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Achieving IND-CCA Security for Functional
Encryption for Inner Products

Shiwei Zhang(B), Yi Mu(B), and Guomin Yang(B)

School of Computing and Information Technology,
Centre for Computer and Information Security Research,

University of Wollongong, Wollongong, Australia
{sz653,ymu,gyang}@uow.edu.au

Abstract. Functional encryption allows the authorised parties to reveal
partial information of the plaintext hidden in a ciphertext while in con-
ventional encryption decryption is all-or-nothing. Focusing on the func-
tionality of inner product evaluation (i.e. given vectors x and y, calcu-
late 〈x, y〉), Abdalla et al. (PKC 2015) proposed a functional encryption
scheme for inner product functionality (FE-IP) with s-IND-CPA secu-
rity. In some recent works by Abdalla et al. (eprint: Report 2016/11) and
Agrawal et al. (CRYPTO 2016), IND-CPA secure FE-IP schemes have
also been proposed. In order to achieve Indistinguishable under Chosen
Ciphertext Attacks (IND-CCA security) for FE-IP, in this paper, we pro-
pose a generic construction of FE-IP from hash proof systems. We prove
the constructed FE-IP is IND-CCA secure, assuming the hardness of the
subset membership problem. In addition, we give an instantiation of our
generic construction from the DDH assumption.

Keywords: IND-CCA · Functional encryption · Inner product · Hash
proof system

1 Introduction

Encryption provides information confidentiality such that messages are hidden
and can only be revealed by authorised parties. In traditional encryption, access-
ing to the plaintext is in an all-or-nothing manner. Precisely, Alice encrypts a mes-
sage using Bob’s encryption key and sends the ciphertext to Bob. Later, Bob can
decrypt the ciphertext to read the message using his decryption key while a mali-
cious interceptor Eve gets no information about the encrypted message. Whereas
in functional encryption, it is possible for different authorised parties to reveal
different partial information of the plaintext from a ciphertext by granting them
different secret keys. It is also possible to control the information leaked from the
ciphertexts. In detail, a functional encryption enables the authorised receivers to
reveal the output of a functionality F (k, x) from a ciphertext containing the plain-
text x and a secret key associated with a function key value k.

In this paper, we focus on the functional encryption for the functionality
of inner product evaluation where F (x,y) = 〈x,y〉. A direct application of
c© Springer International Publishing AG 2017
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such a functional encryption scheme is privacy-preserving descriptive statistics
such as calculating the weighted mean or sum of a list of integers. For instance,
suppose in a high school the subject grades of each student are stored in a
vector y which is encrypted under the school manager Alice’s public key. As
a university admission officer, Bob wants to offer scholarship to those students
who are excellent at mathematics, physics, English, and good at other subjects.
To ensure good students can get the scholarship, Alice decides to assist Bob in
identifying the candidates. At the same time, Alice does not want to reveal the
grades of all the students to Bob for privacy reasons. With functional encryption
for inner-products, Alice can generate a secret key for Bob, which is associated
with a vector x = (10, 8, 8, 5, 5) that represents the weight for different subjects
(i.e. 10 for mathematics, 8 for physics and English, and 5 for other subjects).
Later, Bob can run the decryption algorithm to get the weighted sum of each
student’s subject grades, and nothing else. For example, Charlie has a grade
vector y = (90, 70, 80, 50, 60). The function F (x,y) gives 〈x,y〉 = 10 × 90 + 8 ×
70 + 8 × 80 + 5 × 50 + 5 × 60 = 2650. In this case, Bob can only learn the result
2650 but nothing else about y.

The security of functional encryption for inner products is defined by the
notion of IND-CPA in [2]. However, such a security notion is not strong enough
to cover the following variation of the above scenario. In order to restrict Bob’s
ability to calculate the weighted sum of each student, Alice gives the security
key for the vector x to her colleague David instead of directly giving it to Bob.
Consequently, Bob can only get the result of F (x,y) from David by sending the
ciphertext to him, and David can reject any queries related to those students
whose grades are below a threshold. If the scheme is malleable, then Bob can
modify a rejected ciphertext such that it can pass the threshold.

In this paper, we aim to build functional encryption for inner products with
IND-CCA security, which is stronger than IND-CPA and can withstand the
attack described above.

1.1 Related Work

The notion of functional encryption is introduced by Lewko et al. [14] and later
formally defined by Boneh et al. [7]. In [7], the security of functional encryption
is naturally defined via indistinguishability-based security (IND-security) where
an adversary cannot distinguish which message x0 or x1 is encrypted in the
ciphertext with oracles provided according to the attacking model. However, the
IND-security is not sufficient for the general functional encryption [7,16], and
thus simulation-based security (SIM-security) has been proposed. However, the
SIM-security is only achievable in the programmable random oracle model.

For generic functionality, Goldwasser et al. [12] proposed a function encryp-
tion scheme for circuits. Later in [11], the functionality is further extended to
accept multiple inputs such that it is able to compute F (k, x1, . . . , xn) instead
of F (k, x). Since the construction for generic functionalities is very inefficient for
practical use, the construction for specific functionality has been the main focus.
It is worth noting there is a subclass of functional encryption named Predicate
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Encryption [13]. Its message space X consists of two subspaces, index space I
and payload space M . For a predicate P : K × I → {0, 1}, the functionality
F : K × X → M ∪ {⊥} is defined as F (k, (ind,m)) = m if P (k, ind) = 1
or F (k, (ind,m)) = ⊥ otherwise. More subclasses of the functionalities can
be derived from the Predicate Encryption class, including but not limited to
Identity-Based Encryption [6], Attribute-Based Encryption [15,18], Hidden Vec-
tor Encryption [8], Inner Product Encryption [14,15], and Deterministic Finite
Automata (DFA) Based Encryption (Functional Encryption for Regular Lan-
guages) [19]. Another notable functional encryption is searchable encryption [5]
where F (k, x) = 1 if k = x or F (k, x) = 0 otherwise where k and x are the
keywords embedded in the trapdoor and ciphertext, respectively.

Recently, Abdalla et al. [2] investigated a new functionality F (x,y) = 〈x,y〉,
i.e. to calculate the inner product of two vectors x and y where x is embedded
in the secret key and y is embedded in the ciphertext. Unlike Inner Product
Encryption [14,15] where inner product is used for access control, the new func-
tionality here is to compute the actual inner product value. In [2], Abdalla et al.
proposed a functional encryption for inner products scheme, which is selectively
secure against chosen-plaintext attacks (s-IND-CPA). The scheme is generic as
it can be constructed from any s-IND-CPA secure public key encryption, which
is secure under randomness reuse and has linear key homomorphism and lin-
ear ciphertext homomorphism under shared randomness. Based on the generic
construction, two instantiations are given from Decisional Diffie-Hellman (DDH)
assumption and Learning With Error (LWE) assumption respectively. In some
recent works [1,3], FE-IP schemes with IND-CPA security were also proposed.
Specifically, Abdalla et al. [1] proposed another generic construction with IND-
CPA security from any s-IND-CPA secure public key encryption with the same
requirements as in [2]. They also showed that the IND-CPA security and Non-
Adaptive Simulation (NA-SIM) security are equivalent for inner product func-
tionality. Furthermore, an instantiation from Decisional Composite Residuosity
(DCR) assumption is also proposed in [1].

