

– Challenge. The attacker sends the challenger two keywords kw0, kw1. The
challenger picks b

$← {0, 1} and generates

CT ∗
kw ← DS-PEKS(P, pkFS , pkBS , kwb).

The challenger then sends CT ∗
kw to the attacker;

– Test query-II. The attacker can continue the test query for any keyword and
any PEKS ciphertext of its choice except of the challenge keywords kw0, kw1.
The challenger returns 1 or 0 as the test result to the attacker;

– Output. Finally, the attacker outputs its guess b′ ∈ {0, 1} on b and wins the
game if b = b′.

1 In this paper, we use two different terms, namely semantic security and indistin-
guishability, to define the security for the keyword ciphertext and the trapdoor,
respectively. However, as for normal public key encryption, these two terms are
equivalent.
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We refer to such an adversarial front server A in the above game as an SS-CKA
adversary and define its advantage as

AdvSS-CKAFS,A (λ) = Pr[b = b′] − 1/2.

Indistinguishability against Keyword Guessing Attack (IND-KGA). This model cap-
tures that the trapdoor reveals no information about the underlying keyword to
the adversarial front server. We define the security model as follows.

– Setup. The challenger runs the KeyGen(λ) algorithm to generate key pairs
(pkFS , skFS) and (pkBS , skBS). It gives (pkFS , skFS , pkBS) to the attacker;

– Test query-I. The attacker can adaptively make the test query for any key-
word and any PEKS ciphertext of its choice. The challenger returns 1 or 0
as the test result to the attacker;

– Challenge. The attacker sends the challenger two keywords kw0, kw1. The
challenger picks b

$← {0, 1} and generates

T ∗
kw ← DS-Trapdoor(P, pkFS , pkBS , kwb).

The challenger then sends T ∗
kw to the attacker;

– Test query-II. The attacker can continue issue the test query for any keyword
and any PEKS ciphertext of its choice except of the challenge keywords
kw0, kw1. The challenger returns 1 or 0 as the test result to the attacker;

– Output. Finally, the attacker outputs its guess b′ ∈ {0, 1} on b and wins the
game if b = b′.

We refer to such an adversarial front server A in the above game as an IND-KGA
adversary and define its advantage as

AdvIND-KGA
FS,A (λ) = Pr[b = b′] − 1/2.

Adversarial Back Server. The security models of SS-CKA and IND-KGA in
terms of an adversarial back server are similar to those against an adversarial
front server.
Semantic-Security against Chosen Keyword Attack. Here the game against an
adversarial back server is the same as the one against an adversarial front server
except that the adversary is given the private key of the back server instead of
that of the front server. We omit the details here for simplicity.

We refer to the adversarial back server A in the SS-CKA game as an SS-CKA
adversary and define its advantage as AdvSS-CKABS,A (λ) = Pr[b = b′] − 1/2.
Indistinguishability against Keyword Guessing Attack. Similarly, this security
model aims to capture that the trapdoor does not reveal any information to
the back server and hence is the same as that against the front server except
that the adversary owns the private key of the back server instead of that of the
front server. Therefore, we also omit the details here.

We refer to the adversarial back server A in the IND-KGA game as an
IND-KGA adversary and define its advantage as AdvIND-KGA

BS,A (λ) = Pr[b = b′]−1/2.
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Indistinguishability against Keyword Guessing Attack-II (IND-KGA-II). Apart from
the above two security models, we should also guarantee that the internal testing-
state does not reveal any information about the keyword to the back server.
We hence define another type of keyword guessing attack to capture such a
requirement. The security, namely Indistinguishability against Keyword Guess-
ing Attack-II guarantees that the back server cannot learn any information about
the keywords from the internal testing-state. The security model is defined as
follows.

– Setup. The challenger runs the KeyGen(λ) algorithm to generates key pairs
(pkFS , skFS) and (pkBS , skBS). It gives (pkFS , pkBS , skBS) to the attacker.

– Challenge. The attacker sends the challenger three different keywords
kw0, kw1,
kw2. The challenger picks {b1, b2} ⊂ {0, 1, 2} randomly and computes

CT ∗
kw ← DS-PEKS(P, pkFS , pkBS , kwb1),

T ∗
kw ← DS-Trapdoor(P, pkFS , pkBS , kwb2),
C∗

ITS ← FrontTest(P, skFS , CT ∗
kw, T ∗

kw).

