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Abstract: We investigate the predictability of bond returns using real-time macro

variables and consider the possibility of a nonlinear predictive relationship and the

presence of weak factors. To address these issues, we propose a scaled sufficient

forecasting (sSUFF) method and analyze its asymptotic properties. Using both the

existing and the new method, we find empirically that real-time macro variables

have significant forecasting power both in-sample and out-of-sample. Moreover, they

generate sizable economic values, and their predictability is not spanned by the yield

curve. We also observe that the forecasted bond returns are countercyclical, and

the magnitude of predictability is stronger during economic recessions, which lends

empirical support to well-known macro finance theories.
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1. Introduction

One of the central themes in modern term structure models is that bond risk

premia are time-varying with macroeconomic condition (see, e.g., Joslin, Priebsch,

and Singleton, 2014, and references therein). Consistent with the theory, Ludvigson

and Ng (2009, 2011) show empirically that bond returns in the US Treasury market

can be significantly predicted by macro variables. From an investment perspective,

Gargano, Pettenuzzo, and Timmermann (2019) and Bianchi, Büchner, and Tamoni

(2021) find that forecasting bond returns can generate sizeable economic values.

However, Ghysels, Horan, and Moench (2018) and Fulop, Li, and Wan (2021) show

that macro variables are unable to significantly predict bond returns once real-time

data are used, thereby raising an important question on the conclusion of many

empirical and theoretical studies.

In this paper, we re-examine bond return predictability with real-time macro

variables. We allow for both a nonlinear predictive relation and the presence of weak

factors. There are two reasons for this assumption. First, traditional studies typically

assume that the forecast target is linearly linked with some latent strong factors

that summarize the predictive information from a panel of macro variables. While

this modelling strategy is intuitive and appealing, it is restrictive in the real world.

Perhaps because of this, Ludvigson and Ng (2009) include partial squared factors to

improve the forecasting ability. Since there is no firm evidence to support such a

squared form, it is of interest to permit a general nonlinear setup. Second, strong

factors are largely imposed in existing studies, but it is often the case in applications

that the factors with the strongest predictive power may not be the largest principal

components, and, for this reason, they may not be strong factors. Recently, there is

also a growing interest to incorporate weak factors in empirical studies, e.g., Lettau

and Pelger (2020a,b), Giglio, Xiu, and Zhang (2021), among others. This line of

research emphasizes the necessity of using weak factors for modeling financial data.

We propose a new forecasting method, called scaled sufficient forecasting
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(hereafter abbreviated by sSUFF), to predict bond returns, inspired by and based

on the sufficient forecasting (SUFF) method originally proposed by Fan, Xue, and

Yao (2017).1 SUFF is suitable for a nonlinear predictive relation with a large set

of predictors, but we show that the presence of weak factors can deteriorate the

performance of SUFF, due to a term representing the noise-to-signal ratio that arises

when the factors are weak.

The theoretical contribution of this paper is twofold. First, we extend SUFF to

sSUFF by allowing for weak factors, which is new in the econometric literature and

has potentially wide applications. We establish the asymptotic properties for sSUFF,

and show that it outperforms SUFF in the presence of weak factors. As a byproduct,

we find that the convergence rates found in Fan et al. (2017) can be slightly sharpened.

Second, we run simulations to assess the finite sample performance of sSUFF. The

experiment results lend support to sSUFF in small samples. It is worthwhile to

mention that, although sSUFF is designed to address issues related to weak factors,

its forecasting performance is robust when all the factors are strong.

In the empirical application, we consider the same forecast targets and real-time

macro variables as Ghysels et al. (2018). That is, we use annual holding period

returns on 2- to 5-year government bonds as the forecast targets, which are computed

based on the Fama-Bliss zero-coupon bond yields.2 We collect real-time vintages

of 60 macro variables from March 1982 to December 2019, where each vintage has

observations from January 1968. The real-time data are different from the final

revised data used in Ludvigson and Ng (2009, 2011), because the value of a variable

in one month could be revised multiple times after its first release, due to estimation

errors or measurement errors. On the other hand, although the final revised data are

of high quality, they are not available at the time of forecasting, and only the real-time

data are.

There are four main findings when we apply sSUFF to forecasting bond returns

1sSUFF and the scaled principal component analysis (sPCA) in Huang, Jiang, Li, Tong, and Zhou
(2022) both scale predictors, but they are different as sSUFF is nonlinear.

2For robustness, in Section 3.4 we also consider forecasting monthly holding period bond returns
based on Gürkaynak, Sack, and Wright’s (2007) dataset and find similar results.
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in real time. First, and foremost, we show that bond returns can be significantly

predicted by the noisier real-time macro variables although the results are stronger

with the final revised data. For example, over the March 1982 to December 2019

period, the in- and out-of-sample R2s are 22.99% and 11.21% in forecasting the 5-year

bond returns, and they are 31.81% and 7.00% in forecasting 2-year bond returns,3

where the out-of-sample R2 is computed against the historical mean forecast. This

result is robust to different model specifications. In contrast, SUFF displays weaker

predictive power, especially for out-of-sample forecasting. When comparing with

other forecast methods such as PCA, sPCA, PLS, and SUFF,4 sSUFF performs the

best across all bond maturities. We attribute the success to its ability to capture factor

weakness and nonlinearity.

Second, we find that forecasted bond returns with sSUFF generate sizeable

economic values. Consider a mean-variance investor who allocates her wealth

between an n-year bond (n > 1) and a 1-year risk-free bond. We show that the investor

is able to improve her portfolio performance if she estimates the n-year bond expected

returns by using sSUFF relative to other forecast benchmarks, such as historical mean

forecast. For example, when investing in the 5-year bond with a risk aversion of 5,

the investor can obtain 1.31% more annualized certainty equivalent returns than the

case if she uses the historical mean forecast. This finding provides a support to the

positive economic values of bond return predictability documented by Gargano et al.

(2019) with final revised macro variables. In contrast, the forecasts based on SUFF

and linear forecasts of PCA and PLS generate negative certainty equivalent returns

and, therefore, underperform the historical mean forecast if investing in the 2-year

bond. Thus, our results help to reconcile Thornton and Valente (2012) and Sarno,

Schneider, and Wagner (2016) who find it difficult to translate statistical predictability

into economic value.

Third, we explore the sources of bond return predictability and find that real-

3It should be noted that, as shown by Inoue and Kilian (2005), there is no theoretical relation
between the in- and out-of-sample R2s and the out-of-sample R2 can be larger than the in-sample one.
Also, the out-of-sample R2 depends on the choice of the forecast benchmark.

4See, e.g., Huang, Jiang, Tu, and Zhou (2015); Jiang, Lee, Martin, and Zhou (2019); Huang et al.
(2022).
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time macro factors strongly predict future macroeconomic conditions as measured

by the Chicago Fed National Activity Index (CFNAI), consumption, employment,

recession probability, macro uncertainty, and yield spread. This result is important as

Cochrane (2007) argues that return predictability is more economically compelling if

the predictors are able to predict future macroeconomic conditions. Hence, putting

together our results on statistical tests, economic value, and future macroeconomic

conditions, there is strong evidence that bond risk premia are time-varying and can

be predicted by the real-time macro variables.

Finally, we examine the relation between the degree of bond return predictability

and macroeconomic conditions, and find that the return predictability is more

pronounced in recessions, and that the bond term premia are countercyclical.

Specifically, we show that the forecasting accuracy and forecasted bond returns

generated by sSUFF are both stronger in periods with low economic activity, high

recession probability and high uncertainty. This finding is consistent with Gargano

et al. (2019) and Bianchi et al. (2021), though their forecasts are based on the final

revised macro variables. Moreover, in line with Ludvigson and Ng (2009), the term

premium implied by sSUFF is negatively correlated with macroeconomic conditions

such as the employment rate.

Our paper contributes to five strands of literature. First, it helps to resolve

the debate on real-time macro variable predictability on bond returns. Second, it

provides evidence supporting recent growing studies on nonlinearity of bond factors

(see, e.g., Feldhütter, Heyerdahl-Larsen, and Illeditsch, 2018; Breach, D’Amico, and

Orphanides, 2020; Giacoletti, Laursen, and Singleton, 2021). Third, it generalizes

the weak factor studies on equity markets into bond markets. Fourth, it provides

evidence to support bond pricing beyond the spanning hypothesis that restricts all

pricing information to yields, extending Zhao, Zhou, and Zhu (2021) without non-

US macros. Fifth, it adds to the large predictability literature by providing a new

method, sSUFF, which can be widely used for forecasting stocks, foreign exchanges,

and other asset classes.
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The rest of the paper is organized as follows. Section 2 proposes sSUFF and

explores its asymptotic properties. Section 3 applies sSUFF and other methods to

forecasting bond returns with real-time macro variables. Section 4 concludes.

2. Econometric Framework

2.1. Nonlinear factor-based forecasting framework

We consider a predictive framework in which the forecast target is nonlinearly related

to latent factor-related indices, where the latent factors are contained in a large

number of predictors. Specifically, the forecast target yt+1 and the predictor xit admit

the following expression for i = 1, . . . , N and t = 1, . . . , T:

yt+1 = h(φ′1ft,φ′2ft, . . . ,φ′kft) + εt+1, (1)

xit = b
′
ift + uit, (2)

where xit is the i-th observable predictor at time t, bi is an r-dimensional vector

of factor loadings, and ft is an r-dimensional vector of factors, which carries

the forecasting information contained in xit’s. Both bi and ft are unobservable.

Throughout the paper, we assume r > k, i.e., only partial linear combinations of the

factors enter into the predictive equation (1). uit is the idiosyncratic error that cannot

be explained by ft, and εt+1 is the forecasting error. h(·) is some unknown nonlinear

link function. Leaving h(·) unspecified has an advantage of the model’s flexibility

and generality. However, we emphasize that although (1) does not specify the link

function, it does specify that given the predictive indices φ′1ft, . . . ,φ′kft, the factors

ft or the predictors xit’s do not provide any incremental forecasting power. Fan

et al. (2017) call these indices sufficient predictive indices, and their forecasting method

sufficient forecasting. In retrospect, the idea of sufficient forecasting dates back to the

sliced inverse regression of the seminal work by Li (1991), where a salient result is

that under some linear conditions, the sufficient predictive indices, which are also
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known as central subspace in the sufficient dimension reduction literature (Cook and

Ni, 2005; Wang and Xia, 2008; Cook, 2009), can be recovered by the eigenvectors’

space of the covariance matrix of the predictors conditional on the forecast target.

Fan et al. (2017) extend the sufficient dimension reduction technique of Li (1991)

to a factor model, which on the one hand makes the forecasting framework consistent

with the popular economic and financial theories, such as factor asset pricing models

(e.g., Lettau and Pelger, 2020a,b), and on the other hand maintains the flexibility

of specification, particularly on the relationship between the forecast target and the

latent factors. This paper further extends Fan et al. (2017) to make the sufficient

forecasting robust to weak factors. To this end, we first give a brief review on the

sufficient forecasting

2.2. Sufficient forecasting (SUFF)

The sufficient forecasting proposed by Fan et al. (2017) is based on Li (1991), which

shows that if the linear projection condition

E(ψ′ft|φ′1ft, . . . ,φ′kft) = α1φ
′
1ft + α2φ

′
2ft + · · ·+ αkφ

′
kft (3)

holds for any ψ ∈Rr with φ1, . . . ,φk being the indices given in (1), then

E(ft|yt+1) = Φa(yt+1), (4)

where Φ = [φ1,φ2, . . . ,φk] is an r × k indices matrix and a(yt+1) is a k-dimensional

vector.5 With this result, one can estimate the covariance of ft conditional on yt+1 as

cov(ft|yt+1) = ΦE
[
a(yt+1)a(yt+1)

′
]
Φ′. (5)

Equation (5) is important to subsequent analyses. It says that the unknown

indices matrix Φ falls in the k largest eigenvectors subspace of the conditional

5Readers are referred to Yu, Yao, and Xue (2022) for a detailed proof or Theorem 3.1 of Li (1991) for
a general treatment.
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covariance matrix cov(ft|yt+1). So the remaining job is to consistently estimate this

covariance matrix and extract its k largest eigenvectors. Unfortunately, the estimation

of E(ft|yt+1) or cov(ft|yt+1) is a non-trivial task. Li (1991) proposes the sliced inverse

regression, which has been widely adopted in the literature. To see the intuition, we

partition the support of yt+1 into H intervals and denote the h-th interval by Ih. If

the length of Ih is small, E(ft|yt+1 ∈ Ih) is approximate to E(ft|yt+1 = x) for x ∈ Ih.

Based on this observation, a feasible estimator for cov(ft|yt+1) is

Σf |y =
1
H

H

∑
h=1

E(ft|yt+1 ∈ Ih)E(ft|yt+1 ∈ Ih)
′. (6)

Then, we replace E(ft|yt+1 ∈ Ih) by its sample analog. One natural method is to

replace ft with its PCA estimate f̂t. For a given Ih, let f̂h,l denote the l-th sample

point of f̂ . That is, for those f̂t satisfying yt+1 ∈ Ih, f̂h,l is the l-th sample point in this

subset. Hence, E(ft|yt+1 ∈ Ih) can be estimated by 1
ch

∑ch
l=1 f̂h,l, where ch is the number

of sample points in Ih. Fan et al. (2017) suggest choosing Ih to make ch identical across

the intervals, which gives

Σ̂f |y =
1
H

H

∑
h=1

[
1
c

c

∑
l=1
f̂h,l

][
1
c

c

∑
l=1
f̂h,l

]′
. (7)

Based on (7), Fan et al. (2017) proposes the following sufficient forecasting

algorithm.

Algorithm 1 Sufficient forecasting with strong factors

1. Estimate the PCA factors f̂t;

2. Construct Σ̂f |y as (7);

3. Obtain φ̂1, φ̂2, . . . , φ̂k by extracting the k largest eigenvectors of Σ̂f |y;

4. Construct the predictive indices φ̂′1f̂t, φ̂′2f̂t, . . . , φ̂′kf̂t;

5. Using local linear regression (Fan and Gijbels, 1996) to estimate h(·) with indices

from Step 4, and forecast yt+1.6

6We use the R package np to implement the local linear regression. Specifically, we use the npregbw
function with parameters regtype=“ll" and bwmethod=“cv.aic" to estimate the bandwidth, and the npreg
function to obtain the fitted values.
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Algorithm 1 involves three tuning parameters, the number of slices (H), the

number of factors (r), and the number of predictive indices (k). Because it is found

in practice that the value of H has little effect on the final result, we follow Fan et al.

