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Abstract. In contrast to the conventional all-or-nothing encryption,
functional encryption (FE) allows partial revelation of encrypted infor-
mation based on the keys associated with different functionalities.
Extending FE with key delegation ability, hierarchical functional encryp-
tion (HFE) enables a secret key holder to delegate a portion of its decryp-
tion ability to others and the delegation can be done hierarchically. All
HFE schemes in the literature are for general functionalities and not
very practical. In this paper, we focus on the functionality of linear
transformations (i.e. matrix product evaluation). We refine the defini-
tion of HFE and further extend the delegation to accept multiple keys.
We also propose a generic HFE construction for linear transformations
with IND-CPA security in the standard model from hash proof systems.
In addition, we give two instantiations from the DDH and DCR assump-
tions which to the best of our knowledge are the first practical concrete
HFE constructions.

Keywords: Hierarchical · Functional encryption · Matrix product ·
Hash proof system

1 Introduction

Encryption can provide confidentiality and privacy for our sensitive information
in a variety of ways. Typically, conventional encryption is in an all-or-nothing
fashion that an entity is able to either access all the encrypted information or
nothing, excepting the message length. In contrast, functional encryption [8]
allows partial revelation of encrypted information based on the keys associated
with different functionalities. Precisely, Alice can encrypt some message m under
Bob’s public key, and send the ciphertext to a public domain where Charlie can
access. Later, Bob issues a secret key for a function f to Charlie using a master
secret key corresponding to Bob’s public key. As a result, Charlie is able to learn
c© Springer International Publishing AG 2017
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f(m) from the ciphertext and the secret key received from Bob but nothing else.
Usually, the function f is a universal function for a function class F indexed by
a function key k from a key space K s.t. F = {fk | k ∈ K}. In this case, Bob
sends a secret key for a function key k to Charlie who learns f(k,m) or simply
fk(m).

When Bob can control the amount of the information that Charlie can reveal,
it leads to a natural question of whether Charlie is able to further let other peo-
ple (e.g. David) obtain a narrower portion of his decryption ability. Hierarchical
functional encryption (HFE) [5,9,11] gives an affirmative answer. In HFE, Char-
lie with a secret key associated with a function f is able to generate a new secret
key associated with a composed function f ′ ◦ f for David without the help of
Bob. Upon receiving the key from Charlie, David can learn f ′(f(m)) but noth-
ing else of the original message m. It is worth noting that the above delegation
process is repeatable that David can delegate a portion of his decryption ability
to other people, making the hierarchy grow deeper and deeper.

In this paper, we focus on HFE for the functionality of matrix product evalua-
tion, which implies the function class of linear transformation via transformation
matrices. More precisely, the functionality is defined as f(A,X) = fA(X) = AX
where the matrix A is the transformation matrix (i.e. the function key) and the
matrix X is the message to be encrypted. It is easy to see that such a function-
ality is a natural generalisation of the functionality of inner product evaluation
[1,2,4,19].

There are a few practical applications of HFE for the functionality of matrix
product evaluation, including but not limited to descriptive statistics. Differing
from the functional encryption for inner product evaluation [1,2,4,19], our pro-
posed HFE allows the evaluation to be done in a levelled manner. We take the
calculation of the weighted sum as an example. Suppose Alice is a researcher
in a consulting firm conducting marketing research on the demand of various
products and the company will sell Alice’s results to different clients. Once the
research results are ready, Alice encrypts the demand level of different areas for
each product (e.g. X =

[
2 1 9 0 6 2 5 6 1

]� for the demand of coffee in different
regions) under her company’s public key. As the manager of Alice’s company,
Bob has the master secret key and decides to sell Alice’s result in different levels
and at different prices. Suppose Charlie wants to buy from Bob some information
he is interested in. He does not want all the details but a overall score for the
demand of coffee, and he is more interested in the areas near his store, i.e. those
areas will have a higher weight. Hence, Charlie buys a secret key of a weighted
matrix (e.g. A =

[
0 1 2 3 4 3 2 1 0

]
) from Bob for a low price so that he can

learn a summary of the market demand (e.g. AX = 65 for coffee).
With HFE, Bob is also able to sell Alice’s result to some regional resellers

(or proxies), e.g. David. Unlike Charlie, David wants the details of some regions
and a summary for other regions. Thus he buys a secret key of a weighted

matrix (e.g. A =
[

I5 05,4

01,5 5 4 1 2

]
) from Bob for a higher price so that he learns

Alice’s partial result (e.g. AX =
[
2 1 9 0 6 38

]� for coffee). Later, David can
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resell what he obtained from Bob to other clients in his region. For example,
another store manager Eve in David’s region is interested in Alice’s result, and
decides to buy some market information for her nearby regions from David. In
the reselling process, David uses his secret key for A to generate a new secret
key for C = BA based on Eve’s demand (e.g. B =

[
20 15 10 5 2 0

]
and thus

C =
[
20 15 10 5 2 0 0 0 0

]
). Once Eve gets the key, she can learn CX from Alice’s

research (e.g. CX = 157 for coffee). On the other hand, David can also resell
his data obtained from Bob to other resellers in different levels and at different
prices.

There are many potential applications of HFE for linear transformation, such
as those related to descriptive statistics as demonstrated above. In this paper,
we introduce and formalise this useful cryptographic primitive and present a
generic construction of it. We also show two practical instantiations of the generic
construction based on some standard assumptions.

1.1 Related Work

The formal study of functional encryption (FE) was initiated by Boneh et al. [8]
with syntax and security model defined for general functionality. In this paper, we
focus on the public-key FE. Other than predicate encryption [15] (a subclass of
FE) and theoretical constructions [14] for arbitrary functionality, Abdalla et al.
[2] focused on the functionality of inner product evaluation that only the inner
product 〈x,y〉 of the encrypted vector y is revealed with a secret key for the vec-
tor x. Furthermore, the authors challenged to construct practical schemes with
such a functionality, and proposed an s-IND-CPA secure generic construction
from any s-IND-CPA public key encryption (PKE) schemes with the properties
of randomness reuse, linear key homomorphism, and linear ciphertext homomor-
phism under shared randomness. Precisely, s-IND-CPA (or selective IND-CPA)
is a weaker notion of the standard indistinguishability under chosen plaintext
attacks (IND-CPA) where the adversary is required to submit the target plain-
texts before receiving the public key from the challenger. Based on [2], Abdalla
et al. [1] enhanced their previous generic construction [2] to the standard IND-
CPA security from any s-IND-CPA PKE schemes with the properties of linear
key homomorphism, linear ciphertext homomorphism under shared randomness,
�-public-key reproducibility, and �-ciphertext reproducibility. The authors also
showed several instantiations from various s-IND-CPA PKE schemes based on
Decisional Diffie-Hellman (DDH) assumption [13], Decisional Composite Resid-
uosity (DCR) assumption [10,17], and Learning With Error (LWE) assumption
[18]. Independent from [1], Agrawal et al. [4] constructed function encryption
schemes for inner products directly from DDH, DCR, and LWE assumptions
instead of a generic construction, and obtained better efficiency. It is worth not-
ing that the proofs of the DDH construction and the DCR construction in [4]
are implicitly built on Hash Proof System (HPS) [12] as the HPS makes the
secret keys simulatable and IND-CPA security achievable. In contrast to [4],
Zhang et al. [19] recently provided another framework of constructing functional
encryption for inner products (FE-IP) explicitly from HPS with the properties of
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key linearity, hash linearity and diversity. Also, the authors further improved the
security from IND-CPA to indistinguishability under adaptive chosen ciphertext
attacks (IND-CCA).