The challenger then sends C∗
ITS to the attacker.

– Output. Finally, the attacker outputs its guess on {b1, b2} as {b′
1, b

′
2} ⊂

{0, 1, 2} and wins the game if {b′
1, b

′
2} = {b1, b2}.

We refer to such an adversary A in the above two games as a IND-KGA-II adver-
sary and define its advantage as,

AdvIND-KGA-II
BS,A (λ) = Pr[{b′

1, b
′
2} = {b1, b2}] − 1/3.

We should remark that in the above game, b1 and b2 can be equivalent. In
this case, the adversary (i.e., back server) will know that the same keyword has
been used in the generation of the PEKS ciphertext and the trapdoor, and the
adversary’s goal is to guess which keyword among the three has been used.

Based on the security models defined above, we give the following security
definition for a DS-PEKS scheme.

Definition 1. We say that a DS-PEKS is secure if for any polynomial
time attacker Ai (i = 1, . . . , 5), we have that AdvSS-CKABS,A1

(λ),AdvSS−CKA
BS,A2

(λ),
AdvIND-KGA

FS,A3
(λ), AdvIND-KGA

BS,A4
(λ) and AdvIND-KGA-II

BS,A5
(λ) are all negligible functions

of the security parameter λ.

3 Smooth Projective Hash Functions

A central element of our construction for dual-server public key encryption with
keyword search is smooth projective hash function (SPHF), a notion introduced
by Cramer and Shoup [13] and extended for construction of many cryptographic
primitives [2,8,15,16,18]. We start with the original definition of an SPHF.
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3.1 SPHF

Syntax. An SPHF can be defined based on a domain X and an NP language
L, where L contains a subset of the elements of the domain X , i.e., L ⊂ X . An
SPHF system over a language L ⊂ X , onto a set Y, is defined by the following
five algorithms (SPHFSetup,HashKG, ProjKG,Hash,ProjHash):

– SPHFSetup(1λ): generates the global parameters param and the description
of an NP language instance L;

– HashKG(L, param): generates a hashing key hk for L;
– ProjKG(hk, (L, param)): derives the projection key hp from the hashing key

hk;
– Hash(hk, (L, param),W ): outputs the hash value hv ∈ Y for the word W from

the hashing key hk;
– ProjHash(hp, (L, param),W,w): outputs the hash value hv′ ∈ Y for the word

W from the projection key hp and the witness w for the fact that W ∈ L.

Property. A smooth projective hash function SPHF should satisfy the follow-
ing properties,

– Correctness. If a word W ∈ L with w the witness, then for all hashing key
hk and projection key hp, we have

Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W,w).

– Smoothness. Let a point W be not in the language, i.e., W ∈ X\L. Then the
following two distributions are statistically indistinguishable :

V1 = {(L, param,W, hp, hv)|hv = Hash(hk, (L, param),W )},

V2 = {(L, param,W, hp, hv)|hv $← Y},

To be more precise, the quantity of
∑

v∈Y |PrV1 [hv = v] − PrV2 [hv = v]| is
negligible.

In this paper, we require another important property of smooth projective
hash functions that was introduced in [15].

– Pseudo-Randomness. If a word W ∈ L, then without the corresponding
witness w, the distribution of the hash output is computationally indistin-
guishable from a uniform distribution in the view of any polynomial-time
adversary A. That is, A can only win in the PR-game defined below with
negligible probability.

• Setup. The challenger runs SPHFSetup,HashKG,ProjKG, generates
param,
hk, hp,L and sends the adversary (param,L, hp).

• Challenge. The challenger picks W
$← L, b

$← {0, 1} and generates

hv =

{

Hash(hk, (L, param),W ) b = 1,

v
$← Y b = 0.

The challenger then sends (W, hv) to A.
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• Output. Finally, A outputs its guess b′ ∈ {0, 1} on b and wins the game
if b = b′.

We define the advantage of A in the above game as,

AdvPRSPHF ,A(λ) = Pr[b = b′] − 1/2.

We say SPHF is pseudo-random if for any polynomial time adversary A,
we have that AdvPRSPHF,A(λ) is a negligible function.