(2017) and assume that H is larger than k but a finite value. Under this assumption,

there are O(T) sample points in each interval Ih that leads to a faster convergence rate

(Remark 1 below has further discussion). The number of factors r can be determined

by the method of Onatski (2010). We note that since the factors to be identified

can be weak, some existing methods on strong factors such as Bai and Ng (2002)

are inapplicable. Other methods, such as the eigenvalue-ratio method of Ahn and

Horenstein (2013), seem working in a weak factor setup, but rigorous justifications

are still deficient in the literature. As regard to determining the value of k, one can

use the χ2 test of Li (1991). For details, see Li (1991) and Fan et al. (2017).

2.3. Scaled sufficient forecasting (sSUFF)

We extend Fan et al. (2017) to a weak factor framework and propose the following

algorithm.

Algorithm 2 Scaled sufficient forecasting with weak factors

1-3. The same as SUFF in Algorithm 1

4. For each i, regress xit on φ̂′1f̂t, · · · , φ̂′kf̂t to obtain γ̂i, the R-squared of the

regression.

5. Apply PCA to the scaled panel {γ̂ixit} to obtain new factor f̃t.

6. Construct Σ̃f |y with f̃t by the same way as in Step 2.

7. Obtain φ̃1, · · · , φ̃k from the k largest eigenvectors of Σ̃f |y and construct predic-

tive indices φ̃′1f̃t, · · · , φ̃′kf̃t.

8. Use local linear regression to estimate h(·) with φ̃′1f̃t, · · · , φ̃′kf̃t and forecast yt+1.

The intuition of sSUFF can be interpreted as follows. When the factors are weak, as

long as the weakness is not extreme, SUFF can still deliver a consistent estimate of the

predictive indices. We then use these estimated predictive indices as the base to detect

which predictors contain useful information and which do not. For a predictor that

8
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contains more useful information, the regression of this predictor on the estimated

predictive indices will have a larger R2, and vice versa. As shown below, for those

irrelevant predictors, the corresponding R2s have an order of Op(
1

Nν ) + Op(
1
T ) with

ν ∈ (0,1], which shrinks to zero as N and T approach infinite. Hence, by using

R2 as the scaling parameter, we strengthen the useful predictors and downplay the

irrelevant ones, thereby improving the forecasting power relative to SUFF. The tuning

parameters H, r, and k can be chosen the same as Algorithm 1.

2.4. Asymptotic results

We make the following assumptions for the asymptotic analysis. Hereafter, C denotes

a generic constant that is large enough and may be different at each appearance.

Assumption A: The factors satisfy

(i) ft is independent and identically distributed over t with E(ft) = 0, supt E‖ft‖8≤

C and 1
TF
′F = Ir, where F = (f1,f2, . . . ,fT)

′.

(ii) E(ψ′ft|φ′1ft, . . . ,φ′kft) is a linear function of φ′1ft, . . . ,φ′kft for any ψ ∈Rr, where

φ′1ft, . . . ,φ′kft are the indices in model (1).

Assumption B: The factor loadings bi are nonrandom and satisfy max1≤i≤N ‖bi‖ ≤ C.

Let Io = {i : ‖PΦbi‖> c} and Ib = {i : ‖PΦbi‖= 0;bi 6= 0} denote the sets of predictors

that contain the relevant and irrelevant factors, respectively. c is a small positive

constant and PΦ = Φ(Φ′Φ)−1Φ′ with Φ = [φ1,φ2, . . . ,φk]. We assume Card(Io) � Nν

and Card(Ib) � Nν for some ν ∈ (0,1], where Card(·) denotes the cardinality of the

input set, i.e., the number of elements of the input set, and a � b means that there

exist two constants c and C such that cb ≤ a ≤ Cb. In addition, N−νB′B → Σb for

some r× r positive definite matrix Σb, where B = (b1,b2, . . . ,bN)
′.

Assumption C: uit = σieit, where eit is independent and identically distributed over i

and t with E(e16
it ) ≤ C. In addition, C−1 ≤ σi ≤ C.

Assumption D: εt+1 is independent over t. Furthermore, {ft}t=1,...,T, {εt+1}t=1,...,T

and {uit}t=1,...,T are mutually independent for each i.

9
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Assumption A is about factors. Assumption A(i) is often imposed in the studies

on large dimensional factor analysis, see, e.g., Bai and Ng (2002) and Bai (2003). The

eighth moment condition is more restrictive than the usual fourth moment one, but

it is necessary for our theoretical analysis of sSUFF. Assumption A(ii) is crucial to the

validity of sliced inverse regression, and is also imposed in Fan et al. (2017).

Assumption B is new and imposed to characterize weak factors. Let I be the

whole set of predictors. In this paper, we divide I into three sets. The predictors

(i) have a factor structure and are relevant to the forecast target in the first set Io,

(ii) have a factor structure but are irrelevant to the forecast target in the second set

Ib, and (iii) are pure noises in the third set I\(Io ∪ Ib). Assumption B specifies that

the weakness of factors is due to the inclusion of purely noisy predictors in the third

set. This specification, which is different from the existing literature, proposes an

alternative and plausible way to define weak factors.

To see the insight of Assumption B, let us take the typical predictive regression

as an example. When there are a large number of predictors, one basic thought in

modern statistics is that only a small number of predictors are relevant, and the

remaining are irrelevant. It is this thought that motivates the machine learning

techniques to simultaneously select and estimate the model, such as LASSO,

smoothly clipped absolute deviation (SCAD), and Dantzig selector. In this paper, we

assume that only a small fraction of the predictors, belonging to Io ∪Ib (of order Nν),

contain the factors, and the remaining predictors are pure noises. Our assumption on

weak factors is consistent with the above basic thought. It is in the similar spirit of

Huang et al. (2022) but different from the usual definition in the literature. Consider

xit = b
′
ift + uit. Existing studies typically assume ‖bi‖= O(Nν−1) for each i and some

ν < 1 to specify the weakness of factors (see, e.g., Lettau and Pelger, 2020a; Onatski,

2010). This assumption has an undesirable implication. The size of signals contained

in each predictor, the variance of b′ift, is O(N2(ν−1)), depends on the number of

predictors N and shrinks to zero as N→∞. But asset pricing theories assert that the

signals contained in each predictor are independent of the number of predictors. To

preclude this inconsistency, we instead assume that each predictor contains a positive

10
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amount of, or zero, signals. We also allow for the presence of seemingly important

predictors, which we classify to set Ib. Different from the pure noise predictors in

I\(Io ∪ Ib), the predictors in Ib have high correlations with those in Io due to the

irrelevant factors, which may cause a false impression that these predictors in Ib are

also important for prediction.

Assumption B also specifies that the loadings are fixed values and treated as

parameters, which facilitates our theoretical analysis. For example, it allows us to

bound maxi ‖bi‖ by a large constant. If the loadings are random, our analysis can be

viewed as conditional on their realizations. This treatment is widely used in factor

analysis, see Bai and Ng (2002) and Bai (2003). Following the literature (see, e.g.,

Lettau and Pelger, 2020a; Onatski, 2010), Assumption B also specifies that all the

factors have the same degree of weakness. In real data, it is possible that partial

factors are strong and the remaining ones are weak. Then, the current analysis can

be viewed as exploring the transformed data that are obtained by subtracting the

estimated strong factors from the original data.

Assumption C precludes the correlations in time series and cross section. It

can be relaxed to allow more general cross sectional and temporal correlations and

heteroskedasticity, at the cost of imposing higher moment conditions. This type of

extension has been elaborated in many studies, see, e.g., Bai and Li (2016), so we do

not pursue it in this paper.

The following theorems provide the asymptotic results for the estimators of SUFF

and sSUFF in a weak factor framework.

Proposition 1. Let D̂ be the diagonal matrix whose diagonal elements are the largest

r eigenvalues of 1
NνTX

′X with X = (xit)N×T. Under Assumptions A-D, as N, T →

∞, N1−ν/T→ 0,

τi(D̂)− τi

( 1
Nν
B′B

)
= op(1),

where τi(·) denotes the i-th largest eigenvalue of its input.

Theorem 1. Let F̂ be the PCA estimator of F for model (2), and Φ̂ be the estimator of Φ

given in Algorithm 1. Under Assumptions A–D, as N→∞, T→∞, and N1−ν/T→ 0, we
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have

(i)
1√
T
‖F̂ −FR‖ = Op(

1√
Nν

) + Op(
N1−ν

T
),

(ii) ‖Φ̂−R′ΦR∗‖ = Op(
N1−ν

T
) + Op(

1√
T
) + Op(

1
Nν

),

where R = 1
NνTB

′BF ′F̂ D̂−1 is the rotational matrix among factors ft and R∗ =

(Φ′Φ)−1/2RΩ is the rotational matrix among indices φ1, . . . ,φk, with RΩ being the

eigenvector matrix of

(Φ′Φ)1/2
[

1
H

H

∑
h=1

E
(
a(yt+1)|yt+1 ∈ Ih

)
E
(
a(yt+1)|yt+1 ∈ Ih

)′]
(Φ′Φ)1/2.

We have two remarks on Theorem 1.

Remark 1. When ν = 1, factors in model (2) are strong. Theorem 1 indicates that

the convergence rate of the estimated indices Φ̂ is Op(
1
N ) +Op(

1√
T
), which is slightly

sharper than Op(
1√
N
) + Op(

1√
T
) in Fan et al. (2017). The reason is as follows. In

the weak factor setup, the Op(
1√
Nν

) term comes from the leading term of f̂t −R′ft,

which admits

f̂t −R′ft =R
′(B′B)−1 ∑

i∈Io∪Ib

biuit + κt

=
1√
Nν
R′
[ 1

Nν
B′B

]−1 1√
Nν ∑

i∈Io∪Ib

biuit + κt, (8)

where κt is the remaining term. Note that a key step to construct the conditional

covariance matrix is to take average over f̂t in each sliced interval Ih for h = 1,2, . . . , H.

For those ft’s whose corresponding yt+1’s fall in the same sliced interval Ih, we have

1
c

c

∑
l=1
f̂h,l −R′

1
c

c

∑
l=1
fh,l =

1√
Nν
R′
[ 1

Nν
B′B

]−1 1√
Nνc

c

∑
l=1

∑
i∈Io∪Ib

biui,hl +
1
c

c

∑
l=1

κh,l. (9)

Given the fact that E(‖∑c
l=1 ∑i∈Io∪Ib

biui,hl‖2) = O(NνT) because there are O(T)

sample points falling in this interval, the first term becomes Op(
1√

NνT
), which is

negligible in that it is dominated by Op(
1√
T
). Due to this reason, the Op(

1√
Nν

) term
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is gone in Theorem 1. �

Remark 2. In Theorem 1, the term Op(
N1−ν

T ) is of our interest. Intuitively, since

we have N predictors and T periods, the magnitude of noise is of Op(N) + Op(T).

In the presence of weak factors, the magnitude of information is Op(NνT). So the

noise-to-signal ratio is of Op(
N1−ν

T ) + Op(N−ν). In practical applications, it is not

uncommon that the number of predictors N is larger than the number of periods T,

so the noise-to-signal ratio further reduces to Op(
N1−ν

T ). Note that when N is much

larger than T, the term Op(
N1−ν

T ) is likely to dominate the term Op(
1√
T
). In this

case, the estimation error is unnecessarily large and unacceptable since if we discard

the irrelevant predictors, this term would disappear and the estimation precision is

improved. This fact motivates us to propose the new procedure of sSUFF. �

Theorem 2. Let F̃ is the PCA estimator of F for the scaled data (γ̂ixit)N×T, and Φ̃ be the

estimator of Φ given in Algorithm 2. Under Assumptions A–D, as N → ∞, T → ∞, and

N1−ν/T→ 0, we have

(i)
1√
T
‖F̃ −FR̃‖ = Op(

1√
Nν

) + Op(
1
T
) + Op(

N1−ν

T
√

T
),

(ii) ‖Φ̃− R̃′ΦR∗‖ = Op(
1

Nν
) + Op(

1√
T
),

where R̃ = 1
NνT ∑N

i=1 γ̂2
i bib

′
iF
′F̃ D̃−1 is the rotational matrix for the scaled data and R∗ is

defined in Theorem 1

Theorem 2 shows that Algorithm 2 kills the Op(
N1−ν

T ) term in the estimation error

of F̃ and Φ̃, thereby improving the forecasting power.

Given the above two theorems, we have the following corollary.

Corollary 1. Under Assumptions A–D, N1−ν/T→ 0, N1−ν/
√

T→ ∞, and N/T→ ∞,

sSUFF outperforms SUFF.

Corollary 1 is obtained based on the condition that N1−ν

T dominates 1√
T

and 1
Nν , so

the estimation precisions of F and Φ are substantially improved. The comparison of

forecasting performance here is indirect in the sense that we resort to a comparison of

13

Electronic copy available at: https://ssrn.com/abstract=3107612



the key part Φft, instead of the direction comparison of the forecasting error of yt+1.

Indeed, we can implement the latter comparison, but the related theoretical analysis

involves the smoothness condition on the link function h(·), as well as other regularity

conditions, which are not closely related to Assumptions A–D. For this reason, we

do not pursue this direction. We note that recently Yu, Yao, and Xue (2022) provide a

rigorous analysis in this direction with strong, but diverging number of, factors. For

readers who are interested in this direct comparison, we refer to their paper.

It should be noted that if one has the correct prior or knows which predictors

are useful and which are not, an application of SUFF method will deliver better

asymptotic convergence rates than the sSUFF. Moreover, if we can find consistently

the useful units by screening on the initial PCA estimates, using the sSUFF may not be

necessary. Nevertheless, to the extent that it is often difficult to have prior knowledge

on the true predictor and there is no availability of highly accurate screening methods,

our proposed sSUFF is useful and applicable generally.

2.5. Simulation evidence

In this section, we conduct Monte Carlo simulations to explore the finite sample

forecasting performance of sSUFF with either weak or strong factors.

To make the comparison convincing, we consider two factor models. The first

is from Huang et al. (2022), where the predictors are governed by only two latent

factors, f1t and f2t, with f1t being target relevant. f1t and f2t are independent and

normally distributed with mean zero and unit variance, i.e., f jt ∼ N(0,1) for j =

1,2. The forecast target is yt+1 = f1t + εt+1 when the link function h(·) is linear, and

yt+1 = f1t + f 2
1t + εt+1 when the link function h(·) is nonlinear. In both cases, we

assume εt+1 ∼ N(0,1), so that the infeasible best forecast has a lowest mean squared

forecast error (MSFE) of 1. There are N observable predictors Xi,t (i = 1, ..., N), which

load on both the relevant factor f1t and the irrelevant factor f2t. The factors are weak

if only n < N predictors have non-zero loadings on them, and strong otherwise. Each

predictor Xi also contains an idiosyncratic noise term uit, which is generated from a
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normal distribution with zero mean and standard deviation of σi.