There are several extension works [3,5,6] on functional encryption. As one of
those extensions, Hierarchical functional encryption (HFE) enables delegation
capability, which is initially mentioned in [5], generalising the notions of hier-
archical identity-based encryption [7] and hierarchical predicate encryption [16]
for more expressive access controls. In particular, [5,9,11] define HFE as a nor-
mal FE with an extra delegation algorithm that takes a function key SKf and a
function f ′ and outputs a function key SKf ′◦f . As mentioned above, the newly
generated key SKf ′◦f allows revelation of f ′(f(m)) but nothing else from the
encrypted message m. In the literature, Ananth et al. [5] and Chandran et al.
[11] purposed general purpose HFE constructions direct from indistinguishable
obfuscation (iO) with fixed depth where the delegation process can only be pro-
ceeded for a fixed number of times. As an improvement, Brakerski et al. [9]
proposed a generic transformation from any general purpose FE to a general
purpose HFE with unbounded depth. The transformation requires a private-key
encryption scheme and a puncturable pseudorandom function family, and does
not rely on iO. As far as we know, all the HFE schemes in the literature are
general purposed and not very practical.

1.2 Our Contribution

In this paper, we refine and simplify the definition of hierarchical functional
encryption (HFE) originally from [5,9,11]. We merge the delegation algorithm
SKf ′◦f ← Delegate(SKf , f ′) with the key generation algorithm SKfk

← KeyGen(
MSK, k) to form a new key generation algorithm SKf ′◦f ← KeyGen(SKf , f ′),
making the master secret key equivalent to a secret key of an identity func-
tion MSK

def= SKid. As a result, our definition of HFE consists of four algorithms
instead of five algorithms, and it is compatible with the IND-CPA security model
defined for the normal functional encryption, which is much simpler than the
previously defined model for HFE. In terms of the evolution of encryption, our
definition of HFE is a more natural generalisation of hierarchical identity-based
encryption (HIBE) [7].

As an extension of HFE, we introduce the notion of extended hierarchi-
cal functional encryption (eHFE), allowing delegation from multiple secret
keys. Precisely, in eHFE, the key generation algorithm takes n secret keys
SKf1 , . . . ,SKfn

for functions f1, . . . , fn correspondingly and a delegation func-
tion f ′, and it generates a new secret key SKf for a function f such that
f(x) = f ′(f1(x), . . . , fn(x)).

We derive the definition of hierarchical function encryption for linear trans-
formation (HFE-LT) from HFE (similarly, eHFE-LT from eHFE) for the func-
tionality of matrix product evaluation. Different from the previous general results
which are of theoretical interest, we propose a generic and practical construction
of HFE-LT. It is worth noting that our construction has unbounded depth in
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delegation (Table 1). Since the HFE-LT scheme cannot be trivially constructed
from function encryption for inner products, our generic construction is explicitly
built from hash proof systems (HPS) with key linearity, hash linearity and diver-
sity, and achieves IND-CPA security in the standard model. As an extension, we
also adapt our generic HFE-LT construction to a generic eHFE-LT construction.
We provide two practical HFE-LT instantiations based on the Decisional Diffie-
Hellman (DDH) assumption and the Decisional Composite Residuosity (DCR)
assumption. In the DDH instantiation, the decryption space is limited to be of
polynomial size so that the decryption can be done in polynomial time. How-
ever, in the DCR instantiation, there is no such limitation. In addition, both
instantiations can be extended to the eHFE-LT setting.

Table 1. Comparison of different schemes

Scheme Functionality Assumption Hierarchical Depth Multi-key

[5] Generic iO Yes Constant No

[11] Generic iO + HIBE Yes Fixed No

[9] Generic Generic FE Yes Unbounded No

[1] Inner product s-IND-CPA PKE:
DDH/DCR/LWE

No × No

[4] Inner product DDH/DCR/LWE No × No

Our HFE-LT Matrix product Diverse HPS:
DDH/DCR

Yes Unbounded No

Our eHFE-LT Matrix product Diverse HPS Yes Unbounded Yes

1.3 Paper Organisation

The rest of this paper is organised as follows. It is strongly suggested to read the
preliminaries in Sect. 2, especially the notations used in this paper. In Sect. 3,
we review the subset membership problems, hash proof system, and functional
encryption. As our main contribution, we refine HFE and define HFE-LT in
Sect. 3.1. The generic construction from HPS is proposed in Sect. 3.2 and follows
the security proof in Sect. 3.3. In Sect. 3.4, we adapt HFE to eHFE in terms of
the definition, the generic construction, and the security proof. After that, we
propose our concrete HFE-LT constructions instantiated from DDH and DCR
assumptions in Sect. 4. Finally, the conclusion is addressed in Sect. 5.

2 Preliminaries

2.1 Notations

Let ∈R denote random sampling that x ∈R X means that x is uniformly and
randomly chosen from a set or distribution X. Let ◦ denote the function compo-
sition that (g◦f)(x) = g(f(x)), and id denote the identity function that id(x) = x
and f ◦ id = f . Let �x� denote the floor function of a real number x.
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In the group computation, the function sca denotes the inverse operation to
the scalar multiplication that a = scax(b) ⇐⇒ b = ax where X is an additive
group generated by x, a ∈ Z|X|, and b ∈ X. It is an analogue of the logarithm
operation in a multiplicative group.