In addition to the confidentiality, a notion called function privacy [4] has also
been investigated for functional encryption which means an adversary should
not be able to distinguish k (or Fk as F (k, x) = Fk(x)) from a secret key skk.
However, the scheme [4] with function privacy is proposed in the private key
setting while normal functional encryption schemes [1,2,19] are in the public
key setting.

1.2 Our Contribution

In this paper, we define the notion of Indistinguishablilty under adaptive Chosen
Ciphertext Attacks (i.e. IND-CCA, or more precisely IND-CCA2 security) for the
general functional encryption. We also present the precise definition of functional
encryption for the inner product functionality. In particular, we show that the
secret keys for the functions 〈x1, · 〉, · · · , 〈xn, · 〉 implies the secret key for the
function 〈x′, · 〉 where x′ ∈ span(x1, . . . ,xn).
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As the main contribution of this paper, we propose under certain conditions
an IND-CCA secure functional encryption for inner products (FE-IP) scheme
from hash proof systems, assuming the hardness of the subset membership prob-
lem. In the generic construction, we require two hash proof systems Ξ1 and Ξ2

with some special properties as the building blocks. In detail, Ξ1 is required to
be diverse (Definition 10) and have key linearity (Definition 8) and hash linearity
(Definition 9). For Ξ2, we require it to be universal2 (Definition 7) and have hash
linearity. We show that those special properties are not hard to achieve. In [10],
Cramer and Shoup constructed hash proof systems from a diverse group sys-
tem G = (H,X, L,Π). We show that their constructions have the key linearity
and the hash linearity. If the hash codomain Π of the underlying diverse group
system has prime order, the constructed hash proof system has the property
of diversity. In other words, we can generically construct an IND-CCA secure
FE-IP scheme from a diverse group system G = (H,X, L,Π) when |Π| is prime.

In addition, we propose a concrete IND-CCA secure FE-IP scheme from
DDH assumption as an instantiation of our generic construction. Note that if we
remove the NIZK proof part of Definition 5, the resulting scheme is exactly the
same as the schemes in [1,3]. Thus the efficiency is the same as [1,3].

1.3 Paper Organisation

The rest of this paper is organised as follows. Beginning with Sect. 2, we review
the subset membership problem, the definition and the security model of the
functional encryption, and introduce the IND-CCA security model. In Sect. 3, we
review the hash proof system and its construction, define new properties of HPS,
and show that the existing construction has the new defined properties. After
that, we give out a precise definition of FE-IP and a generic construction of IND-
CCA secure FE-IP with security proof in Sect. 4. In addition, an instantiation
of our generic construction from DDH assumption is provided in Sect. 5. Finally,
the conclusion is addressed in Sect. 6.

2 Preliminaries

2.1 Subset Membership Problems

In this subsection, we review a problem class named Subset Membership Problems
(SMP) defined by Cramer and Shoup [10]. Some standard problems such as
Quadratic Residuosity and Decisional Diffie-Hellman problems belong to the
SMP problem class.

Definition 1 (Subset Membership Problem). Let X,L,W be three non-
empty sets, and R ⊂ X × W be a binary relation such that L ⊂ X and ∀x ∈
X,∃w ∈ W, (x,w) ∈ R ⇐⇒ x ∈ L. In other words, w is a witness of x if x ∈ L.
Let Λ = (X,L,W,R), x ∈R L, and x′ ∈R X \ L where x ∈R L means that x
is randomly chosen from L. Giving two probability distributions DL = {(Λ, x)}
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and DX\L = {(Λ, x′)}, there is an algorithm A can distinguish DL and DX\L

with advantage:

AdvSMP
A =

∣∣Pr[1 ← A(D ∈R DL)] − Pr[1 ← A(D ∈R DX\L)]
∣∣

A subset membership problem is computational hard if and only if the advantage
AdvSMP

A is negligible.

2.2 Functional Encryption

In this subsection, we review the definition of functional encryption in [7].

Definition 2 (Functional Encryption). Let F : K × X → {0, 1}∗ be a func-
tion where K is the function key space and X is the message space. A functional
encryption (FE) for a functionality F consists of the following four polynomial
time algorithms:

– (PK,MSK) ← Setup(1λ): The randomised system setup algorithm takes a secu-
rity parameter 1λ as input, and generates system-wide parameters and a key
pair of the master secret key MSK and the public key PK.

– SK ← KeyGen(MSK, k): The randomised secret key generation algorithm takes
a master secret key MSK and a function key k ∈ K as input, and generates a
secret key SK for the functionality Fk.

– C ← Encrypt(PK, x): The randomised encryption algorithm takes a public key
PK and a plaintext x as input, and calculates a ciphertext for it.

– D ← Decrypt(SK, C): The (probably) deterministic decryption algorithm takes
a secret key SK of the functionality Fk and a ciphertext containing x. It outputs
a value D, which is equivalent to the output of F (k, x).

In this paper, we consider the indistinguishability-based security and enhance the
IND-CPA security model defined in [7] to the Indistinguishability under adaptive
Chosen Ciphertext Attacks (IND-CCA) as the generalisation of the IND-CCA2
security [17] for public key encryption schemes [9]. The difference is that the
decryption oracle ODecrypt is not allowed in the IND-CPA game at any stage.
The IND-CCA game (Game 1) is defined as follows where an adaptive adversary
A tries to distinguish a ciphertext from two chosen plaintexts x0 and x1.

Gameλ
IND-CCA :

(PK,MSK) ← Setup(1λ)

(x0, x1) ← AOKeyGen,ODecrypt(PK)

b ∈R {0, 1}
C ← Encrypt(PK, xb)

b′ ← AOKeyGen,ODecrypt(C)

OKeyGen :

K ← K ∪ {k}
return SK ← KeyGen(MSK, k)

ODecrypt :

C ← C ∪ {C′}
SK ← KeyGen(MSK, k)

return D ← Decrypt(SK, C′)

Game 1: IND-CCA
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1. The challenger S runs Setup(1λ) to generate a key pair (MSK,PK), and passes
the public key PK to the adversary A.

2. The adversary A can adaptively query the key generation oracle OKeyGen for
the secret key SK of a function Fk from the challenger S. The restriction
is that A can only query the secret keys for the functionality Fk such that
F (k, x0) = F (k, x1) where x0 and x1 are the target plaintexts in the next
step. Otherwise, the game is trivial since A can simply win the game by
testing Decrypt(SKk, C) ?= F (k, x0). Besides that, the adversary A can also
ask the challenger S for decrypting a ciphertext C ′ of x to obtain the output
of F (k, x) for any k ∈ K via the decryption oracle ODecrypt.