The second factor model is from Fan et al. (2017). When the link function is

linear, we assume a total of five factors, f1t, ..., f5t, and generate the forecast target as

yt+1 = 0.8 f1t + 0.5 f2t + 0.3 f3t + εt+1. When the link function is nonlinear, we instead

assume a total of seven factors, f1t, ..., f7t, and generate the forecast target as yt+1 =

f1t( f2t + f3t + 1)+ εt+1. Similar as the first factor model, the factors are independently

and normally distributed, and either n < N predictors or all N predictors have non-

zero loadings on the latent factors. The idiosyncratic noise term uit of Xi is normally

distributed with zero mean and standard deviation σi.

Table 1 reports the simulated results of sSUFF under varying degrees of factor

weakness. For comparison, we also report the results using PCA, sPCA, and SUFF.

Thus, we consider four forecasting methods. For each method, the simulation relies

on 1,000 repetitions with N = 500 predictors and T = 550 observations. Among the

500 predictors, we assume n = 10, 20, 30, 40, 50, and 500 predictors having non-

zero loadings on the latent factors, respectively. The non-zero loadings are drawn

independently from a standard uniform distribution with support [0,1], denoted

by U[0,1]. The standard deviations of idiosyncratic noises, σ1, · · · ,σN, are also

drawn independently from U[0,1]. For each simulated sample, we use the first 500

observations for parameter training and the remaining 50 observations for out-of-

sample evaluation. We then report the median MSFE of the 1,000 repetitions.

Table 1 has four panels, corresponding to the two factor models with and without

a nonlinear link function. According to the DGPs, the true number of predictive

indices, k, is known and equal to one in the first three panels and two in the last

panel in implementing SUFF and sSUFF. When k is unknown in practical applications,

one can estimate it with the χ2 test in Li (1991). Table 1 considers both known and

unknown k. In Panels A and C when the link function is linear, we extract r = 2

and 5 factors, respectively. In this case, with correct identification, SUFF performs

similarly as PCA, in that the single predictive index of SUFF is a linear combination

of the PCA factors and they both are linearly related to the forecast target. With the
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Table 1: Simulated forecasting performance with weak and strong factors
This table reports the simulated mean squared forecast errors (MSFEs) of PCA,
sPCA, SUFF, and sSUFF with either weak or strong factors. Panels A and B assume
two latent factors f1t and f2t driving the predictors, and the forecast targets are
yt+1 = f1t + εt+1 and yt+1 = f1t + f 2

1t + εt+1, respectively. Panels C and D assume
five and seven latent factors driving the predictors, and the forecast targets are
yt+1 = 0.8 f1t + 0.5 f2t + 0.3 f3t + εt+1 and yt+1 = f1t( f2t + f3t + 1) + εt+1, respectively.
For each simulated sample, we assume (T, N) = (550,500), and use the first 500
observations for parameter training and the rest 50 for out-of-sample evaluation. All
factors are i.i.d normally distributed. In the weak factor setup, n = 10, 20, 30, 40, or 50
out of 500 predictors are loading on the latent factors. In the strong factor setup, all
n = 500 predictors have non-zero loadings, which are drawn independently from an
uniform distribution with support [0,1]. The idiosyncratic errors are cross-sectionally
heterogenous with standard deviations following an uniform distribution with
support [0,1]. Reported are the median MSFEs of each forecasting method on the
basis of 1,000 simulations. k is the number of predictive indices used in SUFF and
sSUFF.

Known k Unknown k Known k Unknown k

n PCA sPCA SUFF sSUFF SUFF sSUFF PCA sPCA SUFF sSUFF SUFF sSUFF

A: Linear model with 2 factors B: Nonlinear model with 2 factors

10 1.55 1.21 1.55 1.15 1.55 1.15 3.15 2.40 3.17 1.74 3.17 1.74
20 1.38 1.10 1.38 1.07 1.38 1.07 3.02 2.23 2.58 1.37 2.58 1.36
30 1.19 1.07 1.19 1.07 1.19 1.07 3.04 2.23 1.86 1.34 1.86 1.33
40 1.10 1.05 1.10 1.05 1.10 1.05 3.08 2.23 1.50 1.26 1.50 1.25
50 1.07 1.04 1.07 1.04 1.07 1.04 3.00 2.16 1.33 1.21 1.33 1.20
500 1.01 1.01 1.01 1.01 1.01 1.01 3.08 2.18 1.06 1.06 1.06 1.06

C: Linear model with 5 factors D: Nonlinear model with 7 factors

10 1.51 1.25 1.51 1.22 1.51 1.22 3.90 3.95 3.88 2.94 3.88 3.42
20 1.49 1.14 1.49 1.10 1.49 1.10 3.92 3.74 3.90 2.42 3.91 3.24
30 1.43 1.09 1.43 1.07 1.43 1.07 3.88 3.58 3.88 2.15 3.91 3.04
40 1.34 1.07 1.35 1.06 1.35 1.05 3.72 3.40 3.71 2.00 3.74 2.82
50 1.27 1.05 1.27 1.05 1.27 1.05 3.64 3.32 3.59 1.97 3.65 2.59
500 1.01 1.01 1.01 1.01 1.01 1.01 2.99 3.01 1.75 1.75 1.78 1.78

same reason, the sSUFF forecast has similar performance as the sPCA forecast; they

differ in some cases because sSUFF uses the regression R2 as scaling (see Step 4 of

Algorithm 2) while sPCA uses the slope of regressing the predictor on the forecast

target. When factors are weak (n ≤ 50), all the forecasts are inconsistent with MSFEs

being unanimously larger than 1, especially in the extremely weak case (n = 10).

Comparing the four methods, because sPCA and sSUFF are proposed to deal with

factor weakness, they outperform their counterparts, PCA and SUFF, with smaller

MSFEs. When factors are strong (n = 500), all the forecasts are consistent and their
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MSFEs are equal to 1.01, almost the same as that with the infeasible best forecast.

Panels B and D of Table 1 are more interesting. In addition to weak factors, the

link function is nonlinear in these two panels. Because SUFF and sSUFF are able to

accommodate nonlinearity, their forecasts outperform the PCA and sPCA forecasts

with smaller MSFEs. This result remains true no matter the factors are weak or

strong. An interesting observation is that there is a tradeoff between factor weakness

and nonlinearity. sPCA can deal with factor weakness but not nonlinearity, whereas

SUFF can deal with nonlinearity but not factor weakness. As a result, in Panel B,

sPCA outperforms SUFF when the factors are extremely weak (n = 10 and 20), but

it underperforms SUFF in other cases. In all the cases, sSUFF performs the best as

expected, because it is proposed to deal with both factor weakness and nonlinearity.

3. Bond Return Predictability with Real-Time Macro

Data

In this section, we apply sSUFF to examine bond return predictability with real-

time macro variables. We compare its performance with SUFF, as well as the linear

forecasts by PCA, sPCA, and PLS.

3.1. Data and key variables

We obtain monthly US government bond prices from the Fama-Bliss dataset, which

is available at the Center for Research in Security Prices (CRSP). In line with the bond

return predictability literature (e.g., Fama and Bliss, 1987; Cochrane and Piazzesi,

2005), we focus on US government bonds with a remaining time to maturity of one

through five years.

We closely follow Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009)

on the construction of bond returns. r(n)t+12 = p(n−1)
t+12 − p(n)t is the log annual holding

period return from buying an n-year bond at time t and selling it as an (n− 1)-year
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bond one year later, where p(n)t denotes the log price of an n-year zero-coupon bond

at time t. The log bond yield is defined as y(n)t =−(1/n)p(n)t , and y(1)t is the log yield

of a 1-year bond and is set to be the risk-free rate known at time t.7 In this paper, we

focus on bond excess returns, rx(n)t+12 = r(n)t+12 − y(1)t , which refer to the continuously

compounded log excess returns of an n-year bond. The average bond excess return

across maturities is defined as rxt+12 =
1
4 ∑5

n=2 rx(n)t+12. For brevity, bond returns in the

sequel always refer to bond excess returns, unless otherwise stated.

We obtain monthly real-time macro variables from the Archival Federal Reserve

Economic Data (ALFRED) database, which is maintained by the Federal Reserve Bank

of St. Louis. For a large panel of macro variables, the ALFRED database keeps track

of their historical monthly vintages with the exact time stamp of information release

pertaining to the data date, because macro variables are often released with delay and

subject to subsequent revisions. Throughout the paper, we denote Xi,t as the value of

variable i in fiscal month t− 1 but is collected and released in month t, which may be

further revised later. In reality, however, some macro variables are even released with

a two-month lag. For ease of exposition, we uniformly assume a one-month release

lag and refer to the last reading of variable i released in month t as Xi,t.

Following Ghysels et al. (2018), we collect 60 macro variables with a balance

between the number of variables included and the length of the time-series observa-

tions. These 60 variables cover broad economic categories such as output and income,

labor force and unemployment, consumption expenditure and housing indicators,

money stock and credit, and price indices, largely mirroring the set of macro variables

considered in Ludvigson and Ng (2009). Since the vintage data are sparse before

March 1982, we choose the initial vintage release date as March 1982. Also, all the

60 selected variables have a long series of monthly observations starting no later than

January 1968 for each vintage. Although most of the macro variables’ vintages are

updated at a monthly frequency, there are a few cases where one series is updated

twice in a month and no vintage is released in the following month. In these cases,

we keep track of the information based on its release date and follow a general rule

7The log forward rate between time t + 12(n− 1) and t + 12n is defined as f wd(n)t = p(n−1)
t − p(n)t .
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Table 2: Snapshot of vintages of total nonfarm payroll from ALFRED
This table presents a snapshot of the vintage data on total nonfarm payroll from
ALFRED, where Column “PAYEMS_20170203" refers to the vintage released on
February 3, 2017, pertaining to the monthly observations with data date January
2017, with a one-month publication lag, and Column “PAYEMS_20170310" to the
vintage released on March 10, 2017, pertaining to the monthly observations with
data date February 2017, etc.

Data date PAYEMS_20170203 PAYEMS_20170310 PAYEMS_20170407 PAYEMS_20170505
2016-07 144,457 144,457 144,457 144,457
2016-08 144,633 144,633 144,633 144,633
2016-09 144,882 144,882 144,882 144,882
2016-10 145,006 145,006 145,006 145,006
2016-11 145,170 145,170 145,170 145,170
2016-12 145,327 145,325 145,325 145,325
2017-01 145,554 145,563 145,541 145,541
2017-02 145,798 145,760 145,773
2017-03 145,858 145,852
2017-04 146,063

of picking the most recently observed vintage by the end of each month. Besides, for

each vintage, we also identify the outliers following Ludvigson and Ng (2009) and

replace them with the previous month values to avoid look-ahead bias.

The online appendix provides a detailed description of the 60 macro variables,

along with the transformation codes applied to each variable to ensure its stationar-

ity.8 In order to visualize the structure of real-time macro data in ALFRED, Table

2 presents a snapshot of the vintage data on All Employee: Total Nonfarm Payroll

Employment, a widely followed macro variable by market participants. The last

reading in the second column, 145,554, refers to the data date of January 2017, and

is released in the February 3, 2017 vintage due to one month publication lag. This

value was subsequently revised to 145,563 and to 145,541 in the March 10, 2017 and

April 7, 2017 vintages, respectively. Apparently, the first release on February 3, 2017

and its subsequent two revisions are not available to investors at the end of January

2017, and cannot be used to predict bond returns in February 2017.

8We use the same codes for variable transformation as the FRED-MD database, which are discussed
in detail in McCracken and Ng (2016).
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3.2. In-sample forecasting performance

We start by examining the in-sample performance of predicting annual holding

period excess returns of n-year bonds, rx(n)t+12. While our data dates start from January

1968, the real-time vintage observations start from March 1982 and data before March

1982 may contain publication lags and revisions. As such, we estimate real-time

macro PCA, sPCA, and PLS factors, as well as the SUFF and sSUFF predictive indices,

with vintage data from March 1982 to December 2019, and compare their forecasting

performances over the March 1982 to December 2019 period. For comparison, we

also report the forecasting results with the final revised macro data.

Following Ludvigson and Ng (2009), with each forecasting method, we construct a

single predictor factor to predict bond returns at all maturities. Specifically, by using

the average bond excess return across maturity, rxt+12 =
1
4 ∑5

n=2 rx(n)t+12, as the forecast

target, we extract r = 6 latent factors with PCA, sPCA and PLS, and k = 2 predictive

indices with SUFF and sSUFF. The number of latent factors is determined by the

eigenvalue difference test of Onatski (2010), and the number of indices is determined

by the χ2 test of Li (1991). We then regress the target rxt+12 on the six latent factors

or the two predictive indices, and define the fitted value as the single predictor factor,

which is in turn used to predict bond returns with different maturities. While SUFF

and sSUFF use local linear regressions to estimate the nonlinear link function h(·) for

forecasting, in this subsection we also consider directly using linear forecasts with

the two extracted predictive indices.