In the matrix computation, let Xm×n be a matrix of size m × n, and In be
the identity matrix of size n. If the size is clear in the context, X and I are used
for short with size omitted. Let � denote matrix transpose. In addition to the
standard matrix addition and multiplication operations, we define the following
notations for better representations. Let f be a function that takes an element
from X with other fixed parameters as input, X ∈ Xm×n be a matrix, and def=
denote equal by definition. We define that

X def=

⎡

⎢
⎣

X1,1 · · · X1,n

...
. . .

...
Xm,1 · · · Xm,n

⎤

⎥
⎦ , f(X, . . . ) def=

⎡

⎢
⎣

f(X1,1, . . . ) · · · f(X1,n, . . . )
...

. . .
...

f(Xm,1, . . . ) · · · f(Xm,n, . . . )

⎤

⎥
⎦ .

If f is an additive homomorphism that f(a) + f(b) = f(a + b), we have f(A) +
f(B) = f(A + B) where A and B are two matrices with the same size. Besides
that, we can have more complex scalar multiplication as

Af(B) =

⎡

⎢
⎣

A1,1 · · · A1,n

...
. . .

...
Am,1 · · · Am,n

⎤

⎥
⎦

⎡

⎢
⎣

f(B1,1) · · · f(B1,l)
...

. . .
...

f(Bn,1) · · · f(Bn,l)

⎤

⎥
⎦

=

⎡

⎢
⎣

∑n
i=1 A1,if(Bi,1) · · · ∑n

i=1 A1,if(Bi,l)
...

. . .
...∑n

i=1 Am,if(Bi,1) · · · ∑n
i=1 Am,if(Bi,l))

⎤

⎥
⎦

=

⎡

⎢
⎣

f(
∑n

i=1 A1,iBi,1) · · · f(
∑n

i=1 A1,iBi,l)
...

. . .
...

f(
∑n

i=1 Am,iBi,1) · · · f(
∑n

i=1 Am,iBi,l))

⎤

⎥
⎦ = f(AB)

where A is an m × n matrix and B is an n × l matrix. Similarly, we have
f(A)B = f(AB). In addition, the symbol (A | B) denotes an argumented
matrix of two matrices A and B with the same row size. It can be generalised
as (A1 | · · · | An) def=((· · · ((A1 | A2) | A3) | · · · ) | An).

2.2 Subset Membership Problems

Subset Membership Problem (SMP) is a problem class introduced by Cramer
and Shoup [12]. Many standard problems can be classified to SMP, including
DDH and DCR problems.

Definition 1 (Subset Membership Problem). Let L ⊂ X,W be three non-
empty sets, and R = {(x,w) | x ∈ L} ⊂ X × W be a binary relation where w
is a witness of a word x in the language L. Let Λ = (X,L,W,R) be a problem
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instance, x ∈R L, and x′ ∈R X \ L. Given two probability distributions DL =
{(Λ, x)} and DX\L = {(Λ, x′)}, there is an algorithm A that distinguishes DL

and DX\L with advantage:

AdvSMP
A =

∣
∣Pr[1 ← A(D ∈R DL)] − Pr[1 ← A(D ∈R DX\L)]

∣
∣

An SMP is computational hard if and only if the advantage AdvSMP
A is negligible

for any probabilistic polynomial time (PPT) algorithm A.

2.3 Hash Proof System

In this subsection, the hash proof system introduced by Cramer and Shoup [12]
and extended by Zhang et al. [19] is reviewed.

Definition 2 (Hash Proof System). A hash proof system (HPS) associated
with subset membership problems consists of the following five polynomial time
algorithms:

– param ← Setup(1λ): The randomised system setup algorithm takes a secu-
rity parameter 1λ as input, and specifies an SMP instance Λ = (X,L,W,R)
where the hash domain is X. The algorithm further specifies a secret hash key
space K, a public hash key space S, and a hash codomain Π. After that, the
algorithm packs all above descriptions and publishes a system-wide parameter
param = (X,L,W,R,K, S,Π).

– SK ← SKGen(param): The randomised secret hash key generation algorithm
takes a system parameter param, and generates a random hash key SK ∈R K.

– PK ← PKGen(SK): The deterministic public hash key generation algorithm
takes a secret hash key SK ∈ K as input, and maps it to a public hash key
PK ∈ S.

– π ← Hash(SK, x): The deterministic private evaluation algorithm takes a
secret hash key SK ∈ K and a word x ∈ X as inputs, and outputs a hash
value π ∈ Π of x.

– π ← PHash(PK, x, w): The deterministic public evaluation algorithm takes
a public hash key PK ∈ S and a word x in the language L along with a
corresponding witness w ∈ W such that (x,w) ∈ R, and output a hash value
π ∈ Π of x.

A HPS is required to be correct that the private evaluation algorithm Hash and
the public evaluation algorithm PHash are equivalent when x ∈ L.

Definition 3 (Correctness). A HPS is correct if

∀param ← Setup(1λ), ∀SK ← SKGen(param), PK ← PKGen(SK),
∀(x,w) ∈ R, Hash(SK, x) = PHash(PK, x, w).

The original definition of HPS from [12] is not sufficient for our schemes, and
the following extended properties introduced by [19] are required.



30 S. Zhang et al.

Definition 4 (Key Linearity). A HPS is linear key homomorphic if K and
S are additive abelian groups and

∀a, b ∈ K, PKGen(a) + PKGen(b) = PKGen(a + b) ∈ S.

Definition 5 (Hash Linearity). A HPS is linear hash homomorphic if K and
Π are additive abelian groups and

∀a, b ∈ K, ∀x ∈ X, Hash(a, x) + Hash(b, x) = Hash(a + b, x) ∈ Π.

Definition 6 (Diversity). A HPS is diverse if

∃π ∈ Π \ {0}, ∀x ∈ X \ L, ∃SK ∈ K, PKGen(SK) = 0 ∧ Hash(SK, x) = π

We call such a element π as an element derived from the diversity.

2.4 Functional Encryption

The definition and the security model of functional encryption by Boneh et al.
[8] are reviewed as follows.

Definition 7 (Functional Encryption). Let f : K × X → Y be a universal
function for a function class F = {fk | k ∈ K} indexed by a function key
space K, mapping the message space X to the revelation space Y . A functional
encryption (FE) for a function class F consists of the following four polynomial
time algorithms:

– (PK,MSK) ← Setup(1λ): The randomised system setup algorithm takes a
security parameter 1λ as input, and generates system-wide parameters and a
random pair of a master secret key MSK and a public key PK.

– SK ← KeyGen(MSK, k): The (probably) randomised secret key generation
algorithm takes a master secret key MSK and a function key k ∈ K as inputs,
and computes a secret key SK for the function fk.

