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Linear Encryption with Keyword Search

Shiwei Zhang(B), Guomin Yang, and Yi Mu

Centre for Computer and Information Security Research,
School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
{sz653,gyang,ymu}@uow.edu.au

Abstract. Nowadays an increasing amount of data stored in the public
cloud need to be searched remotely for fast accessing. For the sake of
privacy, the remote files are usually encrypted, which makes them dif-
ficult to be searched by remote servers. It is also harder to efficiently
share encrypted data in the cloud than those in plaintext. In this paper,
we develop a searchable encryption framework called Linear Encryp-
tion with Keyword Search (LEKS) that can semi-generically convert
some existing encryption schemes meeting our Linear Encryption Tem-
plate (LET) to be searchable without re-encrypting all the data. For
allowing easy data sharing, we convert a Key-Policy Attributed-Based
Encryption (KP-ABE) scheme to a Key-Policy Attributed-Based Key-
word Search (KP-ABKS) scheme as a concrete instance of our LEKS
framework, making both the encrypted data and the search functional-
ity under fine-grained access control. Notably, the resulting KP-ABKS
is the first proven secure ABKS scheme with IND-sCKA security in the
random oracle model, assuming the hardness of the �-DCBDH problem
derived from the (P, f)-DBDH problem family.

Keywords: Searchable encryption · Keyword search · Cloud security

1 Introduction

Cloud computing [14] provides on-demand computing resources that are acces-
sible via the Internet, including computing power and data storage. With the
convenient cloud services, users can outsource their computing resources to the
cloud, and access them through terminals with low computing capabilities, such
as mobile devices. Usually, those terminals also have low network connectivity
due to the transmission technology, access cost, and other factors.

In terms of data storage, one important function is data search. Since all
the user data are stored on the cloud server, users have to send search queries
to the server to search for the data containing certain keywords. However, the
normal search operation for plaintext is no longer working when data privacy is
considered, since all the data are encrypted and cannot be read by the server.

To perform search on encrypted data, it is impractical for the user to do
the search locally with all the data downloaded from the server, due to the high
c© Springer International Publishing Switzerland 2016
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demand on the bandwidth. It is also impractical to give the server the user secret
key due to privacy concerns. Thus searchable encryption has been introduced
such that the search operation is performed by the server, but the server cannot
get any meaningful information from the search query or the encrypted data.
In searchable encryption, all the data files and their associated keywords are
encrypted. To search for the data with certain keyword, the user generates a
trapdoor for the keyword and enquires the server with the trapdoor. The server
searches the whole database to locate the data where the encrypted keyword
matches the keyword embedded in the trapdoor. During the searching process,
the server only knows whether an encrypted keyword matches the user trapdoor
or not, and nothing else. After that, the server returns the search result to the
user who can download the ciphertexts and decrypt the data.

In Public-key Encryption with Keyword Search (PEKS) [8], the data and
the keywords are encrypted for only one user (i.e., the intended receiver of the
data). In contrast, data can be encrypted with certain attributes in Attribute-
Based Encryption (ABE) [16]. For instance, Alice can encrypt some data with
attributes “full-time” and “student”. Later, any user can decrypt the resulting
ciphertext if the attributes in the ciphertext match the policy associated with the
user. Thus Bob associated with a policy “(full time AND student) OR staff” can
decrypt the above ciphertext. The corresponding searchable encryption for ABE
is named Attribute-Based Keyword Search (ABKS) [19,21]. As in ABE, Alice
can encrypt the data and its associated keywords using certain attributes. After
uploading the ciphertexts to the server, Bob can do the search and decryption
since the attributes used by Alice in the encryption matches Bob’s policy. This
feature is very important in the cloud environment where a user can share data
with multiple users by encrypting the data only once. However, to the best of
our knowledge, no ABKS scheme proposed in the literature is proven secure.
Hence, one of our goals is to construct ABKS schemes with provable security.

In addition, keyword search functionality is usually associated with an
encryption scheme where both the data and the keywords are encrypted for
the same receiver(s). This paper also aims to provide a universal construction
of searchable encryption schemes from some existing encryption schemes. This
enables us to add a compatible keyword search functionality to an existing cryp-
tosystem without re-encrypting all the data.

1.1 Related Work

Diffie and Hellman introduced the notion of Public-Key Encryption (PKE) [11]
where Alice encrypts a message with Bob’s public key, and Bob decrypts the
ciphertext with his secret key. Based on the idea of using the user identity as
the public key [17], Boneh and Franklin proposed a practical Identity-Based
Encryption (IBE) scheme [9] where Alice encrypts the message with Bob’s iden-
tity. In 2005, Sahai and Waters introduced Fuzzy Identity-Based Encryption
which can be treated as the first Attribute-Based Encryption (ABE) [16], an
instance of Function Encryption [20]. In ABE, the decryption keys of the users
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and the ciphertexts are associated with access policies and attributes, respec-
tively. If and only if the attributes match the policy, the ciphertext can be
successfully decrypted. Depending on how the identity and the ciphertext are
associated, Attribute-Based Encryption schemes are classified into Key-Policy
ABE (KP-ABE) [3,12,15,16] and Ciphertext-Policy ABE (CP-ABE) [4]. In KP-
ABE, Bob’s secret key is associated with a policy. After receiving the ciphertext
encrypted with some attributes from Alice, Bob can decrypt it if and only if
the attributes match his policy. In CP-ABE, the ciphertexts are associated with
policies, and the secret keys are associated with attributes.