Table 3 reports the regression slopes, Newey-West t-statistics, and R2s in pre-

dicting rx(n)t+12 with n = 2, ...,5. For ease of interpretation, we normalize each single

predictor factor to have mean zero and standard deviation one, and negate it in

the predictive regression to make the slope align with the economic theory-implied

relationship between macro variables and bond risk premia. The regression intercepts

hence measure the average annual holding period bond returns, from 0.54% to 1.52%

for 2- to 5-year bonds, and are untabulated for brevity.
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Table 3: In-sample performance of forecasting bond returns with macro factors
This table reports the slopes, Newey-West t-statistics, and R2s from the predictive
regressions of 2- to 5-year bond returns on a single predictor factor, which is extracted
from 60 final revised or real-time macro variables. The single predictor factor is
estimated as the fitted values of regressing average bond excess return rxt+12 on the
first PCA factor in row PCA1, the first six PCA, sPCA, and PLS factors in the next
three rows, and two SUFF and sSUFF predictive indices with a linear link function in
rows SUFFl and sSUFFl and a nonlinear link function h(·) estimated by local linear
regression in the last two rows, respectively. ∗, ∗∗, and ∗∗∗ indicate significance at the
10%, 5%, and 1% levels, respectively. The sample period is 1982:03–2019:12.

rx(2)t+12 rx(3)t+12 rx(4)t+12 rx(5)t+12

β t-stat R2 β t-stat R2 β t-stat R2 β t-stat R2

Panel A: Revised data
PCA1 0.32∗ 1.71 5.17 0.65∗∗ 2.04 5.98 0.78∗ 1.80 4.26 0.89∗ 1.83 3.54
PCA 0.42∗∗∗ 2.91 8.90 0.77∗∗∗ 3.25 8.34 0.89∗∗∗ 2.80 5.54 0.95∗∗∗ 2.67 4.04
sPCA 0.71∗∗∗ 4.70 25.17 1.23∗∗∗ 4.58 21.22 1.56∗∗∗ 3.91 17.15 1.83∗∗∗ 3.78 15.02
PLS 0.65∗∗∗ 4.61 21.06 1.15∗∗∗ 4.63 18.50 1.49∗∗∗ 4.18 15.50 1.77∗∗∗ 4.12 14.16
SUFFl 0.42∗∗∗ 2.99 8.65 0.76∗∗∗ 3.34 8.10 0.88∗∗∗ 2.90 5.43 0.94∗∗∗ 2.77 3.97
sSUFFl 0.62∗∗∗ 3.92 19.08 1.05∗∗∗ 3.85 15.69 1.32∗∗∗ 3.33 12.18 1.51∗∗∗ 3.22 10.26
SUFF 0.61∗∗∗ 6.49 18.56 1.08∗∗∗ 6.94 16.42 1.40∗∗∗ 6.88 13.83 1.56∗∗∗ 6.01 11.02
sSUFF 0.86∗∗∗ 8.48 37.33 1.53∗∗∗ 7.74 32.92 2.08∗∗∗ 6.87 30.34 2.46∗∗∗ 6.64 27.36

Panel B: Real-time data
PCA1 0.18 1.08 1.70 0.41 1.38 2.35 0.47 1.15 1.54 0.55 1.16 1.38
PCA 0.33∗∗∗ 3.06 5.63 0.61∗∗∗ 3.24 5.33 0.75∗∗∗ 3.00 3.95 0.85∗∗∗ 2.88 3.25
sPCA 0.63∗∗∗ 4.82 19.98 1.08∗∗∗ 4.69 16.42 1.39∗∗∗ 4.23 13.53 1.62∗∗∗ 4.08 11.84
PLS 0.57∗∗∗ 4.75 16.51 1.01∗∗∗ 5.02 14.38 1.32∗∗∗ 4.73 12.24 1.58∗∗∗ 4.70 11.22
SUFFl 0.34∗∗∗ 3.04 5.80 0.62∗∗∗ 3.18 5.35 0.73∗∗∗ 2.84 3.77 0.82∗∗∗ 2.68 2.99
sSUFFl 0.57∗∗∗ 3.98 16.15 0.95∗∗∗ 3.73 12.76 1.19∗∗∗ 3.20 9.96 1.38∗∗∗ 3.08 8.63
SUFF 0.50∗∗∗ 5.54 12.71 0.92∗∗∗ 5.73 11.98 1.21∗∗∗ 5.40 10.30 1.40∗∗∗ 4.99 8.87
sSUFF 0.80∗∗∗ 6.86 31.81 1.39∗∗∗ 6.53 27.37 1.89∗∗∗ 6.08 25.19 2.26∗∗∗ 5.84 22.99

Panel A uses final revised macro data.9 Consistent with the literature like

Ludvigson and Ng (2009), the first PCA factor can predict future bond returns and its

power is marginally significant at the 10% level. Moreover, including six PCA factors

makes the the predictability significant at the 1% level, with R2s ranging from 4.04%

to 8.90%. Economically, a one-standard deviation increase in the single predictor

factor leads to a decrease in expected bond return across maturities by 0.42% to

0.95%, more than half of the unconditional average bond returns. This pattern holds

for sPCA and PLS. By assuming a linear link function, SUFF and sSUFF perform

9As our focus is on real-time bond return predictability, we use final revised data only in this panel
and real-time data in other analyses by default.
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similarly as PCA and sPCA, because the two predictive indices of SUFF and sSUFF

are linear combinations of the six PCA and sPCA factors, respectively. When allowing

for the presence of nonlinearity and factor weakness, sSUFF outperforms SUFF and

all other methods, with R2s ranging from 27.36% to 37.33%. This result suggests that

the relationship between bond returns and macro variables is more complex than

what existing methods assume.

When using the noisier real-time macro data, Panel B confirms Ghysels et al.

(2018) that the forecasting power of the first PCA factor becomes insignificant.

However, when more PCA factors are included, the predictability can be improved

substantially, although the magnitude is still smaller than that with final revised

data. For example, the R2 in forecasting the 2-year bond returns is 8.90% with final

revised data-based PCA factors and 5.63% with real-time data-based PCA factors.

An interesting feature is that while the R2 declines substantially when using real-

time macro data, the predictive slope does not decease very much. This is reasonable

because the real-time predictor factor is noisier but unbiased. Compared with PCA,

the predictive power of the sPCA and PLS return factors do not decrease very

much. The reason is that both sPCA and PLS use the forecast target information

in extracting the factors. Finally, sSUFF performs the best regardless of whether the

final revised data or real-time data are used. Assuming the presence of weak factors

and nonlinearity significantly improves the forecasting performance.

The key difference of our method from the existing ones lies in two ingredients,

factor weakness and nonlinearity. We now explore whether these two ingredients

are supported by real-time macro data. Regarding factor weakness, Figure 1 plots

the loadings of two predictive indices on each macro variable. It shows that the

two indices load on industrial production, labor and housing variables. While both

indices load negatively on industrial production, their loadings on the labor and

housing variables have opposite signs. Moreover, there are a large number of macro

variables having zero loadings. This figure has two implications. First, the two

predictive indices are not as diffusive as the strong factors in the sense of Stock

and Watson (1998) and, therefore, are better captured by our sparsity-induced weak
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Figure 1: Loadings of sSUFF indices on individual macro variables
This figure plots the loadings of two sSUFF predictive indices on each individual
macro variables. Macro variables include output and income (No. 1-7), labor market
(No. 8-33), consumption and housing (No. 34-40), money and credit (No. 41-52), and
prices (No. 52-60). The sample period is 1982:03–2019:12.
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Panel B: Second sSUFF Index

factors. Second, the typically used estimation methods of assuming strong factors

would underestimate the forecasting power of macro variables.

Regarding nonlinearity, Figure 2 plots the surface of the fitted nonlinear link

function. Clearly, the relationship between bond expected returns and macro factors

is highly nonlinear. This result is not new but implies the necessity for using

SUFF or sSUFF. In the literature, Breach et al. (2020) and Giacoletti et al. (2021)

find that dispersion in inflation, output growth, and future yields forecasts contain

incremental information for future bond returns, and suggest incorporating these

second moments into the term structure models. Bianchi et al. (2021) show that

nonlinear models, such as random forest and neural networks, outperform other

linear models in forecasting bond returns with final revised macro variables.
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Figure 2: Nonlinear relationship between bond returns and macro factors
This figure plots the surface of the fitted nonlinear link function ĥ(·) from the model
rxt+12 = h(φ′1ft,φ′2ft) + εt+12, where the two predictive indices are φ′1ft and φ′2ft,
and ft are the first six factors extracted by using Steps 1–5 of Algorithm 2 from 60
real-time macro variables. The sample period is 1982:03–2019:12.

3.3. Incremental power of macro variables relative to yield curve predictors

In the literature, bond pricing models are usually based on a small set of factors that

are linear combinations of bond yields (see, e.g., Ang and Piazzesi, 2003; Bernanke

and Kuttner, 2005; Duffee, 2013; Joslin, Le, and Singleton, 2013), which leads to the

famous spanning hypothesis as to whether the yield curve contains all available

information about future yields. However, recent studies, such as Joslin et al. (2014),

argue that previous macro-finance term structure models impose “counterfactual

restrictions on the joint distribution of bond yields and the macroeconomy." To

examine whether the forecasting power of macro variables in Table 3 is incremental

relative to the yield curve, we consider controlling for two yield curve predictors.

One is Cochrane and Piazzesi’s (2005) single hump shaped combination of the 1- to

5-year forward rates, and the other is the first three principal components of the 1- to

5-year yields (Fama and French, 1988).

Let f be the single predictor factor in Table 3 and CP be the Cochrane and Piazzesi
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Table 4: Incremental power of macro factors relative to yield curve predictors
This table reports the slopes, Newey-West t-statistics, and incremental R2 (∆R2s) of
macro factors relative to yield curve predictors in predicting bond returns, where
macro factors are single predictor factors extracted from 60 real-time macro variables,
and yield curve predictors are the Cochrane and Piazzesi (2005) return predictor
(CP) or the first three principal components of the 1- to 5-year yields. ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively. The sample period
is 1982:03–2019:12.

rx(2)t+12 rx(3)t+12 rx(4)t+12 rx(5)t+12

β t-stat ∆R2 β t-stat ∆R2 β t-stat ∆R2 β t-stat ∆R2

Panel A: CP factor as the yield curve predictor
PCA 0.26∗∗∗ 2.55 3.25 0.47∗∗∗ 2.72 3.07 0.53∗∗∗ 2.35 1.90 0.60∗∗ 2.17 1.56
sPCA 0.55∗∗∗ 4.92 14.34 0.92∗∗∗ 4.66 11.41 1.13∗∗∗ 4.11 8.60 1.33∗∗∗ 3.95 7.64
PLS 0.50∗∗∗ 4.92 12.08 0.87∗∗∗ 5.11 10.35 1.10∗∗∗ 4.62 8.22 1.33∗∗∗ 4.46 7.71
SUFF 0.39∗∗∗ 3.92 6.96 0.71∗∗∗ 4.25 6.54 0.87∗∗∗ 4.02 4.88 1.02∗∗∗ 3.75 4.28
sSUFF 0.71∗∗∗ 7.02 21.87 1.22∗∗∗ 6.93 18.25 1.59∗∗∗ 6.69 15.52 1.93∗∗∗ 6.23 14.64

Panel B: First three principal components of yields as the yield curve predictors
PCA 0.28∗∗∗ 2.78 3.82 0.51∗∗∗ 2.96 3.64 0.58∗∗∗ 2.66 2.35 0.65∗∗∗ 2.45 1.90
sPCA 0.55∗∗∗ 5.00 14.65 0.93∗∗∗ 4.77 11.76 1.14∗∗∗ 4.22 8.75 1.33∗∗∗ 4.05 7.69
PLS 0.50∗∗∗ 4.90 12.30 0.88∗∗∗ 5.14 10.61 1.11∗∗∗ 4.73 8.32 1.33∗∗∗ 4.59 7.74
SUFF 0.40∗∗∗ 4.05 7.64 0.74∗∗∗ 4.41 7.25 0.91∗∗∗ 4.20 5.39 1.05∗∗∗ 3.9 4.64
sSUFF 0.71∗∗∗ 7.06 21.86 1.23∗∗∗ 7.01 18.41 1.58∗∗∗ 6.72 15.19 1.90∗∗∗ 6.27 14.16

(2005) factor. We run the following regression,

rx(n)t+12 = α + β ft + γCPt + ε
(n)
t+12, (10)

and report the estimate of β, t-statistic, and the incremental R2, ∆R2, in Panel A of

Table 4, where ∆R2 is the difference in R2 between including and excluding ft in (10).

The results show that the PCA predictor factor remains significant after controlling

for the CP factor, with incremental R2s ranging from 1.56% to 3.25% across maturities.

The incremental R2s by using the sPCA, PLS, SUFF, and sSUFF predictor factors are

much larger. For example, the ∆R2s with PCA, SUFF, and sSUFF in forecasting the

5-year bond returns are 1,56%, 4.28%, and 14.64%, respectively.

Panel B of Table 4 replaces CP in (10) with the first three principal components

of the 1- to 5-year yields, and presents quantitatively similar results as Panel A, in

terms of the incremental R2 and regression slope on f . Thus, real-time macro factors
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Table 5: Forecasting bond returns with macro factors: Robustness tests
Panels A and B report Hodrick (1992) t-statistics and bootstrapped p-values of
forecasting 12-month holding period bond returns with real-time macro factors.
Panel C reports the regression slopes of forecasting 1-month holding period bond
returns, where monthly bond returns are backed out from the yield curve dataset of
Gürkaynak et al. (2007).

rx(2)t+12 rx(3)t+12 rx(4)t+12 rx(5)t+12

Panel A: Hodrick (1992) t-statistics
PCA 2.88 3.10 2.92 2.88
sPCA 4.47 4.37 3.94 3.85
PLS 4.40 4.72 4.51 4.56
SUFF 5.52 5.88 5.67 5.33
sSUFF 6.17 5.87 5.43 5.25

Panel B: Bootstrapped p-values
PCA 0.01 0.00 0.01 0.01
sPCA 0.02 0.03 0.04 0.05
PLS 0.01 0.01 0.02 0.02
SUFF 0.08 0.08 0.11 0.15
sSUFF 0.03 0.04 0.06 0.07

Panel C: Slopes of forecasting 1-month ahead bond returns
PCA 0.09∗∗∗ 0.11∗∗∗ 0.12∗∗ 0.13∗∗

sPCA 0.18∗∗∗ 0.26∗∗∗ 0.33∗∗∗ 0.39∗∗∗

PLS 0.19∗∗∗ 0.28∗∗∗ 0.36∗∗∗ 0.43∗∗∗

SUFF 0.16∗∗∗ 0.24∗∗∗ 0.32∗∗∗ 0.39∗∗∗

sSUFF 0.21∗∗∗ 0.27∗∗∗ 0.33∗∗∗ 0.39∗∗∗

contain incremental information relative to the well-known yield curve predictors in

predicting bond returns. This result echoes the concurrent finding in Huang and Shi

(2022), who propose a supervised adaptive group LASSO method to forecast bond

returns with macro variables. We differ from them by accounting for both factor

weakness and nonlinearity.

3.4. Alleviating the concern of overlapping bond returns

This paper follows Ludvigson and Ng (2009) and uses annual holding period bond

returns as the forecast targets. A concern with such returns is that the overlapping

feature could inflate the Newey-West t-statistic in the predictive regression (Ang and

Bekaert, 2007). To alleviate this concern, we perform three tests.

26

Electronic copy available at: https://ssrn.com/abstract=3107612



The first test is to reexamine the sSUFF forecast with Hodrick (1992) t-statistic.

Hodrick (1992) shows that forecasting h-period ahead returns with xt is equivalent to

forecasting 1-period ahead returns with h-period average of xt. With this insight, he

proposes a method to remove the overlapping nature in calculating the t-statistic.

Panel A of Table 5 shows that the forecasting power of macro predictor factors

remains significant and all the t-statistics are larger than 2, with most of them being

larger than 3.