– C ← Encrypt(PK, x): The randomised encryption algorithm takes a public
key PK and a message x ∈ X as inputs, and generates a ciphertext C of the
message x.

– y ← Decrypt(SK, C): The (probably) deterministic decryption algorithm takes
a secret key SK for a function fk and a ciphertext C of a message x as inputs.
The algorithm reveals y = fk(x) ∈ Y from the ciphertext C, and outputs it.

Indistinguishability-based security is considered in this paper. Precisely, we con-
sider the Indistinguishability under Chosen Plaintext Attacks (IND-CPA secu-
rity) formulated by Boneh et al. [8]. In the IND-CPA game formally defined as
follows, an adaptive adversary A tries to distinguish a target ciphertext from
two messages x0 and x1 chosen by A.

Setup phase. The challenger S runs the system setup algorithm Setup(1λ) to
generate a key pair (MSK,PK), and passes the public key PK to A.
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Pre-challenge phase. A can adaptively query the key generation oracle
OKeyGen with a function key k ∈ K to obtain a secret key SK for the
function fk. At the same time, S stores the queried function key k in
the list K. The restriction is that A can only query the function key k
such that fk(x0) = fk(x1) where x0 and x1 are the messages chosen by
A in the challenge phase. Otherwise, winning the game is trivial since
Decrypt(SK, C) �= fk(x1−b).

Challenge phase. At some point, A outputs two messages x0 and x1. S
randomly picks b ∈R {0, 1}, and generates a target ciphertext C ←
Encrypt(PK, xb). After that, S passes the target ciphertext C to A.

Post-challenge phase. A can further query the oracle OKeyGen as in the pre-
challenge phase with the same restriction.

Guessing phase. Eventually, A outputs an educated guess b′. If b = b′, A wins.

The advantage of the adversary A winning the IND-CPA game is

AdvIND-CPA
A =

∣
∣
∣
∣Pr [b = b′ | ∀k ∈ K, fk(x0) = fk(x1)] − 1

2

∣
∣
∣
∣

Definition 8 (IND-CPA Security). An FE scheme is Indistinguishable
under Chosen Plaintext Attacks (IND-CPA) if the advantage AdvIND-CPA

A for
all adversary A winning the IND-CPA game in the polynomial time is a negli-
gible function.

3 Hierarchical Functional Encryption for Linear
Transformations

3.1 Definition

In [5,9,11], the hierarchical functional encryption (HFE) is defined as a normal
functional encryption with an extra delegation algorithm Delegate. The (prob-
ably) randomised algorithm SKf ′◦f ← Delegate(SKf , f ′) takes a secret key SKf

for a function f : X → Z ⊂ Y , and an another function f ′ : Z → Z ′ ⊂ Y as
inputs where Z,Z ′ are the images of the functions f, f ′ correspondingly. It gener-
ates a new secret key SKf ′◦f for the composed function f ′ ◦f : X → Z ′ ⊂ Y . By
observing the key generation algorithm SKfk

← KeyGen(MSK, k) and the delega-
tion algorithm SKf ′◦f ← Delegate(SKf , f ′), we find that the algorithm KeyGen
is actually a special case of the algorithm Delegate when the master secret key
MSK is considered as a secret key SKid of an identity function. More precisely, we
have KeyGen(MSK, k) def= Delegate(SKid, fk) → SKfk◦id = SKfk

with MSK
def= SKid.

Therefore, the duplicated algorithm can be removed, and it becomes a more nat-
ural generalisation of hierarchical identity based encryption (HIBE) [7] as there
is no Delegate algorithm in HIBE. The refined HFE is formalised as follows.
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Definition 9 (Hierarchical Functional Encryption). A hierarchical func-
tional encryption (HFE) for a function class F = {fk : X → Y | k ∈ K} consists
of the following four polynomial time algorithms:

(PK,MSK) ← Setup(1λ), SKf ′◦f ← KeyGen(SKf , f ′),
C ← Encrypt(PK, x), y = f(x) ← Decrypt(SKf , C).

While other three algorithms work as in Definition 7, the refined key generation
algorithm KeyGen takes a secret key for function f ∈ F : X → Z ⊂ Y , and a
function f ′ : Z → Z ′ ⊂ Y as inputs such that fk = f ′ ◦ f ∈ F for some k ∈ K.
The algorithm KeyGen outputs a secret key for the function fk. The master secret
key is defined as a secret key for the identity function (MSK

def= SKid) and thus it
can be directly used in the decryption algorithm Decrypt.

Remark 1. The secret key holders should be careful in the secret key genera-
tion. If the delegation function f ′ is invertible, the newly generated secret key
SKf ′◦f ← KeyGen(SKf , f ′) is equivalent to the original secret key SKf since

KeyGen(SKf ′◦f , f ′−1) = SKf ′−1◦f ′◦f = SKid◦f = SKf .

As the above operations can be done in the ideal world, it is not considered as
a security issue in the real world, even with a secure scheme.

Since the syntax is similar to the normal FE, the definition of the IND-CPA
security (Definition 8) can be re-used for HFE. When the adversary A query the
key generation oracle OKeyGen for functions f and f ′ to obtain a new secret key
SKf ′◦f in HFE, it can be resolved by querying the original oracle OKeyGen with
a function key k since fk = f ′ ◦ f ∈ F for some k ∈ K. Using the security model
of FE for HFE, we implicitly require that the secret key and the delegated key
have the same distribution.

With the refined definition of HFE, we derive the syntax of our HFE for
Linear Transformations.

Definition 10 (Hierarchical Functional Encryption for Linear Trans-
formations). Let R be a ring, K = {A | A ∈ R

i×δ, i ∈ Z
+}, X = R

δ×γ ,
and Y = {Y | Y ∈ R

i×γ , i ∈ Z
+}. The universal function f : K × X → Y

is defined as fA : X �→ AX. In short, the transformation function fA is sim-
ply denoted by the internal transformation matrix A. A hierarchical functional
encryption for linear transformation (HFE-LT) is an HFE for a function class
F = {fk : X → Y | k ∈ K}, consisting of the following four polynomial time
algorithms:

(PK,MSK) ← Setup(1λ, 1δ, 1γ), SKBA ← KeyGen(SKA,B),
C ← Encrypt(PK,X), Y = AX ← Decrypt(SKA, C).