3.2 Lin-Hom SPHF

In this paper, we consider a new variant of smooth projective hash function.
We consider two new properties: linear and homomorphic, which are defined
below. It is worth noting that Abdalla et al. [3] introduced conjunction and
disjunction of languages for smooth projective hashing that were later used in
the construction of blind signature [7,9], oblivious signature-based envelops [9],
and authenticated key exchange protocols for algebraic languages [6]. As shown
in the following, our definition for the new SPHF here is different from their work
since we consider the operations on the words belonging to the same language,
whereas theirs considers operations among different languages.

Let SPHF=(SPHFSetup,HashKG,ProjKG,Hash,ProjHash) be a smooth pro-
jective hash function over the language L ⊂ X onto the set Y and W be the
witness space of L. We first describe the operations on the sets < L,Y,W > as
follows.

– � : L × L → L. For any W1 ∈ L,W2 ∈ L, W1 � W2 ∈ L;
– � : Y × Y → Y. For any y1 ∈ Y, y2 ∈ Y, y1 � y2 ∈ Y;
– �,⊕ : W ×W → W. For any w1 ∈ W, w2 ∈ W, w1 �w2 ∈ W and w1 ⊕w2 ∈

W;
– ⊗ : W × L → L. For any w ∈ W,W ∈ L, w ⊗ W ∈ L;
– • : W × Y → Y. For any w ∈ W, y ∈ Y, w • y ∈ Y.

Moreover, for any element y ∈ Y, we define y�y−1 = 1Y which is the identity
element of Y.

Our new SPHF requires the underlying language to be also linear and homo-
morphic language, which is defined below.

Definition 2 (Linear and Homomorphic Language). A language L is linear
and homomorphic if it satisfies the following properties.

– For any word W ∈ L with witness w and Δw ∈ W, there exists a word
W ∗ ∈ L such that Δw ⊗ W = W ∗ with the witness w∗ = Δw � w.

– For any two words W1,W2 ∈ L with the witness w1, w2 ∈ W respectively,
there exists a word W ∗ ∈ L such that W1 � W2 = W ∗ with the witness
w∗ = w1 ⊕ w2.

We then give the definition of Lin-Hom SPHF as follows.

Definition 3 (Lin-Hom SPHF (LH-SPHF)). We say SPHF is a Lin-Hom
SPHF (LH-SPHF) if the underlying language L is a linear and homomorphic
language and SPHF satisfies the following properties.
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– For any word W ∈ L with the witness w ∈ W and Δw ∈ W, we have

Hash(hk, (L, param),Δw ⊗ W ) = Δw • Hash(hk, (L, param),W ).

In other words, suppose Δw ⊗ W = W ∗, we have,

ProjHash(hp, (L, param),W ∗, w∗) = Δw • ProjHash(hp, (L, param),W,w),

where w∗ = Δw � w.
– For any two words W1,W2 ∈ L with the witness w1, w2 ∈ W, we have

Hash(hk, (L, param),W1 � W2) =

Hash(hk, (L, param),W1) � Hash(hk, (L, param),W2).

In other words, suppose W1 � W2 = W ∗, we have,

ProjHash(hp, (L, param),W ∗, w∗) =

ProjHash(hp, (L, param),W1, w1)�ProjHash(hp, (L, param),W2, w2)

where w∗ = w1 ⊕ w2.

In this paper, we also assume that the LH-SPHF has the following property:
for any y ∈ Y, W ∈ L and the witness w ∈ W of W , there exists a projection
key hp such that ProjHash(hp, (L, param),W,w) = y.

4 Generic Construction of DS-PEKS Using LH-SPHF

In this section, we show how to generically construct a Dual-Server Public Key
Encryption with keyword search based on Lin-Hom Smooth Projective Hash
Functions.

4.1 Generic Construction

Suppose SPHF = (SPHFSetup,HashKG,ProjKG,Hash,ProjHash) is an LH-
SPHF over the language L onto the set Y. Let W be the witness space of the
language L and KW be the keyword space. Our generic construction DS-PEKS
works as follows.

Setup(1λ). Take as input the security parameter λ, run SPHFSetup algorithm
and generate the global parameters param, the description of the language L
and a collision-resistant hash function Γ : KW → Y. Set the system parameter
P =< param,L, Γ >.
KeyGen(P ). Take as input P , run the algorithms < HashKG,ProjHash > to gen-
erate the public/private key pairs (pkFS , skFS), (pkBS , skBS) for the front server
and the back server respectively.

pkFS ← HashKG(P ), skFS = ProjKG(P, pkFS),
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pkBS ← HashKG(P ), skBS = ProjKG(P, pkBS).