To enable the search functionality for encrypted data, various searchable
encryption schemes [1,8,10,13,19,21] have been proposed under different set-
tings. Boneh et al. [8] introduced PEKS, which is used with a conventional public
key encryption scheme. Later, Identity-Based Keyword Search (IBKS) schemes
were also proposed [1,10]. Recently, due to the popularity of ABE, there have
been some research works on ABKS [19,21]. In addition, there are also keyword
search schemes for other encryption variants, such as Broadcast Encryption [2].

To the best of our knowledge, [19,21] are the only ABKS schemes proposed
in the literature. However, neither of those schemes is proven secure. In partic-
ular, after analysing the ABKS scheme in [19], we found the scheme is flawed
where an adversary can always distinguish keywords from a ciphertext by testing

e(D̂, T
1

H(w
μ′ )

i′ ) ?= e(g,Di′). For the KP-ABKS scheme in [21], the security proof
is invalid (see Sect. 4.3) and thus the security of this scheme remains unknown.
For the CP-ABKS scheme in [21], no formal security proof has been provided.

In terms of provable security, it depends on the hardness of some computa-
tional problems (e.g. Discrete Logarithm Problem (DLP), Diffie-Hellman Prob-
lem (DHP) [11], etc.). Shoup [18] introduced the generic group model which was
used to obtain the complexity lower bound regarding the hardness of DLP and
DHP. Later, dealing with bilinear maps, Boneh et al. [6] introduced the generic
bilinear group model and the general Diffie-Hellman Exponent Problem. Besides,
the generic bilinear group model is also used in [5,7] for analysing the Decisional
Linear (DLIN) Problem and q-Strong Diffie-Hellman (q-SDH) Problem.

1.2 Our Contribution

In this paper, we introduce a new problem family named Decisional Bilinear
(P, f)-Diffie-Hellman problem ((P, f)-DBDH problem, for short). We prove the
(P, f)-DBDH problem is computationally hard in generic bilinear group model if
the polynomial f is not dependent on the polynomial set P . Based on the (P, f)-
DBDH problem, we derive a hard computational problem named Decisional �-
Combined Bilinear Diffie-Hellman problem (�-DCBDH problem).

As the main contribution of this work, we introduce two new notions named
Linear Encryption Template (LET) and Linear Encryption with Keyword Search
(LEKS), and provide their formal definitions. LET can model different asym-
metric encryption schemes, including but not limited to PKE, IBE and ABE
schemes, which have the property of linearity. The linearity property requires
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a sub-algorithm e(g, g)αs ← D(SK,C1, . . . ) in the decryption algorithm where
SK is the secret key involved, (C1, . . . ) are the ciphertext components and for
all t ∈ Zp, D(SKt, C1, . . . ) = D(SK,C1, . . . )t. Given an encryption fitting LET,
we provide a semi-generic conversion to a LEKS scheme where the construc-
tion is generic but we require security proofs for individual conversions. We also
define two security models for LEKS schemes: Indistinguishability under Adap-
tive Chosen Keyword Attack (IND-CKA) and its weaker Selective-ID version
(IND-sCKA). With LET and our conversion from LET to LEKS, we can con-
struct PEKS from PKE, IBKS from IBE, ABKS from ABE, and so on.

To illustrate the feasibility of our semi-generic framework, we give an instance
of LET and then apply our conversion to procude a LEKS scheme. We first show
that a variant [15] of Goyal et al.’s ABE scheme [12] fits LET by proving it has
the property of linearity. Then we apply our LEKS conversion to convert the
KP-ABE scheme into a KP-ABKS scheme. After that, we prove the resulting
KP-ABKS scheme is IND-sCKA secure in the random oracle model under �-
DCBDH assumption. It is worth noting that to the best of our knowledge, our
converted KP-ABKS scheme is the first proven secure KP-ABKS scheme.

1.3 Paper Organisation

The rest of this paper is organised as follows. Beginning with Sect. 2, we define
(P, f)-DBDH problem family and �-DCBDH problem, and prove the hardness
of those problems. In Sect. 3, we define LEKS and its security model, followed
by the definition of LET and the LEKS conversion from LET. After that, an
instance of LEKS conversion is given in Sect. 4, converting a KP-ABE scheme to
a KP-ABKS scheme. The resulted KP-ABKS scheme is proven secure in Sect. 4.3
under the security model defined in Sect. 3.2. Finally, the conclusion is addressed
in Sect. 5.

2 Decisional Diffie-Hellman Problem Family

In this paper, we use the same bilinear map e : G1 × G1 → G2 as in [9] for
simplicity where G1, G2 are multiplicative cyclic groups of prime order p and g
is a generator of G1.