It is clear that the system setup algorithm Setup specifies the dimensions of K,
X, and Y by the extra inputs δ and γ. Again, the master secret key is a secret
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key for the identity matrix that MSK
def= SKI. Since the properties of ring are

not fully used in matrix multiplication, the above definition can be extended
to any algebraic structure (even different structures for K, X, and Y ) as long
as (BA)X = B(AX) with all operations valid. In addition to the key genera-
tion algorithm KeyGen, if the delegation matrix B is invertible, the newly gener-
ated key is equivalent to the original key since KeyGen(KeyGen(SKA,B),B−1) =
SKB−1BA = SKA.

3.2 Construction

In this subsection, we propose a generic construction of HFE-LT from HPS. It
is strongly recommended that the readers should read Sect. 2.1 in advance since
our construction is based on the notations defined in Sect. 2.1.

Let Ξ = (Setup,SKGen,PKGen,Hash,PHash) be a diverse HPS associated
with an SMP instance Λ = (X,L,W,R) and further spaces (K,S,Π). The HPS
Ξ is required to have hash linearity for completeness and key linearity for sound-
ness. Let ξ ∈ Π \ {0} be an element derived from the diversity of the HPS Ξ,
and n be the order of the group Π ′ = {aξ | a ∈ Z}. Our hierarchical functional
encryption for linear transformation with R = Zn works as follows1.

– (PK,MSK) ← Setup(1λ, 1δ, 1γ): Given a security parameter 1λ and the size
δ × γ of message matrices, the system setup algorithm generates a system-
wide parameter param ← Ξ.Setup(1λ). Then the algorithm generates a key
matrix KI of size δ × γ as the core part of the secret key of the identity
matrix Iδ ∈ Z

δ×δ
n by invoking Ξ.SKGen(param) for δ×γ times. After that, the

algorithm generates the corresponding public keys P = Ξ.PKGen(KI). The
full secret key for the identity matrix is packed as SKI = (Iδ,KI). Finally,
the algorithm publishes P as the public key PK, and keeps SKI as the master
secret key MSK.

param ← Ξ.Setup(1λ), ki,j ← Ξ.SKGen(param),

KI =

⎡

⎢
⎣

k1,1 · · · k1,γ

...
. . .

...
kδ,1 · · · kδ,γ

⎤

⎥
⎦ ∈ Kδ×γ , P = Ξ.PKGen(KI), SKI = (Iδ,KI).

return (PK,MSK) = (P,SKI).
– SKBA ← KeyGen(SKA,B): In the key generation algorithm, the algorithm

recognises the secret key SKA for the matrix A. If the secret key is not
in the form of SKA = (A,KA) ∈ Z

m×δ
n × Km×γ for some m ∈ Z

+, the
algorithm returns ⊥ for failure indication. The algorithm also checks the
validity of the parameter B ∈ Z

m′×m
n for some m′ ∈ Z

+. If all parameters
are valid and compatible, the algorithm computes and returns a secret key

1 From the key linearity and hash linearity, we have that |K| ≥ |Π| ≥ |Π ′| = n, and
n could be maximised by summing two or more elements derived from the diversity
if those elements generate different groups.
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SKBA = (BA,BKA) ∈ Z
m′×δ
n × Km′×γ for the matrix BA. Remark that

BKA = BAKI.
– C ← Encrypt(PK,X): To encrypt a matrix X ∈ Z

δ×γ
n , the algorithm randomly

samples a word x in the language L with a witness w such that (x,w) ∈ R.
After that, the algorithm computes the core part of the ciphertext C =
Xξ + Ξ.PHash(P, x, w) ∈ Πδ×γ . The full ciphertext is C = (x,C).

(x,w) ∈R R, C = Xξ + Ξ.PHash(P, x, w).

return C = (x,C).
– Y ← Decrypt(SKA, C): To decrypt a ciphertext C = (x,C) ∈ X × Πδ×γ

with a secret key SKA = (A,KA) ∈ Z
m×δ
n × Km×γ , the algorithm computes

an intermediate value D = AC − Ξ.Hash(KA, x) ∈ Πm×γ . After that, the
algorithm find the scalar of D with the base ξ as the final decryption result
Y = scaξ(D) ∈ Z

m×γ
n .

D = AC − Ξ.Hash(KA, x).

return Y = scaξ(D).

We show that our construction is complete by verifying the decryption algorithm.
Starting from the intermediate value D, we have

D = AC − Ξ.Hash(KA, x) = A(Xξ + Ξ.PHash(P, x, w)) − Ξ.Hash(KA, x)
= AXξ + AΞ.PHash(P, x, w) − Ξ.Hash(KA, x)
= AXξ + AΞ.Hash(KI, x) − Ξ.Hash(KA, x)
= AXξ + Ξ.Hash(AKI, x) − Ξ.Hash(AKI, x) = AXξ.

Then the completeness of our construction is verified by

Y = scaξ(D) = scaξ(AXξ) = AX.

3.3 Security Proof

Theorem 1. The HFE-LT construction in Sect. 3.2 is IND-CPA secure if the
SMP instance Λ associated with the underlying diverse HPS Ξ is hard.

Proof. In this proof, we require the underlying HPS Ξ to have diversity instead
of smoothness introduced by Cramer and Shoup [12], which is used to prove
the security of an IND-CPA public key encryption scheme. The reason is that
the smoothness only prevents the information leakage of the hashing value from
the public hash keys but not from the secret hash keys. In other words, the
adversary may be able to distinguish ciphertexts via secret keys obtained from
the key generation algorithm KeyGen of the HFE-LT scheme. If we follow the
proof in [12] that the hash values are replaced with random values, the adversary
can recognise this game modification with overwhelming probability by running
the decryption algorithm since the adversary finds that Decrypt(SKA, C) �= AX0

and Decrypt(SKA, C) �= AX1 where C is the challenge ciphertext of X0 or X1.
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To prove the theorem, we show that an simulator S can be constructed to
solve the SMP instance Λ = (X,L,W,R) in polynomial time with non-negligible
probability if an adversary A can win the IND-CPA game with non-negligible
probability.

Let (Λ, x∗) be the actual subset membership problem challenged to the sim-
ulator S. The objective of the simulator S is to distinguish whether x∗ ∈ L or
x∗ ∈ X \L with x∗ sampled from L or X \L with equal probability. Following the
IND-CPA game (defined in Sect. 2.4), the simulator S runs the system setup algo-
rithm Setup to generate a key pair (PK,MSK) = (P,SKI), and passes the public
key PK to the adversary A in the setup phase. During the pre-challenge phase,
the simulator S invokes the key generation algorithm KeyGen with the master
secret key MSK = SKI to answer the key generation oracle OKeyGen directly. The
restriction for the adversary A is that A can only query the secret keys for A
such that AX0 = AX1 where X0 and X1 are the target message matrices output
by A in the challenge phase.