The second test is to perform bootstrapped simulations. Following Bauer and

Hamilton (2018), we reconstruct bond returns by bootstrapping the yields with

four steps. First, based on the observed 1- to 5-year yields, we extract three

principal components and obtain the loadings of the observed yields on the principal

components. Second, we model the three principal components as a VAR(1) process

and estimate its coefficients. Third, based on the estimated VAR(1) coefficients, we

bootstrap the yield principal components by setting the initial value equal to that in

March 1982. Finally, with the yield loadings and the simulated principal components,

we construct a yield sample by assuming its residuals to be normally distributed, and

then calculate the artificial bond returns accordingly. With the same procedure, we

bootstrap macro variables by assuming a six-factor structure. For each bootstrapped

bond returns and macro variables sample, we reexamine Table 3 and report the p-

values in Panel B of Table 5. Overall, the results indicate that bond returns can be

significantly predicted by macro variables, except for forecasting 4- and 5-year bond

returns with SUFF.

The third and last test is to consider forecasting monthly holding period bond

returns directly. In addition to the Fama-Bliss dataset, Gürkaynak et al. (2007)

construct an alternative dataset and can back out bond returns at a monthly frequency

without overlapping. We replace the 12-month holding period returns with 1-month

holding period returns and report the forecasting slopes of macro factors in Panel C of

Table 5. The results continue to support our conclusion that real-time macro variables

can predict bond returns, especially when the forecasting method accommodates

factor weakness and nonlinearity. However, as noted by Liu and Wu (2021), this
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dataset extrapolates the short end of the yield curve and has large pricing errors,

thereby raising a question whether it is appropriate in our framework. For this

reason, we focus on the more recognized and widely used Fama-Bliss dataset, while

acknowledging its potential drawbacks.

3.5. Alternative specifications of sSUFF

In Section 3.2, the benchmark specification for sSUFF is constructing k = 2 predictive

indices based on r = 6 latent factors. This section considers alternative number of

latent factors and predictive indices. First, we consider extracting seven or eight latent

factors from macro variables while keeping k = 2 unchanged. The result in Panel A

of Table 6 shows that increasing the number of latent factors does not increase the

forecasting performance significantly. In comparison with Table 3, the R2 is 31.81%

with r = 7 and 31.73% with r = 8 in forecasting the 2-year bond returns. Second, we

assume k = 3 or 4 predictive indices while keeping r = 6 unchanged. Interestingly,

this increase in the number of indices slightly weakens the forecasting power. For

example, the R2 of forecasting the 2-year bond returns reduces to 26.01%. Hence,

sSUFF is relatively robust to alternative number of latent factors and predictive

indices, and the benchmark specification is reasonable for the empirical application.

To construct the predictive indices, Steps 1–5 of Algorithm 2 are proposed to

extract the latent factors. For robustness, we explore three alternative methods: sPCA

in Huang et al. (2022), target PCA (tPCA) in Bai and Ng (2008),10 and weighted PCA

(wPCA) in Bailey (2012). With each method, we extract six factors from the real-time

macro variables and then repeat Steps 6–8 of Algorithm 2 to construct two predictive

indices for forecasting. The results are reported in Panel B of Table 6 and show that

the forecasts with these alternative methods underperform the benchmark forecasts

based on Algorithm 2. For example, the R2 of forecasting the 2-year bond returns

decreases from 31.81% by using Algorithm 2 to 15.17% by using the soft threshold

10In the implementation, we use the hard threshold to choose relevant predictors. The results with
soft threshold are quantitatively similar. The supervised PCA in Bair, Hastie, Paul, and Tibshirani
(2006) is in the same spirit of tPCA and differs by choosing predictors with cross-validation.
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Table 6: Alternative specifications of sSUFF
This table reports the performances of predicting 2- to 5-year bond returns with
macro variables by alternative specifications of sSUFF. In contrast to the benchmark
(r,k) = (6,2) in Table 3, Panel A considers alternative number of factors (r = 7 and
8) and alternative number of predictive indices (k = 3 and 4), respectively. Panel B
considers replacing the latent factors in Step 5 of Algorithm 2 with wPCA, sPCA
or tPCA factors to construct the sSUFF predictive indices, where the factors are
extracted from real-time macro variables by using the sPCA of Huang et al. (2022),
target PCA (tPCA) of Bai and Ng (2008), and weighted PCA (wPCA) of Bailey (2012).
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The
sample period is 1982:03–2019:12.

rx(2)t+12 rx(3)t+12 rx(4)t+12 rx(5)t+12

β t-stat R2 β t-stat R2 β t-stat R2 β t-stat R2

Panel A: Alternative number of latent factors or predictive indices
r = 7 0.77∗∗∗ 6.87 29.59 1.39∗∗∗ 6.94 27.14 1.92∗∗∗ 6.79 25.76 2.33∗∗∗ 6.56 24.37
r = 8 0.80∗∗∗ 7.68 31.73 1.45∗∗∗ 7.65 29.73 2.02∗∗∗ 7.19 28.58 2.45∗∗∗ 6.95 26.98
k = 3 0.71∗∗∗ 9.42 25.07 1.29∗∗∗10.04 23.37 1.75∗∗∗ 9.74 21.52 2.07∗∗∗ 8.65 19.36
k = 4 0.72∗∗∗ 8.56 26.01 1.34∗∗∗ 9.20 25.41 1.86∗∗∗ 9.11 24.24 2.21∗∗∗ 8.26 22.01

Panel B: Extracting latent factors ft with alternative methods
sPCA 0.67∗∗∗ 7.70 22.30 1.18∗∗∗ 7.13 19.67 1.58∗∗∗ 6.52 17.57 1.87∗∗∗ 5.96 15.69
tPCA 0.55∗∗∗ 6.59 14.95 1.08∗∗∗ 8.23 16.52 1.48∗∗∗ 8.66 15.41 1.76∗∗∗ 8.35 13.94
wPCA 0.53∗∗∗ 5.88 14.07 0.95∗∗∗ 6.10 12.80 1.24∗∗∗ 5.78 10.85 1.47∗∗∗ 5.52 9.72

tPCA factors.

3.6. Out-of-sample forecasting performance

We use the Campbell and Thompson (2008) R2
OS statistic to evaluate the out-of-sample

forecasting performance, which is defined as

R2
OS = 1−

∑T−12
t=m (rx(n)t+12 − r̂x(n)t+12)

2

∑T−12
t=m (rx(n)t+12 − r̃x(n)t+12)

2
, (11)

where r̂x(n)t+12 is the forecast based on PCA, sPCA, PLS, SUFF or sSUFF, and r̃x(n)t+12 is

a benchmark forecast, say the historical mean. Both r̂x(n)t+12 and r̃x(n)t+12 are recursively

estimated with all information up to time t. The out-of-sample forecast starts from

March 1982 in that it is the initial vintage of our real-time data set. As such, the

out-of-sample period is the same as the in-sample period in Table 3, from March 1982
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Table 7: Out-of-sample performance of forecasting bond returns with macro factors
This table reports the out-of-sample R2

OSs of predicting 2- to 5-year bond returns
with real time macro variables. We consider six factors when employing PCA, sPCA
and PLS and two predictive indices when employing SUFF and sSUFF. The factors,
predictive indices, and return forecasts are recursively estimated with data up to
time t. In calculating R2

OS, we use three benchmark forecasts: historical mean forecast
(Panel A), yield curve (measured by the first three principal components of 1- to
5-year bond yields) forecast (Panel B), and yield curve and PCA factor-based forecast
(Panel C). Statistical significance for R2

OS is based on the p-value of the Clark and
West (2007) MSPE-adjusted statistic for testing H0 : R2

OS ≤ 0 against HA : R2
OS > 0.

∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The
out-of-sample period is 1982:03–2019:12.

rx(2)t+12 rx(3)t+12 rx(4)t+12 rx(5)t+12

R2
OS (%) p-value R2

OS (%) p-value R2
OS (%) p-value R2

OS (%) p-value

Panel A: Historical mean forecast as benchmark
PCA 2.45 0.12 4.39∗∗ 0.03 4.96∗∗∗ 0.01 6.02∗∗∗ 0.01
sPCA 2.30∗∗ 0.04 4.88∗∗ 0.02 6.74∗∗∗ 0.01 8.56∗∗∗ 0.01
PLS 2.18∗∗ 0.03 4.51∗∗ 0.02 5.87∗∗∗ 0.01 7.51∗∗∗ 0.01
SUFF 1.88 0.18 3.71∗ 0.06 4.11∗∗ 0.03 5.25∗∗∗ 0.01
sSUFF 7.00∗∗ 0.03 9.35∗∗∗ 0.01 9.94∗∗∗ 0.01 11.21∗∗∗ 0.00

Panel B: Yield curve forecast as benchmark
PCA −0.91 0.16 1.88 0.12 1.55 0.12 2.95 0.11
sPCA −3.84 0.09 0.36∗ 0.08 1.58∗ 0.07 3.96∗ 0.07
PLS −3.82 0.08 0.12∗ 0.07 0.73∗ 0.07 2.92∗ 0.07
SUFF −1.01 0.16 1.61 0.12 1.11 0.13 2.52 0.12
sSUFF 3.39∗ 0.06 6.78∗∗ 0.04 6.73∗∗ 0.04 8.28∗∗ 0.04

Panel C: Yield curve and macro PCA factors forecast as benchmark
sPCA −2.91 0.19 −1.55 0.18 0.03 0.15 1.04 0.13
PLS −2.89 0.14 −1.80 0.13 −0.84 0.13 −0.03 0.12
SUFF −0.10 0.40 −0.28 0.59 −0.45 0.84 −0.45 0.86
sSUFF 4.27∗∗ 0.04 5.00∗∗ 0.02 5.26∗∗ 0.01 5.49∗∗ 0.01

to December 2019. Since the data date for each vintage of time-series observations

starts from January 1968, there are about 15 years of historical data used in the first

forecast when using the March 1982 vintage. In line with the in-sample forecasting,

we employ six PCA, sPCA and PLS factors and two SUFF and sSUFF predictive

indices.

In calculating R2
OS in (11), we consider three benchmark forecasts: 1) historical
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mean forecast, 2) yield curve (measured by the first three principal components of 1-

to 5-year bond yields) forecast,11 and 3) yield curve and PCA factor-based forecast.

Table 7 reports the results and makes two observations. First, sSUFF performs the

best across the benchmarks and its R2
OS is the largest one in all the specifications.

Second, the forecasting performance depends on the benchmark one uses. When

assuming there is no predictability by benchmarking on the historical mean, all the

forecasting methods we consider deliver positive R2
OSs. When assuming there is some

predictability by benchmarking on yield curve and PCA macro factors, the R2
OSs

decrease dramatically. In this case, sSUFF is the only one consistently beating the

benchmark.

We note that our PCA results are better than Ghysels et al. (2018). There are two

possible reasons. First, we focus on different sample periods. Second, we use the

vintage data differently. That is, we take the latest vintage time series as information

set one can use, while Ghysels et al. (2018) do not consider further revisions; their

focus is to compare whether the first release or the revision contains more information

about future bond returns. Take the total nonfarm payroll in Table 2 as an example.

To predict bond returns in June 2017, we use the vintage released on May 5, 2017

(last column of Table 2), while Ghysels et al. (2018) use the diagonal values in Table

2. As a result, the data used by Ghysels et al. (2018) are noisier than ours, because

the vintages before May 2017 were further revised on May 5, 2017 to reflect the true

total nonfarm payroll.

3.7. Economic value of macro variables in forecasting bond returns

We investigate the economic value of real-time macro factors in making asset

allocation decisions. Following Eriksen (2017) and Gargano et al. (2019), we compute

the certainty equivalent return (CER) gain for an investor who has access to real-

time macro factors when allocating her wealth between an n-year bond and a 1-year

bond over an annual horizon. For simplicity, we assume that the investor has a

11The result by using the Cochrane and Piazzesi (2005) return factor is quantitatively similar and
untabulated for brevity.
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Table 8: Economic value of forecasting bond returns with real-time macro factors
This table reports the portfolios gains of forecasting bond returns with real-time
macro factors with transaction costs of 20 basis points. We consider two portfolio
gain measures: certainty equivalent return (CER) gain and Goetzmann, Ingersoll,
Spiegel, and Welch (2007) manipulation-proof performance (MPP) improvement,
which are calculated as the incremental values of using the PCA, sPCA, PLS, SUFF
or sSUFF forecasts relative to the benchmark forecasts. Three benchmark forecasts
are historical mean forecast (Panel A), yield curve (measured by the first three
principal components of 1- to 5-year bond yields) forecast (Panel B), and yield curve
and PCA factor-based forecast (Panel C). We assume a mean-variance investor, with
risk aversion γ = 5 and investment horizon of one year, decides to allocate his wealth
between a 1-year (risk free) bond and an n-year bond (n = 2, · · · ,5), and estimates
the expected n-year bond return by using the real-time macro factors. All the
macro factors and expected bond returns are recursively estimated with expanding
windows. The investment period is 1982:03–2019:12.

CER gain (%) MPP improvement

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

Panel A: Historical mean forecast as benchmark
PCA −0.15 0.34 0.48 0.64 −0.12 0.43 0.57 0.73
sPCA −0.15 0.43 0.80 0.97 0.04 0.89 1.29 1.50
PLS −0.32 0.13 0.40 0.67 −0.14 0.65 1.02 1.26
SUFF −0.15 0.33 0.42 0.58 −0.11 0.41 0.49 0.66
sSUFF 0.19 0.91 1.17 1.31 0.37 1.31 1.53 1.69

Panel B: Yield curve forecast as benchmark
PCA 0.17 0.81 1.45 2.12 0.00 0.24 0.10 0.00
sPCA 0.42 1.11 1.89 2.50 0.30 0.46 0.49 0.47
PLS 0.21 0.80 1.53 2.17 0.07 0.27 0.24 0.22
SUFF 0.13 0.78 1.43 2.10 −0.03 0.18 0.04 −0.05
sSUFF 0.61 1.31 1.96 2.63 0.49 0.73 0.71 0.70

Panel C: Yield curve and macro PCA factors forecast as benchmark
sPCA 0.25 0.30 0.44 0.38 0.30 0.22 0.40 0.47
PLS 0.04 −0.02 0.07 0.05 0.07 0.03 0.14 0.22
SUFF −0.03 −0.03 −0.02 −0.02 −0.03 −0.06 −0.06 −0.05
sSUFF 0.44 0.50 0.50 0.52 0.49 0.49 0.61 0.69

mean-variance preference with risk aversion γ = 5, and repeatedly makes allocation

decisions at the end of each month over the March 1982 to December 2019 period.