Definition 1. Let P = (p1, . . . , ps) ∈ Fp[X1, . . . , Xn]s be a s-tuples of n-variate
polynomial over Fp. We define that a polynomial f ∈ Fp[X1, . . . , Xn]s is depen-
dent on P if exists s2 + 2s constants ai,j, bk and cl such that

f =

s∑

i=1

s∑

j=1

ai,jpipj

s∑

k=1

bkpk

+
s∑

l=1

clpl or f =
s∑

l=1

clpl ±
√
√
√
√

s∑

i=1

s∑

j=1

ai,jpipj
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Equivalently, f is dependent on P if exists s2 + s + 1 constants ai,j, bk and c

cf2 +
s∑

k=1

bkpkf +
s∑

i=1

s∑

j=1

ai,jpipj = 0

where at least one of bk or c is non-zero.

Let gP (x1,...,xn) = (gp1(x1,...,xn), . . . , gps(x1,...,xn)), df denote the total degree of
f ∈ Fp[X1, . . . , Xn], and dP = max{df | f ∈ P ∈ Fp[X1, . . . , Xn]s}. We present
the family of Diffie-Hellman problems as follows.

Definition 2 (Decisional Bilinear (P, f)-Diffie-Hellman problem). Let
P = (p1, . . . , ps) ∈ Fp[X1, . . . , Xn]s be a s-tuples of n-variate polyno-
mial over Fp, f ∈ Fp[X1, . . . , Xn] be a n-variate polynomial over Fp. Let
(x1, . . . , xn) ∈R Z

n
p , and Z ∈R G1. Giving two probability distributions Dτ =

(gP (x1,...,xn), gf(x1,...,xn)) and Dρ = (gP (x1,...,xn), Z), there is an algorithm A can
distinguish Dτ and Dρ with advantage:

Adv
(P,f)−DBDH
A =

1
2

|Pr [1 ← A(D ∈R Dτ )] − Pr [1 ← A(D ∈R Dρ)]|

where D ∈R D represents that D is uniformly and independently chosen from
D. Alternatively, the problem can be represented as

b ∈R {0, 1}, Zb = gf(x1,...,xn), Z1−b ∈R G1,

Adv
(P,f)−DBDH
A =

∣
∣
∣
∣Pr

[
b = b′ ← A(gP (x1,...,xn), Z0, Z1)

]
− 1

2

∣
∣
∣
∣

As from the definition above, Decisional Bilinear (P, f)-Diffie-Hellman ((P, f)-
DBDH in short) problem family is an enhanced DDH problem on the group G1

where the adversary A is now able to do bilinear pairing operations on G1. The
(P, f)-DBDH problem family is computational hard if and only if the advantage
Adv

(P,f)−DBDH
A is negligible. Since there is no known proof of the hardness of

this problem family, we show the complexity lower bound in the generic bilinear
group model [6]. As in [6], we emphasise that a lower bound in generic groups
does not imply a lower bound in any specific group.

Theorem 1. Let ε1, ε2 : Z
+
p → {0, 1}m be two random encodings (injec-

tive maps) where G1 = {ε1(x) | x ∈ Z
+
p }, G2 = {ε2(x) | x ∈ Z

+
p }. Let

d = 2 · max(dP , df ). If f is not dependent on P , the lower bound of the
advantage Adv(P,f)−DBDH of solving the (P, f)-DBDH problem (Definition 2)
for the adversary A is stated as follows with at most q1,×, q2,× queries to the
group operation oracles O1

×, O2
× and qe queries to the bilinear pairing oracle

Oe : ε1 × ε1 → ε2.

Adv
(P,f)−DBDH
A ≤ (q1,× + q2,× + qe + s + 2)2d

2p
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Our schemes are based on a dynamic version of the above (P, f)-DBDH
problem. To describe and show the hardness of the problem, we begin with the
following lemma.

Lemma 1. Let P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s be two
s-tuple of n-variate polynomials over Fp, f ∈ Fp[X1, . . . , Xn], O = (P,Q) =
(p1, . . . , ps, q1, . . . , qs) be a 2s-tuple of n-variate polynomial. Let T be a variate,
R = (P,QT ) = (p1, . . . , ps, q1T, . . . , qsT ) = (r1, . . . , r2s) be a 2s-tuple of (n + 1)-
variate polynomial. If f is not dependent on O, f is not dependent on R.

Lemma 2. Let P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s be two
s-tuple of n-variate polynomials over Fp, f ∈ Fp[X1, . . . , Xn], O = (P,Q) =
(p1, . . . , ps, q1, . . . , qs) be a 2s-tuple of n-variate polynomial. Let T1, . . . , T� be �
variates, R = (P,QT1, . . . , QT�) = (p1, . . . , ps, q1T1, . . . , qsT1, . . . , q1T�, . . . , qsT�)
be an (� + 1)s-tuple of (n + �)-variate polynomial. If f is not dependent on O, f
is not dependent on R.

