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Currently used Pareto-optimal (PO) approaches for balancing diversity and validity goals in selection can
deal only with one minority group and one criterion. These are key limitations because the workplace and
society at large are getting increasingly diverse and because selection system designers often have interest
in multiple criteria. Therefore, the article extends existing methods for designing PO selection systems
to situations involving multiple criteria and multiple minority groups (i.e., multiobjective PO selection
systems). We first present a hybrid multiobjective PO approach for computing selection systems that are PO
with respect to (a) a set of quality objectives (i.e., criteria) and (b) a set of diversity objectives where each
diversity objective relates to a different minority group. Next, we propose three two-dimensional subspace
procedures that aid selection designers in choosing between the PO systems in case of a high number of
quality and diversity objectives. We illustrate our novel multiobjective PO approaches via several example
applications, thereby demonstrating that they are the first to reveal the complete gamut of eligible PO
selection designs and to faithfully capture the Pareto trade-off front in case of more than two objectives.
In addition, a small-scale cross-validation study confirms that the resulting PO selection designs retain an
advantage over alternative designs when applied in new validation samples. Finally, the article provides
a link to an executable code to perform the new multiobjective PO approaches.
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The past few years have witnessed a growing interest in Pareto-
optimal (PO) selection system design as a viable strategy for
developing selection systems that aim to reconcile the often conflicting
goals of selection quality (e.g., the expected job performance of the
selected applicants) and selection diversity (i.e., an adequate
representation of the minority candidates among the selected
applicants). In a recent article, Rupp et al. (2020) listed over 30
papers, presentations, and dissertations devoted to the subject of the PO
approach for designing biobjective selection systems (i.e., selection
systems for situations where both the goals of quality, with respect to a
single criterion, and diversity, with respect to a single minority group,
are valued). The approach merits this interest because it results in
selection systems that offer a PO trade-off of the selection objectives,
meaning that each of these systems is expected to result in values for the
objectives such that any improvement in one objective can only take
place if at least one other objective worsens.

Despite the growing interest in the PO approach, its actual usage
in practice is still lagging behind. On the basis of conversations with
senior executives of some of the top employers of I-O psychologists
in the United States, we identified three key obstacles that seem to
impede a wider adoption of the PO method. The three obstacles
are (a) the mathematical sophistication behind the method, (b) the
concern that the PO results are overly optimistic when applied to
new situations, and (c) the limitation of the presently available PO
method to situations involving only a single minority group. Rupp
et al. (2020) offered a solution for the first obstacle. They provided
not only detailed checklists and flow charts of key steps to follow
when implementing the PO approach in practice, but also presented
and illustrated a simple and easy to use tool (i.e., the “ParetoR Shiny
app,” developed by Song et al., 2017) to execute the PO approach.
In addition, various studies (De Corte et al., 2020, 2022; Song et al.,
2017; Wee et al., 2014) conducted research related to the second
concern about the cross-validity potential of calibration PO selection
systems when applied in a new validation setting. For example, De
Corte et al. (2022) compared the three main types of cross-validity1

of both PO and fixed weight (FW) selection systems. PO systems
outperformed FW systems for applicant pool sizes as small as 100,
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even in the practically most important sample-to-sample cross-
validity context.
As compared to the first two obstacles, the third obstacle, namely

the limitation of available methods for designing PO selection
systems to situations involving only a single minority group, has still
remained largely unresolved. As shown in our review of previous
research below, no generally applicable procedure for designing
multiobjective PO selection systems (i.e., single and multistage
selection systems that are PO with respect to more than two-valued
objectives, including situations with multiple quality objectives
and/or multiple minority groups) is presently available. Yet, in
today’s diverse society applicant groups often count members of
different minority groups challenging employers to devise selection
systems that, conditional on the available predictors/criterion
information, are expected to be PO with respect to the pursued
quality goal as well as to the representation of all present minority
groups (e.g., Black, Hispanic, and female minority groups).
Unfortunately, and even though researchers and practitioners
have already up-to-date meta-analytic information about the
subgroup differences of selection procedures related to minority
groups (i.e., Hispanics and Asians) other than Blacks (Roth et al.,
2017), the PO approach (De Corte et al., 2007; Rupp et al., 2020)
does not permit them to capitalize on this information. Given the
limitation of use with only one minority group at the time, even the
repeated usage of the PO approach, each time focusing on a different
subset of two of the objectives, at best results in a very partial
retrieval of the selection systems that are PO with respect to the
entire set of pursued objectives.2

While it is concern about multiple subgroups that drove our initial
interest in developing multiobjective PO systems, we also note that
it is not uncommon for selection system designers to have interests
in the prediction of multiple criteria, such as task performance,
organizational citizenship, and counterproductive work behavior.
Thus, we broadened our focus to multiobjective PO systems
involving multiple subgroups, multiple criteria, or both.
Therefore, the first key purpose of the article is the development

of an efficient procedure to derive PO selection systems and the
corresponding front of PO trade-offs3 for single and multistage
selections where both several different quality and several different
diversity goals are valued. In particular, the procedure aims to obtain
a list of PO systems that together provide a high quality, discrete
representation of the entire PO front for these selection situations
and where each PO system in the list is characterized in terms of both
the corresponding trade-off value (i.e., the set of values for the
valued objectives) and the corresponding set of design parameter
values (see the section “Designing PO Selection Systems”). Unless
otherwise stated, the quality objectives are operationalized as (i.e.,
equated to) the expected performance of the selected applicants on
the different quality goals, whereas the adverse impact ratio (AIR,
defined as the ratio between the hiring rate in the minority group as
compared to the hiring rate in the majority group) of the selection in
the different minority groups gauges the diversity goals. The latter
choice is identical to the operationalization of the diversity goal in
most of the research on biobjective PO selection system (e.g., De
Corte et al., 2011; Rupp et al., 2020), and, together with the former
choice, it has the unique advantage that the operationalization can be
used in designing both single and multistage selections.
Choosing between alternative PO systems becomes considerably

more complicated in situations with an increasing number of

minority applicant groups and/or quality outcomes. Whereas the
resulting PO quality/diversity trade-offs of the biobjective PO
approach can be displayed as a curve segment in the quality/
diversity plane and summarized in a table containing a representa-
tive subset of only two-valued quality/diversity PO trade-offs, the
situation involving three objectives (e.g., a single quality and two
diversity objectives, diversity1 and diversity2, for example) leads to
a surface in the three-dimensional quality/diversity1/diversity2
space and to a table where each entry has already three elements.
With four or more objectives a visual representation of the PO trade-
off hypersurface is even impossible and the corresponding tabular
summary becomes increasingly unclear, making it very difficult
for selection designers to evaluate and compare the merits of the
different PO alternatives in order to make a final choice.

The second key contribution of the article addresses the above
choice issue for situations involving one or more quality objectives
and at least two diversity objectives by presenting three additional
procedures. Each of these procedures solves for a different set of
selection systems that are not only PO with respect to an aggregated
quality objective and an aggregated diversity objective, but also
PO with respect to each of the individual quality and diversity
objectives. As a consequence, the resulting solutions cannot only
be represented as part of the entire, full dimensional PO trade-off
hypersurface but can also, and similar to the solutions of the
biobjective PO approach, be depicted in a two-dimensional space.
We henceforth refer to these additional procedures as the two-
dimensional subspace procedures.

As a third and final contribution, we investigate via simulation
studies whether designs derived by the new multiobjective PO
approach still outperform alternative designs, such as fixed weight
(FW) and expert weight (EW) systems, under cross-validation.
Similar to biobjective POmethods, the new hybrid and the subspace
procedures result in selection designs that are PO when applied
to the applicant population: The designs are PO in terms of the
expected trade-off of the selection objectives.4 In applicant samples,
the designs may perform less well, especially in the typical case
that the computation of the systems is based on sample rather than
on population data about the predictor/criterion effect sizes and
intercorrelations.

As an introduction, we first recapitulate the basics of PO selection
system design in general and discuss previous research on
multiobjective PO selection design in the next two sections.

Designing PO Selection Systems

De Corte et al. (2007, 2011) introduced the PO approach to
selection system design for situations with a mixture of majority and
minority applicants and where both the goals of selection quality and
diversity are valued. The central tenet of the approach is that in these

.

2 The example discussed in the section “Comparison with repeated
application of the biobjective PO approach” illustrates this.

3 See the section “Designing PO Selection Systems” for a definition of the
terms PO front and PO trade-offs.

4 Existing PO approaches use the population formula to compute the value
of the selection objectives as a function of the selection design parameter
values. Except when using the predictor composite validity and effect size to
gauge the selection quality and diversity objective, the analytic computation
of selection designs that are PO in finite sized applicant pools is not possible
(cf. De Corte et al., 2022).



situations the only acceptable designs are those that (conditional on
the available predictors/criterion information) are expected to result
in a PO trade-off of the valued objectives. All other designs are
judged unacceptable because they are expected to result in a quality
and diversity trade-off that is dominated by the expected trade-off of
a PO system, meaning that at least one of the trade-off components
(i.e., selection quality or diversity) of the system has a smaller value
than the value of the corresponding trade-off component of the PO
system, whereas the other component values are at most as high as
the corresponding PO trade-off component values.
As PO selection systems aim to maximize multiple interdepen-

dent objectives, the determination of these systems is formally
equivalent to that of solving a multiobjective optimization problem
(MOOP). For more than half a century, the problem and the ways to
solve it have received a lot of attention in the optimization literature
(see, e.g., the entry “Multiobjective optimization” in Wikipedia).
The generic format of a MOOP comprises (a) the different
objectives that are to be optimized, often referred to as the objective
functions, (b) the parameters or problem variables on which the
value of the objective functions depends (the design parameters or
design variables), and (c) a number of constraint functions that
demarcate the set of admissible design parameter values. In PO
selection design, the objective functions correspond to the quality
and diversity objectives; the design parameters are the weights with
which the selection predictors are combined to selection composites
and the selection rates applied in the selection; and the constraint
functions typically impose bounds on the predictor weights (e.g.,
only nonnegative weights) and the selection rates at completion of
the intermediate selection stages (henceforth also referred to as
retention rates), but may also express restrictions on the staging, the
cost and the timing of the selection.
When the importance of the objectives is not specified in

advance,5 as is the case in the PO approach to selection system
design, aMOOP does not have a single solution but rather an infinite
number of solutions, that are collectively referred to as the PO front,
and where each solution corresponds to a particular PO trade-off,
that is, to a particular combination of values for the objectives.
The methods for solving the MOOP typically aim for a discrete
approximation or representation of the PO front, and the criteria of
coverage (i.e., the extent to which the entire PO front is captured),
uniformity (all parts of the front are fairly equally represented) and
cardinality (the number of PO solutions obtained by the method) are
often used to evaluate the quality of the solution set obtained by the
method (cf. Sayin, 2000).
There are roughly two kinds of methods for solving a MOOP

when the preference or importance of the objectives is undeter-
mined: analytic methods based on mathematical programming and
making use of differential calculus (i.e., gradient and Hessian
information) and methods based on a metaheuristic principle such
as the evolutionary process, the swarming of ant colonies and so
on. The former methods are applicable when the objective and
constraint functions of the MOOP are (twice) continuously
differentiable in the design parameters, whereas the metaheuristic
methods impose no such requirements. When applicable, as is true
in case of the derivation of PO selection system designs, analytic-
based methods are the preferred option because they result in a much
higher quality discrete representation of the PO front than achieved
by the metaheuristic-based methods.