Specifically, at time t, the investor optimally allocates a proportion of w∗t =

Et[R
(n)
t+12]/(γVart[R

(n)
t+12]) of her wealth to the n-year bond, where Et[R

(n)
t+12] is the

return forecast on n-year bond, and Vart[R
(n)
t+12] is the conditional variance. To
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highlight the effect of return forecasts, we fix the variance of bond return at its

unconditional mean over the full sample, and entertain varying real-time macro

factors in return forecasts to judge their economic values. The investor then allocates

1− w∗t of her wealth to the 1-year bond, assuming a risk free asset, and the portfolio

return realized at t+ 12 is Rp
t+12 = w∗t R(n)

t+12 + R(1)
t . To prevent the investor from taking

extreme positions, we restrict the portfolio weight w∗t to lie in [−1,5], which amounts

to a maximum short-sale of 100% and a maximum leverage of 400%.

The CER of the portfolio is CER = µ̂p − 0.5γσ̂2
p, where µ̂p and σ̂2

p are the sample

mean and variance of the portfolio returns. We calculate the CER gain as the

difference between the CER for the investor who uses the real-time macro factor

based forecast and the CER for an investor who uses a benchmark forecast such

as the historical mean. Intuitively, this CER gain can be interpreted as a portfolio

management fee that an investor would be willing to pay in order to have access to

this real-time macro factor based forecast.

In addition to the CER gain, we also consider an alternative measure, the

manipulation-proof performance (MPP) measure (Goetzmann et al., 2007). Following

Thornton and Valente (2012) and Eriksen (2017), we define MPP as

MPP =
1

1− γ
ln
(

1
m

m

∑
t=1

[ R̂p
t+12

R(1)
t

]1−γ)
− 1

1− γ
ln
(

1
m

m

∑
t=1

[ R̄p
t+12

R(1)
t

]1−γ)
,

where R̂p
t+12 and R̄p

t+12 denote portfolio returns by using the real-time macro factor

forecast and a benchmark forecast, respectively.

Table 8 reports the CER gain and MPP, assuming a proportional transaction cost of

20 basis points (bps) following Gargano et al. (2019). Following Table 7, we consider

three benchmark forecasts, historical mean forecast, yield curve forecast, and yield

curve and PCA factor-based forecast. The results indicate that forecasting bond

returns with real-time macro variables are economically profitable, but investing in

5-year bonds is more profitable than investing in 2-year bonds. For example, when

using historical mean forecast as the benchmark in Panel A, the investor obtains a

CER gain of 19 bps for investing in 2-year bonds and 131 bps for investing in 5-year
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bonds, if she employs sSUFF.

Thornton and Valente (2012) and Sarno et al. (2016), among others, find it difficult

to translate statistical predictability into economic value for investors who trade on

government bonds. Table 8 provides two interpretations to such a finding. First,

the predictability of bond returns is heterogeneous. The portfolio gain is likely

to be negative for investing in 2-year bonds if the investor employs PCA, PLS, or

SUFF. Instead, it is high likely to be positive for investing in 3- to 5-year bonds.

Second, the portfolio gains are dependent on the benchmark forecasts. The gains for

benchmarking on yield curve forecast are larger than that benchmarking on historical

mean forecast. This result suggests that yield curve-based forecasts underperform the

historical mean forecasts for real-time investments.

In sum, we conclude that real-time macro factors can generate economic values

in predicting bond returns, so long as the econometric method takes into account

nonlinearity and factor weakness.

3.8. Forecasting macroeconomic condition

Cochrane (2007) argues that return predictability is more plausibly related to

macroeconomic risk if the return predictor also predicts macroeconomic condition.

This section examines whether Cochrane’s (2007) argument applies to real-time

macro factors. To this end, we run the following predictive regression,

∆Yt+12 = α + β ft + εt+12, (12)

where ft is the estimated single return predictor factor of PCA, SUFF, sPCA, or

sSUFF, and ∆Yt+12 = Yt+12 − Yt, in which Yt measures the macroeconomic condition,

including the CFNAI, CFNAI sub-index on consumption and housing (consumption),

CFNAI sub index on employment and hours (employment), St. Louis Fed smooth

recession probability, Jurado et al. (2015) macroeconomic uncertainty index, and

spread between the BAA and AAA yields.
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Table 9: Forecasting macroeconomic condition with real-time macro factors
This table reports the regression slope, t-statistic, and R2 of predicting annual
changes of macroeconomic condition with real-time return predictor factors, which
are extracted from six PCA, sPCA or PLS factors, or two SUFF or sSUFF predictive
indices. Macroeconomic condition (Yt) is measured by six proxies: the Chicago Fed
National Activity Index (CFNAI), CFNAI sub index on consumption and housing
(Consumption), CFNAI sub index on employment and hours (Employment),
St Louis Fed smooth recession probability, Jurado, Ludvgison, and Ng’s (2015)
macroeconomic uncertainty index, and yield spread between the BAA and AAA
yields. The annual change is computed as ∆Yt+12 = Yt+12 −Yt. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. The evaluation period is
1982:03–2019:12.

CFNAI Consumption Employment Recession Macro Yield
probability uncertainty spread

Panel A: ∆Yt+12 = α + β f PCA
t + εt+12

β 0.14∗∗∗ 0.12∗ 0.20∗∗∗ −0.16∗∗ −0.18∗∗ −0.11∗∗

t-stat 2.79 1.95 3.06 −1.96 −2.14 −2.29
R2 0.03 0.02 0.07 0.04 0.05 0.02

Panel B: ∆Yt+12 = α + β f sPCA
t + εt+12

β 0.15∗∗∗ 0.11∗∗∗ 0.21∗∗∗ −0.17∗∗∗ −0.21∗∗∗ −0.14∗∗∗

t-stat 3.50 2.89 4.26 −2.52 −3.17 −2.51
R2 0.07 0.04 0.13 0.09 0.13 0.06

Panel C: ∆Yt+12 = α + β f PLS
t + εt+12

β 0.13∗∗∗ 0.08∗∗ 0.17∗∗∗ −0.14∗∗ −0.18∗∗∗ −0.12∗∗

t-stat 2.96 2.16 3.31 −2.29 −2.71 −2.15
R2 0.05 0.02 0.09 0.06 0.09 0.04

Panel D: ∆Yt+12 = α + β f SUFF
t + εt+12

β 0.13∗∗∗ 0.12∗∗ 0.20∗∗∗ −0.16∗∗ −0.18∗∗ −0.11∗∗

t-stat 2.66 1.99 3.08 −2.00 −2.19 −2.31
R2 0.03 0.02 0.06 0.04 0.05 0.02

Panel E: ∆Yt+12 = α + β f sSUFF
t + εt+12

β 0.16∗∗∗ 0.13∗∗∗ 0.21∗∗∗ −0.18∗∗∗ −0.21∗∗∗ −0.13∗∗

t-stat 3.28 2.86 3.83 −2.39 −2.75 −2.29
R2 0.06 0.04 0.11 0.08 0.11 0.04

Table 9 reports the results. For ease of exposition, we standardize both the left

and right-hand side variables to have mean zero and unit standard deviation. We

find the sPCA, PLS and sSUFF return predictor factors exhibit stronger predictive

power in forecasting future one-year ahead changes in macroeconomic condition.

In particular, all the factors positively predict future increase in the CFNAI and
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their sub-index on consumption and employment, and negatively predict the annual

changes in recession probability, macro uncertainty and credit spread. Overall, Table

9 provides empirical evidence in support of Cochrane (2007) that real-time macro

factors predict future bond returns because they are able to predict the changes of

future macroeconomic condition.

3.9. Counter-cyclical term premia

Many macro finance models predict time-varying term premia due to time-varying

macroeconomic risk or time-varying risk bearing ability, high in recessions and low

in expansions (see, e.g., Ludvigson and Ng, 2009; Wright, 2011; Joslin, Priebsch, and

Singleton, 2014). With this insight, Creal and Wu (2020) extend consumption-based

models to incorporate time variations in both the prices and quantities of growth

and inflation risks and show that time-varying inflation risk is an important driver

of bond risk premia. However, Ghysels et al. (2018) show that real-time macro data

substantially reduce the countercyclicality of the implied term premia, and argue that

the previously documented countercyclical term premia may be largely driven by the

macro data revisions.

We re-examine the countercyclical behavior of term premia using the real-time

macro factors. Following Ludvigson and Ng (2009) and Ghysels et al. (2018), we

estimate term premia using a VAR model that includes the annual returns of 2- to

5-year bonds. Specifically, the term premium of an n-year bond is estimated as

tp(n)t =
1
n
[
Et(rx(n)t+12) + Et(rx(n−1)

t+24 ) + · · ·+ Et(rx(2)t+(n−1)∗12)
]
,

where Et(rx(n−h+1)
t+h∗12 ) denotes the time t forecast for the h-year ahead annual bond

return on an (n− h + 1)-year bond return from t + (h− 1) ∗ 12 to t + h ∗ 12, where h

spans from 1 to n − 1. The h-year ahead annual bond return forecast is estimated

using the monthly VAR model with 12 lags. The above definition for tp(n)t is

equivalent to the difference between the yield of an n-year bond and the average

expected short rate over the life of the bond. The expectation hypothesis assumes
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Figure 3: Term premium and macroeconomic condition
This figure plots the time-series of term premium (i.e., bond risk premium in yields),
which is estimated with a VAR model that includes the annual return of 2- to 5-
year government bonds. The yield curve predictors are the first three principal
components of 1- to 5-year bond yields. Macro factors are the single return predictor
factors of PCA, sPCA, PLS, SUFFand sSUFF, respectively. Each panel also plots
the Chicago Fed Employment Index (Employment) as a proxy for the state of
macroeconomic condition. The vertical bars indicate NBER-dated recessions. The
sample period is 1982:03–2019:12.
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that the term premium is constant, while the macro finance models suggest that the

term premium is countercyclical.

Figure 3 plots the time-series dynamics of the 5-year bond term premium tp(5)t

implied by the VAR model. Across all panels, the term premia implied by the real-

time macro factor appear to exhibit countercyclical patterns, rising around NBER

recessions and falling during expansions, consistent with Ludvigson and Ng (2009).

To quantify the degree of countercyclicality of the implied term premia, we further

plot in each panel the time-series of the monthly CFNAI employment index and

calculate its correlation with the term premia. We find that the correlation between

the term premium implied by the PCA, sPCA and PLS forecasts and the CFNAI

37

Electronic copy available at: https://ssrn.com/abstract=3107612



employment index are around −0.07 to −0.10, while the correlations with the SUFF

and sSUFF forecasts are −0.14 and −0.16, with the latter two being statistically

significant at the 1% level. Thus, once the forecasts are improved, the term premia

would display a more countercyclical feature, thereby lending support to leading

macro-finance term structure models.

3.10. Time-varying forecasting performance

Finally, we investigate the time-varying forecasting performance of the real-time

macro factors, in order to further explore their link with macroeconomic condition.

In the stock market, Rapach, Strauss, and Zhou (2010), Dangl and Halling (2012), and

Henkel, Martin, and Nardari (2011), among others, show that return predictability

is stronger in economic recessions. In the bond market, Sarno et al. (2016) and

Gargano et al. (2019) find a similar pattern when the final revised macro factors are

incorporated into the predictive regression framework.

Following Eriksen (2017), we examine the correlations of the relative forecast

accuracy (RFA) and relative realized portfolio return (RPR) with macroeconomic

condition.12 RFA and RPR are respectively defined as the difference in squared

forecast error and the difference in realized portfolio return generated by the real-

time macro factors against those generated by the historical return mean. For ease of

exposition, we focus on the 5-year bond returns below.

Panel A of Table 10 shows that the RFA generally exhibits negative correlations

with the CFNAI, consumption, and employment, and positive correlations with the

recession probability, macro uncertainty, and yield spread. Panel B focuses on the

RPR and documents evident countercyclical patterns across all the real-time macro

factors. The magnitudes of correlations with sSUFF forecasts are larger in magnitude

than those with other forecasts. These results indicate that the real-time macro factors

have stronger forecasting power statistically and economically in periods of economic

12A popular way to assess the time-varying monthly return predictability is to evaluate the forecast
errors separately during the NBER-dated expansions and recessions (e.g., Gargano, Pettenuzzo, and
Timmermann, 2019). However, such a sample split test seems infeasible and inaccurate for us, since
we focus on annual holding period returns, which may cover multiple economic states.
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Table 10: Macro factors’ forecasting performance and macroeconomic condition
This table reports the correlation between the forecasting performances of real-time
macro factors and macroeconomic condition. We extract six factors when using
PCA, sPCA and PLS and two predictive indices when using SUFF and sSUFF
from 60 real-time macro variables. We use two proxies to measure the forecasting
performance: relative forecast accuracy (RFA(5)

t ) and relative realized portfolio return
(RPR(5)

t ), calculated as the difference in squared forecast error and the difference
in realized portfolio return for a mean-variance investor who forecasts 5-year bond
returns with a macro factor against the historical return mean. Macroeconomic
condition (Yt) is measured by seven proxies: the Chicago Fed National Activity
Index (CFNAI), CFNAI sub index on consumption and housing (Consumption),
CFNAI sub index on employment and hours (Employment), St Louis Fed smooth
recession probability, Jurado et al.’s (2015) macroeconomic uncertainty index, and
yield spread between the BAA and AAA yields. All the macro factors and expected
bond returns are recursively estimated with an expanding window approach. ∗,
∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The
evaluation period is 1982:03–2019:12.

Yt

CFNAI Consumption Employment Recession Macro Yield
probability uncertainty spread

Panel A: corr(RFA(5)
t ,Yt)

PCA −0.05 −0.17∗∗∗ −0.08∗ 0.02 0.04 0.15∗∗∗

sPCA −0.05 −0.18∗∗∗ −0.06∗ 0.07 0.06 0.15∗∗∗

PLS −0.11∗∗ −0.20∗∗∗ −0.12∗∗ 0.13∗∗ 0.13∗∗ 0.21∗∗∗

SUFF −0.06 −0.15∗∗∗ −0.11 0.09 0.08 0.20∗∗∗

sSUFF−0.13∗∗∗ −0.12∗∗∗ −0.17∗∗∗ 0.16∗∗∗ 0.11∗∗ 0.18∗∗∗

Panel B: corr(RPR(5)
t ,Yt)

PCA −0.04 −0.26∗∗∗ −0.07 0.00 0.09∗ 0.23∗∗∗

sPCA −0.03 −0.36∗∗∗ −0.02 0.05 0.08∗ 0.22∗∗∗

PLS −0.09∗ −0.29∗∗∗ −0.09∗ 0.11∗∗ 0.19∗∗∗ 0.29∗∗∗

SUFF −0.08 −0.22∗∗∗ −0.14∗∗∗ 0.09∗ 0.16∗∗∗ 0.27∗∗∗

sSUFF−0.14∗∗∗ −0.20∗∗∗ −0.18∗∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.25∗∗∗

recessions. It also suggests that macroeconomic risk can play an important role in

driving the predictability of bond returns.
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4. Conclusion

We study an important and debatable question of whether bond returns can be

predicted by factors extracted from real-time macro variables. We argue that macro

factors are likely to be nonlinearly related to future bond returns, and some of them

are weak, in the sense that they are loaded by a partial set of macro variables. To

improve the forecasting power, we extend Fan et al. (2017) sufficient forecasting to

a weak and partially relevant factor framework that is suitable for both nonlinearity

and weak factors. Similar to the scaled PCA in Huang et al. (2022), the idea is to

overweight factors with high forecasting power while downweight those with low

power. Econometrically, we study the properties of the scaled sufficient forecasting

method, shedding light on why it can extract relevant factors more efficiently than

the sufficient forecasting. We also conduct simulations to gain additional econometric

insights.