At some point, the adversary A outputs two target message matrices X0 and
X1, changing the game state to the challenge phase. The simulator S tosses a
random coin b ∈R {0, 1}, and computes the target ciphertext C∗ = (x∗,C∗)
different to the encryption algorithm Encrypt where

C∗ = Xbξ + Ξ.Hash(KI, x
∗).

After that, the target ciphertext C∗ is sent to the adversary A. In the post-
challenge phase, the adversary A is allowed to access the oracle OKeyGen as before
with the same restriction. Eventually, the adversary A outputs a bit b′ in the
guessing phase. If b = b′, the adversary A wins, and the simulator S outputs 1.
Otherwise, the simulator S outputs 0 instead. Finally, the simulator S halts and
completes the simulation.

After the simulation, we analyse the probabilities in the style of [12,19]. Let
EL be the event that S outputs 1 conditioned on x∗ ∈ L, and EX\L be the event
that S outputs 1 conditioned on x∗ ∈ X \ L. The advantage AdvSMP

S of solving
the subset membership problem is

AdvSMP
S ≥ |Pr[1 ← S | x∗ ∈ L] − Pr[1 ← S | x∗ ∈ X \ L]| =

∣
∣Pr[EL] − Pr[EX\L]

∣
∣

(1)
For the case of x∗ ∈ L, the simulation is perfect since the algorithms Ξ.Hash

and Ξ.PHash are equivalent. From the IND-CPA game, we have

AdvIND-CPA
A =

∣
∣
∣
∣Pr[EL] − 1

2

∣
∣
∣
∣ . (2)

For the case of x∗ ∈ X \ L, we show that the hidden bit b is independent
from the adversary A’s view that

Pr[EX\L] =
1
2

(3)

Since the element ξ is an element derived from the the diversity of the HPS Ξ,
we have that there exists a k ∈ K such that PKGen(k) = 0 and Ξ.Hash(k, x∗) = ξ
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where k is not required to be efficiently computable. Let Γ = (Xb − X1−b) · k ∈
Kδ×γ . We have

Ξ.Hash(Γ, x∗) = Ξ.Hash((Xb − X1−b) · k, x∗) = (Xb − X1−b) · Ξ.Hash(k, x∗)
= (Xb − X1−b)ξ = Xbξ − X1−bξ.

Based on Ξ.Hash(Γ, x∗) = Xbξ −X1−bξ, we argue that the target ciphertext C∗

is not only a valid ciphertext of the message Xb under the key KI but also a valid
ciphertext of the message X1−b under the key K∗

I = KI + Γ. More precisely, we
have

C∗ = X1−bξ + Ξ.Hash(KI + Γ, x∗) = X1−bξ + Ξ.Hash(KI, x
∗) + Ξ.Hash(Γ, x∗)

= X1−bξ + Ξ.Hash(KI, x
∗) + Xbξ − X1−bξ = Xbξ + Ξ.Hash(KI, x

∗).

Furthermore, we show that it is impossible for the adversary A to distinguish
KI and K∗

I from the public key P or the secret keys KA obtained from the key
generation oracle OKeyGen. Since Ξ.PKGen(k) = 0 from the diversity, the keys
KI and K∗

I have the same public key

P = Ξ.PKGen(KI + Γ) = Ξ.PKGen(KI) + Ξ.PKGen(Γ)
= Ξ.PKGen(KI) + Ξ.PKGen((Xb − X1−b) · k)
= Ξ.PKGen(KI) + (Xb − X1−b) · Ξ.PKGen(k) = Ξ.PKGen(KI).

Since the adversary A is restricted that A can only query the secret keys for A
such that AX0 = AX1 ⇐⇒ A(X0 − X1) = 0, the keys KI and K∗

I generate
the same secret key KA for such a matrix A for the adversary A as

KA = A(KI + Γ) = AKI + AΓ = AKI + A(Xb − X1−b) · k = AKI.

Hence, the hidden bit b is independent from the adversary A’s view.
By combining Eqs. (1), (2) and (3), we have the following inequality and

complete the proof.

AdvIND-CPA
A ≤ AdvSMP

S .

3.4 Extensions

In the Definition 9, the delegation is performed by one party with a secret key
SKf and a delegation function f ′ so that the delegated party can learn f ′(f(x)).
In order not to be restricted to nested hierarchy, the HFE can be extended to
allow delegation performed by multiple parties. Precisely, n secret key holders
with SKf1 , . . . ,SKfn

can work together to generate a secret key SKf∗ for a func-
tion f∗ defined as f∗(x) = f ′ (f1(x), . . . , fn(x)) where f ′ is a delegation function,
which takes n inputs. The extended HFE is formalised as follows.
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Definition 11 (Extended Hierarchical Functional Encryption). An
extended hierarchical functional encryption (eHFE) for a function class F =
{fk : X → Y | k ∈ K} consists of the following four polynomial time algorithms:

(PK,MSK) ← Setup(1λ), SKfk
← KeyGen(SKfk1

, . . . SKfkn
, f ′),

C ← Encrypt(PK, x), y = f(x) ← Decrypt(SKf , C).

While all other components work as in Definition 9, the extended key gen-
eration algorithm KeyGen takes n secret keys for function fki

∈ F : X →
Zi ⊂ Y , and a function f ′ : Z1 × · · · × Zn → Z ′ ⊂ Y as inputs such that
fk(x) def= f ′(fk1(x), . . . , fk2(x)) and fk ∈ F for some k ∈ K. The algorithm
KeyGen outputs a secret key for the function fk. It is worth noting the num-
ber n of parameters of the algorithm KeyGen is not fixed by the system setup
algorithm Setup.

Similar to HFE, the definition of the IND-CPA security (Definition 8) can also
be applied to eHFE with the same method to resolve the queries to the key
generation oracle OKeyGen. Based on Definitions 10 and 11, we derive the syntax
of our extended HFE-LT.

Definition 12 (Extended HFE-LT). Let R be a ring, K = {A | A ∈
R

i×δ, i ∈ Z
+}, X = R

δ×γ , and Y = {Y | Y ∈ R
i×γ , i ∈ Z

+}. The universal
function f : K × X → Y is defined as fA : X �→ AX. An extended hierarchical
functional encryption for linear transformation (eHFE-LT) is an eHFE for a
function class F = {fk : X → Y | k ∈ K}, consisting of the following four
polynomial time algorithms:

(PK,MSK) ← Setup(1λ, 1δ, 1γ), SKB ← KeyGen(SKA1 , . . . ,SKAn
,T),

C ← Encrypt(PK,X), Y = AX ← Decrypt(SKA, C).