DS-PEKS(P, pkFS , pkBS , kw1). Take as input P , pkFS , pkBS and the keyword
kw1, pick a word W1 ∈ L randomly with the witness w1 and generate the PEKS
ciphertext CTkw1 of kw1 as following.

x1 = ProjHash(P, pkFS ,W1, w1),

y1 = ProjHash(P, pkBS ,W1, w1),

C1 = x1 � y1 � Γ (kw1).

Set CTkw1 =< W1, C1 > and return CTkw1 as the keyword ciphertext.
DS-Trapdoor(P, pkFS , pkBS , kw2). Take as input P , pkFS , pkBS and the keyword
kw2, pick a word W2 ∈ L randomly with the witness w2 and generate the
trapdoor Tkw2 of kw2 as follows.

x2 = ProjHash(P, pkFS ,W2, w2),

y2 = ProjHash(P, pkBS ,W2, w2),

C2 = x2 � y2 � Γ (kw2)−1.

Set Tkw2 =< W2, C2 > and return Tkw2 as the trapdoor.
FrontTest(P, skFS , CTkw, Tkw). Takes as input P , the front server’s secret key
skFS , the PEKS ciphertext CTkw1 =< W1, C1 > and the trapdoor Tkw2 =<
W2, C2 >, pick Δw ∈ W randomly, generate the internal testing-state CITS as
follows.

W = W1 � W2,

x = Hash(P, skFS ,W ),

C = C1 � C2 � x−1,

W ∗ = Δw ⊗ W,C∗ = Δw • C.

Set CITS =< W ∗, C∗ > and return CITS as the internal testing-state.
BackTest(P, skBS , CITS). Takes as input P , the back server’s secret key skBS

and the internal testing-state CITS =< W ∗, C∗ > , test as follows.

Hash(P, skBS ,W ∗) ?= C∗

If yes output 1, else output 0.

Correctness Analysis. One can see that the correctness of this construction
is guaranteed by the important properties of the LH-SPHF. To be more precise,
we give the analysis as follows.
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For the algorithm FrontTest, we have

x = Hash(P, skFS ,W )
= Hash(P, skFS ,W1 � W2)
= Hash(P, skFS ,W1) � Hash(P, skFS ,W2)
= ProjHash(P, pkFS ,W1, w1) � ProjHash(P, pkFS ,W2, w2)
= x1 � x2.

Therefore,

C = C1 � C2 � x−1

= x1 � y1 � Γ (kw1) � x2 � y2 � Γ (kw2)−1 � (x1 � x2)−1

= y1 � y2 � Γ (kw1) � Γ (kw2)−1.

For the algorithm BackTest, we have

Hash(P, skBS ,W ∗)
= Hash(P, skBS ,Δw ⊗ W )
= Δw • Hash(P, skBS ,W )
= Δw • Hash(P, skBS ,W1 � W2).
= Δw • (Hash(P, skBS ,W1) � Hash(P, skBS ,W2))
= Δw • (ProjHash(P, pkBS ,W1, w1) � ProjHash(P, pkBS ,W2, w2))
= Δw • (y1 � y2).

It is easy to see that if kw1 = kw2, then Hash(P, skBS ,W ∗) = Δw • C = C∗.
Otherwise, Hash(P, skBS ,W ∗) 	= C∗ due to the collision-resistant property of
the hash function Γ .

4.2 Security of DS-PEKS
In this subsection, we analyse the security of the above generic construction.

Theorem 1. The generic construction DS-PEKS is semantically secure under
chosen keyword attacks.

The above theorem can be obtained from the following two lemmas.

Lemma 1. For any polynomial-time adversary A, AdvSS-CKAFS,A (λ) is a negligible
function.

Proof. We define a sequence of games as follows.
Game0. This is the original SS-CKA game against the adversarial front server.

– Setup. The challenger runs the Setup,KeyGen to generate system parameter
P , key pairs (pkFS , skFS) and (pkBS , skBS). It then gives adversary A the
key pair (P, pkFS , skFS , pkBS).
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– Test Query-I. The adversary makes a query on < kw,CT >. Suppose CT =
(W,C), the challenger computes the following.