The procedure presented here for deriving selection systems that
are PO with respect to both multiple quality and diversity objectives
(cf. the first key contribution of the article) is based on three recently
proposed analytic methods for solving the MOOP: the normal
boundary intersection (NBI) method of Das and Dennis (1998), the
enhanced normalized normal constraint (ENNC) method of Messac
and Mattson (2004), and the successive boundary generation (SBG)
method of Mueller-Gritschneder et al. (2009). De Corte et al. (2007)
details the NBI method, whereas the other methods are discussed in
Appendix A. Here, we note that the new hybrid multiobjective PO
procedure, as compared to the existing NBI, ENNC, and SBG
methods, has the advantage of resulting in a full and quite even
discrete representation of the PO front, thereby satisfying the
coverage and uniformity criteria of a high-quality solution, whereas
the cardinality of the representation can be controlled.

PO Selection Design and DealingWith Multiple Minority
Groups: Previous Research

So far, previous research on the design of selection systems that
are POwith respect to multiple minority groups has tackled the issue
from three different angles. The first is represented by Peterson and
Morris (2021) who explored the fit between PO systems, as
developed for one minority group, when applied to a second
minority group. Initial results show that PO solutions developed
separately for Black and Hispanic minority groups are fairly similar,
thereby mitigating concerns that use of PO systems focused on one
minority group will inadvertently discriminate against another.
Obviously, this result depends on the similarity of the selection
predictor effect sizes6 in the two minority groups and will no longer
hold when the groups show markedly different effect size values.

Andrews and Geden (2021) exemplified the second angle of
attack. They used different evolutionary multiobjective optimization
(EMOO) methods for developing multiobjective PO selection
systems and compared the merit of these systems to that of a rational
weighting system when all are applied to a hold-out sample of
applicants. On the basis of their example data, they concluded that
the PO systems consistently outperform the system based on a
rational weighting of the selection predictors. They also found a
considerable degradation in the quality of the discrete approxima-
tion of the PO front with an increasing number of objectives (i.e.,
from four objectives onwards). However, the proposal can be
applied only to the design of single stage selection systems where
the validity of the selection predictor composite is used to gauge the
quality objective. Also, although EMOO methods may offer a
valuable alternative to the computation of the PO systems, they are

5 In discussing the MOOP, one (e.g., Nagy et al., 2020), often
distinguishes between situations where (a) information on the preference,
importance or weight of the different objectives is available, the so-called a
priori situation, (b) such information comes progressively available, the so-
called interactive situation, and (c) no such information is available and the
decision on the preferred PO solution is postponed until the full PO front
has been derived, the a posteriori situation. The former as well as the present
PO approach fall in the latter category, where the preference is undetermined
as no preference information is (as yet) available.

6 Throughout the text, selection predictor effect sizes are denoted as d and
refer to the standardized difference between the mean predictor score in the
minority applicant and the majority applicant population. A negative d value
therefore indicates a higher mean predictor score in the majority population
as compared to the corresponding mean in the minority population.



no match for analytic-based methods when the latter methods can
be applied.
Recognizing the limitation of EMOO methods, Song and Tang

(2020) opted for a third angle for dealing with multiple minority
groups. To this end, they used the procedure of De Corte et al.
(2007) with some minor modifications to derive the PO selection
systems and the corresponding PO front. This procedure implements
the NBI approach of Das and Dennis (1998), using a sequential
quadratic programming algorithm to solve the implied optimization
problems.7 Song and Tang presented an example application
involving the situation with a single quality (i.e., the validity of the
selection predictor) and two diversity objectives related to the
Black and Hispanic AIR, respectively. Although their proposal
has the advantage of using analytic methods to obtain a discrete
approximation of the PO front, it is limited to the design of PO
systems in single stage selection situations. Moreover, the proposal
uses the NBI method that is known to often provide a poor and
incomplete representation of the Pareto front in case of more than
two objectives (see Burachik et al., 2017; Messac & Mattson, 2004;
see also our comparison with the NBI approach below).
In summary, although previous research offers some steps toward

the design of multiobjective PO selection systems, we still lack a
reliable and generally applicable procedure for obtaining such
systems. The next section describes a procedure that overcomes the
limitations of these earlier efforts to obtain a discrete approximation
of the PO front and the corresponding set of PO systems. The two-
dimensional subspace procedures for generating informative subsets
of the front in two-dimensions are presented in the subsequent
section.

Approximating the Full Front of Multiobjective
PO Selection Systems

Below we provide an elementary description of the procedure for
obtaining PO selection systems for situations involving more than
two objectives, independently of the particular combination of
(multiple) quality and (multiple) diversity objectives. We refer to
Appendix A for a detailed description of the procedure. To illustrate
the multiobjective PO procedure, we intertwine the presentation
with an example application and compare it to previous approaches
to tackle this key issue.

Description of the Hybrid Multiobjective PO Approach

Similar to existing methods for deriving PO biobjective selection
systems (e.g., De Corte et al., 2011; Rupp et al., 2020), the present
procedure requires certain data as well as the delineation of the set of
feasible selection systems. The latter set comprises all selection
designs that are judged acceptable by the selection designer. It is
defined by an appropriate series of constraints that typically express
restrictions on the available predictors and the cost and timing of the
selection as well as restrictions on acceptable predictor weights,
eventual staging preferences, and so on. The required data relate to
the proportional representation of the different applicant groups in
the total candidate population, the intercorrelation, validity and
effect size values (i.e., subgroup d for each minority group) of
the predictors, the final selection rate and, in case of multistage
selection, the range of acceptable between-stage retention rates.
These data permit computing the value of the selection objectives for

each feasible selection system using the formulas presented in De
Corte et al. (2006). Note that the data requirements and boundary
conditions for applying the new procedure are similar to those that
govern the application of the biobjective PO approach. The only
difference is that the new method requires effect size data for the
predictors/criterion for each minority group, instead of for only one.

To obtain the PO trade-off front and the corresponding PO
selection designs, we developed a new procedure that applies a
hybrid multiobjective PO approach consisting of two stages. The
first stage applies the SBG method of Mueller-Gritschneder et al.
(2009), resulting in a first discrete representation of the PO front.
Next, a novel method, henceforth referred to as the E-NBI method,
that combines features from the ENNC and NBI methods is used to
obtain a second discrete representation. A Pareto filter (a procedure
that checks whether thus far obtained trade-offs are PO; cf. Messac
& Mattson, 2004) is subsequently applied to the two solution sets
to retrieve the final PO front and the corresponding PO selection
designs.

Our new method combines the SBG and E-NBI procedures
because the two procedures are quite complementary. The SBG
method is particularly suited for obtaining a quite even representa-
tion of the boundary and the neighborhood of the boundary of the
PO front, albeit without a guaranteed coverage of the entire inside
part of the front (cf. Mueller-Gritschneder et al., 2009, p. 920),
whereas the novel E-NBI method compensates this deficiency by
resulting in a quite evenly populated discrete representation of the
inner part of the PO front. When combined, the two methods
promise a high-quality discrete representation of the full PO front
such that the selection designer has a full overview of the acceptable
selection designs when facing the decision on the preferred design.
This is a key advantage as further shown in the section “Added
Value of New Multiobjective PO Hybrid Approach over Previous
Methods.”

Apart from generating a high quality, discrete representation of
the PO front in multiobjective selection design, the new hybrid
method can also be extended to determine for each PO design
the corresponding convex formulation of the design if the latter
formulation exists. Based on a result presented in Das and Dennis
(1998), De Corte et al. (2007) already introduced the notion of the
corresponding convex formulation of a PO design in the context of
the biobjective selection design situation. In this situation, the Pareto
front is typically convex (i.e., the front curves outwardly) implying
that a biobjective PO systems can also be obtained by solving a
corresponding single objective optimization problem. The objective
function of the latter problem is a convex combination (i.e., a linear
combination of the objectives where the weights of the objectives in
the linear combination are nonnegative and sum to one) of the two
selection objectives, and the convex combination of the objectives is
referred to as the corresponding convex formulation. As the result of
Das and Dennis generalizes to multiobjective PO selection systems
with a trade-off that lies in a convex part of the PO front, the present
hybrid method extends the procedure of De Corte et al. to obtain the
corresponding convex formulation of biobjective PO systems to the
case of multiobjective PO designs in two steps. The method first

7 Analytic methods to solve the MOOP lead to a series of single objective
optimization problems that are typically solved by a nonlinear programming
method, with sequential quadratic programming (cf. Fletcher, 2010) being
the method of choice.



checks whether a corresponding convex formulation is possible and
then determines the convex weights of the objectives in the
formulation. As further discussed in the section “Sample-to Sample
Cross-Validity of Multiobjective PO systems,” this new develop-
ment is of key importance when studying the shrinkage of the trade-
off of multiobjective PO systems under cross-validation. In
particular, we show that the weight of an objectives in the
corresponding convex formulation of a PO design correlates
substantially with the amount of shrinkage of the objective trade-
off value.

Computer Program for the Hybrid Multiobjective
PO Approach

We wrote a computer program that implements the new hybrid
procedure for the design of PO selection systems involving up to
five objectives. The output of the program contains a tabular
inventory of the PO trade-offs and the corresponding PO selection
designs. We also coded a simple R script that enables the
visualization of the entire PO front in case of three objectives. In
case of more than three objectives, the script can also be used to
visualize the different three-dimensional parts of the full dimen-
sional PO front.

Transparency and Openness

We provide a copy of the executable program that computes a
discrete approximation of the full PO front and the corresponding
PO selection designs for selection situations involving up to five
selection objectives at http://users.ugent.be/~wdecorte/software
.html. Instructions for using the program, several example input
and output files as well as a copy of the R script to visualize the PO
front are also available from the website. The program also
computes the subsets of PO selection designs when implementing
the two-dimensional subspace procedures detailed in the section
Obtaining a Two-Dimensional Approximation of Part of the PO
Front. All input values used in the following example applications as
well as in the later reported simulation study are detailed in the
Tables 1 and 2 and in the body of the article and we throughout
adhered to the Journal of Applied Psychology methodological
checklist. As the article does not report empirical research, it was
not preregistered.