In the key generation algorithm KeyGen, the resulted transformation matrix is
calculated as

B = T
(
A�

1

∣
∣ · · · ∣

∣A�
n

)�
.

The construction of our eHFE-LT scheme is exactly the same as the HFE-LT
scheme in Sect. 3.2 except the key generation algorithm. The idea of constructing
the new key generation algorithm is simple due to the special structure of the
secret keys that we combine the keys SKA1 , . . . ,SKA�

to be a new key SKA where
A =

(
A�

1

∣
∣ · · · ∣

∣A�
�

)�, and then runs the original key generation algorithm
KeyGen(SKA,T) to obtain the final key SKB. More precisely, we have

– SKB ← KeyGen(SKA1 , . . . ,SKA�
,T): Given � secret keys for Ai ∈ Z

mi×δ
n , the

algorithm checks the validity of T ∈ Z
m′×∑�

i=1 mi
n for some m′ ∈ Z

+. Then it
computes

B = T
(
A�

1

∣
∣ · · · ∣

∣A�
�

)�
, KB = T

(
K�

A1

∣
∣ · · · ∣

∣K�
A�

)�
.

return SKB = (B,KB) ∈ Z
m′×δ
n × Km′×γ .
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Theorem 2. The proposed eHFE-LT construction in Sect. 3.4 is IND-CPA
secure if the SMP instance Λ associated with the underlying diverse HPS Ξ
is hard.

Proof. The proof follows the same lines as in Sect. 3.3 and is omitted.

4 Instantiations

In this section, we instantiate our generic HFE-LT construction from the Deci-
sional Diffie-Hellman (DDH) problem and from the Decisional Composite Resid-
uosity (DCR) problem. Remark that the HFE-LT instantiations can be easily
converted to eHFE-LT instantiations as discussed in Sect. 3.4. For better read-
ability, we use multiplication in this section instead of addition in the previous
sections for the group operations related to HPS. Therefore, all scalar multipli-
cations on groups related to HPS are replaced by exponentiations.

4.1 HFE-LT from DDH

Definition 13 (Decisional Diffie-Hellman problem). Let G be a cyclic
multiplicative group of prime order p where |p| = λ and λ is the security
parameter. Let a, b ∈R Zp, g, Z ∈R G. Given two probability distributions
DDDH = {(g, ga, gb, gab)} and DR = {(g, ga, gb, Z)}, there is an algorithm A
that distinguishes DDDH and DR with advantage:

AdvDDH
A = |Pr[1 ← A(D ∈R DDDH)] − Pr[1 ← A(D ∈R DR \ DDDH)]|

Let g1, g2, x1, x2 ∈R D, w ∈R Zp. The above distributions can be represented
as DDDH = {(g1, g2, gw

1 , gw
2 )} and DR = {g1, g2, x1, x2}. Thus fixed on g1, g2,

the DDH problem is an SMP problem where X = G
2, L = {gw

1 , gw
2 } ⊂ X, and

W = Zp. The DDH problem is assumed hard that AdvDDH
A is negligible. From

[12], we review the corresponding HPS construction as follows with K = Z
2
p,

S = Π = G.

– param ← Setup(1λ): g1, g2 ∈R G, return param = (G, g1, g2).
– SK ← SKGen(param): return SK = (k1, k2) ∈R Z

2
p.

– PK ← PKGen(SK): return PK = gk1
1 gk2

2 .
– π ← Hash(SK, x): (x1, x2) ← x, return π = xk1

1 xk2
2 .

– π ← PHash(PK, x, w): return π = PKw.

From [19], the above HPS construction has key linearity, hash linearity, and
diversity with g1 as a derived element2.

2 All elements in G are elements derived from the diversity.
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Let ξ = g1. Our HFE-LT instantiation of R = Zp works as follows.

– (PK,MSK) ← Setup(1λ, 1δ, 1γ):

g1, g2 ∈ G, KI =

⎡

⎢
⎣

(k1,1,1, k1,1,2) · · · (k1,γ,1, k1,γ,2)
...

. . .
...

(kδ,1,1, kδ,1,2) · · · (kδ,γ,1, kδ,γ,2)

⎤

⎥
⎦ ∈R (Z2

p)
δ×γ ,

P =

⎡

⎢
⎣

P1,1 · · · P1,γ

...
. . .

...
Pδ,1 · · · Pδ,γ

⎤

⎥
⎦ s.t. Pi,j = g

ki,j,1
1 g

ki,j,2
2 , SKI = (Iδ,KI).

return (PK,MSK) = ((g1, g2,P),SKI).
– SKBA ← KeyGen(SKA,B): return SKBA = (BA,BKA).
– C ← Encrypt(PK,X):

w ∈R Zp, x = (x1, x2) = (gw
1 , gw

2 ),

⎡

⎢
⎣

X1,1 · · · X1,γ

...
. . .

...
Xδ,1 · · · Xδ,γ

⎤

⎥
⎦ ← X ∈ Z

δ×γ
p ,

C =

⎡

⎢
⎣

C1,1 · · · C1,γ

...
. . .

...
Cδ,1 · · · Cδ,γ

⎤

⎥
⎦ s.t. Ci,j = ξXi,j Pw

i,j = g
Xi,j

1 Pw
i,j .

return C = (x,C).
– Y ← Decrypt(SKA, C):

⎡

⎢
⎣

(k1,1,1, k1,1,2) · · · (k1,γ,1, k1,γ,2)
...

. . .
...

(km,1,1, km,1,2) · · · (km,γ,1, km,γ,2)

⎤

⎥
⎦ ← KA ∈ (Z2

p)
m×γ ,

⎡

⎢
⎣

A1,1 · · · A1,δ

...
. . .

...
Am,1 · · · Am,δ

⎤

⎥
⎦ ← A ∈ Z

m×δ
p ,

D =

⎡

⎢
⎣

D1,1 · · · D1,γ

...
. . .

...
Dm,1 · · · Dm,γ

⎤

⎥
⎦ s.t. Di,j =

∏δ
l=1 C

Ai,l

l,j

x
ki,j,1
1 x

ki,j,2
2

.

return Y = logξ D = logg1
D.