T ← DS-Trapdoor(P, pkFS , pkBS , kw),

CITS ← FrontTest(P, skFS , C, T ).

The challenger then runs the algorithm BackTest(P, skBS , CITS) and returns
the output to the adversary.

– Challenge. A chooses two keywords kw0, kw1 and sends kw0, kw1 to the chal-
lenger. The challenger first picks b

$← {0, 1}, and then picks a word W1 ∈ L
randomly with the witness w1 and generates the PEKS ciphertext CT ∗

kw of
kwb as follows.

x1 = ProjHash(P, pkFS ,W1, w1), y1 = ProjHash(P, pkBS ,W1, w1),

C1 = x1 � y1 � Γ (kwb).

The challenger sets CT ∗
kw =< W1, C1 > as the keyword ciphertext and sends

CT ∗
kw to A.

– Test Query-II. The procedure is the same as that in Test Query-I.
– Output. Finally, A outputs its guess b′ ∈ {0, 1} on b and wins the game if

b = b′.

We define the advantage of A in Game0 as AdvGame0
FS,A (λ) and have that

AdvGame0
FS,A (λ) = AdvSS−CKA

FS,A (λ)

as Game0 strictly follows the SS-CKA model.
Game1. Let Game1 be the same game as Game0, except that the challenger
chooses y1

$← Y instead of computing y1 as ProjHash(P, pkBS ,W1, w1). Due
to the correctness and pseudo-randomness of SPHF , that is, the distribution
{(P,W1, pkBS , y1)|y1 = ProjHash(P, pkBS ,W1, w1)} is computationally indistin-

guishable from the distribution {(P,W1, pkBS , y1)|y1 $← Y}, we have that

|AdvGame1
FS,A (λ) − AdvGame0

FS,A (λ)| ≤ AdvPRSPHF,A(λ).

Game2. Let Game2 be the same game as Game1, except that the challenger
chooses C1

$← Y instead of computing C1 = x1 � y1 � Γ (kwb). We can see that

AdvGame2
FS,A (λ) = AdvGame1

FS,A (λ).

It is easy to see that the adversary in Game2 can only win with probability
1/2 as C1 is independent of b. Therefore, we have that AdvGame2

DS-PEKS,A(λ) = 0.
Therefore, from Game0,Game1 and Game2, we have that

|AdvGame2
FS,A (λ) − AdvSS-CKAFS,A (λ)| ≤ AdvPRSPHF ,A(λ).

As AdvGame2
FS,A (λ) = 0 and AdvPRSPHF ,A(λ) is negligible, we have that AdvSS-CKAFS,A (λ)

is also negligible, which completes the proof.
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Lemma 2. For any polynomial-time adversary A, AdvSS-CKABS,A (λ) is a negligible
function.

The proof of Lemma 2. can be easily obtained by following the proof of
Lemma 1., and hence is omitted.

Theorem 2. The generic construction DS-PEKS is secure against keyword
guessing attack.

The above theorem can be obtained from the following lemmas.

Lemma 3. For any polynomial-time adversary A, AdvIND-KGA
FS,A (λ) is a negligible

function.

Lemma 4. For any polynomial-time adversary A, AdvIND-KGA
BS,A (λ) is a negligible

function.

The proofs of Lemma 3. and Lemma 4. are similar to those of Lemma 1.
and Lemma 2. as the generation of a trapdoor is the same as that of a PEKS
ciphertext, and the security model of IND-KGA is also similar to that of SS-
CKA. Therefore, we omit the proof details here. For the security against the
keyword guessing attack-II, we have the following lemma.

Lemma 5. For any polynomial-time adversary A, AdvIND-KGA-II
BS,A (λ) is a negligi-

ble function.

Proof. In the IND-KGA-II game, if b1 = b2, then it is easy to see that the
adversary has no advantage since the two keywords are canceled out in the
internal testing-state CITS , which means CITS is independent of the keywords.
In the following, we focus on the case that b1 	= b2.

Here, we use the game-hopping technique again to prove this lemma. We
define a sequence of attack games as follows.
Game0. Let the original IND-CKA game be Game0.

– Setup. The challenger runs the Setup,KeyGen to generate system parameter
P , key pairs (pkFS , skFS) and (pkBS , skBS). It gives adversary A the key
pairs (P, pkFS , pkBS , skBS).