3. At some point, the adversary A outputs two target plaintexts x0 and x1.
4. The challenger S randomly selects a bit b ∈R {0, 1}, and generates a target

ciphertext C ← Encrypt(PK, xb). Then S passes C to the adversary A.
5. The adversary A can continue to query the oracle OKeyGen with the same

restriction as before, and the oracle ODecrypt with the restriction that A cannot
query the target ciphertext C since A can win the game trivially by testing
ODecrypt(k,C) ?= F (k, x0) for some k ∈ K such that F (k, x0) �= F (k, x1).

6. Eventually, the adversary A outputs a bit b′, and A wins if b = b′.

The advantage of A winning the Game 1 is

AdvIND-CCA
A =

∣∣∣∣Pr
[
b = b′ ∣∣ C /∈ C ∧ (∀k ∈ K, F (k, x0) = F (k, x1)

)] − 1
2

∣∣∣∣

Definition 3 (IND-CCA Security). A FE scheme is Indistinguishable under
adaptive Chosen Ciphertext Attacks (IND-CCA) if AdvIND-CCA

A is a negligible
function for all adversary A winning the Game 1 in polynomial time.

3 Hash Proof System

In this section, we review the hash proof system (HPS) introduced by Cramer
and Shoup [10]. We also extend their HPS with some extra properties so that
we can use it to construct our scheme.

3.1 Definition

Definition 4 (Hash Proof System). Let X be a non-empty set, and L be a
NP language with a witness space W and a binary relation R such that L =
{x ∈ X | ∃w : (x,w) ∈ R}. A hash proof system (HPS) consists of the following
five polynomial time algorithms:

– param ← Setup(1λ): The randomised system setup algorithm takes a security
parameter 1λ as input, and specifies an instance of X, L, W and R, using X
as the hash domain. It also defines a secret hash key space K, a public hash
key space S, and a hash codomain Π. After that, it packs all descriptions as
the system public parameter param = (X,L,W,R,K, S,Π).
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– SK ← SKGen(param): The randomised secret hash key generation algorithm
takes system parameter param as input, and outputs a randomly chosen hash
key SK ∈R K.

– PK ← PKGen(SK): The deterministic public hash key generation algorithm
takes a secret key SK ∈ K as input, and maps it to a public hash key PK ∈ S.

– π ← Hash(SK, x): The deterministic private evaluation algorithm takes a
secret hash key SK ∈ K and a value x ∈ X, and outputs a hash value π ∈ Π
of x.

– π ← PHash(PK, x, w): The deterministic public evaluation algorithm takes a
public key PK ∈ S, a value x ∈ L and its witness w ∈ W as input, and
generate an equivalent hash value π = Hash(SK, x) ∈ Π of x such that PK =
PKGen(SK).

As a basic property, a HPS should be correct.

Definition 5 (Correctness). A hash proof system is correct if the following
statement is always true.

∀param ← Setup(1λ), ∀SK ← SKGen(param), PK ← PKGen(SK),
∀(x,w) ∈ R, Hash(SK, x) = PHash(PK, x, w).

Furthermore, some useful security properties of a HPS are required.

Definition 6 (Universal). A hash proof system is universal if the following
probability is negligible for all PK ∈ S, x ∈ X \ L and π ∈ Π.

AdvUniversal = Pr[Hash(SK, x) = π | PKGen(SK) = PK]

Definition 7 (Universal2). A hash proof system is universal2 if the following
probability is negligible for all PK ∈ S, x∗ ∈ X, x ∈ X\(L∪{x∗}) and π∗, π ∈ Π.

AdvUniversal2 = Pr[Hash(SK, x) = π | Hash(SK, x∗) = π∗ ∧ PKGen(SK) = PK]

If a hash proof system is universal2 and |X| > 1, it is also universal. Besides all
above properties defined in [10], we require three extra properties to construct
our schemes.

Definition 8 (Key Linearity). A hash proof system has linear key homomor-
phism if K and S are abelian groups and

∀SK1,SK2 ∈ K, PKGen(SK1) + PKGen(SK2) = PKGen(SK1 + SK2) ∈ S.

Particularly, if a HPS has key linearity, we have μ ·PKGen(SK) = PKGen(μ ·SK)
for all SK ∈ K and μ ∈ Z.

Definition 9 (Hash Linearity). A hash proof system has linear hash homo-
morphism if K and Π are abelian groups and

∀SK1,SK2 ∈ K, ∀x ∈ X, Hash(SK1, x)+Hash(SK2, x) = Hash(SK1+SK2, x) ∈ Π.
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Similar to the key linearity, we have μ · Hash(SK, x) = Hash(μ · SK, x) for all
SK ∈ K, x ∈ X, and μ ∈ Z.

Definition 10 (Diversity). A hash proof system is diverse if there exists π ∈
Π such that π �= 0 and for all x ∈ X \ L, there exists SK ∈ K such that
Hash(SK, x) = π and PKGen(SK) = 0. Formally,

∃π ∈ Π,π �= 0 ∧ (∀x ∈ X \ L,∃SK ∈ K,Hash(SK, x) = π ∧ PKGen(SK) = 0)

3.2 Construction

In this subsection, we review the Cramer-Shoup constructions of HPS from uni-
versal projective hashing derived from diverse group systems [10]. We start with
the definition of the group system, then the constructions of the universal pro-
jective hashing. In the end, we show that the reviewed constructions have key
linearity, hash linearity, and diversity. For notational convenience, we use addi-
tion for the group operations.

Definition 11 (Group System). Let X, Π be two finite abelian groups, and
L be a NP language with a witness space W and a binary relation R such that
L = {x ∈ X | ∃w : (x,w) ∈ R}. Let Φ be a finite abelian group of homomorphism
φ : X → Π such that for all φ, φ′ ∈ Φ, x ∈ X, and a ∈ Z, we have (φ ± φ′)(x) =
φ(x) ± φ′(x) and (aφ)(x) = aφ(x) = φ(ax). If φ = 0 ∈ Φ, we have φ(x) = 0 ∈ Π
for all x ∈ X. Let H be a subgroup of Φ. Then G = (H,X, L,Π) is a group
system.

Definition 12 (Diverse Group System). A group system G is diverse if
there exists φ ∈ Φ such that φ(L) = 〈0〉 and φ(x) �= 0 for all x ∈ X \ L.

Construction 1 (Projective Hash Families from Group Systems). Let
G = (H,X, L,Π) be a group system and (g1, . . . , gd) ∈ L be a generator of L.
A projective hash family H = (H,K,X,L,Π, S, α) defined in [10] can be con-
structed from G by setting {φ = Hk | k ∈ K} = H with uniform distribution, S =
Πd, and α : K → S that α(k) = (φ(g1), . . . , φ(gd)) = (Hk(g1), . . . , Hk(gd)). To
hash x ∈ X, it simply calculates Hk(x) = φ(x) ∈ Π. If x ∈ L that x =

∑d
i=1 wigi

where (w1, . . . , wd) ∈ W is the witnesses of x, it can alternatively calculates
Hk(x) = φ(

∑d
i=1 wigi) =

∑d
i=1 wiφ(gi) ∈ Π, using α(k) and (w1, . . . , wd).