Remark the calculation of logg1
D can be done in polynomial time if the decryp-

tion space {Y} is polynomial sized.
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4.2 HFE-LT Instantiation from DCR

Definition 14 (Decisional Composite Residuosity problem). Let p, q be
two safe primes such that p = 2p′ +1 and q = 2q′ +1 where p′, q′ are two primes
of length λ bites and λ is the security parameter. Let N = pq, and N ′ = p′q′. We
have that Z∗

N2 = GNGN ′G2GT where GT is a group generated by −1 (mod N2).
Let P = GN ′G2GT ⊂ Z

∗
N2 , x ∈R P , and x′ ∈R Z

∗
N2 \ P . Given two probability

distributions DP = {(N,x)} and DZ
∗
N2\P = {(N,x′)}, there is an algorithm A

that distinguishes DP and DZ
∗
N2\P with advantage:

AdvDCR
A =

∣
∣
∣Pr[1 ← A(D ∈R DP )] − Pr[1 ← A(D ∈R DZ

∗
N2\P )]

∣
∣
∣

The DCR problem is assumed to be hard with negligible advantage AdvDCR
A .

However, we do not use (Z∗
N2 , P ) as (X,L) for several technical reasons. Instead,

we set X = GNGN ′ and L = GN ′ ⊂ X. According to the full version of [12], the
resulted SMP problem with (X,L) is at least hard as the DCR problem. Slightly
different from [12], we have the corresponding HPS construction as follows with
W = {0, . . . , �N/4�}, K = {0, . . . , �N2/2�}, S = L = GN ′ , and Π = X =
GNGN ′ .

– param ← Setup(1λ): μ ∈R Z
∗
N2 , g = μ2N (mod N2), return param = (N, g).

– SK ← SKGen(param): return SK = k ∈R {0, . . . , �N2/2�}.
– PK ← PKGen(SK): return PK = gk (mod N2).
– π ← Hash(SK, x): return π = xk (mod N2).
– π ← PHash(PK, x = gw, w): return π = PKw (mod N2).

Remark that the value N in Setup is generated as described in Defintion 14 and
g is a generator of L = GN ′ with overwhelming probability.

The key linearity and hash linearity of the above HPS can be easily ver-
ified as gk1gk2 = gk1+k2 and xk1xk2 = xk1+k2 . Let ξ = 1 + N (mod N2),
which is a generator of GN of order N . It is worth noting that ξa = 1 + aN

(mod N2) and logξ x = x−1 mod N2

N for all a ∈ ZN and x ∈ GN where the
division does not mean the multiplicative inverse but the division of integers.
We show that the above HPS has diversity and ξ is a derived element such that
∀x ∈ X \ L,∃k ∈ K,PKGen(k) = 1 ∧ Hash(k, x) = ξ where 1 is the identity

element 0 in Definition 6. Let r =
(
logξ xN ′

)−1

mod N where xN ′ ∈ GN and
the multiplicative inverse is computable for all x ∈ GNGN ′ with overwhelming
probability. Let k = rN ′. Since g is a generator of GN ′ of order N ′, we have
PKGen(k) = gk = grN ′

= 1 (mod N2). Since r−1 = logξ xN ′ ⇐⇒ xN ′
= ξr−1

,
we have Hash(k, x) = xrN ′

= (xN ′
)r = (ξr−1

)r = ξ. Hence, the diversity is
verified with the derived element ξ = 1 + N (mod N2).

Our HFE-LT instantiation of R = ZN works as follows3. Let ξ = 1 + N
(mod N2).

3 We do not fully use the key space (i.e. |K| = �N2/2� > N).
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– (PK,MSK) ← Setup(1λ, 1δ, 1γ):

μ ∈R Z
∗
N2 , g = μ2N (mod N2), KI =

⎡
⎢⎣

k1,1 · · · k1,γ

...
. . .

...
kδ,1 · · · kδ,γ

⎤
⎥⎦ ∈R {0, . . . , �N2/2�}δ×γ ,

P =

⎡
⎢⎣

P1,1 · · · P1,γ

...
. . .

...
Pδ,1 · · · Pδ,γ

⎤
⎥⎦ s.t. Pi,j = gki,j (mod N2), SKI = (Iδ,KI).

return (PK,MSK) = ((N, g,P),SKI).
– SKBA ← KeyGen(SKA,B): return SKBA = (BA,BKA) where BKA is com-

puted over Z.
– C ← Encrypt(PK,X):

w ∈R {0, . . . , �N/4�}, x = gw (mod N2),

⎡

⎢
⎣

X1,1 · · · X1,γ

...
. . .

...
Xδ,1 · · · Xδ,γ

⎤

⎥
⎦ ← X ∈ Z

δ×γ
N ,

C =

⎡

⎢
⎣

C1,1 · · · C1,γ

...
. . .

...
Cδ,1 · · · Cδ,γ

⎤

⎥
⎦ s.t. Ci,j = ξXi,j Pw

i,j = (1 + Xi,jN)Pw
i,j (mod N2).

return C = (x,C).
– Y ← Decrypt(SKA, C):

⎡

⎢
⎣

A1,1 · · · A1,δ

...
. . .

...
Am,1 · · · Am,δ

⎤

⎥
⎦ ← A ∈ Z

m×δ
N ,

⎡

⎢
⎣

k1,1 · · · k1,γ

...
. . .

...
km,1 · · · km,γ

⎤

⎥
⎦ ← KA ∈ Z

m×γ ,

D =

⎡

⎢
⎣

D1,1 · · · D1,γ

...
. . .

...
Dm,1 · · · Dm,γ

⎤

⎥
⎦ s.t. Di,j =

∏δ
l=1 C

Ai,l

l,j

xki,j
(mod N2),

Y = logξ D =

⎡

⎢
⎣

Y1,1 · · · Y1,γ

...
. . .

...
Ym,1 · · · Ym,γ

⎤

⎥
⎦ s.t. Yi,j =

Di,j − 1 mod N2

N
.

return Y.

5 Conclusion

In this paper, we revisited and simplified the definition of HFE, and further
extended it to eHFE. We derived the notion of HFE-LT from HFE (and eHFE-
LT from eHFE), allowing matrix product evaluation. Furthermore, we proposed
a generic construction of HFE-LT (and eHFE-LT) with IND-CPA security in
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the standard model from Hash Proof Systems with key and hash linearity, and
diversity. To illustrate that our scheme is practical, we presented two concrete
HFE-LT instantiations from the DDH and DCR assumptions.

This paper proposed a practical HFE construction for matrix product eval-
uation. It is still an open problem whether we could build a practical HFE for
other functionalities and we leave it as our future work.
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