– Challenge. A chooses challenge keywords kw0, kw1, kw2 adaptively and sends
them to the challenger. The challenger firstly picks {b1, b2} ⊂ {0, 1, 2} ran-
domly.
The challenger picks two words W1,W2 ∈ L randomly with the witness
w1, w2 respectively and generates the internal testing-state CITS as follows.

x1 = ProjHash(P, pkFS ,W1, w1), y1 = ProjHash(P, pkBS ,W1, w1),

x2 = ProjHash(P, pkFS ,W2, w2), y2 = ProjHash(P, pkBS ,W2, w2),

W = W1 � W2, x = Hash(P, skFS ,W ),

C = x1 � x2 � y1 � y2 � x−1 � Γ (kwb1) � Γ (kwb2)
−1,

W ∗ = Δw ⊗ W,C∗ = Δw • C.

Set C∗
ITS =< W ∗, C∗ > and return C∗

ITS to A.



74 R. Chen et al.

– Output. Finally, A outputs its guess on {b1, b2} as {b′
1, b

′
2} ⊂ {0, 1, 2} and

wins the game if {b′
1, b

′
2} = {b1, b2}.

We define the advantage of A in Game0 as AdvGame0
BS,A (λ) and have that

AdvGame0
BS,A (λ) = AdvIND-KGA-II

BS,A (λ)

as Game0 strictly follows the IND-KGA-II model.
Game1. Let Game1 be the same game as Game0, except that the challenger
chooses y

$← Y and computes C∗ as follows.

C∗ = (x1 � x2 � y1 � y2 � x−1) � y.

In other words, the challenger replaces the part Δw ·(Γ (kwb1)�Γ (kwb2)
−1) with

a random chosen element y ∈ Y during the generation of C∗. We now prove that
the replacement in this way can make at most a negligible difference, that is,

Claim. For any polynomial-time adversary A,

|AdvGame1
BS,A (λ) − AdvGame0

BS,A (λ)| ≤ AdvPRSPHF,A(λ).

Proof. Since the language L is a linear and homomorphic language, we have that
the witness of W ∗ is w∗ = Δw ⊗ w where w is the witness of W . Then based on
our definition of LH-SPHF there exists a projection key hp′ that

ProjHash(P, hp′,W,w) = Γ (kwb1) � Γ (kwb2)
−1.

As SPHF is a Lin-Hom SPHF, we have that

ProjHash(P, hp′,W ∗, w∗) = Δw • ProjHash(P, hp′,W,w)
= Δw • (Γ (kwb1) � Γ (kwb2)

−1).

Moreover, the distribution {(P,W ∗, hp′, y)|y = ProjHash(P, hp′,W ∗, w∗)} is

computationally indistinguishable from the distribution {(P,W ∗, hp′, y)|y $← Y}
due to the correctness and pseudo-randomness of SPHF . Therefore, we have
that

|AdvGame1
BS,A (λ) − AdvGame0

BS,A (λ)| ≤ AdvPRSPHF,A(λ).

Game2. Let Game2 be the same game as Game1, except that the challenger
chooses C∗ $← Y . We can see that

AdvGame2
BS,A (λ) = AdvGame1

BS,A (λ).

It is easy to see that the adversary can only win in the Game2 with probability
1/3 as C∗ is independent of b1, b2. Therefore, we have that AdvGame2

BS,A (λ) = 0.
Therefore, from Game0,Game1 and Game2, we have that

|AdvGame2
BS,A (λ) − AdvIND-KGA-II

BS,A (λ)| ≤ AdvPRSPHF,A(λ).

As AdvGame2
BS,A (λ) = 0 and AdvPRSPHF,A(λ) is negligible, we have that

AdvIND-KGA-II
BS,A (λ) is also a negligible function, which proves the lemma.
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5 Conclusion

In this paper, we proposed a new framework, named Dual-Server Public Key
Encryption with Keyword Search (DS-PEKS), that can prevent the inside key-
word guessing attack which is an inherent vulnerability of the traditional PEKS
framework. We then introduced a new Smooth Projective Hash Function (SPHF)
and used it to construct a generic DS-PEKS scheme. The new variant of SPHF
introduced in this paper is of independent interest.
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