Construction 2 (HPS from Projective Hash Families). Let H = (H,K,
X,L,Π, S, α) be a projective hash family where L is a NP language with a wit-
ness space W and a binary relation R such that L = {x ∈ X | ∃w : (x,w) ∈ R}.
A hash proof system Ξ = (Setup,SKGen,PKGen,Hash,PHash) can be constructed
as follows.

– param ← Setup(1λ): return param = (X,L,W,R,K, S,Π).
– SK ← SKGen(param): return k ∈R K.
– PK ← PKGen(SK): return α(k).
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– π ← Hash(SK, x): return Hk(x).
– π ← PHash(PK, x, w): return Hk(x) computed using α(k) and a witness w of

x without the actual k.

Let Ξ be a hash proof system constructed from a group system G by combining
Constructions 1 and 2. From [10], Ξ is universal if G is diverse. Furthermore, we
need a universal2 HPS, which can be derived from a universal projective hash
family.

Construction 3 (Universal2 Projective Hash Families). Let H = (H,K,
X,L,Π, S, α) be a universal projective hash family, p be the smallest prime
dividing |X \ L|, and Γ : X × E → Z

n
p be an injective map. A universal2

projective hash family Ĥ = (Ĥ,Kn+1,X × E,L × E,Π, Sn+1, α̂) can be con-
structed that k̂ = (k0, . . . , kn) ∈ Kn+1, α̂(k) = (α(k0), . . . , α(kn)) ∈ Sn+1, and
Ĥk̂ = Hk0(x) + 〈Γ (x, e), (Hk1(x), . . . , Hkn

(x))〉 for all x ∈ X and e ∈ E.

Let Ξ2 be a hash proof system constructed from a group system G by com-
bining Constructions 1, 3 and 2 in sequence. From [10], Ξ2 is universal2 if G is
diverse.

Besides the above security properties, we find that HPS from a group system
G = (H,X, L,Π) has some extra properties. Let K be a finite abelian group
of order |H|. Since Hk is uniformly distributed over H by randomly choosing
k ∈ K in Construction 1, we have that H is a bijection for K and H. Thus we
have Hk1 + Hk2 = Hk1+k2 ∈ H for all k1, k2 ∈ K.

Theorem 1 (Key Linearity). Let Ξ be a universal HPS and Ξ2 be a
universal2 HPS as constructed above from a group system G. The HPSs Ξ and
Ξ2 have key linearity.

Proof As Ξ and Ξ2 share the same mapping α : K → Πd, we show the linearity
of α that for all k1, k2 ∈ K,

α(k1) + α(k2) = (Hk1(g1), . . . , Hk1(gd)) + (Hk2(g1), . . . , Hk2(gd))
= (Hk1(g1) + Hk2(g1), . . . , Hk1(gd) + Hk2(gd))
= ((Hk1 + Hk2)(g1), . . . , (Hk1 + Hk2)(gd))
= (Hk1+k2(g1), . . . , Hk1+k2(gd)) = α(k1 + k2)

From the linearity of α, we directly have the key linearity of Ξ.

PKGen(SK1) + PKGen(SK2)
= α(SK1) + α(SK2) = α(SK1 + SK2) = PKGen(SK1 + SK2)

For Ξ2, we show the key linearity as follows where SK1 = (k1,0, . . . , k1,n),SK2 =
(k2,0, . . . , k2,n) ∈ Kn+1.

PKGen(SK1) + PKGen(SK2)
= (a(k1,0), . . . , a(k1,n)) + (a(k2,0), . . . , a(k2,n))
= (a(k1,0) + a(k2,0), . . . , a(k1,n) + a(k2,n)))
= (a(k1,0 + k2,0), . . . , a(k1,n + k2,n)) = PKGen(SK1 + SK2)



128 S. Zhang et al.

Theorem 2 (Hash Linearity). Let Ξ be a universal HPS and Ξ2 be a
universal2 HPS as constructed above from a group system G. The HPSs Ξ and
Ξ2 have hash linearity.

Proof. Starting from Ξ, we show the hash linearity that

Hash(SK1, x) + Hash(SK2, x)
= HSK1(x) + HSK2(x) = HSK1+SK2(x) = Hash(SK1 + SK2, x)

Then we show the hash linearity of Ξ2 as follows where SK1 = (k1,0, . . . , k1,n)
and SK2 = (k2,0, . . . , k2,n) ∈ Kn+1.

Hash(SK1, (x, e)) + Hash(SK2, (x, e))

= Hk1,0(x) + 〈Γ (x, e), (Hk1,1(x), . . . , Hk1,n(x))〉
+ Hk2,0(x) + 〈Γ (x, e), (Hk2,1(x), . . . , Hk2,n(x))〉

= (Hk1,0(x) + Hk2,0(x)) + 〈Γ (x, e), (Hk1,1(x) + Hk2,1(x), . . . , Hk1,n(x) + Hk2,n(x))〉
= Hk1,0+k2,0(x) + 〈Γ (x, e), (Hk1,1+k2,1(x), . . . , Hk1,n+k2,n(x))〉
= Hash(SK1 + SK2, (x, e))

Theorem 3 (Diversity). Let Ξ be a universal HPS as constructed above from
a group system G. The HPS Ξ is diverse if |Π| is prime and G is diverse.

Proof Since G is diverse, we have that there exists k ∈ K such that Hash(k, x) =
0 for all x ∈ L and Hash(k, x∗) �= 0 for all x∗ ∈ X \ L. Let π = Hash(k, x∗) �= 0.
Since Π is a prime order cyclic group, π is a generator of Π and thus for all
π′ ∈ Π ,π′ = μ · π for some μ ∈ Z|Π|. By Theorem 2, we have that for all
x′ ∈ X \ L,

π′ = Hash(k, x′) ⇐⇒ μ · π = Hash(k, x′)

⇐⇒ π = μ−1 · Hash(k, x′) ⇐⇒ π = Hash(μ−1 · k, x′)

Hence, for a fixed π, there exists a secret key μ−1 ·k that hashes x′ to π for all x′ ∈
X. Let w be a witness of x ∈ L. Recall the construction of Ξ that Hash(k, x) =
Hk(x) and PKGen(k) = α(k) = (Hk(g1), . . . , Hk(gd)). Since g1, . . . , gd ∈ L and
Hk(x) = 0 for all x ∈ L, we have PKGen(k) = 0. Therefore, by Theorem 1, we
have PKGen(μ−1 · k) = μ−1 · PKGen(k) = 0 and complete the proof.