Definition 3 (Decisional �-CombinedBilinearDiffie-Hellmanproblem).
Let a, b, c, d, e, f1, . . . , f� ∈R Zp, h = ge, and Z ∈R G1. Giving two probability dis-
tributions DDCBDH = (g, ga, gb, h, hc, hd, {(gfi , gafi , hfi , hafi)}i=1...�, g

abhcd) and
Dρ = (g, ga, gb, h, hc, hd, {(gfi , gafi , hfi , hafi)}i=1...�, Z), there is an algorithm A
can distinguish DDCBDH and Dρ with advantage:

Adv�-DCBDH
A =

1
2

|Pr [1 ← A(D ∈R DDCBDH)] − Pr [1 ← A(D ∈R Dρ)]|

Alternatively, the problem can be represented as

b ∈R {0, 1}, Zb = gabhcd, Z1−b ∈R G1, Adv�-DCBDH
A =

∣
∣
∣
∣Pr

[
b = b′ ← A(g, ga, gb, h, hc, hd, {(gfi , gafi , hfi , hafi)}i=1...�, Z0, Z1)

] − 1
2

∣
∣
∣
∣

The Decisional �-Combined Bilinear Diffie-Hellman (�-DCBDH) problem belongs
to the (P, f)-DBDH problem family. We prove that the �-DCBDH problem is
hard by showing the advantage Adv�-DCBDH

A is negligible.

Theorem 2. The lower bound of the advantage Adv�-DCBDH
A of solving the

�-DCBDH problem (Definition 3) for the adversary A is stated as follows with
at most q queries to group operations and bilinear pairing operations.

Adv�-DCBDH
A ≤ 3 · (q + 4� + 8)2

p

Due to the space limitation, the proofs of the above Theorems and Lemmas will
be provided in the full version of the paper.



Linear Encryption with Keyword Search 193

3 Linear Encryption with Keyword Search

3.1 Definition

In general, a searchable encryption scheme involves three roles and consists of
two encryption parts. In detail, the roles are contributor, server and user, and
the encryption parts are the message encryption part and the keyword encryp-
tion part. A general purpose searchable encryption scheme works as follows.
Alice, as a contributor, encrypts a file using the message encryption scheme
and the related keywords using the keyword encryption part for the target users,
including Bob. Let header denote the keyword ciphertext, and payload denote
the file ciphertext. Since a file may be associated with multiple keywords, Alice
may generate multiple headers for the payload. After that, Alice assembles the
headers and the payload as a single ciphertext, and sends the ciphertext to the
server. Bob, as one of the target user, can ask the server to search the cipher-
text with certain keywords. To do secured search, Bob generates a trapdoor
for each keyword to be searched, and then uploads the trapdoors to the server
via a secure communication channel. Once the server receives the query with
the trapdoors from Bob, the server begins to test whether the keywords in the
headers match those in the trapdoors. Note that the keywords are not visible to
the server, and the headers and trapdoors match only when the corresponding
keywords are the same and Bob is one of the intended users that the headers are
encrypted for. After searching for all related ciphertexts, the server allows Bob to
download the matching payloads. Finally, Bob can download the payloads with
matching headers. In addition, a trusted authority is required in the identity
or attribute-based setting.

Formally, we define Linear Encryption with Keyword Search as follows, focus-
ing on the keyword encryption part in a general searchable encryption scheme.

Definition 4 (Linear Encryption with Keyword Search). A linear
encryption with keyword search (LEKS) scheme, involving the contributors, the
servers, the users and the trusted authority, consists of the following five (prob-
abilistic) polynomial time algorithms:

– (MSK,PK) ← Setup(1λ): The system setup algorithm run by the trusted
authority takes a security parameter 1λ, and outputs a pair of master secret
key MSK and public key PK for the trusted authority.

– SK ← KeyGen(MSK, IS): The user key generation algorithm run by the
trusted authority takes a master secret key MSK and a user identity IS, and
generates a user secret key SK for the user associated with that identity.

– C ← LEKS(PK, IC ,W ): The keyword encryption algorithm run by the con-
tributor takes a public key PK, a target identity IC and a keyword W , and
outputs a ciphertext C of the keyword W . To maximum the generality, IC is
viewed as a set that the user IS can access the ciphertext only if IS ∈ IC . It
is equivalent to F (IS , IC) = 1 with a predicate function F .

– T ← Trapdoor(SK,W ): The trapdoor generation algorithm run by the user
takes a secret key SK and a keyword W , and generates a trapdoor T of the
keyword W .



194 S. Zhang et al.

– 1/0 ← Test(C, T ): The deterministic test algorithm run by the server takes a
ciphertext C ← LEKS(PK, IC ,W ) and a trapdoor T ← Trapdoor(SK,W )
where SK ← KeyGen(MSK, IS), and outputs

{
1 if W = W ′ ∧ IS ∈ IC ,

0 otherwise.

In the public key scenario where users are identified using public keys generated
by themselves, the trusted authority is not required and the algorithm KeyGen
is not used. Instead, the Setup algorithm is run by individual users, and outputs
a pair of secret key SK and public key PK for that user. In addition, the scheme
is required to be correct.

Definition 5 (Correctness). A LEKS scheme is correct if the following state-
ment is always true:

∀(MSK,PK) ← Setup(1λ), ∀Ic, ∀W ∈ {0, 1}∗, ∀C ← LEKS(PK, Ic,W ),
∀Is ∈ Ic,∀SK ← KeyGen(MSK, Is),∀T ← Trapdoor(SK,W ), T est(C, T ) = 1.

3.2 Security Model

In LEKS, we consider that the server is honest but curious. In addition, we do
not consider the keyword guessing attack (KGA), since the server can always
generate ciphertexts with certain keywords to test with the trapdoor legitimately.
However, we can prevent anyone from extracting the keyword directly from the
trapdoor by applying an one-way function such as a preimage-resistant hash
function.