First Example Application

Data and Selection Situation Specification

Table 1 details the required data for the first example application
aiming at the computation of the PO front for a three-objective
selection with the predictor composite validity gauging the quality
objective and the Black and Hispanic AIR expressing the two
diversity objectives. The data values in the table are borrowed from
Song and Tang (2020) and are based on previous meta-analytic
studies, whereas the values for the proportional representation of the
three applicant groups reflect the corresponding population statistics
in the United States.
To be able to compare the results of the new procedure with

the results reported in Song and Tang, the example assumes that
only single stage selection designs with a .15 selection rate using a

selection predictor composite where all available predictors receive
a nonnegative weight are judged acceptable. For the same reason of
comparability, the validity of the selection predictor composite is
used to gauge the selection quality objective.

Results

Figure 1 illustrates the result of the new hybrid multiobjective PO
approach when applied to the example data from Table 1. The figure
depicts the full PO front together with the trade-off achieved by a
fixed weight (FW) system assigning unit weight to each of the five
predictors (cf. the triangle shaped hollow point) and the trade-off
associated with a corresponding PO system (cf. the triangle shaped
filled point). The FW system results in a validity of .57, with a
substantial adverse impact against both Blacks (AIR Black = .45)
and Hispanics (AIR Hispanic = .67). The corresponding PO system
has a similar validity of .58 but a slightly higher AIR for Blacks (.51)
and a substantially better AIR for Hispanics (.85). Summarized in
compact notation, the FW System has a trade-off equal to (.57, .45,
.67) and this trade-off is dominated by the trade-off of the
corresponding PO system equal to (58, .51, .85) as each trade-off

Table 1
Predictor/Criterion Population Data for the Three-Objective
Selection Design Situation (Cf. Song & Tang, 2020)

Variable dB dH 1 2 3 4 5 6

Predictor
1. Biodata −.39 −.17 —

2. Cognitive ability −.72 −.79 .37 —

3. Conscientiousness .09 .08 .51 .03 —

4. Structured
interview

−.39 −.04 .16 .31 .13 —

5. Integrity test −.04 .14 .25 .02 .34 −.02 —

Criterion
6. Performance .32 .52 .22 .48 .18 —

Note. dB = standardized Black–White mean difference; dH = standardized
Hispanic-White mean difference. The proportional representation of the
majority and the Black and Hispanic minority groups is .705, .170,
and .125.

Table 2
Predictor/Criterion Effect Sizes, Correlations, and Validities From
the Army Data Set

Variable dB dH dF 1 2 3 4 5 6

Predictor
1. Adjustment .08 −.01 −.31 —

2. Dependability .23 .21 .31 .34 —

3. Surgency .05 .16 −.06 .57 .11 —

4. g-factor −.83 −.72 .06 .45 .10 .16 —

Criterion
5. Leadership −.20 .10 −.35 .13 .12 .58 .36 —

6. General
soldiering

−.54 −.38 −.11 .20 .09 .28 .34 .03 —

Note. dB = standardized Black–White mean difference; dH =
standardized Hispanic-White mean difference; dF = standardized female–
male mean difference; g-factor = general mental ability. Proportional
representation of the majority, the Black, the Hispanic, and the Female
minority groups is .60, .22, .03, and .15, respectively.

http://users.ugent.be/~wdecorte/software.html
http://users.ugent.be/~wdecorte/software.html
http://users.ugent.be/~wdecorte/software.html
http://users.ugent.be/~wdecorte/software.html


component of the FW system has a smaller value than the
corresponding trade-off component of the PO system.
Besides a pictorial representation of the PO front, the new

procedure also provides an overview of the corresponding PO
selection systems. Figure 2 illustrates this by plotting the weights,
with which the available predictors are combined to the selection
composite predictor, across the full range of values for the quality
(i.e., validity) objective. Note that the pattern of the predictor
weights across the quality range is quite irregular, as may be
expected in case of multiobjective selection design when the relation
between the validity and the effect size of the predictors differs
across the minority groups.

Added Value of the New Multiobjective PO Hybrid
Approach Over Previous Methods

Comparison With NBI Approach

When discussing previous research, and the proposal of Song and
Tang (2020) in particular, we noted that biobjective PO approaches
in using the NBI method may often lead to a poor and even mistaken
representation of the PO front when applied to selection situations
involving more than two objectives. The results depicted in Figure 3
illustrate and substantiate this claim. The upper row panels of the
figure show the PO front for the example selection scenario, detailed
in the “Method” section above, as obtained when using the NBI (left
upper row panel) or the present hybrid method (right upper panel).

Note that the PO front obtained with the NBI method matches the
front reported in Song and Tang (2020) who used the NBI method.
Yet, comparing the fronts in the upper row panels of Figure 3
demonstrates that the fronts are quite different, with a substantial
part of the front obtained by the NBI method being dominated by the
PO front of the newmethod. The grey part of the NBI front shown in
the lower left panel of Figure 3 details the dominated part of the NBI
front, indicating that the largest part of the front derived by the NBI
method is not PO.

Comparison With Repeated Application of the
Biobjective PO Approach

Although NBI based methods often fail to derive a high-quality
discrete representation of the PO front in case of more than two
objectives, the repeated usage of the method, each time solving for
the PO front of a different combination of two of the pursued
objectives, may on aggregation eventually result in a more adequate
representation of the full PO front. To investigate whether such a
repeated usage may result in an adequate representation of the PO
front in case of more than two-valued objectives, we again studied
the Song and Tang example selection scenario and used the
biobjective PO approach to first derive two sets of selection designs
that each are PO with respect to the quality (i.e., the validity of the
selection composite, see the section “Method” above) and only one
of the two diversity objectives. The first set is PO with respect to the
quality and the Black minority group AIR objectives; whereas the
second set is PO with respect to the quality and the Hispanic AIR
objectives. Next, we used the PO predictor weighting systems
corresponding to the systems that are PO with respect to validity and
Black (Hispanic) AIR to calculate the corresponding Hispanic
(Black) AIR value, obtaining two sets of trade-offs with each trade-
off having three components: the validity, the Black AIR and the
Hispanic AIR trade-off value.

The bottom right panel of Figure 3 depicts the resulting two sets
of trade-offs relative to the full PO front as computed by the new
hybrid method. The red filled square points on the left side of the full
PO front correspond to the predictor weighting systems that are
PO with respect to the quality and only the Black AIR objective,
whereas the blue filled circle point on the right side correspond to the
predictor weighting systems that are PO with respect to the quality
and only the Hispanic AIR objective. The results in the panel show
that the repeated application of the biobjective PO approach in
situations with more than two objectives uncovers only a (very)
small and totally unrepresentative subset of the entire PO front (i.e.,
only part of the border of the PO front).

Conclusions and Discussion

The above disappointing results using existing methods are not
specific to the studied example, but generalize to virtually all
multiple (i.e., three or more) objective selection situations. In case of
more than two objectives, dedicated methods such as the new hybrid
multiobjective PO procedure are required to obtain a high-quality
representation of the full PO front and the corresponding PO
selection system designs. Approximating the PO front through
repeated application of the biobjective PO approach is no alternative
because the resulting selection designs are at best highly
nonrepresentative. In fact, and this is a result of the example

Figure 1
Pareto Front for the Three-Objective Selection Situation
Corresponding to the Song and Tang (2020) Data

Note. The grey surface depicts the representative discrete approximation of
the PO front obtained by the new hybrid method to compute multiobjective
PO systems. The hollow triangle point shows the trade-off of the FW system
assigning equal weight to the predictors, whereas the filled triangle point
represents a corresponding PO trade-off that dominates the trade-off of the
FW system. AIR = adverse impact ratio; PO = Pareto-optimal; FW = fixed
weight. See the online article for the color version of this figure.



application that needs additional qualification, it may very well be
that the thus obtained systems are not even PO with respect to the
full set of pursued goals (see Appendix C).
The comparison in the lower right panel of Figure 3 also verifies

that focusing simultaneously on several minority groups instead of
only one group at the time need not affect the selection rates and
the adverse impact ratios that can be achieved by the PO selection
designs. In the example, the PO trade-offs and, hence, the
corresponding Black and Hispanic AIR values resulting from the
two-objective PO approach are entirely part of the PO front obtained
by solving for the systems that are PO with respect to both minority
groups.
Similar to the two-objectives procedures, the present hybrid

approach results in a discrete representation of the entire PO front
and simple methods, such as filtering the list of obtained PO
systems, can be used to select subsets that are of particular interest to
the selection designer. Thus, in the above example application, the
list of PO solutions can be reduced to (a) maintain only solutions
with validity and/or AIR Black and AIR Hispanic values in a
specific range (e.g., AIR values between .8 and 1.2), (b) to select the
solutions that dominate the FW system assigning equal weights to
the selection predictors, or (c) to focus on PO systems with trade-off
component values (i.e., values for the individual elements of the
trade-off such as the values for the quality or the AIR of a selection
design) that meet or better certain preset values.
The above example also compares the outcome (i.e., the trade-

off) of the FW system to that of the selection designs obtained by the
present hybrid method (see Figure 1). The results indicate that the

FW systems is typically dominated by several of the computed PO
designs (i.e., has quality and diversity values that are all lower than
the corresponding values of the PO designs) and, hence, is not PO,
whereas the new hybrid multiobjective PO method retains only PO
solutions. Our example application did not compare the PO systems
to the regression-based predictor weighting scheme because the
latter scheme is one solution of the derived PO systems. This will
always be the case when the quality objective equals the validity
of the selection predictor composite. If the quality objective is
operationalized as the expected criterion performance of the selected
applicants, as is necessary in case of multistage selections, the
regression weighted selection system need not be PO because in that
case the quality objective is not only a function of the validity of the
selection composite predictor but also depends on the composition
of the total applicant group and the effect sizes of the predictors and
the criterion.

Obtaining a Two-Dimensional Approximation of
Part of the PO Front

Rationale

Although a high-quality retrieval of the PO selection systems is
vital in situations where both quality and diversity objectives are
valued, the first example application illustrates that the retrieval
inevitably leads to a further major issue that needs to be addressed:
the decision on which of the identified PO systems to retain. Even in
the example situation involving only three objectives and where the
set of PO systems can still be visualized, the latter decision is not

.
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Figure 2
Predictor Weights Corresponding to the Three-Objective PO Selection Systems (Song & Tang,
2020, Data)

Note. The PO systems are ordered from left to right in increasing quality trade-off value. PO = Pareto-optimal.
See the online article for the color version of this figure.



easy one. To assist the selection designer in the task, the next section
presents three additional procedures that may guide the decision as
to which PO selection design to retain.