4 Functional Encryption for Inner Products

4.1 Definition

Let Gx, Gy, Gz be three abelian groups where there exists an efficient inner
product computation 〈·, ·〉 : Gx × Gy → Gz. The functional encryption for
inner products is associated with a functionality F : Gδ

x × G
δ
y → Gz, mapping

two δ-dimension vectors into a single group Gz such that F (x,y) = 〈x,y〉 =∑δ
i=1〈xi, yi〉 for all x = (x1, . . . , xδ) ∈ G

δ
x and y = (y1, . . . , yδ) ∈ G

δ
y. Based

on the functionality F , we derive the syntax of the functional encryption from
Definition 2.
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Definition 13 (Functional Encryption for Inner Products). A functional
encryption for inner products (FE-IP) scheme for a functionality F : Gδ

x×G
δ
y →

Gz consists of the following four polynomial time algorithms:

– (PK,MSK) ← Setup(1λ, 1δ): The randomised system setup algorithm takes a
security parameter 1λ and a unary value 1δ that specifies the maximum vector
dimension as input. Then it generates system-wide parameters and a key pair
(PK,MSK).

– SK ← KeyGen(MSK,x): The randomised secret key generation algorithm takes
a master secret key MSK and a vector x ∈ G

d
x with dimension d. If d > δ, the

extra dimensions of x is discarded. If d < δ, the vector x is reconstructed to the
dimension δ by filling an additive identity element 0 (i.e. x′ = (x, 0, . . . , 0︸ ︷︷ ︸

δ−d

)).

After that, the algorithm generates a secret key SK for the (modified) vector
x with dimension δ.

– C ← Encrypt(PK,y): The randomised encryption takes a public key PK and
a vector y ∈ G

d
y with dimension d. If d �= δ, the ciphertext may still be con-

structed. However, it may not be decrypted properly. Hence, the same modifi-
cation to x in the algorithm KeyGen is applied to y. After that, the algorithm
generates a ciphertext C for the (modified) vector y with dimension δ.

– D ← Decrypt(SK, C): The deterministic decryption algorithm takes a secret
key SK for x and a ciphertext C of y, and computes D = 〈x,y〉 ∈ Gz. If the
decryption fails, the algorithm outputs a special symbol ⊥.

Before introducing the security model of FE-IP, we review the inner product
functionality along with the vector space first.

Due to the linearity that 〈x0 + x1, y〉 = 〈x0, y〉 + 〈x1, y〉 for all x0, x1 ∈ Gx

and y ∈ Gy, we have μ〈x,y〉 = 〈μx,y〉 for all μ ∈ Z, x ∈ G
δ
x, and y ∈ G

δ
y. Thus

the ability of the secret key for a vector x is not only to calculate F (x,y) but
also to compute F (μx,y) = 〈μx,y〉 = μ〈x,y〉 = μF (x,y), which is equivalent
to the ability of the secret key for the vector μx for all μ ∈ Z. In other words,
the key generation algorithm KeyGen actually generates a secret key for a vector
space span(x) linearly spanned by x instead of a single vector x. Generally, given
multiple secret keys for a vector set S = {x1, . . . ,xn}, we are able to compute
F (x,y) for all x ∈ span(S). It is possible since F (x,y) =

∑n
i=1 μiF (xi,y) where

x =
∑n

i=1 μixi. Notably, if we obtain secret keys for a vector set S such that
span(S) = Gx (e.g. S contains δ linearly dependent vectors), we have the same
ability of the master secret key without compromising it.

Since δ secret keys for linearly independent vectors are equivalent to the
master secret key, the function key space K (recall Definition 2) is reduced to
the size of δ, which is polynomial bounded. Let v1, . . . ,vδ be a basis of Gx.
Intuitively, one may think that the “brute force” construction in [7] becomes
practical by encrypting the output of F (v1,y), . . . , F (vδ,y) instead of the vec-
tor y where the resulting ciphertext size is Θ(δ). However, it is not true since
span(v1 +v2) �= span(v1,v2) where v1 and v2 are independent. Hence, a proper
construction is still required.
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Besides that, if Gx = Gy = Gz = F are the same field, it is impossible to hide
x in the public key setting, given the secret key for the vector x. Since it is in the
public key setting, δ linearly independent vectors y1, . . . ,yδ can be chosen and
encrypted freely. By decrypting the above ciphertexts with the secret key for the
vector x = (x1, . . . , xδ), we can obtain the results {Di = F (x,yi)}i=1...δ. After
that, we can calculate x by solving the following matrix equation in polynomial
time. ⎡

⎢⎣
y1
...

yδ

⎤
⎥⎦x� =

⎡
⎢⎣

D1

...
Dδ

⎤
⎥⎦

Hence, it is impossible to achieve function privacy. As a side effect, it is “safe”
to provide x along with the secret key in the key generation algorithm KeyGen.

For the security model, the definition of the IND-CPA security and the IND-
CCA security can be derived from the security model of the general functional
encryption. The difference is that the setup algorithm is required to take an
additional parameter 1δ.

4.2 Generic Construction from Hash Proof Systems

In this subsection, we describe the key ideas to construct an IND-CCA secure
FE-IP scheme. Then we present our FE-IP scheme from Hash Proof Systems.

In a FE-IP scheme, the plaintext vector y should be encrypted in a raw form
that can be recovered instead of being encrypted as the output of the function
F (x,y) so that it can be manipulated by arbitrary x to compute F (x,y). In
order to achieve the IND-CCA security, the sender who encrypts the message
shall provide a non-interactive zero knowledge (NIZK) proof that it knows the
decryption in terms of the raw form of the plaintext vector y [17]. This is the
essential idea of achieving the IND-CCA security. On the other hand, the decryp-
tion of a functional encryption involves two parts: the function evaluation and
the authorisation to that function evaluation. Obviously, we have to do manip-
ulation first then decryption instead of decryption first then manipulation since
the receiver should only be able to compute F (x,y) but not y itself. For inner
product functionality, the ciphertext of the plaintext vector y is manipulated
into the ciphertext of F (x,y) = 〈x,y〉 by using the vector x and the ciphertext
homomorphism. Later, the receiver can decrypt the resulted ciphertext to obtain
F (x,y), given the authorisation to F (x, · ). Before decryption, the receiver also
needs to verify the NIZK proof attached to the ciphertext. Using the hash proof
system as the NIZK proof system (with auxiliary input), the receiver is required
to use the secret key of the HPS to verify the proof. If we consider attacks from
outsiders only, it is safe to give the secret key to the end users. However, from the
Game 1, we allow attacks from insiders. Therefore, we cannot give the secret key
directly to the users. Otherwise, they can generate the proofs without knowing
the witnesses. To solve this problem, we limit the scheme to serve at most η
users and generate a vector β of secret keys for the proof system with dimension
η. For each user, we randomly pick a vector s and compute the inner product
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〈s,β〉 as the secret key for the end user. When encrypting, the sender generates
the proof using the individual public keys directly derived for β as η proof parts.
To verify, the receiver assembles the proof parts using s and checks with its
secret key 〈s,β〉. Since both β and s have the dimension η, it is impossible to
compute β with η − 1 pairs of (s, 〈s,β〉) (i.e. β is statistically indistinguishable
with a random vector). If all η users collude together, they can obtain β and
generate proofs without witnesses but it is meaningless to launch attacks against
themselves.