We present two security games: Indistinguishability under Adaptive Chosen
Keyword Attack (IND-CKA) and its weaker Selective-ID version (IND-sCKA).
We first define the IND-sCKA game (Game 1) where an adaptive adversary A
tries to distinguish a ciphertext generated from either keywords W0 or W1:

1. A selects a target identity set IT and submits it to the challenger S.
2. S runs Setup(1λ) to generate a key pair (MSK,PK) and passes PK to A.
3. A can adaptively ask S for the secret key SK of the user with identity I by

querying the key generation oracle OKeyGen. At the same point, S records I
in the identity list I. The restriction is that I must not be in IT .

4. A can adaptively ask S for the trapdoor T of the user identity I with the
keyword W by querying the trapdoor generation oracle OTrapdoor. If I is not
in IT , it can be resolved that A queries the oracle OKeyGen to obtain the
secret key SK of I and further obtains the trapdoor T ← Trapdoor(SK,W ).
Otherwise, S runs the algorithm KeyGen and then the algorithm Trapdoor
to get the trapdoor, and passes it to A. At the same point, S records the
queried keyword W in the keyword list W.

5. At some point, A outputs two keywords W0 and W1 to be challenged where
those two keywords must not be in the keyword list W.



Linear Encryption with Keyword Search 195

6. S randomly selects b to be either 0 or 1 uniformly. Then S generates a cipher-
text C ← LEKS(PK, IT ,Wb) and passes it to A.

7. A can continue to query all oracles with the same restriction. In addition, A
cannot query the target keywords W0 and W1 to the oracle OTrapdoor.

8. Eventually, A outputs a bit b′. A wins the game if b = b′.

We define the advantage of winning Game 1 as follows

AdvIND-sCKA
A =

∣
∣
∣
∣Pr [b = b′ ∧ I ∩ IT = ∅ ∧ W0,W1 /∈ W] − 1

2

∣
∣
∣
∣

Definition 6 (IND-sCKA Security). A LEKS scheme is Indistinguishable
under Selective-ID Adaptive Chosen Keyword Attack if AdvIND-sCKA

A is a negli-
gible function for all adversary A winning the Game 1 in polynomial time.

Next, we define the IND-CKA game (Game 2), which is similar as the IND-
sCKA game. The difference is that A is given the public key PK in IND-CKA
before submitting the target identity set IT .

Definition 7 (IND-CKA Security). A LEKS scheme is Indistinguishable
under Adaptive Chosen Keyword Attack if AdvIND-CKA

A is a negligible function
for all adversary A winning the Game 2 in polynomial time.

Gameλ
IND-sCKA :

I, W ← ∅, IT ← A, (MSK, PK) ← Setup(1λ),

(W0, W1) ← AOKeyGen,OT rapdoor (PK), b ∈R {0, 1},

C ← LEKS(PK, IT , Wb), b′ ← AOKeyGen,OT rapdoor (C)

OKeyGen : I ← I ∪ {I}, return SK ← KeyGen(MSK, I)

OTrapdoor : W ← W ∪ {W}, return T ← Trapdoor(SK, W )

AdvIND-sCKA
A =

∣∣∣∣Pr
[
b = b′ ∧ I ∩ IT = ∅ ∧ W0, W1 /∈ W]− 1

2

∣∣∣∣
Game 1: IND-sCKA

Gameλ
IND-CKA :

I, W ← ∅, (MSK, PK) ← Setup(1λ),

(IT , W0, W1) ← AOKeyGen,OT rapdoor (PK), b ∈R {0, 1},

C ← LEKS(PK, IT , Wb), b′ ← AOKeyGen,OT rapdoor (C)

AdvIND-CKA
A =

∣∣∣∣Pr
[
b = b′ ∧ I ∩ IT = ∅ ∧ W0, W1 /∈ W]− 1

2

∣∣∣∣
Game 2: IND-CKA
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3.3 Linear Encryption Template

In this subsection, we define the Linear Encryption Template (LET). Informally,
a LET models an asymmetric encryption scheme, consisting of the senders, the
recipients and the trusted authority. Alice, as the recipient, gets her secret
key from the trusted authority using her identity where her public key is her
identity. If LET is modelling a PKE scheme, Alice’s secret/public key pair is
generated by herself, and the trusted authority is not required. To securely
send a message to a set of recipients, including Alice, the sender Bob encrypts
the message into a ciphertext, and sends it to Alice. Once Alice receives the
ciphertext, she can decrypts and obtains the original message if and only if she
is one of the target recipients. Furthermore, if an encryption scheme fits LET, we
can use it to construct the corresponding LEKS scheme in Sect. 3.4. Formally,
we describe the definition of Linear Encryption Template as follows.

Definition 8 (Linear Encryption Template). A linear encryption template,
involving the senders, the recipients, and the trusted authority, consists of the
following four (probabilistic) polynomial algorithms:

– (MSK,PK) ← Setup(params, α): The system setup algorithm run by the
trusted authority takes a set of system parameters, such as the description
of groups, security parameters and randomnesses, and it reuses these para-
meters. The algorithm also takes a component α, which is used to create the
ciphertext. The output of this algorithm is a pair of master secret key MSK
and public key PK of the trusted authority.