Description of Two-Dimensional Subspace Procedures

This section introduces three two-dimensional subspace proce-
dures for obtaining and visualizing certain particularly interesting
subsets of the full PO front in two-dimensions. We again opt for an
elementary description of the procedures and refer to Appendix B
for details. We intertwine the description with two example
applications, henceforth referred to as the example applications two
and three.
The two-dimensional subspace procedures each compute a PO

front related to a different pair of aggregate objectives. In all
three computations, the first aggregate objective corresponds to a
weighted average of the quality objectives,8 whereas the second
aggregate objective equals the average AIR or the average selection

rate across the minority groups for the procedures one and two. In
the third procedure, the second aggregate diversity objective equals
the minimum AIR across the protected groups. In essence, the first
two procedures are identical to the biobjective PO approach applied
to an aggregate quality and diversity objective instead of to a single
quality and a single diversity objective; whereas the third procedure
requires the novel computational scheme detailed in Appendix B.

Although the first two procedures focus on an aggregate quality
and an aggregate diversity objective, the resulting PO selection
designs are also automatically PO with respect to each of the
individual quality and diversity objectives and, hence, form a subset
of the full PO front as obtained by the new hybrid method. To see
this, consider a selection design, D, that is PO with respect to, for

Figure 3
Three-Objective PO Front Obtained by the NBI and the New Method and Two Corresponding
Two-Objective Solutions

Note. The upper row panels show the PO trade-off surface obtained by the NBI and the new hybrid
method for the three-objective situation of the first example application. The black surface part in the
bottom left panel shows the part of the NBI solution that is PO. The red square and blue circle points in the
right bottom panel represent the PO trade-off curve of two different two-objective solutions (i.e., the
validity and AIR Black and the validity and Hispanic AIR solutions, respectively). AIR = adverse impact
ratio; NBI= normal boundary intersection; PO= Pareto-optimal. See the online article for the color version
of this figure.

8 It is understood that the different quality objectives are all expressed in
standardized units such that weighted addition makes sense. It is equally
possible to consider the minimum quality across the (standardized) quality
objectives as the aggregate quality objective.



example, the average of the individual quality and the average of the
minority AIR objectives. In that case, no other design can dominate
design D (i.e., can have values for all but one of the individual
objectives that are equal to the corresponding values of design D and
do better on the remaining objective). If such a system would exist it
would necessarily have either a higher aggregate (i.e., average)
quality or a higher aggregate diversity trade-off value (or both)
than the corresponding trade-off values of the system D, which
contradicts the fact that the system D is PO with respect to the
aggregate objectives.
In contrast, the selection systems obtained by the third procedure,

with the minimal AIR value across the minority groups as the
aggregated diversity objective, are not also automatically PO with
respect to the individual objectives. The initial computation of the
designs that are PO with respect to the aggregate objectives is
therefore followed by the additional step detailed in Appendix B to
ensure that the finally retained systems are also PO with respect to
each of the individual objectives.

Second Example Application

Data and Selection System Specification

We use a second example application to show the relationship in
results between the hybrid procedure for deriving the full PO front
and the two-dimensional subspace procedures This second example
relies on a small subset of data from the U.S. Army Project A,
previously used by Saad and Sackett (2002) and Sackett et al.
(2003) in examinations of predictive bias. Project A examined a
wide variety of predictors and criteria across 13 Army occupational
specialties (i.e., jobs), with a total N of 5,044. More information
about this database can be found in Campbell (1990) and Young
et al. (1990). To illustrate our procedure, we use four predictors
(detailed in Table 2) and two criteria (General Soldiering
Proficiency and Effort and Leadership)9 from the Project A data.
This example application two illustrates the two-dimensional
subspace procedures in the context of a three-objective, two-
stage selection design situation with standardized expected
performance for General Soldiering Proficiency as the single
quality objective and the Black and Female AIR as the two diversity
objectives.
As all PO approaches, the two-dimensional subspace procedures

require the specification of the set of feasible selection systems.
Example application two takes this set as comprising all two-stage
selection systems (for more details on multistage selection system
design, see De Corte et al., 2011) with a .15 selection rate, a retention
rate between .30 and .60 after the first stage, and using only
nonnegatively weighted predictor composites of the predictors one
and four and the predictors two and three in the stages one and two,
respectively

Results

The upper left, the upper right, and the lower left panels of Figure
4 show the PO front as obtained by applying the NBI, the SBG, and
the novel E-NBI method, respectively, whereas the light (grey) dots
in the lower right panel depict the discrete representation of the front
generated by the new hybrid method that combines the results of the
SBG and the E-NBI methods. The upper left panel confirms that the

NBI method often results in a rather poor retrieval of the full extent
of the entire PO front and the upper right panel illustrates the
potential of the SBG method to generate a high-quality discrete
representation of both the border and a large vicinity of the border of
the PO front. However, the method does not always result in a full
coverage of the entire PO front, as witnessed by the absence of PO
trade-off points in the center part of the front. In turn, the lower left
panel shows that the new E-NBI method compensates for this
deficiency by offering a quite even retrieval of the inner part of the
PO front, but the method is less good than the SBG method in
providing a precise image of the border of the PO front.

The lower right panel of Figure 4 depicts the results of two of
the two-dimensional subspace procedures on top of the full PO
front10 obtained by the hybrid procedure. The (red) “+” points
show the trade-offs that are PO with respect to the quality and the
minimum AIR objective, whereas the (blue) “×” points represent
the trade-offs that are PO with respect to the quality and the
average AIR objectives. As noted above, both sets of points are
also PO with respect to all three individual objectives and are
therefore part of the three objective PO front uncovered by the
new hybrid method. The (blue) square shaped point in the panel
exemplifies one of these trade-offs with values .41 and .94 for
quality and average AIR, and values of .67 and 1.21 for the AIR
of the first (Black) and the second (female) protected group,
respectively. In turn, the (red) bullet PO trade-off has values .40
and .80 for the quality and minimum AIR, and values .80 and 1.01
for the AIR of the first (i.e., Black) and the second (i.e., female)
protected group, respectively.

With a minimum AIR value across the minority groups of .80,
the selection design corresponding to the latter trade-off obeys the
4/5ths rule for the AIR of all minority groups and may therefore
be a valuable option for the selection designer when choosing
between the different PO selection designs. Also, although both
designs result in fairly equal values for the quality objective (i.e.,
.41 and .40 for the blue square and the red bullet trade-offs,
respectively), the range between the AIR values is with a value
of only .21 for the second PO trade-off considerable smaller
as compared to the corresponding value of .54 for the first PO
trade-off.

Third Example Application

Purpose

Whereas our first two example applications mainly focus on
the use of our new multiple objective PO approach in the context
of multiple minority groups, we use example application three
to illustrate the application of the subspace methods in a five-
objective design situation. In this situation, the goal is to optimize
two quality objectives (i.e., average performance of the selected
applicants on General Soldiering Proficiency and Effort and
Leadership) and three diversity objectives as represented by the
AIR of the Black, Female, and Hispanic minority groups. In this

9 As the data in Table 2 relate to incumbent instead of applicant groups, the
values in the table are range restricted. Data to correct for this were not
available, however.

10 The lower panel of Figure 4 does not display the PO front for the quality
and average selection rate objectives because the front is virtually identical to
the PO front of the quality and average AIR objectives.



third example application, we also further explore the recom-
mended use of our three subspace procedures given specific
interests of the selection designer.

Data and Selection System Specification

Our third example application relies on the same subset of Project
A data as our second example application. The selection system
specification is also the same as in our second example: a .15
selection rate, a retention rate between .30 and .60 after the first
stage, and using only nonnegatively weighted predictor composites
of the predictors one and four and the predictors two and three in the
stages one and two, respectively.

Results

Figure 5 summarizes the results obtained by two of the subspace
procedures when applied to the above described third example
situation involving a total of five objectives.11 In the top panel, the
solid (red) line shows the PO front for the average quality and the
minimum AIR aggregate objectives, whereas the solid (red) line in
the lower panel displays the PO trade-offs for the average quality

Figure 4
PO Trade-Off Front Obtained for the Second Example Situation Using ASVAB Data

.

Note. From left to right the top panels depict the PO front obtained using the NBI and the SBG method,
whereas the left bottom panel represents the PO front obtained by the new E-NBI method. The right bottom
panel shows the PO solutions of two of the two-dimensional subspace procedures superimposed on the PO
front of the new hybrid method (cf. the grey surface). The red + and the blue × points correspond to the
subspace procedure using the minimum AIR and the average AIR as the aggregate diversity objective,
respectively. AIR = adverse impact ratio; NBI = normal boundary intersection; SBG = successive boundary
generation; PO = Pareto-optimal; ASVAB = Armed Services Vocational Aptitude Battery. See the online
article for the color version of this figure.

11 We again omit the results of the subspace procedure, where the
aggregate diversity objective is captured by the average selection rate
because these results agree to a very high degree with the results from the
procedure where average AIR gauges the aggregate diversity objective.



and average AIR aggregate goals. Note that both fronts span a range
of values for the two aggregate objectives thereby offering the
possibility for the selection designer to focus on systems that show
aggregate trade-off component values that meet eventual design
preferences. As an example, consider the situation where the
designer aims for a system resulting in the highest possible expected
average quality and where all minority applicants are expected to
have at least the same chance of being selected as the majority group
candidates. In that case, the designer wants a system resulting in the
best average quality subject to the requirement that the minimum
AIR across the three minority groups is at least equal to one and the
preferred system can immediately be identified as the (red) square
point on the (red) line in the upper panel of Figure 5. The results in

Appendix S4 of the online material show that the point corresponds
to the PO selection system with aggregate (i.e., average) quality of
.55 (and values of .77 and .33 for the leadership and general
soldiering quality objectives, respectively) and minimum AIR of 1.
(with values 1, 1.13 and 1. for the AIR of the Black, the Hispanic,
and the Female protected groups, respectively).

The results in Appendix S4 of the online material further indicate
that the preferred selection design first top-down selects the 60%
candidates with the highest predictor composite score in the
first stage, assigning weights of .51 and .49 to the Adjustment and
g-factor (general mental ability) predictors, and finally top-down
selects one quarter of the retained candidates based on their second
stage composite score obtained by assigning weights of .23 and .77
to the second stage Dependability and Surgency predictors. As the
design is expected to result in hiring candidates from the minority
groups at least as frequently as the majority group candidates while
losing no more than .09 standard units on the aggregate quality
dimension as compared to the aggregate quality maximizing design
(cf. the design marked by the red circle trade-off in the upper panel,
with aggregate quality trade-off value of .64), it might be quite
appealing to choose the design among all other PO designs.