Unfortunately, we are not able to construct a generic FP-IP scheme for arbi-
trary Gx, Gy, and Gz. Due to the definition of hash linearity (Definition 9) of
HPS, we have to make Gx = Gy = Gz = Zρ ⊂ Z. To build our FE-IP scheme, we
need a diverse HPS with key linearity and hash linearity, a universal2 HPS with
hash linearity. Note that the key linearity is used in the proof only. Formally, we
present our construction as follows.

Construction 4 (FE-IP from HPS). Let Ξ1 = (Setup,SKGen,PKGen,Hash,
PHash) be a diverse HPS associated with spaces (X,L,W,R,K, S,Π) and Ξ2 =
(Setup,SKGen,PKGen, Hash,PHash) be a universal2 HPS associated with space
(X×Πδ, L×Πδ,W,R,K ′, S′,Π ′) where δ is passed as the input of the algorithm
Setup. Both Ξ1 and Ξ2 are required to have the hash linearity. Ξ1 is required
to have the key linearity for the security proof. Let χ ∈ Π derived from the
diversity property of Ξ1 that χ �= 0 and ∀x ∈ X \ L,∃SK ∈ K,Ξ1.Hash(SK, x) =
χ ∧ Ξ1.PKGen(SK) = 0. We use μ = χ−1(π) to denote the calculation of μ ∈ Zρ

such that μ · χ = π ∈ Π. Our functional encryption scheme for the functionality
F : Zδ

ρ × Z
δ
ρ → Zρ works as follows.

– (PK,MSK) ← Setup(1λ, 1δ, 1η): Given a security parameter 1λ, a maximum
vector size 1δ and a maximum user size 1η, the algorithm generates system-
wide parameters param1 ← Ξ1.Setup(1λ) and param2 ← Ξ2.Setup(1λ). The
algorithm generates two secret key vectors α = (α1, . . . , αδ) ∈ Kδ and β =
(β1, . . . , βη) ∈ K ′η where αi ← Ξ1.SKGen(param1), βi ← Ξ2.SKGen(param2).
After that, it generates corresponding public keys A = (A1, . . . , Aδ) ∈ Sδ and
B = (B1, . . . , Bη) ∈ S′η where Ai = Ξ1.PKGen(αi), Bi = Ξ2.PKGen(βi).
Next, the algorithm packs the public key PK = (A,B) and the master secret
key MSK = (α,β). Finally, the algorithm publishes PK and keeps MSK
private.

param1 ← Ξ1.Setup(1λ), param2 ← Ξ2.Setup(1λ)
For i = 1 . . . δ, αi ← Ξ1.SKGen(param1), Ai = Ξ1.PKGen(αi)
For i = 1 . . . η, βi ← Ξ2.SKGen(param2), Bi = Ξ2.PKGen(βi)

return (PK,MSK) = ((A,B), (α,β)).
– SK ← KeyGen(MSK,x): To generate a secret key for the vector x, the algo-

rithm randomly selects a vector s = (s1, . . . , sη) ∈R Z
η
ρ and calculates K1 and

K2 as follows.
s ∈R Z

η
ρ, K1 = 〈x,α〉, K2 = 〈s,β〉.

return SK = (x, s,K1,K2).
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– C ← Encrypt(PK,y): To encrypt a vector y, the algorithm randomly sam-
ples a word l ∈ L with a witness w ∈ W . Then the algorithm computes
the ciphertext part C = (C1, . . . , Cδ) where Ci = yiχ + Ξ1.PHash(Ai, l, w).
After that, the algorithm computes the proof part π = (π1, . . . , πη) where
πi = Ξ2.PHash(Bi, (l,C), w). Finally, the algorithm packs the word, the
ciphertext part, and the proof part as one single ciphertext.

(l, w) ∈R R

For i = 1 . . . δ, Ci = yiχ + Ξ1.PHash(Ai, l, w)
For i = 1 . . . η, πi = Ξ2.PHash(Bi, (l,C), w)

return C = (l,C,π).
– D ← Decrypt(SK, C): To decrypt, the algorithm assembles the proof parts

D2 = 〈s,π〉. If D2 �= Ξ2.Hash(K2, (l,C)), the algorithm outputs D = ⊥ to
reject the ciphertext. Otherwise, the algorithm assembles the ciphertext part
D1 = 〈x,C〉. Then the algorithm decrypts the resulted ciphertext D∗ = D1 −
Ξ1.Hash(K1, l). Finally, the algorithm extracts the result D = χ−1(D∗).

D2 = 〈s,π〉, D2
?= Ξ2.Hash(K2, (l,C)),

D1 = 〈x,C〉, D∗ = D1 − Ξ1.Hash(K1, l).

return D = χ−1(D∗).

Theorem 4. The Construction 4 is correct.

Proof. We verify the correctness by verifying the decryption algorithm.

D2 = 〈s, π〉 =

η∑

i=1

siπi =

η∑

i=1

siΞ2.PHash(Bi, (l, C), w) =

η∑

i=1

siΞ2.Hash(βi, (l, C))

= Ξ2.Hash(

η∑

i=1

siβi, (l, C)) = Ξ2.Hash(〈s, β〉, (l, C)) = Ξ2.Hash(K2, (l, C)).

D1 = 〈x, C〉 =

δ∑

i=1

xiCi =

δ∑

i=1

xi

(
yiχ + Ξ1.PHash(Ai, l, w)

)

=
δ∑

i=1

xiyiχ +
δ∑

i=1

xiΞ1.Hash(αi, l) = 〈x, y〉χ + Ξ1.Hash(
δ∑

i=1

xiαi, l)

= 〈x, y〉χ + Ξ1.Hash(〈x, α〉, l) = 〈x, y〉χ + Ξ1.Hash(K1, l).

After verifying D2 and computing D1, we compute D as follows and complete
the verification.

D∗ = D1 − Ξ1.Hash(K1, l) = 〈x,y〉χ, D = χ−1(D∗) = χ−1(〈x,y〉χ) = 〈x,y〉.

In Construction 4, we require the calculation of χ−1, which may not be
computed in polynomial time. If the decryption space |{〈x,y〉}| is polynomial
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bounded, we can do decryption in an alternative way. In this variation, D1,
D2, and D∗ are computed and checked as normal. To calculate D, we check
Dχ

?= D∗ for each possible D ∈ |{〈x,y〉}|. Since |{〈x,y〉}| is polynomial-sized,
the checking algorithm can be done in polynomial time.

In terms of the maximum number η of users, it is not a defect and the
IND-CCA model is still suitable for Construction 4. Since the number of users
is polynomial sized, the value of η is also polynomial sized. By observing Con-
struction 4, we have the following size table.

Item PK MSK SK C D
Size δ|S| + η|S′|δ|K| + η|K ′|(δ + η)|Zρ| + |K| + |K ′||L| + δ|Π| + η|Π ′||Zρ|

As long as the value of η is polynomial sized, all the elements in Construction 4
are polynomial sized. Hence, the limitation on the maximum user number is no
longer an issue.

4.3 Security Proof

Theorem 5. The proposed FE-IP scheme (Construction 4), allowing at most η
users, is IND-CCA secure (Definition 3) if the language (X,L,W,R) associated
with both the underlying diverse HPS Ξ1 and universal2 HPS Ξ2 satisfies a hard
subset membership problem (Definition 1).