– SK ← KeyGen(MSK, IS): The user key generation algorithm run by the
trusted authority takes a master secret key MSK and a user identity IS, and
generates a user secret key SK for the user associated with that identity.

– C ← Encrypt(PK, IC ,M, s): The encryption algorithm run by the sender
takes a public key PK, a target identity set IC , a message M and a ran-
domness s, and outputs a ciphertext C of the message M . The randomness s
is used to bind the ciphertext parts in C and further to bind other ciphertext
parts when constructing LEKS schemes. It is required that the ciphertext must
be in the form of C = (C0, C1, . . . ) where C0 = M · e(g, g)αs.

– M ← Decrypt(SK,C): The deterministic decryption algorithm run by the
recipient takes a secret key SK and a ciphertext C, and outputs the original
message M . The decryption process is required to be two steps. The first step
is to run the sub-decryption algorithm D to get e(g, g)αs ← D(SK,C1, . . . ).
Then the second step is to extract the message M = C0

e(g,g)αs . Importantly, the
sub algorithm D is required to have linearity:

∀t ∈ Zp, D(SKt, C1, . . . ) = D(SK,C1, . . . )t

If SK consists multiple elements that SK = (SK1, SK2, . . . ), the term SKt

denotes (SKt
1, SKt

2, . . . ).
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If there is no trusted authority that users generate their key pairs by themselves,
the algorithm KeyGen is not used and the algorithm Setup is run by the user,
outputing a pair of user secret key SK and public key SK. In addition, the
scheme is required to be correct.

Definition 9 (Correctness). A LET scheme is correct if the following state-
ment is always true:

∀(MSK,PK) ← Setup(params, α),∀Ic,∀Is ∈ Ic,∀SK ← KeyGen(MSK, Is),
∀M ∈ G2, ∀s ∈ Zp, ∀C ← Encrypt(PK, Ic,M, s), Decrypt(SK,C) = M.

3.4 Keyword Search from Linear Encryption Template

In this subsection, we build our LEKS scheme with from a LET scheme as the
keyword encryption part. To construct a fully searchable encryption scheme, we
can reuse the LET scheme as the message encryption part, and combine with
the LEKS scheme. Alternatively, we also can use other encryption schemes as
the message encryption part. The main idea of the construction is to use the
LET part for authentication and combine it with a keyword equality test with
the same randomness. Let Π = (Setup,KeyGen,Encrypt,Decrypt) be a LET
modelled encryption scheme. Our LEKS scheme works as follows.

– (MSK,PK) ← Setup(1λ): Given a security parameter 1λ, the algorithm
generates two groups G1, G2 of prime order p, and specifies a bilinear map
e : G1 × G1 → G2. The algorithm also selects a random generator g of G1,
and a preimage resistant hash function H : {0, 1}∗ → G1, which may be mod-
elled as an random oracle. After that, the algorithm chooses two randomness
x1, x2 ∈R Z

+
p , and calculates g1 = gx1 and g2 = gx2 . Then the algorithm packs

all above elements into params, sets α = x1x2, and passes to the algorithm
Π.Setup to obtain the key pair Π.MSK and Π.PK. Finally, the algorithm
keeps the master secret key MSK = Π.MSK, and publishes the public key
PK = (G1,G2, e, g, g1, g2,Π.PK).

G1 = 〈g〉, e : G1 × G1 → G2, H : {0, 1}∗ → G1, x1, x2 ∈R Z
+
p ,

g1 = gx1 , g2 = gx2 , params = (G1,G2, e, g,H, x1, x2),
(Π.MSK,Π.PK) ← Π.Setup(params, x1x1)

return (MSK,PK) = (Π.MSK, (G1,G2, e, g, g1, g2,H,Π.PK)).
– SK ← KeyGen(MSK, IS): For key generation, the algorithm Π.KeyGen is

directly invoked. return SK ← Π.KeyGen(MSK, IS).
– C ← LEKS(PK, IC ,W ): To encrypt a keyword W for a target identity set

IC , the algorithm chooses two randomness r1, r2 ∈R Z
+
p . Then it computes

C ′
1 = gr2

2 H(W )r1 and C ′
2 = gr1

1 to encrypt the keyword W . After that, the
algorithm invokes Π.Encrypt with r2 to get the ciphertext (C0, C1, . . . ) to
assure the target identity set IC . Finally, the algorithm assembles two parts
together C = (C ′

1, C
′
2, C1, . . . ) as the full ciphertext bound using r2 where
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C0 = M · e(g, g)x1x2r2 is dropped. Since C0 is not used in C, we can safely
setting the message M to 0 when invoking Π.Encrypt.

r1, r2 ∈R Z
+
p , C ′

1 = gr2
2 H(W )r1 , C ′

2 = gr1
1

(C0, C1, . . . ) ← Π.Encrypt(PK, IC , 0, r2)

return C = (C ′
1, C

′
2, C1, . . . ).