Both panels also display the relationship between the aggregate
quality and the range of the AIR values in the PO trade-offs, defined
as the difference between the largest and the smallest value of
the AIR trade-off components. Thus, the dashed blue line in the
upper panel represents the relationship when aggregate quality
and minimum AIR are the two aggregate objectives, whereas
the corresponding line in the lower panel depicts the relationship
when the aggregate objectives are the average quality and the
average AIR. We added these lines to inspect which of the two
operationalizations of the aggregate diversity objective (i.e.,
aggregate diversity operationalized as the average vs. the minimum
AIR across the groups) is likely to result in a more homogeneous
treatment of the different minority groups as reflected by the range in
the AIR values. For reasons of comparison, the relationship between
the aggregate quality and the range of AIR values for the systems
that are PO when the average AIR represents the aggregate diversity
objective is also depicted in the upper panel (cf. the dotted black
line in the upper panel). Note that the latter line either touches or
lies above the dashed blue line across the entire aggregate quality
dimension thereby confirming the earlier obtained finding that
the individual AIR values of the different minority group are
typically more alike when the minimum AIR expresses the
aggregate diversity as compared to when the average AIR is
used to represent the objective.

Discussion

We offer three two-dimensional subspace procedures, each
focused on a different aggregate diversity objective (e.g., average
AIR vs. minimum AIR across groups) to assist selection system
designers when evaluating the merits of different high dimensional
PO systems. As illustrated in the example application three, the
subspace procedures provide the selection designer with a
manageable grasp of the possible PO selection designs in case
that the number of valued objectives exceeds three.

Under which conditions should selection system designers use
these procedures? We advise using the subspace procedures in
combination with the new hybrid multiobjective PO procedure

Figure 5
PO Trade-Off Curves for Two of the Subspace Procedures Showing
the Relationship Between the Values for the Minimum AIR and the
Average AIR Aggregate Diversity Objective

Note. The red line in the upper (lower) panel represents the PO trade-off
curve of the subspace procedure using average quality and minimum
(average) AIR for the objectives. The blue dashed line in the panels depicts
the relationship between average quality and the range of the AIR values as
obtained by the two subspace procedures. The blue dashed line of the lower
panel is inserted as the dotted black line in the upper panel. The filled red
square and filled red circle in the upper panel correspond to the PO trade-off
with a value of one for the minimum AIR objective and a maximum
possible value for the average quality objective, respectively. AIR =
adverse impact ratio; PO = Pareto-optimal. See the online article for the
color version of this figure.
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when the number of objectives remains modest. In that case, the
results of the subspace procedures can, in principle, also be obtained
from the output of the hybrid procedure, albeit considerably less
systematically and in most cases also much less detailed. Note that
the subspace procedures are no substitute for the recovery of the full
dimensional PO front. So, their stand-alone usage is reserved only
for occasions where the recovery of the full front poses excessive
computational challenges or is expected to result in an all to
overwhelming list of PO selection designs.
One might also wonder why we present these three two-

dimensional subspace procedures. We acknowledge that several
other two-dimensional subspace procedures are possible, (e.g.,
focusing on the minimum quality across several quality objectives).
We retained the present three because current practice seems to be
more often confronted with selection situations involving multiple
minority groups than with situations with only one minority group
and several different quality objectives. Also, as compared to
other possible subspace procedures, the procedures focusing on the
average AIR and the average selection rate across the minority
groups have the advantage that the resulting designs are
automatically PO with respect to the individual diversity objectives.
Although the third subspace procedure (i.e., the minimum AIR
across the minority groups to represent the aggregate diversity
objective) requires additional steps to guarantee designs that are also
PO for all individual objectives, the procedure has another important
advantage. As shown in the example applications two and three,
the minimum AIR subspace procedure leads to PO designs that,
for comparable (aggregate) quality values, treat the different
minority applicant groups more equally than the other two subspace
procedures. So, if homogeneity in the AIR and, hence, also in the
selection rates of the different groups is an issue, then this is the
subspace procedure of choice.

Sample-to-Sample Cross-Validity of
Multiobjective PO Systems

Rationale

As noted in the introduction section, the biobjective PO, the new
hybrid multiobjective PO, and the subspace procedures result in
designs that are PO, and therefore are better than any other feasible
design, in terms of the expected trade-off of the valued objectives.
However, this might change under cross-validation. When both PO
and alternative feasible designs are applied in future selections
involving a finite sized applicant pool it is possible that the
validation trade-off (i.e., the trade-off achieved in the new,
validation applicant pool) of the PO systems no longer outperforms
the validation trade-off of (some of) the alternative designs. This is
even more likely when (a) the initial computation of the PO systems
is based on calibration sample rather than on population values
of the predictor/criterion effect sizes and correlations and (b) the
alternative designs do not depend on the idiosyncrasies of the
calibration data (as is the case for FW selection designs). Although
previous cross-validation studies (e.g., De Corte et al., 2022; Song
et al., 2017) reported encouraging results on the cross-validity of
PO as compared to FW designs, the results are limited to biobjective
selection situations and may therefore not generalize to the
multiobjective PO designs as obtained by the new hybrid method.
To address these issues, we investigate the sample-to-sample cross-

validity of the multiobjective PO systems via a small-scale
simulation study.

The present study focuses on the sample-to-sample cross-validity
of multiobjective PO systems because this is the type of cross-
validity that is of particular interest in applied settings (Cattin, 1980;
De Corte et al., 2022). More specifically, the study assesses the
merits of multiobjective PO systems, derived on the basis of
calibration applicant sample (summary) data, when applied in a new
validation applicant sample. As shown by De Corte et al. (2022), a
full-blown study of the sample-to-sample cross-validity of PO and
alternative selection designs requires a dedicated methodology and
considerable computational resources and is therefore out of scope
for the present study. Instead, we aim to answer the key question as
to whether the validation trade-off of seven alternative selection
designs is still dominated by the validation trade-off of the PO
designs that dominate the alternative selection designs in the
calibration condition. The seven alternative selection designs are
the FW selection design assigning equal weights to the selection
predictors, and six expert weighing (EW) designs. To obtain the
latter designs, we contacted twelve Industrial-Organizational
practitioners in our network who specialize in selection, asking
them to propose a set of weights for operational use in a setting
where both validity and diversity were valued, given the population
validities, intercorrelations, and effect sizes of the predictors in the
different minority groups. Seven of these are Society for Industrial
and Organizational Psychology fellows; two are Society for
Industrial and Organizational Psychology past-presidents. All
twelve responded. As some offered virtually identical weightings,
we identified six meaningfully different expert weights for inclusion
in the cross-validity study.

The simulation study also presents results on the shrinkage under
cross-validation of the PO, the FW and the EW system trade-off
values. Similar to previous studies, shrinkage refers to the difference
between the average (across replications) calibration trade-off and
the average validation trade-off of a systems. Although a detailed
analysis of the shrinkage issue falls outside the scope of this article,
we also study the relationship between the degree of shrinkage in the
trade-off components (each corresponding to a selection objective)
and the weighting of the objectives in the corresponding convex
formulation of the PO system (cf. the section “Description of the
Hybrid Multiobjective PO Approach”). Uncovering this relation-
ship is important because it sheds light on the shrinkage pattern of
the trade-off components one may expect to obtain under cross-
validation.

Simulation Method

We use simulation methods to study the cross-validation issue
with respect to the first example selection situation where five
predictors are available to select candidates, with a selection ratio of
.15, from an applicant group comprising both Black and Hispanic
candidates with a proportional representation of .170 and .125,
respectively. In the example, the single quality goal is represented
by the validity of the selection composite predictor, whereas the two
diversity objectives are gauged by the Black and Hispanic AIR,
respectively.

Each simulation consists of three steps that are repeated 5,000
times for four levels of the size of the calibration and applicant
pool: 100, 200, 500, and 1,000. In the first step, we generate tw
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random samples of predictors/criterion score data from the mixture
normal distribution with population mean and correlation structure
detailed in Table 1. The first of these two samples is the calibration
sample, whereas the second is the validation sample. In the second
step, the calibration predictors/criterion correlations and effect
sizes are computed from the calibration sample data and
subsequently used as input to the new hybrid multiobjective PO
method to determine a discrete representative set of 231 selection
systems that are PO with respect to the expected trade-off of the
three valued goals. In computing the PO systems, it is understood
that only predictor composites assigning nonnegative weights to
the predictors are admissible. In the third step, the PO system
designs (i.e., the weights with which the predictors are combined to
the PO selection composite) are applied to both the calibration and
validation sample data, resulting in the calibration and validation
trade-off of each of the PO systems. The step also computes the
calibration and validation trade-off of the FW and the six EW
selection designs.
To study the key question whether PO systems that dominate

the FW and EW systems in the calibration condition continue to
do so in the validation condition, we first tabulated for each of the
seven alternative designs the PO systems that dominate the system
in the calibration condition. Next, we counted for each alternative
system the number of corresponding dominating PO systems
with a validation trade-off that (a) dominates, (b) is dominated by
and (c) is incomparable to the validation trade-off of the
alternative system. Note that the trade-off of two systems is
incomparable when some of the trade-off values of the first
system are higher than the corresponding trade-off values of the
second system, whereas the reverse is the case for some other
trade-off values.12

To evaluate the shrinkage under sample-to-sample cross-
validation, we calculate the difference of the average (across the
5,000 replications) calibration and validation trade-off component
values (i.e., the quality component as represented by the average
criterion performance of the selected applicants and the AIR Black
and the Hispanic AIR diversity components as represented by the
average of the Black and the Hispanic AIR) of the 231 calibration
PO systems and compare these 231 PO shrinkages to the
corresponding shrinkages for the alternative systems. In addition,
we report the standard deviation (across the repetitions) of the

validation trade-off components of both the PO and the alternative
systems. Finally, we examine the relationship between the shrinkage
in the trade-off components of the PO systems and the average
weight of these components (i.e., the selection objectives) in the
corresponding convex formulation of the systems (cf. the section
“Description of the Hybrid Multiobjective POApproach”). For each
PO system, the latter averages are computed across the repetitions
where the PO system has a corresponding convex formulation.
Based on previous results obtained for the biobjective selection
situation (De Corte et al., 2022 and Song et al., 2017), we expect that
the shrinkage in a trade-off component of a PO system is related to
the weight of the corresponding objective in the corresponding
convex formulation.

Results of Simulations

Table 3 reports the results on whether calibration-based PO
systems that dominate an alternative selection system also
outperform the alternative system under cross-validation. To this
end, the table presents the proportion of comparisons (averaged
across the 5,000 repetitions) between cross-validated alternative and
corresponding cross-validated PO systems where the validation PO
trade-off (a) still dominates, (b) is dominated, and (c) produces
indeterminate findings (i.e., neither the PO nor the alternative
system dominates such that the trade-off of the PO and the
alternative system are incomparable).