Empirically, we apply the scaled sufficient forecasting approach to predict 2- to

5-year government bond returns with 60 real-time macro variables. We find that

bond return forecasts are significant in- and out-of-sample at all maturities, and

they outperform those based on other alternative methods, such as the sufficient

forecasting, and linear algorithms of PCA, scaled PCA, and PLS. We also find that

the bond risk premia based on our new method are countercycilical, consistent with

well-known macro finance theories. Overall, the success of our method is due to the

fact that it can accommodate both nonlinearity and factor weakness.

There are a number of topics that seem important for future research. First,

while this paper focuses on bond return predictability, it is of interest to examine

how the scaled sufficient forecasting improves return predictability in a big data

environment for other markets such as the stock and currency markets. Second,

from an investment perspective, one may also include real-time macro survey data

or high frequency data to improve the economic value of return predictability even

further. Third, with a more efficient return forecast based on real-time macro data,
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one may better decompose the yield curve to assess how the bond market’s responses

to monetary policy changes, helping policy makers to better judge in real time the

separate impacts of monetary policies on the market’s expectation of future inflation

and the market wide risk appetite for government bonds.
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Online Appendix

Are Bond Returns Predictable with Real-Time Macro
Data?

A. Proofs for the theoretical results

This appendix provides the detailed proofs of the two theorems in the main text,
which are based on the following six propositions. Specifically, Propositions A.1– A.4
jointly prove Theorem 1, and Propositions A.6–A.7 jointly prove Theorem 2.

We first introduce some notations. Let X be N× T matrix with its (i, t)th element
being xit, and Xi be the transpose of its ith row. With this definition,

X =BF ′ +U , or Xi = Fbi +Ui,

where U and Ui are defined in the same way as X and Xi. We have the following
proposition on the eigenvalues.

Proposition A.1. Let D̂ be the diagonal matrix whose diagonal elements are the largest
r eigenvalues of 1

NνTX
′X with X = (xit)N×T. Under Assumptions A-D, as N, T →

∞, N1−ν/T→ 0,

τi(D̂)− τi

( 1
Nν
B′B

)
= op(1),

where τi(·) denotes the i-th largest eigenvalue of its input.

Proposition A.1 can be proved by the same arguments in the proof of Proposition
1 of Bai (2003).

Corollary A.1. Define R= 1
NνTB

′BF ′F̂ D̂−1, where F̂ is the PC estimator for the matrix
X , we have R = Op(1). In addition, if R′R = Ir + op(1) as asserted in result (e) of
Proposition A.2, we have R−1 = Op(1).

Proof of Corollary A.1. By Proposition A.1, we see

‖R‖ ≤ ‖B
′B‖

Nν

‖F ‖√
T
‖F̂ ‖√

T
‖D̂−1‖ = Op(1).

For the second result, we note that, by condition, R−1 =R′ + op(1). So R−1 = Op(1)
because R= Op(1). �

1
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Proposition A.2. Under the assumptions of Proposition A.1, we have

(a)
1√
T
‖F̂ −FR‖ = Op(

1√
Nν

) + Op(
N1−ν

T
),

(b)
1
T
‖F ′(F̂ −FR)‖ = Op(

1√
NνT

) + Op(
1

Nν
) + Op(

N1−ν

T
),

(c)
1
T
‖U ′i (F̂ −FR)‖ = Op(

1√
NνT

) + Op(
1

Nν
) + Op(

N1−ν

T3/2 ) = Op(
1

Nν
) + op(

1√
T
),

(d)
1
T
‖X ′i (F̂ −FR)‖ = Op(

1
Nν

) + Op(
N1−ν

T
),

(e) R′R− Ir = Op(
1

Nν
) + Op(

N1−ν

T
).

Proof of Proposition A.2. Consider (a). Note that

1
NνT

X ′XF̂ = F̂ D̂.

Substitute X =BF ′ +U into the above expression,

F̂ =
1

NνT
FB′BF ′F̂ D̂−1 +

1
NνT

FB′UF̂ D̂−1 +
1

NνT
U ′BF ′F̂ D̂−1 +

1
NνT

U ′UF̂ D̂−1.

By the definition of R= 1
NνTB

′BF ′F̂ D̂−1,

F̂ −FR=
1

NνT
FB′UF̂ D̂−1 +

1
NνT

U ′BF ′F̂ D̂−1 +
1

NνT
U ′UF̂ D̂−1. (A.1)

Given the above expression,

1√
T
‖F̂ −FR‖ ≤ 1

NνT
√

T
‖FB′UF̂ D̂−1‖+ 1

NνT
√

T
‖U ′BF ′F̂ D̂−1‖

+
1

NνT
√

T
‖U ′UF̂ D̂−1‖

= I1 + I2 + I3, say.

We consider the above three terms one by one. For I1, we have

I1 ≤
1√
Nν

‖F ‖√
T
‖B′U‖√

NνT
‖F̂ −FR‖√

T
‖D̂−1‖+ 1√

NνT
‖F ‖√

T
‖B′UF ‖√

NνT
‖R‖‖D̂−1‖.

The first term is Op(
1√
Nν

)‖F̂ − FR‖/
√

T which is a term of smaller order relative

to ‖F̂ − FR‖/
√

T and therefore is negligible. The second term is Op(
1√

NνT
). Given

2
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this, we have I1 = Op(
1√

NνT
). For I2,

I2 ≤
1√
Nν

‖U ′B‖√
NνT

‖F ′F̂ ‖
T
‖D̂−1‖ = Op(

1√
Nν

).

For I3, we have

I3 ≤
1

NνT
‖U ′U‖2

‖F̂ ‖√
T
‖D̂−1‖.

By Theorem 5.8 of Bai and Silverstein (2010), we have that ‖ 1
max(N,T)U

′U‖2 = Op(1).
This implies that ‖U ′U‖2 = Op(max(N, T)) = Op(N) + Op(T). With this result, we
have that I3 = Op(

N1−ν

T ) + Op(N−ν). Summarizing the results on I1, I2 and I3, we
conclude (a).

Consider (b). By (A.1),

1
T
F ′(F̂ −FR) =

1
NνT

B′UF̂ D̂−1 +
1

NνT2F
′U ′BF ′F̂ D̂−1 +

1
NνT2F

′U ′UF̂ D̂−1

= II1 + II2 + II3, say

We consider the three terms one by one. For II1, it can be decomposed into

II1 =
1

NνT
B′U (F̂ −FR)D̂−1 +

1
NνT

B′UFRD̂−1

The second term is bounded in norm by

1√
NνT

‖B′UF ‖√
NνT

‖R‖‖D̂−1‖ = Op(
1√
NνT

).

We next consider the first term. By (A.1),

1
NνT

B′U (F̂ −FR)D̂−1 =
1

N2νT2B
′UFB′UF̂ D̂−2 +

1
N2νT2B

′UU ′BF ′F̂ D̂−2

+
1

N2νT2B
′UU ′UF̂ D̂−2

The first term is bounded in norm by

1
Nν
√

T
‖B′UF ‖√

NνT
‖B′U‖√

NνT
‖F̂ ‖√

T
‖D̂−2‖ = Op(

1
Nν
√

T
).

The second term is bounded in norm by

1
Nν
√

T
‖B′[UU ′ −E(UU ′)]B‖

Nν
√

T
‖F ‖√

T
‖F̂ ‖√

T
‖D̂−2‖+ 1

Nν

‖B′E(UU ′)B‖
NνT

‖F ‖√
T
‖F̂ ‖√

T
‖D̂−2‖.

3
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which is Op(
1

Nν ) + Op(
1

Nν
√

T
). The third term can be further decomposed into

1
N2νT2B

′UU ′U (F̂ −FR)D̂−2 +
1

N2νT2B
′UU ′UFRD̂−2

Note that

‖B′UU ′U (F̂ −FR)D̂−2‖2 = tr
[
B′UU ′U (F̂ −FR)D̂−4(F̂ −FR)′U ′UU ′B

]
≤ ‖D̂−1‖2

2 · ‖UU ′‖2
2 · tr

[
B′U (F̂ −FR)D̂−2(F̂ −FR)′U ′B

]
= ‖D̂−2‖2

2 · ‖UU ′‖2
2 · ‖B′U (F̂ −FR)D̂−1‖2.

With the above result, we have

1
N2νT2‖B

′UU ′U (F̂ −FR)D̂−2‖ ≤ ‖D̂−1‖2

[ 1
NνT
‖UU ′‖2

][ 1
NνT
‖B′U (F̂ −FR)‖2D̂−1

]
= op(1)

[ 1
NνT
‖B′U (F̂ −FR)D̂−1‖

]
So the first expression is of smaller order term relative to 1

NνT‖B′U (F̂ − FR)D̂−1‖
and is therefore negligible. For the second expression, it is bounded in norm by

N1/2−3ν/2
√

T
‖B′U [U ′U −E(U ′U )]‖

N1/2+ν/2T
‖F ‖√

T
‖R‖‖D̂−2‖+ N1−3ν/2

T
√

T
‖B′UE(U ′U )F ‖

N1+ν/2
√

T
‖R‖‖D̂−2‖

which is op(N−ν) + op(
1√

NνT
) under N1−ν/T→ 0. With this result, we have

II1 = Op(
1

Nν
) + Op(

1√
NνT

).

For II2, we have

‖II2‖ ≤
1√
NνT

‖F ′U ′B‖√
NνT

‖F ′F̂ ‖
T
‖D̂−1‖ = Op(

1√
NνT

).

For II3, it can be decomposed into

1
NνT2F

′U ′UF̂ D̂−1 =
1

NνT2F
′U ′U (F̂ −FR)D̂−1 +

1
NνT2F

′U ′UFRD̂−1.

Note that

‖F ′U ′U (F̂ −FR)D̂−1‖2 = tr
[
F ′U ′U (F̂ −FR)D̂−2(F̂ −FR)′U ′UF

]
≤ ‖D̂−1‖2

2 · ‖U ′U‖2
2tr
[
F ′(F̂ −FR)(F̂ −FR)′F

]
≤ ‖D̂−1‖2

2 · ‖U ′U‖2
2 · ‖F ′(F̂ −FR)‖2

4
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With the above result, we have

1
NνT2‖F

′U ′U (F̂ −FR)D̂−1‖ ≤ ‖D̂−1‖2

[ 1
NνT
‖U ′U‖2

][ 1
T
‖F ′(F̂ −FR)‖

]
= op(1)

[ 1
T
‖F ′(F̂ −FR)‖

]
.

So the first term is of smaller order relative to ‖F ′(F̂ − FR)‖/T and is therefore
negligible. The second term is bounded in norm by

N1/2−ν

T
‖F ′[U ′U −E(U ′U )]F ‖√

NT
‖R‖‖D̂−1‖+ N1−ν

T
‖F ‖2

T
‖E(U ′U )‖2

N
‖R‖‖D̂−1‖,

which is Op(
N1/2−ν

T ) + Op(
N1−ν

T ). Note that under N1−ν/T → 0, Op(
N1/2−ν

T ) is of
smaller order relative to Op(

1√
NνT

). Given this result, II3 = op(
1√

NνT
) + Op(

N1−ν

T ).

With the results on II1, II2 and II3, we therefore conclude that

1
T
‖F ′(F̂ −FR)‖ = Op(

1√
NνT

) + Op(
1

Nν
) + Op(

N1−ν

T
).

Consider (c). By (A.1),

1
T
U ′i (F̂ −FR) =

1
NνT2U

′
iFB

′UF̂ D̂−1 +
1

NνT2U
′
iU
′BF ′F̂ D̂−1 +

1
NνT2U

′
iU
′UF̂ D̂−1

= III1 + III2 + III3, say

For III1, we have

‖III1‖≤
1√
NνT

‖U ′iF ‖√
T
‖B′U‖√

NνT
‖F̂ −FR‖√

T
‖D̂−1‖+ 1√

NνT

‖U ′iF ‖√
T
‖B′UF ‖√

NνT
‖R‖‖D̂−1‖,

which is op(
1√

NνT
). For III2, we have

‖III2‖≤
1√
NνT

‖[U ′iU ′ −E(U ′iU
′)]B‖√

NνT
‖F ′F̂ ‖

T
‖D̂−1‖+ 1

Nν

‖E(U ′iU
′)B‖

T
‖F ′F̂ ‖

T
‖D̂−1‖,

which is Op(
1√

NνT
) + Op(N−ν). For III3, we have

‖III3‖ =
1

NνT2‖U
′
iU
′UFRD̂−1‖+ 1

NνT2‖U
′
iU
′U (F̂ −FR)D̂−1‖ (A.2)

Note that

‖U ′iU ′U (F̂ −FR)D̂−1‖2 = tr
[
U ′iU

′U (F̂ −FR)D̂−2(F̂ −FR)′U ′UUi

]

5
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≤ ‖D̂−1‖2
2‖U ′U‖2

2tr
[
U ′i (F̂ −FR)(F̂ −FR)′Ui

]
= ‖D̂−1‖2

2‖U ′U‖2
2‖U ′i (F̂ −FR)‖2

With the above result, we have

1
NνT2‖U

′
iU
′U (F̂ −FR)D̂−1‖ ≤ 1

NνT2‖D̂
−1‖2‖U ′U‖2‖U ′i (F̂ −FR)‖

= ‖D̂−1‖2

[ 1
NνT
‖U ′U‖2

][ 1
T
‖U ′i (F̂ −FR)‖

]
= op(1)

[ 1
T
‖U ′i (F̂ −FR)‖

]
So the second term of (A.2) is negligible since it is of smaller order relative to ‖U ′i (F̂ −
FR)‖/

√
T. For the first term, it is bounded in norm by

N1/2−ν

T
‖U ′i [U ′U −E(U ′U )]F ‖√

NT
‖R‖‖D̂−1‖+ N1−ν

T
√

T

‖U ′i E(U ′U )F ‖
N
√

T
‖‖R‖‖D̂−1‖

which is Op(
N1/2−ν

T ) + Op(
N1−ν

T
√

T
). We therefore have III3 = Op(

N1/2−ν

T ) + Op(
N1−ν

T
√

T
).