– T ← Trapdoor(SK,W ): To generate a trapdoor of the keyword W , the algo-
rithm selects a randomness s ∈R Z

+
p . Then it calculates T = (T1, T2, T3)

where T1 = gs
1, T2 = H(W )s and T3 = SKs. For SKs, the operation works

the same as in Definition 8.

s ∈R Z
+
p , T1 = gs

1, T2 = H(W )s, T3 = SKs

return T = (T1, T2, T3).
– 1/0 ← Test(C, T ): For equality tests of both the keyword and the identity,

the algorithm tests the equality of the following return statement.
return e(C ′

1, T1)/e(C ′
2, T2)

?= Π.D(T3, C1, . . . ).

Theorem 3. The proposed conversion from the LET scheme to the LEKS
scheme is correct if the corresponding encryption scheme modelled by LET is
correct.

Proof. To verify, we calculate the left hand side of the test equation first.

E1 =
e(C ′

1, T1)
e(C ′

2, T2)
=

e(gr2
2 H(W )r1 , gs

1)
e(gr1

1 ,H(W )s)
=

e(gr2
2 , gs

1) · e(H(W )r1 , gs
1)

e(gr1
1 ,H(W )s)

= e(g1, g2)r2s

Then we calculate the right hand side of the test equation.

E2 = Π.D(T3, C1, . . . ) = Π.D(SKs, C1, . . . ) = Π.D(SK,C1, . . . )s

= e(g, g)x1x2r2s = e(g1, g2)r2s

As E1 = E2, the correctness is proved.

However, we are uncertain about the security of the above construction,
since some components are shared outside the encryption Π that may break
the security of Π in its original model. Therefore, we require individual security
proof for each conversion to ensure the security.

4 Key-Policy Attribute-Based Keyword Search

In this section, we show a useful instance of our LEKS conversion by converting
a KP-ABE into a KP-ABKS scheme. We starts with an ABE scheme [15] which
is a variant of Goyal et al.’s scheme [12] while the function T defined in [12] is
replaced with a random oracle. Then we convert it into a LEKS scheme by the
method in Sect. 3.4. Finally, we prove the resulted LEKS scheme is IND-sCKA
secure in random oracle model.
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4.1 Base Scheme

The ABE scheme [15] modelled by LET works as follows.

– (MSK,PK) ← Setup(params, α): The system setup algorithm reuses the
parameters params, g1 = gx1 , and g2 = gx2 . The master secret key is y =
x1. Since the function T is replaced with a random oracle, the algorithm is
required to choose a cryptographic hash function H : {0, 1}∗ → G1. Return
(MSK,PK) = (x1, (g1, g2,H)).

– SK ← KeyGen(MSK, IS): In KP-ABE, the user identity set IS is the policy
modelled as an access tree T (details in [12]). The algorithm chooses a random
polynomial qx for each non-leaf node x ∈ T in a top-down manner. For each
non-leaf node x, the degree dx of the polynomial qx is dx = kx − 1 where
kx is the threshold value of that node. For the root node, the algorithm sets
qroot(0) = x1. For other nodes, the algorithm sets qx(0) = qparent(x)(index(x)).
With polynomials for the access tree T is decided, the algorithm generates the
secret key components for the user. For each leaf node x, the algorithm chooses
a random number rx ∈R Z

+
p , and calculates Dx = g

qx(0)
2 H(attr(x))rx , Rx =

grx . Return SK = (T , {(Dx, Rx)}x∈leaves(T )).
– C ← Encrypt(PK, IC ,M, t): In KP-ABE, the target identity set IC is the

attributes γ. To encrypt, the algorithm calculates C0 = M ·e(g1, g2)t, C1 = gt,
C2 = γ. For each attribute attri ∈ γ, the algorithm computes Ci = H(attri)t.
As required by LET, we note that C0 = M · e(g1, g2)t = e(gx1 , gx2)t =
e(g, g)x1x2t = e(g, g)αt. Return C = (C0, C1, C2, {Ci}attri∈γ).

– M ← Decrypt(SK,C): At first, the algorithm checks whether T (γ) = 1 or
not. If the attributes do not match the policy that T (γ) = 0, the algorithm
returns ⊥. Otherwise, the algorithm proceeds the sub-algorithm D as follows.
For those matching attributes attri = attr(x), where attri ∈ γ and leaf node
x ∈ T , the algorithm can decrypt that node by calculating

Fx =
e(Dx, C1)
e(Rx, Ci)

=
e(gqx(0)

2 H(attr(x))rx , gt)
e(grx ,H(attri)t)

= e(g, g2)t·qx(0)

Then the algorithm can decrypt the non-leaf node x ∈ T by using polynomial
interpolation. Let Sx be the child set of the node x.

Fx =
∏

z∈Sx

F
Δi,Sx (0)
z =

∏

z∈Sx

(
e(g, g2)t·qz(0)

)Δi,Sx (0)

= e(g, g2)t·∑z∈Sx
qz(0)·Δi,Sx (0) = e(g, g2)t·qx(0)

Since T (γ) = 1, the algorithm can decrypt the root node that

Froot = e(g, g2)t·qx(0) = e(g, g2)x1t = e(g, g)x1x2t = e(g, g)αt

The algorithm sets Froot as the output of sub-algorithm D. Finally, the
algorithm computes the message M = C0/Froot and returns M .
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The correctness has been shown in the description of the decryption algorithm.
We also show that the above scheme has the linearity property required by LET.