Proof. Having a glance at the security proof, we leverage the diversity property
of the HPS Ξ1 to prove the ciphertext indistinguishability of our construction.
At the same time, we exploit the universal2 property of the HPS Ξ2 to finalise
the IND-CCA security in terms of dealing the decryption oracle.

In detail, we show that an algorithm S (i.e. simulator) can be constructed
to solve subset membership problems in polynomial time with non-negligible
probability if an adversary A can win the Game 1 with non-negligible probability,
querying the key generation oracle OKeyGen at most η−1 times and the decryption
oracle ODecrypt for at most q times. As explained in Sect. 4.2, it is meaningless to
obtain all secret keys of η users and this is the reason why we let the adversary
A query the key generation oracle at most η − 1 times. Although we limit the
maximum number of the key generation queries, we do not limit the maximum
number of the decryption queries to a function of η. Therefore, the proof is still
in a valid IND-CCA model.

Let (Λ = (X,L,W,R), x∗) be an instance of subset membership problems
challenged to the simulator S for distinguishing whether x∗ ∈ L or x∗ ∈ X \ L
where x∗ is sampled from L or X \ L with equal probability. To simulate the
Game 1, the simulator S runs the algorithm Setup as normal to generate a key
pair (PK,MSK) = ((A,B), (α,β)), and passes the public key PK to the adver-
sary A. Since the simulator S has the master secret key MSK, it can answer the
oracles OKeyGen and ODecrypt as normal using the master secret key MSK.

The adversary A is restricted to query the secret keys for x to OKeyGen such
that 〈x,y0〉 �= 〈x,y1〉 where y0 and y1 are the target vectors output by the
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adversary A in the next phase. In other words, the adversary A can only ask
the secret keys for x such that 〈x,y0 − y1〉 = 0.

At some point, the adversary A outputs two target vectors y0 and y1. Then
the simulator S randomly chooses b ∈R {0, 1}. After that, the simulator S com-
putes the target ciphertext C∗ = (x∗,C∗,π∗) where

C∗
i = yb,iχ + Ξ1.Hash(αi, x

∗), π∗
i = Ξ2.Hash(βi, (x∗,C∗)).

After receiving the target ciphertext C∗, the adversary A can continue to query
provided oracles as before with the restriction that A cannot query C∗ to the
decryption oracle ODecrypt. Eventually, the adversary A outputs a bit b′. If b = b′,
the simulator S outputs 1, indicating that A wins the Game 1. Otherwise, the
simulator S outputs 0. After that, the simulator S halts in order to complete
the simulation.

Let EL be the event that S outputs 1 conditioned on x∗ ∈ L, and EX\L

be the event that S outputs 1 conditioned on x∗ ∈ X \ L. Thus we have the
advantage AdvSMP

S of solving the subset membership problem.

AdvSMP
S = |Pr[1 ← S | x∗ ∈ L] − Pr[1 ← S | x∗ ∈ X \ L]|

=
∣∣Pr[EL] − Pr[EX\L]

∣∣ (1)

For the case of x∗ ∈ L, the simulation is perfect since the algorithms
(Ξ1.PHash, Ξ2.PHash) and (Ξ1.Hash, Ξ2.Hash) are equivalent. Thus we have

∣∣∣∣Pr[EL] − 1
2

∣∣∣∣ = AdvIND-CCA
A . (2)

For the case of x∗ ∈ X \ L, we modify the game to a new game such that
the simulator S rejects all ciphertexts C = (l,C,π) where l ∈ X \ L in the
decryption oracle ODecrypt in addition to those words, which cannot pass the
proof verification. Let Em be the event that S outputs 1 conditioned on x∗ ∈
X \ L in this modified game, and E⊥ be the event that l ∈ X \ L and 〈s,π〉 =
Ξ2.Hash(K2, (l,C)). In other words, E⊥ is the event that a ciphertext is rejected
in the modified game but accepted in the original game. Since the original game
and the modified game are identical until event E⊥ occurs, we have

∣∣Pr[Em] − Pr[EX\L]
∣∣ ≤ Pr[E⊥]. (3)

Lemma 1. The event E⊥ occurs in negligible probability as long as Ξ2 is a
universal2 HPS. More precisely, letting A query ODecrypt for at most q times, we
have a upper bound of the probability that E⊥ occurs.

Pr[E⊥] ≤ q · AdvUniversal2 (4)

Proof. Let C = (l,C,π) be a ciphertext submitted to the decryption oracle
ODecrypt.

– Suppose that (l,C) = (x∗,C∗), the adversary A tries to find a π �= π∗ such
that 〈s,π〉 = 〈s,π∗〉. Let π̂ = π − π∗ �= 0. Since s is independent from A’s
view, it is impossible to find a π̂ such that 〈s, π̂〉 = 0.
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– Suppose that (l,C) �= (x∗,C∗), the adversary A tries to find a π such that
〈s,π〉 = Ξ2.Hash(K2, (l,C)). Let π̂i = Ξ2.Hash(βi, (l,C)). Since

〈s,π〉 = Ξ2.Hash(K2, (l,C)) = Ξ2.Hash(〈s,β〉, (l,C))

=
η∑

i=1

siΞ2.Hash(βi, (l,C)) = 〈s, π̂〉

and s is independent from A’s view, we have 〈s,π〉 = 〈s, π̂〉 ⇐⇒ π = π̂. As
the scheme allows at most η users (i.e. A can query OKeyGen for at most η − 1
times), the adversary can get at most η − 1 pairs of (s, 〈s,β〉) where all s are
linearly independent. In the worst case, the vector β is collapsed into a space
of dimension 1 with size |K ′| but β is still uniformly distributed over that
space. Let ŝ ∈ Z

η
ρ such that ŝ is linearly independent with all s obtained by

A. Thus k = 〈ŝ,β〉 is independent from A’s view and uniformly distributed
over K ′. If A find a π such that π = π̂, we immediately have attacked the
universal2 property of Ξ2 that 〈ŝ,π〉 = Ξ2.Hash(k, (l,C)). This completes the
proof of Eq. (4).

Lemma 2. The hidden bit b is independent from A’s view that

Pr[Em] =
1
2

(5)

Proof. Thanks to the diversity property of Ξ1, there exists a r ∈ K such that
Ξ1.Hash(r, x) = χ and Ξ1.PKGen(r) = 0. Note that we do not need to calculate
r. Since χ �= 0, we have r �= 0. Let γ = r · (yb − y1−b) ∈ Kδ. Thus we have
Ξ1.Hash(γi, x

∗) = (yb,i − y1−b,i) · Ξ1.Hash(r, x∗) = yb,iχ − y1−b,iχ. Recall the
target ciphertext C∗ where C∗

i = yb,iχ + Ξ1.Hash(αi, x
∗). Although C∗ is a

ciphertext for yb, it can also be a ciphertext for y1−b that

C∗
i

= y1−b,iχ + Ξ1.Hash(αi + γi, x
∗) = y1−b,iχ + Ξ1.Hash(αi, x

∗) + Ξ1.Hash(γi, x
∗)

= y1−b,iχ + Ξ1.Hash(αi, x
∗) + yb,iχ − y1−b,iχ = yb,iχ + Ξ1.Hash(αi, x

∗).