The first key result is that the PO systems retain an advantage
under cross-validation over the corresponding alternative systems
for calibration/validation sample sizes of 200 or more. From this
sample size onwards, the odds that the validation trade-off of the PO
systems dominates versus is dominated by the validation trade-off of
the corresponding alternative designs grows from 27/11 (sample
size 200) to 34/4 (sample size 500) and 40/1 (sample size 1,000) for

Table 3
Proportion of Validation PO Trade-Offs That (a) Dominate, (b) Are Dominated, and (c) Are Incomparable to the Validation Trade-
Off of the Corresponding Alternative Design System for Different Calibration/Validation Sample Sizes

Alternative
system

PO trade-off dominates PO trade-off is dominated Incomparable trade-offs

100 200 500 1,000 100 200 500 1,000 100 200 500 1,000

FW .24 .27 .34 .40 .21 .11 .04 .01 .55 .62 .63 .59
EW1 .23 .22 .23 .25 .25 .18 .09 .05 .52 .60 .68 .70
EW2 .18 .18 .18 .20 .32 .23 .13 .08 .50 .60 .69 .72
EW3 .22 .24 .31 .38 .23 .13 .05 .02 .55 .62 .64 .60
EW4 .13 .15 .16 .19 .37 .30 .16 .11 .49 .56 .68 .69
EW5 .18 .21 .30 .37 .27 .16 .05 .02 .56 .63 .65 .61
EW6 .28 .29 .36 .43 .18 .10 .03 .01 .55 .61 .61 .56

Note. The expert weight systems are detailed in Appendix D. The proportions in, for example, the row EW3 and the columns with sample
size 200 indicate that, with calibration and validation sample sizes of 200, the proportion that the PO systems that dominate the EW3 system in
the calibration condition continue to dominate in 24% (across the 5,000) repetitions) of the validation samples, are dominated in 13% of the
validation samples, and are incomparable in 62% of the validation samples. PO = Pareto-optimal; FW = fixed weight; EW = expert weight.

12 As an example, consider two systems, with trade-off value for the
validity, AIR Black and AIR Hispanic objectives of (.45, .96, 1.02) for the
first system and trade-off equal to (.50, .1.05, .90) for the second system. In
that case, the two systems have an incomparable trade-off as the validity and
the AIR Black trade-off value of the second system are higher than the
corresponding trade-off value of the first system, and the AIRHispanic trade-
off value of the first system is higher than the corresponding trade-off of the
second system.



the FW system, and from 22/18 to 26/9 and 30/5 on average for the
EW systems. The results also vary somewhat across the EW designs,
with one of the designs (i.e., EW4) performing at least equally well
as the corresponding PO designs for calibration/validation sample
sizes of up to 500.
As a second key result, the proportions in Table 3 show that the

validation trade-off of the alternative systems and the corresponding
PO systems are incomparable in more than half of the cases. Also,
the proportion that the trade-offs are incomparable remains quite
stable across the different sample sizes of the calibration/validation
condition.
Appendix S5 of the online material provides full numerical results

of the shrinkage analysis, whereas Figure 6 shows the average trade-
off of the seven alternative (red triangle points) and the 231
calibration-based PO systems (black dots) when applied to the
calibration and the validation sample, respectively. The upper row
panels in Figure 6 correspond to the smallest calibration/validation
applicant pool size of 100, whereas the bottom panels refer to the

largest sample size condition of 1,000. The results reported in
Appendix S5 of the online material further show that the average
validation trade-off of the alternative selection designs EW3, EW5,
and EW6 are dominated by the average validation trade-off of one or
more PO systems from the smallest calibration/validation sample
size of 100 onwards, whereas the same is true for the designs EW1
and EW2 for a sample size of at least 200.

Figure 7 details the results on the relationship between the
shrinkage in the trade-off components and the weight of the
components in the corresponding convex formulation. The rows of
the figure refer to the three trade-off components, the columns
correspond to the four studied sample sizes and each panel depicts
the relationship between the shrinkage and the average convex
formulation weight for the particular combination of sample size and
trade-off component. The correlation between shrinkage and
average convex formulation weight is added at the top of each panel.

Together, the results confirm the expectation that shrinkage in the
PO trade-off components is inversely related to the calibration/

Figure 6
Calibration and Validation Trade-Off Surface for Sample Size Conditions of 100 and 1,000

Note. The small black dots represent the average (across 5,000 replications) trade-off of the calibration-
based PO system when applied to the calibration sample (left panels) and the validation sample (right
panels). The large red squares show the average trade-off of a FW and six EW systems (see text) in the
calibration and validation sample. Calibration/validation sample size equal to 100 and 1,000 for the upper
and the bottom panels respectively. AIR = adverse impact ratio; PO = Pareto-optimal; FW = fixed weight;
EW = expert weight. See the online article for the color version of this figure.

https://doi.org/10.1037/apl0001145.supp
https://doi.org/10.1037/apl0001145.supp


validation sample size and that the shrinkage in the components of
the PO systems is proportional to the weight of the component in the
corresponding convex formulation. Table 4 provides further insight
in the relation between shrinkage and sample size by detailing the
average (across systems) shrinkage in the trade-off components for
the four sample size conditions for each of the three types of studied
selection designs: the PO, the FW, and the EW designs. For each
combination of trade-off component, sample size and selection
design type, the table also lists the range (across systems) of the
standard deviation (across repetitions) of the validation trade-off
component values. The values for the average shrinkage of the trade-
off components listed in the table show that only PO systems show
meaningful shrinkage, but the shrinkage diminishes substantially for
larger sample size conditions. Also, the amount of shrinkage is
substantially lower for the quality trade-off component as compared
to the AIR B and AIR H trade-off components. Whereas shrinkage
is limited to PO systems, the values for the range of the standard
deviation of the validation trade-off components show that both PO
and alternative selection designs result in variable trade-offs across
repetitions, especially in case of the AIR B and AIR H diversity
trade-off components. However, the variability is more substantial

and more diverse for the PO designs as compared to the alternative
designs because it reflects not only the variability in the calibration
condition across the repetitions as is the case for all designs, but also
because the different PO systems vary in the weight of the trade-off
components in the corresponding convex formulation.

Discussion

For reasons of feasibility, our cross-validation study focused only
on two issues: the shrinkage in the trade-off of PO and alternative
selection designs under cross-validation, and the likelihood that
calibration-based PO systems that dominate an alternative system
continue to do so under cross-validation. The latter issue is no doubt
the key one because it speaks to the real practical value of
multiobjective PO selection system design. As witnessed from the
beginning, the presently used procedure to settle the issue, although
appropriate, is far from sensitive as contrasting the validation trade-
off of different multiobjective selection systems is very often
impossible because the trade-offs are incomparable. To resolve the
issue, the much more demanding approach discussed in De Corte
et al. (2022) should be adopted. Yet, despite the low sensitivity of

Figure 7
Relation Between the Shrinkage in PO Trade-Off Components and the Weight of the Component in the Corresponding Convex
Formulation

Note. The small (black) points refer to the PO systems. PO = Pareto-optimal; AIR = adverse impact ratio.



the present procedure, we obtained results that favor PO selection
system designs over the FW and three of the six EW designs for
sample size conditions of 200 and more. The result is of paramount
importance to organizational practices when developing PO systems
in that it implies using sufficiently large calibration sample size
conditions to obtain the systems. The presently obtained sample size
of 200 may be an overestimate, however, because the comparison
between the PO and the EW disadvantages the PO systems, in that
the EW systems are based on the population values of the predictor/
criterion correlations and effect sizes, whereas the PO systems
rely only on variable calibration sample predictor/criterion data.
However, asking experts for a design proposal based on the
calibration correlation and effect size data in each of the 5,000
different repetitions is impossible so that the present findings only
offer a lower bound approximation on how PO systems perform
under cross-validation as compared to the EW systems.
We also studied the shrinkage issue to conform with some of the

previous related studies that, in following the vast body of research
on the cross-validity of regression-based prediction, focus primarily
on this feature (e.g., Song et al., 2017). As expected, FW and EW
systems show virtually no shrinkage, whereas PO systems are prone
to considerable shrinkage especially when the systems derive from
small sized (i.e., sample size of less than 200) calibration samples.
As the size of the calibration sample increases, shrinkage shrinks,
eventually attaining, for calibration sample sizes of at least 500,
approximately the same low level as obtained for the FW and EW
systems.
Apart from studying shrinkage as related to the size of the

calibration sample size, the present study introduces a novelty in that
it is the first to systematically investigate the relationship between
shrinkage in the PO trade-off components and the weight of the

components in the corresponding convex formulation. The latter
weights express the exact importance of the components in the
system instead of the crude, ordinal approximation of the importance
used in the previous studies (e.g., Song et al., 2017). However, the
improved shrinkage analysis does not invalidate, but rather confirms
the main results of these former studies that the shrinkage of a trade-
off component is proportional to the weight of the component in the
corresponding convex formulation of the PO system. As noted
above, this is a valuable result for the organizational practice of
selection design because it addresses the expected shrinkage pattern
of the trade-off components without the need to conduct cross-
validity analyses. Finally, despite the shrinkage, additional analyses
show that the cross-validated FW and five of the six EW system are
dominated by at least one cross-validated, shrunken PO system.

The above results illustrate that shrinkage analyses provide an
ambiguous answer to the key cross-validity issue on whether
calibration PO systems still outperform otherwise constructed
designs under cross-validation because the computation of PO
systems, similar to regression-based prediction systems, capitalizes
on the idiosyncrasies of the calibration data and therefore
necessarily results in systems showing higher shrinkage than
systems, such as the FW and EW systems, that do not depend on
these idiosyncrasies. When using the shrinkage criterion (i.e., the
amount of shrinkage), PO systems, just as regression-based systems
will always be the loser. Therefore, our present interest for the
shrinkage is, apart from reasons of conformity, not motivated by the
potential of shrinkage results to settle the key cross-validation issue,
but rather by the fact that the shrunken trade-offs (cf. the trade-offs
represented in the right panels of Figure 6) convey more accurate
information than the initial calibration trade-offs on the actual trade-
offs one may expect to obtain in future applications of the systems.