Theorem 4 (Correctness). The above KP-ABE scheme is correct.

Theorem 5 (Linearity). The sub-algorithm D has linearity that

∀s ∈ Zp,D(SKs, C1, C2, {Ci}attri∈γ) = D(SK,C1, C2, {Ci}attri∈γ)s

Proof. For the decryption of leaf nodes, the computation becomes

F ′
x =

e(Ds
x, C1)

e(Rs
x, Ci)

=
(

e(Dx, C1)
e(Rx, Ci)

)s

= F s
x .

For the decryption of non-leaf nodes, the computation becomes

F ′
x =

∏

z∈Sx

F ′
z
Δi,Sx (0) =

∏

z∈Sx

F s
z

Δi,Sx (0) =

(
∏

z∈Sx

F
Δi,Sx (0)
z

)s

= F s
x

Thus F ′
root = F s

root.

4.2 Construction from the Base Scheme

In this section, we apply the LEKS conversion as follows with some key notes.

– (MSK,PK) ← Setup(1λ): Although the hash functions in the LEKS and
the KP-ABE schemes have the same domain and codomain, they cannot be
merged since they will be programmed into two different random oracles.

G1 = 〈g〉, e : G1 × G1 → G2, H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G1,
x1, x2 ∈R Z

+
p , g1 = gx1 , g2 = gx2

return (MSK,PK) = (x1, (G1,G2, e, g, g1, g2,H1,H2)).
– SK ← KeyGen(MSK, IS):

∀x ∈ leaves(T ), rx ∈R Z
+
p , Dx = g

qx(0)
2 H2(attr(x))rx , Rx = grx

return SK = (T , {(Dx, Rx)}x∈leaves(T )).
– C ← LEKS(PK, IC ,W ):

r1, r2 ∈R Z
+
p , C1 = gr2

2 H1(W )r1 , C2 = gr1
1 , C3 = gr2

return C = (C1, C2, C3, γ, {Ci = H2(attri)r2}attri∈γ).
– T ← Trapdoor(SK,W ):

s ∈R Z
+
p , T1 = gs

1, T2 = H1(W )s, {Tx,1 = Ds
x, Tx,2 = Rs

x}∀x∈leaves(T )

return T = (T1, T2, T , {(Tx,1, Tx,2)}x∈leaves(T )).
– 1/0 ← Test(C, T ): The algorithm follows the decryption algorithm in the

KP-ABE scheme. If T (γ) = 0, the algorithm returns ⊥. Otherwise, for leaf
node x ∈ T , it computes Fx = e(Tx,1, C1)/e(Tx,2, Ci). For non-leaf node,
it computes exactly the same as in the decryption algorithm using poly-
nomial interpolation. Eventually, the algorithm computes Froot and returns
e(C1, T1)

?= e(C2, T2) · Froot.
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4.3 Security Proof

The above converted KP-ABKS scheme is similar to Zheng et al.’s KP-ABKS
scheme [21]. The only difference between two schemes is that they use g2g

b·H(W )

as the hash function for the attributes while we use H2 : {0, 1}∗ → G1.
However, there are some issues in the security proof given in [21]. Before

the simulation provided by the challenger, the adversary selects a target set
of attributes Attr∗. In the simulation, the adversary is allowed to query the
token generation oracle OTokenGen(T,W ) with any keyword W other than the
target keywords w0, w1 and any policy T that F (Attr∗, T ) = 1. Stepping into
the oracle OTokenGen(T,W ), the challenger always runs the key generation oracle
OKeyGen(T ) to get the secret key sk, and then uses it to generate the requested
trapdoor. Since the oracle OKeyGen(T ) always aborts when F (Attr∗, T ) = 1,
the oracle OTokenGen(T,W ) always aborts when the adversary does the queries
mentioned above. This renders the proof invalid and hence the security of Zheng
et al.’s KP-ABKS scheme is unknown.

We prove our KP-ABKS is secure under the �-DCBDH assumption instead
of the standard Decisional Linear Assumption (DLIN).

Theorem 6. The proposed KP-ABKS is IND-sCKA (Definition 6) secure. If
an adversary A can win Game 1 with the advantage ε, an algorithm S can be
constructed to solve �-DCBDH problem (Definition 3) in polynomial time with
the advantage ε′ ≥ ε

2e(q+2) , querying OTrapdoor for at most q times where q ≤ �.

Due to the space limit, the proof will be provided to the full version of the paper.

5 Conclusion

In this paper, we introduced a (P, f)-DBDH problem family and demonstrated
its hardness under the generic bilinear group model. We also derived a hard
computational �-DCBDH problem from the (P, f)-DBDH problem family. As
the main contribution of this paper, we proposed LEKS and its security model,
and defined LET which can be used to convert encryption schemes into the
corresponding LEKS schemes. To show a concrete instance of our LEKS conver-
sion framework, we converted a KP-ABE scheme into a KP-ABKS scheme and
proved its security in the random oracle model under the �-DCBDH assump-
tion. Our future work will be finding more LET-compatible encryption schemes,
converting them into searchable schemes and proving their security.
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