Thus C∗ is a ciphertext of yb for α or y1−b for α+γ where α �= α+γ. Since the
adversary A can only request the secret keys for x such that 〈x,y0〉 = 〈x,y1〉,
we have

〈x,α + γ〉 = 〈x,α〉 + 〈x,γ〉 = 〈x,α〉 + 〈x, r · (yb − y1−b)〉 = 〈x,α〉
Hence, the adversary A cannot distinguish α and α + γ from generated keys.
Since PKGen(αi +γi) = PKGen(αi)+ (yb,i − y1−b,i) ·PKGen(r) = PKGen(αi), the
adversary A cannot distinguish α and α + γ from public keys. Therefore, the
hidden bit b is independent from A’s view.

Combining Eqs. (3)–(5), we have
∣∣∣∣Pr[EX\L] − 1

2

∣∣∣∣ ≤ q · AdvUniversal2 . (6)
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Combining Eqs. (1), (2) and (6), we have

AdvIND-CCA
A ≤ AdvSMP

S + q · AdvUniversal2 . (7)

From Eq. (7), we immediately have the theorem.

5 Instantiation from DDH

Definition 14 (Decisional Diffie-Hellman problem). Let G be a cyclic
group of prime order p, a, b ∈R Zp, and g, T ∈R G. Giving two probability
distributions DDDH = {(g, ga, gb, gab)} and Drand = {(g, ga, gb, T )}, there is an
algorithm A can distinguish DDDH and Drand with advantage:

AdvDDH
A = |Pr[1 ← A(D ∈R DDDH)] − Pr[1 ← A(D ∈R Drand)]|

Let g1 = g and g2 = ga. The Decisional Diffie-Hellman (DDH) problem is
to distinguish DDDH = {(g1, g2, gb

1, g
b
2)} and Drand = {(g1, g2, gb

1, T )}. In other
words, the problem is to decide whether logg1

X1 = logg2
X2 where X1,X2 ∈ G.

Obviously, the DDH problem is a subset membership problem where X = G
2,

L = (gr
1, g

r
2) ⊂ X and r ∈ Zp. We assume the DDH problem is hard. That is,

the advantage AdvDDH
A is negligible.

We recall the universal projective hash family proposed by Cramer and Shoup
[10] derived from a diverse group system based on the DDH problem. The key
space is K = Z

2
p. For the hash key k = (s1, s2) ∈ K, the projection key generation

is α(k) = gs1
1 gs2

2 ∈ S = Π = G. To compute the hash value of x = (X1,X2) ∈
X = G

2 with the hash key k, it computes Hk(x) = Xs1
1 Xs2

2 ∈ Π. To compute
the have value of x = (gw

1 , gw
2 ) ∈ L with the projection key α(k) and a witness

w ∈ W = Zp, it computes Hk(x) = α(k)w ∈ Π.
By applying Construction 2, we obtain a HPS Ξ1. From Theorems 1–3 and

|Π| = |Zp| = p, we have that Ξ1 has key linearity and hash linearity, and is
diverse. To ensure that the underlying group system is diverse, we show the
existence of φ (or equivalent secret key k). Let r ∈ Z

+
p and k = (r,−r logg2

g1).
For all x = (gw

1 , gw
2 ) ∈ L, we have Hk(x) = (gw

1 )r(gw
2 )−r logg2

g1 = g01 . For all
x = (gw1

1 , gw2
2 ) ∈ X \ L, we have Hk(x) = (gw1

1 )r(gw2
2 )−r logg2

g1 = g
r(w1−w2)
1 . To

simplify our instantiation, we choose r = 1 and x = (g21 , g2), and computes χ =
Ξ1.Hash(k, x) = g1. By applying Constructions 2 and 3 we obtain another HPS
Ξ2, which is universal2. From Theorem 2, we have that Ξ2 has hash linearity.
Note that we use a collision resistant hash function (CRHF) H : G2 ×G

δ → Zp

instead of an injective map Γ when applying Construction 3.
With Ξ1 and Ξ2, we apply Construction 4 to construct a functional encryp-

tion scheme for the inner product functionality F : Zδ
p × Z

δ
p → Zp.
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Construction 5. Our instantiation works as follows.

– (PK,MSK) ← Setup(1λ, 1δ, 1η):

H : G2 × G
δ → Zp, g1, g2 ∈R G.

For i = 1 . . . δ, αi = (αi,1, αi,2) ∈R Z
2
p, Ai = g

αi,1
1 g

αi,2
2 .

For i = 1 . . . η, βi = (βi,1, βi,2, βi,3, βi,4) ∈R Z
4
p,

Bi = (Bi,1, Bi,2) = (gβi,1
1 g

βi,2
2 , g

βi,3
1 g

βi,4
2 ).

return (PK,MSK) = ((A,B), (α,β)).
– SK ← KeyGen(MSK,x):

s ∈R Z
η
p, K1 = (K1,1,K1,2) =

(
δ∑

i=1

xiαi,1,

δ∑
i=1

xiαi,2

)

K2 = (K2,1,K2,2,K2,3,K2,4) =

(
η∑

i=1

siβi,1,

η∑
i=1

siβi,2,

η∑
i=1

siβi,3,

η∑
i=1

siβi,4

)

return SK = (x, s,K1,K2).
– C ← Encrypt(PK,y):

r ∈R Zp, l = (u1, u2) = (gr
1, g

r
2), For i = 1 . . . δ, Ci = gyi

1 · Ar
i

h = H(u1, u2, C1, . . . , Cδ), For i = 1 . . . η, πi = (Bi,1 · Bh
i,2)

r

return C = (l,C,π).
– D ← Decrypt(SK, C):

h = H(u1, u2, C1, . . . , Cδ),
η∏

i=1

πsi
i

?= u
K2,1+h·K2,3
1 u

K2,2+h·K2,4
2 , D∗ =

∏δ
i=1 Cxi

i

u
K1,1
1 u

K1,2
2

return D = logg1
D∗.

As mentioned in Sect. 4.2, we can decrypt D in an alternative manner instead
of calculating logg1

D∗ if |{D}| is polynomial-sized.

6 Conclusion

In this paper, we reviewed the hash proof system (HPS) introduced by [10] and
defined new properties of HPS. We found that the existing HPS constructions
by [10] have those new properties. As the main contribution of this paper, we
proposed an IND-CCA secure functional encryption for inner products, which
can be generically constructed from a diverse HPS with key linearity and hash
linearity, and a universal2 HPS with hash linearity. Moreover, we constructed a
concrete scheme from DDH assumption via our proposed generic construction.

One of our future work will be relaxing the scheme without limiting the
number of user who can decrypt. Another future work will be finding new HPS,
which has our defined properties, from other subset membership problems so that
we can construct new functional encryption schemes under new assumptions.
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