Table 4
Average Shrinkage Trade-Off Components and Range of the Standard Deviations of Validation Trade-Off Components of PO and
Alternative Selection Systems for Varying Applicant Pool Sizes

Sample size

Average shrinkage Standard deviation

Quality AIR B AIR H Quality AIR B AIR H

PO selection systems
100 0.02 0.14 0.19 0.06–0.15 0.39–0.86 0.55–1.04
200 0.01 0.05 0.09 0.04–0.13 0.25–0.54 0.35–0.66
500 0.00 0.02 0.04 0.03–0.11 0.15–0.33 0.22–0.39
1,000 0.00 0.01 0.03 0.02–0.09 0.11–0.24 0.15–0.27

FW selection system
100 0.00 0.02 0.01 0.07 0.45 0.62
200 0.00 0.00 0.00 0.05 0.30 0.41
500 0.00 0.00 −0.01 0.03 0.18 0.25
1,000 0.00 0.00 0.00 0.02 0.12 0.18

EW selection systems
100 0.00 0.01 0.01 0.07–0.07 0.41–0.55 0.61–0.76
200 0.00 0.00 0.00 0.05–0.05 0.28–0.36 0.39–0.50
500 0.00 0.00 −0.01 0.03–0.03 0.16–0.22 0.25–0.31
1,000 0.00 0.00 0.00 0.02–0.02 0.12–0.16 0.17–0.22

Note. Quality refers to the average job performance of the selected candidates, whereas AIR B and AIR H correspond to the AIR trade-off
value for the Black and the Hispanic minority group applicants. Average shrinkage refers to the average (across the systems) of the average
(across the repetitions) shrinkage in the trade-off components. Standard deviation ranges refer to the range (across the systems) of the standard
deviation (across the repetitions) of the validation trade-off component values. Shrinkage refers to the average (across the repetitions)
shrinkage in the trade-off components. Single standard deviations refer to the standard deviation (across the repetitions) of the validation trade-
off component values. AIR = adverse impact ratio; PO = Pareto-optimal; FW = fixed weight; EW = expert weight.



General Discussion

In response to key concerns in selection research and practice to
extend the PO approach to settings with multiple minority groups
the article proposes a new hybrid multiobjective PO approach for
obtaining a representative discrete collection of the selection designs
that are PO with respect to both several quality and multiple
diversity objectives. As a second contribution, we present three two-
dimensional subspace procedures that result in designs that are PO
with respect to all individual objectives as well as with respect to the
aggregated quality objective and an aggregate diversity objective.
As a consequence, the resulting designs are part of the design
collection obtained by the hybrid multiobjective PO approach.
Finally, we introduced a considerably improved procedure for
studying the relationship between the shrinkage under cross-
validation of the PO trade-off components and the exact weight of
the components in the corresponding convex formulation of the
PO system.
Although selection situations involving multiple minority groups

and only a single quality objective are at present of primary concern,
we stress that all our new procedures can also deal with situations
involving both multiple quality objectives and multiple minority
groups as well as with situations where multiple quality goals are
valued but only a single minority group is present. The methods to
address these different situations are identical and the knowledge
that these procedures can be applied in these different situations may
thus also enable selection designers to select candidates with respect
to different quality objectives such as average job performance, peak
job performance, organizational citizenship behavior, etc.
We used several example applications to illustrate the

procedures, emphasizing that they should be used in conjunction
whenever the number of objectives is not too high and that the
stand-alone usage of the subspace procedures is reserved for
situations where the hybrid multiobjective PO method cannot be
applied. If possible, the new hybrid method should always be used
because it is the only procedure that provides a complete and
representative overview of the entire set of systems that result in an
expected quality and diversity trade-off that is PO for all the
individual objectives. It is therefore the only procedure that informs
the designer on the complete gamut of eligible PO selection
designs. We also showed how the subspace procedures may assist
the selection designer when choosing between the different PO
designs. As an example, the third example application illustrated
that the solution systems obtained by the minimum AIR subspace
procedure may be of particular interest in situations where the
designer aims for selection systems with homogeneous selection
rates for the different minority groups. We also presented a simple
procedure to narrow the results of the hybrid and the subspace
procedures to a (considerably) smaller collection of PO systems
that may be of special interest to the practitioner.
We further demonstrated the added value of the new hybrid

multiobjective PO approach over the existing methods for PO selection
design when both are applied to a multiobjective selection situation
involving a single quality and multiple diversity goals. We showed that
repeated usage of the biobjective PO approach, each time focusing on
the quality goal and one of the diversity objectives, at best results in only
a small subset of the selection designs uncovered by the hybrid
multiobjective PO method. Yet, some of the systems obtained by the
biobjective approach may show a quality and a diversity trade-off for

the single minority group that is better than any of the corresponding
two-objective trade-offs obtained by the hybrid multiobjective PO
method. This may raise the concern that systems that are PO for
multiple minority groups could somehow be harmful for one or
the other minority group. The concern is ill-founded, however, because
the occurrence of these better biobjective trade-offs is an artifact
due to the fact that the objectives in the biobjective approach are
operationalized with respect to only the majority and a single minority
group instead of with respect to the full set of groups. When applied to
the multiobjective situation these systems will either belong to the
hybrid method solution set or be dominated by some of these solutions.
If the candidate pool of a selection comprises applicants from multiple
minority groups and the designer values the diversity objective with
respect to each of the minority groups, it follows by definition that none
of the systems derived by the biobjective PO approach can offer a better
expected quality and diversity trade-off for all objectives than the PO
systems obtained by the hybrid method.

As to the key question whether the multiobjective PO systems
retain an advantage over alternative FW and EW systems when
applied in future applicant samples, our cross-validity results
suggest that this is indeed the case when the PO systems are based
on calibration samples of 200 and more. The result is not
particularly clear cut, however. Although PO systems, that
dominate an alternative system in the calibration condition,
continue to do so considerably more frequently in the validation
condition as compared to the reverse (i.e., by a factor ranging
between 1.2 and 40, depending on the type of alternative system
and the calibration sample size), it is also found that the validation
trade-off of the alternative and the corresponding PO systems are
very often incomparable, precluding a decision on which type of
system is best.

Two caveats are in order. First, neither the hybrid nor the
subspace procedures resolve the final choice problem as to the
preferred selection design. Identical to the biobjective PO approach,
the final choice of the preferred PO system remains the discretion of
the selection designer because the choice requires a valuation of the
different objectives that may vary across application contexts and/or
organizations. That is, it is a matter of the values of the organization
whether one is willing to accept a given reduction in quality (e.g.,
1%, 5% or 10%) for a given increase in diversity. If the selection
designer has certain preferences or relevant information to guide the
valuation process a multiattribute decision making (MADM)
method (see, e.g., Rao & Lakshmi, 2021, for an overview of
the MADM methods) can be used to obtain the preferred selection
design. In the absence of such information, methods based on
the concept of the “knee” of the Pareto frontier (Das, 1999) and
an extension of the related measure of the distance between
the PO trade-offs and the hyperplane containing the individual
optima of the different quality and diversity objectives (cf.
Petchrompo et al., 2022) may offer an alternative. Yet, whatever
the chosen selection system, the present hybrid and subspace
procedures guarantee that the finally chosen design is PO and,
hence, cannot be bettered by any other feasible selection system.

Second, designing PO systems formultiobjective selection situations
requires advanced multiobjective optimization methods that are even
more complex than the methods invoked in the biobjective PO
approach. So, the introduction of the present procedures in mainstream
practice poses a challenge. To bridge that gap we make available an
executable program that performs both methods and R scripts to



visualize the results. Some examples and directions on using the
program are also available from http://users.ugent.be/~wdecorte/softwa
re.html.

Conclusion

The article presents methods and tools to assist selection designers
in developing selection systems that are PO with respect to multiple
selection objectives. The methods are particularly useful in situations
where applicants come frommultipleminority groups and the designer
aims for a selection system that optimally balances the valued quality
and the diversity objectives. In contrast to any other approach, the
methods have, especially in conjunction, the benefit that they reveal
the full gamut of possible PO designs the designer can choose from,
and, at the same time point to certain subsets of PO systems that may
be of particular interest in a given selection situation.
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Appendix A

Hybrid Procedure for Deriving the Full PO Front and Corresponding PO Selection Designs

The hybrid procedure for computing the full PO front and the
corresponding PO selection system designs applies two approaches for
obtaining a discrete representation of the PO front: the SBGand the novel
E-NBI approach. The resulting two approximations of the full PO front
are combined in an overall discrete approximation and passed through a
Pareto filter (cf. Messac & Mattson, 2004) to obtain the final solution
front. The SBG approach has the advantage that it provides a high quality
discrete representation of the PO front boundary, but it may fail to cover
the entire extent of the Pareto front (cf.Mueller-Gritschneder et al., 2009,
p. 920). To compensate for this, the hybrid procedure also applies the
new E-NBI approach that combines features from the enhanced
normalized normal constraint (ENNC) (Messac & Mattson, 2004) an
the NBI (Das & Dennis, 1998) methods. Details on both approaches
are discussed next. Here, we note that the hybrid procedure first
transforms the initial multiobjective maximization problem max

x∈X
gðxÞ

to the equivalent standard multiobjective minimization problem

min
x∈X

− gðxÞ = min
x∈X

fðxÞ, where fðxÞ = ð−g1ðxÞ, : : : , − gnðxÞÞ0 and

fg1, : : : , gng = S denotes the total set of n quality and diversity goals.
Also, X represents the set of feasible values for the decision variables
(also referred to as design variables or design parameters) x with the
elements of x corresponding to the cutoff scores applied to the stage
predictor composites and the weights of the predictors in the stage
predictor composites. The restrictions that define the set X typically
refer to bound constraints on (a) the predictor weights used in forming
the stage-specific predictor composites (e.g., only nonnegative
weights) and (b) the intermediate retention and the final selection
rate of the selection. Additional constraints related to the staging of the
predictors, the timing and cost of the selection procedure and so on
may also be included in the set of restrictions that define x.

SBG Approach

The SBG approach sequentially generates a discrete approxima-
tion of the complete PO front boundary in n steps. In the first step,
the approach solves for the minima of the individual objectives
f 1ðxÞ, : : : , f nðxÞ, resulting in the set ff*1, : : : , f*ng of individual
minimum objective performances (IMOPs). The set comprises the
discretized PO fronts, δFf j, with j = 1, : : : , n, of the n single element
combinations from the set S, and each element has a corresponding
compromise weight vector of the objectives, with (1, 0, … , 0)’ the
compromise weight vector corresponding to f*1 and (0, 0, … , 1)’
the corresponding compromise weight vector for f*n. The IMOPs
are also called anchor points, with the i-th anchor point, f*i, equal
to ð f 1ðx*iÞ, : : : , f nðx*iÞÞ0 = ð f *i1 , : : : , f *in Þ

0
with x*i the solution of

minimizing the objective function f iðxÞ. The anchor points define

the utopia point fU = ð f iðx*1Þ, : : : , f nðx*nÞÞ0 , whereas the nadir
point fN equals ð f N1 , : : : , f Nn Þ

0
, where f Ni = max

x∈X
f iðxÞ.

From the second step onwards, the computation of the discretized
PO fronts associated with the two- up to the n-element combinations
of the objectives is based on (a) the discretized PO fronts obtained in
the previous steps, suitably ordered in a matrix denoted as FB, and
(b) the corresponding matrix, WB, of compromise weight vectors,
with columns wB,l having elements wB,l,i and i = 1, : : : , n (see
section 7.3 in Mueller-Gritschneder for additional details on the
matrices FB andWB). In the i-th step, the discretized Pareto front of
each i-element combination of the objectives is generated, using an
appropriate additional set of compromise weight vectors, W, with
the density parameter D determining the cardinality of the set. Each
of the additional compromise vectors wk of W is first mapped to a
corresponding base point bk = FBak , with ak the solution of the
linear program minimize d

0
kak subject to WBak = wk and ak ≥ 0,

where the element dk, l =
P

n
i=1 jwB,l,i − wk,ij. Given the base points

bk for an i-element combination of the objectives and the target
trajectory vector v, with elements vi = max

j=1, : : : ,n
f *ji − f *ii , the PO

objective vectors f*k of the corresponding PO front are obtained by
solving the following nonlinear programming problem: min

t,x
t

subject to 0 ≤ vt + bk − fðxÞ and x ∈ X .

New E-NBI Approach

The new E-NBI approach proceeds in two stages. The first stage
applies the enhanced normal constraint method proposed in Messac
and Mattson (2004) to generate a set of evenly distributed points on
the enlarged utopia plane section that contains the orthogonal
projection of the hypercubeH enclosing the entire feasible space F
equal to the set ffðxÞgwith x ∈ X . The second stage adopts the NBI
method to obtain the corresponding PO objective value vectors.
The first stage starts with the above detailed computation of the
IMOPs. The IMOPs delineate a section of the utopia plane which is
defined as the hyper plane that contains the IMOPs. Next, a series of
benign nonlinear programs is solved to determine the maximum and
minimum value of the αj parameters (denoted as αjl and αju, with
j = 1, : : : , n, the number of objectives) that correspond to the
enlarged utopia plane section that contains the orthogonal projection
of the hypercube H. The generic form of these programs is:
min
f,α

αjðmax
f,α

αjÞ subject to (a)
P

n
i=1 αi = 1, (b) fU ≤ f ≤ fN (c)

−∞ ≤ αi ≤ ∞, ∀i ∈ f1, : : : , ng, and (d) ðf*r − f*kÞ0 ðf − pÞ = 0,

∀k ∈ f1, : : : , ng, k ≠ r; where p =
P

n
i=1 αif*i represents a point

on the enlarged utopia plane section, and r ∈ f1, : : : , ng. By
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varying αj from αjl to αju by even increments (related to the intended
density D of the discretized representation of the PO front), withP

n
i=1 αi = 1, we obtain a set of evenly distributed points pl (with

associated weights αl = ðα1l , : : : , αnl Þ
0
) on the enlarged utopia plane

section. Some of these points cannot lead to a feasible solution, and a
further benign nonlinear program is repeatedly solved (i.e., for each
objective) for each generated pl point to check that the point can
result in a feasible nondominated objective vector solution. The

generic form of the latter program ismin
f

C subject to (a) fU ≤ f ≤ fN ;

(b) ðf*j − f*kÞ0 ðf − plÞ for ∀k ∈ f1, : : : , ng, k ≠ j; and (c)
P

n
i=1ð f i − f *ri Þ −

P
n
i=1 j f i − f *ri j − q, where r ∈ f1, : : : , ng, q is a

small number and C is a constant.
Using the weightsαl of the retained pl points instead of the weights

proposed by Das and Dennis (cf. the β weights in section 5.1 of Das
and Dennis), the second stage of the E-NBI approach applies the NBI
as well as the modified NBI method of Shukla (2007) to compute the
corresponding set of PO objective value vectors. More specifically,
the following nonlinear program is solved for each weight vector
αl∶max

t,x
t subject to (a) x ∈ X , and (b) Φαl − tΦe − fðxÞ + fU = 0,

where the i-th column ofΦ equals f*i − fU in case of the NBI method,
whereas the modified NBI solves the above problem with constraint
(b) nonnegative. To avoid a piling up of the border front solutions only
the solutions that are identical under both methods are retained.

Further Comments

Throughout the new hybrid procedure all nonlinear programs are
solved using a sequential quadratic programming algorithm
(Fletcher, 2010). To assure a manageable computational load,

the program that implements the hybrid approach incorporates
some built-in limitations with respect to the density of the intended
discrete approximation of the PO front. However, the program also
automatically applies the below discussed two-dimensional low
space procedure. In all applications, the number of design variables
must be sufficiently large (i.e., exceed the maximum number of
binding constraints) to guarantee solution of the PO front. As a rule
of thumb, the number of design parameters should not be less than
the number of objectives plus the number of selection stages.
During the development of the procedure, four additional

analytic and two heuristic methods for computing the PO front were
also tested. The analytic methods were the full enhanced normalized
normal constraint method (Messac & Mattson, 2004), the classic
NBI method (Das & Dennis, 1998), the new scalarization technique
of Burachik et al. (2017), and the proposal of Khaledian and
Soleimani-Damaneh (2015). The heuristic methods were the
evolutionary multiobjective (EMOO) method proposed by Deb
et al. (2002) and the extended ant colony optimization algorithm
presented by Schlüter et al. (2009). The tests revealed that none of
the additional methods added significantly to the quality of the
solutions obtained by the present hybrid approach. When judged by
the quality standards for the discrete representation of PO fronts
described by Sayin (2000), the heuristic methods perform rather
poorly in terms of coverage and uniformity as quite a few parts of the
PO front remain often unexplored, whereas others are quite densely
but also unevenly populated. Except for the NBI and, albeit to a lesser
degree, the relaxed NBI methods that both tend to result in a poor
representation of the total PO front, the other three methods score
better in terms of coverage and uniformity, but not to a degree that
warrants inclusion of the methods in the present hybrid approach.

Appendix B

Two-Dimensional Subspace Procedure

The two-dimensional subspace procedures solve for three sets of
selection systems that are PO with respect to an aggregated quality
and an aggregated diversity objective as well as with respect to the
individual quality and diversity objectives. The three sets share the
same aggregated quality objective, equal to the average of the
individual quality objectives, but differ with respect to the nature of
the aggregated diversity objective equal to either the average AIR,
the average selection rate or the minimum AIR across the minority
groups.
The computation of the sets with the average AIR and the average

selection rate as aggregate diversity objective proceeds in three
stages: (a) the calculation of the individual maximum performance
objectives g*q̄ = ðq̄+ , ā− Þ0 and g*ā = ðq̄− , ā

+ Þ0 with q̄ and ā the
aggregate quality and aggregate diversity objective, (b) the
computation of the nonboundary PO selection systems, and (c)
the application of a Pareto filter. The associated nonlinear programs

for the first stage are max
x∈X

q̄ðxÞ and max
x∈X

āðxÞ, respectively, and
max
x∈X

q̄ðxÞ subject to āðxÞ = a, with a a regularly spaced value in the

interval ðā− , ā+ Þ, for the second stage. The Pareto filter in the third
stage eliminates eventual non-PO solutions.
The computation of the PO aggregate objectives q̄ and min

i=1, : : : ,l
ai,

with ai the diversity for group I, also adopts the above detailed three
steps, but the associated nonlinear programs are different. Also, a

fourth step is required to check that the solutions obtained for the
aggregate objectives are also PO with respect to all individual
diversity and quality objectives. Thus, to obtain the maximum for

the min
i=1, : : : ,l

ai aggregate diversity objective the following nonlinear

program is solved: max
t,x∈X

t subject to t ≤ aiðxÞ for ∀i = ð1, : : : , lÞ.
Using a+ to denote the solution value of min

i=1, : : : ,l
ai obtained in the first

step and a− for the value of min
i=1, : : : ,l

ai associated with the solution of

max
x∈X

q̄ðxÞ, the programs solved in the second step have the form

max
x∈X

q̄ðxÞ subject to aiðxÞ ≥ a for ∀i = ð1, : : : , lÞ with a a regularly

spaced value in the interval ða− , a+ Þ. After applying the Pareto filter
a final step checks and eventually updates the retained aggregate
objective solutions, with associated individual objective values
ðak1, : : : , akl , qk1, : : : , qkmÞ and minimum AIR value of ak− for the k-th
solution, to ensure that they are also PO with respect to the individual
quality and diversity objectives. To implement the step the following
nonlinear program is solved repeatedly (i.e., for i = 1, : : : , l) for each

retained solution k: max
x∈X

P
j = 1, : : : , l

j≠i
ðajðxÞ − akj Þ, subject to

(a) aiðxÞ = ak−, (b) ajðxÞ ≥ ak− for ∀j = 1, : : : , j and j ≠ i, and
(c) qjðxÞ ≥ qkj for ∀j = 1, : : : , m. If any of the l programs of a solution
k results in a significant positive value of at least .0001, the step is repeated
starting from the solution design parameter values of the program.

(Appendices continue
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Appendix C

Fungible PO Systems

The design parameter values of a PO selection system solve a
set of nonlinear and eventually linear (equality and inequality)
equations. Using t to denote the vector of trade-off values of a PO
system, gðxÞ for the functions that relate the design parameters x
to the different pursued objectives, and xt for the design parameter
values of a PO solution, some of the nonlinear equations express
that gðxtÞ = t, whereas still other nonlinear and linear (equality and
inequality) equations may correspond to restrictions that define the
set of feasible design systems. With an increasing number of design
parameters (i.e., with an increasing number of available predictors in
the selection stages), the system of equations may count many
different solutions, implying that xt is not uniquely defined.
In the regression context, the set of predictor weights leading to

the same prediction validity is known as the set of fungible weights
(e.g.,Waller, 2008), and the title of the present appendix extends this
usage of the term “fungible” to the context of PO selection system
design by defining a fungible PO system as a system for which

different sets of design parameter values result in the same trade-off
value for the objectives and by referring to these sets of design
parameter values as fungible design parameter value sets. Note that
the issue of fungible PO systems is quite different from issues related
to obtaining only locally optimal instead of globally optimal
solutions when solving for the PO systems. Even globally optimal
and, hence, truly PO designs may be fungible.

Given two selection situations, the first involving two-valued
goals and the second characterized by the same two goals as well as
a third goal, the occurrence of fungible design parameter value sets
for systems that are PO in the first situation implies that not all
different members from the set will also result in a system that is PO
in the second situation. For some members, the value of the third
goal, as implied by the design parameter values, may be less than the
corresponding value of the third goal obtained when solving for the
second situation using a three-objective optimization method to
obtain the PO front.

Appendix D

Details of the EW Alternative Designs

The six EW systems reflect the alternative design proposed by six
experts in the field when asked for a nonstatistical weighting of the
predictors to balance the three valued selection objectives of
example application one: the validity of the selection composite and
the Black and Hispanic AIR. To decide on the weighting, the experts
were given the population values of the predictor/criterion
correlation and effect size values detailed in Table 1. The resulting
weights for the predictors one to five are, for Expert 1, EW1: 1, 1, 5,

4, 2; for Expert 2, EW2: 1, 2, 4, 5, 4; for Expert 3, EW3: 3.5, 2.5, 3,
4, 2; EW4: 1, 1, 3, 5, 1; EW5: 2, 2, 2, 4, 0; and EW6: 5, 1, 3, 4,2.
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