Given the results on III1, III2 and III3, together with the fact that Op(
N1/2−ν

T ) =

op(
1√

NνT
) by N1−ν

T → 0, we have (c).

Consider (d). Note that X ′i = b
′
iF
′ +U ′i . So result (d) is a direct consequence of

results (b) and (c).

Consider (e). By the fact that F̂ ′F̂/T = Ir and F ′F/T = Ir, we have

Ir =
1
T
(F̂ −FR)′(F̂ −FR) +

1
T
R′F ′(F̂ −FR) +

1
T
(F̂ −FR)′FR+R′R.

The first term is Op(
1

Nν ) + Op(
N2−2ν

T2 ) due to result (a). The second term is given in
result (b). We therefore have (e).

This completes the proof. �

Proposition A.3. Under the assumptions of Proposition A.1, we have that for each h,

1
c

c

∑
l=1

(f̂h,l −R′fh,l) =
1√
NνT

+ Op(
1

Nν
) + Op(

N1−ν

T
).

Proof of Proposition A.3. We can alternatively write (A.1) as, for each t,

f̂t −R′ft =R
′(B′B)−1

N

∑
i=1
biuit + D̂

−1
[ 1

NνT

N

∑
i=1

T

∑
s=1
f̂ ′sb
′
iuis

]
ft + D̂

−1 1
NνT

N

∑
i=1

T

∑
s=1
f̂suisuit.

6
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With the above result, we therefore have that for each h,

1
c

c

∑
l=1

(f̂h,l −R′fh,l) =R
′(B′B)−1 1

c

c

∑
l=1

N

∑
i=1
biui,hl + D̂

−1
[ 1

NνT

N

∑
i=1

T

∑
s=1
f̂ ′sb
′
iuis

](1
c

c

∑
l=1
fhl

)
+ D̂−1 1

NνTc

c

∑
l=1

N

∑
i=1

T

∑
s=1
f̂suisui,hl

= Ih,1 + Ih,2 + Ih,3.

Consider Ih,1. By Assumptions B and C, together with result (i) of Proposition
A.2, one can readily show that Ih,1 = Op(

1√
NνT

). For the second term, by 1
c ∑c

l=1fhl =

Op(
1√
T
), it is easy to show that Ih,2 = Op(

1√
NνT

). For the third term, note that

D̂−1 1
NνTc

c

∑
l=1

N

∑
i=1

T

∑
s=1
f̂suisui,hl = D̂

−1 1
NνTc

c

∑
l=1

N

∑
i=1

T

∑
s=1
f̂sE(uisui,hl)

+ D̂−1 1
NνTc

c

∑
l=1

N

∑
i=1

T

∑
s=1

(f̂s −R′fs)ζi,hl,s

+ D̂−1R′
1

NνTc

c

∑
l=1

N

∑
i=1

T

∑
s=1
fsζi,hl,s,

where ζi,ts = uituis − E(uituis). The first term on right hand side is Op(
N1−ν

T ). The
second term is bounded in norm by

‖D̂−1‖
[ 1

T

T

∑
s=1
‖f̂s −R′fs‖2

]1/2[ 1
T

T

∑
s=1

∥∥∥ 1
Nνc

c

∑
l=1

N

∑
i=1

ζi,hl,s

∥∥∥2]1/2
,

which is Op(N1/2−3ν/2T−1/2) + Op(N3/2−2νT−3/2) due to Proposition A.2. The third
term is Op(N1/2−νT−1). The last two terms are both of smaller order relative to the
first one. Given this, we have Proposition A.3. �

Proposition A.4. Under the assumptions of Proposition A.1, we have

‖Σ̂f |y −R′Σf |yR‖ = Op(
N1−ν

T
) + Op(

1√
T
) + Op(

1
Nν

).

where R is defined in Proposition A.2. Let R∗ = (Φ′Φ)−1/2RΩ with RΩ the eigenvector
matrix of

(Φ′Φ)1/2
[

1
H

H

∑
h=1

E
(
a(yt+1)|yt+1 ∈ Ih

)
E
(
a(yt+1)|yt+1 ∈ Ih

)′]
(Φ′Φ)1/2,

7
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we have that

‖Φ̂−R′ΦR∗‖ = Op(
N1−ν

T
) + Op(

1√
T
) + Op(

1
Nν

).

Proof of Proposition A.4. By definition,

Σf |y =
1
H

H

∑
h=1

E(ft|yt+1 ∈ Ih)E(f ′t |yt+1 ∈ Ih)

and

Σ̂f |y =
1
H

H

∑
h=1

[1
c

c

∑
l=1
f̂h,l

][1
c

c

∑
l=1
f̂h,l

]′
.

We therefore have

Σ̂f |y −R′Σf |yR=
1
H

H

∑
h=1

[1
c

c

∑
l=1
f̂h,l

][1
c

c

∑
l=1
f̂h,l

]′
− 1

H

H

∑
h=1
R′E(ft|yt+1 ∈ Ih)E(f ′t |yt+1 ∈ Ih)R

=
1
H

H

∑
h=1

[
1
c

c

∑
l=1
f̂h,l −R′E(ft|yt+1 ∈ Ih)

][
1
c

c

∑
l=1
f̂h,l −R′E(ft|yt+1 ∈ Ih)

]′
+R′

1
H

H

∑
h=1

E(ft|yt+1 ∈ Ih)

[
1
c

c

∑
l=1
f̂h,l −R′E(ft|yt+1 ∈ Ih)

]′
+

1
H

H

∑
h=1

[
1
c

c

∑
l=1
f̂h,l −R′E(ft|yt+1 ∈ Ih)

]
E(ft|yt+1 ∈ Ih)

′R.

By the fact that

f̂t −R′E(ft|yt+1 ∈ Ih) = (f̂t −R′ft) +R
′
[
ft −E(ft|yt+1 ∈ Ih)

]
,

we see that

‖Σ̂f |y −R′Σf |yR‖ ≤ 2
1
H

H

∑
h=1

∥∥∥1
c

c

∑
l=1

(f̂h,l −R′fh,l)
∥∥∥2

+ 2‖R‖2 1
H

H

∑
h=1

∥∥∥1
c

c

∑
l=1

[fh,l −E(ft|yt+1 ∈ h)]
∥∥∥2

+ 2‖R‖ 1
H

H

∑
h=1
‖E(ft|yt+1 ∈ Ih)‖

∥∥∥1
c

c

∑
l=1

[f̂h,l −R′fh,l]
∥∥∥

+ 2‖R‖2 1
H

H

∑
h=1
‖E(ft|yt+1 ∈ Ih)‖

∥∥∥1
c

c

∑
l=1

[fh,l −E(ft|yt+1 ∈ h)]
∥∥∥.

Since H is finite, the first term is dominated by the third one, and the second term
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is dominated by the fourth one. The third term is Op(
1√

NνT
) + Op(

1
Nν ) + Op(

N1−ν

T )

according to Proposition A.3. The fourth term is Op(
1√
T
) by the central limit theorem.

Given this result,

‖Σ̂f |y −R′Σf |yR‖ = Op(
N1−ν

T
) + Op(

1√
T
) + Op(

1
Nν

).

Note that

Σf |y = Φ
[

1
H

H

∑
h=1

E
(
a(yt+1)|yt+1 ∈ Ih

)
E
(
a(yt+1)|yt+1 ∈ Ih

)′]
︸ ︷︷ ︸

ΩH

Φ′

= ΦΩHΦ′ = Φ(Φ′Φ)−1/2
[
(Φ′Φ)1/2ΩH(Φ′Φ)1/2

]
(Φ′Φ)−1/2Φ′

Let RΩ be the eigenvector matrix of (Φ′Φ)1/2ΩH(Φ′Φ)1/2 with DΩ the associated
eigenvalue diagonal matrix, that is (Φ′Φ)1/2ΩH(Φ′Φ)1/2 =RΩDΩR

′
Ω. With this, we

have
Σf |y = Φ(Φ′Φ)−1/2RΩDΩR

′
Ω(Φ

′Φ)−1/2Φ′ = ΦR∗DΩR
∗′Φ′,

where R∗ = (Φ′Φ)−1/2RΩ. Given this, we therefore have

‖Σ̂f |y −R′ΦR∗DΩR
∗′Φ′R‖ = Op(

N1−ν

T
) + Op(

1√
T
) + Op(

1
Nν

). (A.3)

Note that

(R∗′Φ′R)(R′ΦR∗) =R∗′Φ′(RR′ − Ir)ΦR∗ +R∗′Φ′ΦR∗

=R∗′Φ′(RR′ − Ir)ΦR∗ +R′Ω(Φ
′Φ)−1/2Φ′Φ(Φ′Φ)−1/2RΩ

= Ir +R
∗′Φ′(RR′ − Ir)ΦR∗ = Ir + Op(

1
Nν

) + Op(
N1−ν

T
),

where the last result is due to the second result of Proposition A.2. So the matrix
R′ΦR∗ can be asymptotically viewed as the eigenvector matrix of R′Σf |yR since the

error term, Op(
1

Nν ) +Op(
N1−ν

T ), is dominated by the estimation error of Σ̂f |y given in
(A.3). Given this, we have

‖Φ̂−R′ΦR∗‖ = Op(
N1−ν

T
) + Op(

1√
T
) + Op(

1
Nν

).

This completes the proof. �

Proof of Theorem 1. Theorem 1 is the direct consequence of result (a) of
Proposition A.2, and the last result of Proposition A.4. �
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Proposition A.5. Let D̃ be the diagonal matrix whose diagonal elements are the largest r
eigenvalues of 1

NνTX̃
′X̃ with X̃ = (γ̂ixit)N×T, where γ̂i is the R-square of the regression of

xit on Φ̂
′
f̂t. Under Assumptions A-D, as N, T→∞ and N1−ν/T→ 0,

τi(D̃)− τi

( 1
Nν

N

∑
i=1

γ2
i bib

′
i

)
= op(1),

where γi = b′iPΦbi and τi(·) denotes the i-th largest eigenvalue of its input. Furthermore,
let R̃ = 1

NνT ∑N
i=1 γ̂2

i bib
′
iF
′F̃ D̃−1 where F̃ is defined in Proposition A.6 below, we therefore

have R̃= Op(1). Suppose that R̃′R̃= Ir + op(1) as asserted in result (c) of Proposition A.6,
we also have R̃−1 = Op(1).

Proof of Proposition A.5. Let X be the matrix with its (i, t)th entry equal to
γixit. We first show that

τi(D̃) = τi

( 1
NνT

X̃ ′X̃
)
= τi

( 1
NνT

X
′
X
)
+ op(1). (A.4)

We next further show that

τi

( 1
NνT

X
′
X
)
= τi

( 1
Nν

N

∑
i=1

γ2
i bib

′
i

)
+ op(1). (A.5)

To prove (A.4), by Weyl Theorem,∣∣∣τi

( 1
NνT

X̃ ′X̃
)
− τi

( 1
NνT

X
′
X
)∣∣∣ ≤ ∥∥∥ 1

NνT
(X̃ ′X̃ −X ′X)

∥∥∥
2
.

Using the arguments in the proof of Proposition A.6, we can show that the right hand
side is op(1). Actually, the derivation here is easier since we only need to show the
op(1) result instead of giving the explicit convergence rates as in Proposition A.6. So
we omit the details. Equation (A.5) can be proved in the same way as Proposition A.1.
Given this, we have the first result of this proposition. The remaining two results can
be proved by the same method in Corollary A.1. This completes the proof. �

Proposition A.6. Let F̃ be the PC estimator for the scaled matrix X̃ . Under the assumptions
of Proposition A.1, as N→∞, T→∞ and N1−ν/T→ 0, we have

(a)
1√
T
‖F̃ −FR̃‖ = Op(

1√
Nν

) + Op(
1
T
) + Op(

N1−ν

T
√

T
),

(b)
1
T
‖F ′(F̃ −FR̃)‖ = Op(

1
Nν

) + Op(
1
T
) + Op(

N1−ν

T
√

T
),

(c) R̃′R̃− Ir = Op(
1

Nν
) + Op(

1
T
) + Op(

N1−ν

T
√

T
),
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(d)
1
c

c

∑
l=1

(f̃h,l − R̃′fh,l) = Op(
1√
NνT

) + Op(
1
T
) + Op(

N1−ν

T
√

T
).

Proof of Proposition A.6. (a) The proof is based on the scaled version, i.e.
X ′iXi/T = 1. For each i, we run the regression

xit = θ′iΦ̂
′
f̂t + eit, or Xi = F̂ Φ̂θi + ei.

Let γ̂i be the R-square of the above regression. According to the definition of R-
square,

γ̂i =
1

X ′iXi
X ′i F̂ Φ̂(Φ̂

′
F̂ ′F̂ Φ̂)−1Φ̂

′
F̂ ′Xi =

1
T

1
X ′iXi

X ′i F̂ PΦ̂F̂
′Xi

=
1
T

1
X ′iXi

X ′i (F̂ −FR)PΦ̂(F̂ −FR)′Xi +
1
T

1
X ′iXi

X ′iFRPΦ̂(F̂ −FR)′Xi

+
1
T

1
X ′iXi

X ′i (F̂ −FR)PΦ̂R
′F ′Xi +

1
T

1
X ′iXi

X ′iF
(
RPΦ̂R

′ − PΦ

)
F ′Xi

+
1
T

1
X ′iXi

X ′iF PΦF
′Xi

where PX = X(X′X)−1X′. Substituting Xi = Fbi +Ui into the last term of the above
expression, we have

γ̂i =
1

X ′iXi/T
b′iPΦbi +

1
X ′iXi

b′iPΦF
′Ui +

1
X ′iXi

U ′iF
′PΦbi +

1
T

1
X ′iXi

U ′iF PΦF
′Ui

+
1
T

1
X ′iXi

X ′i (F̂ −FR)PΦ̂(F̂ −FR)′Xi +
1
T

1
X ′iXi

X ′iFRPΦ̂(F̂ −FR)′Xi

+
1
T

1
X ′iXi

X ′i (F̂ −FR)PΦ̂R
′F ′Xi +

1
T

1
X ′iXi

X ′iF
(
RPΦ̂R

′ − PΦ

)
F ′Xi

Since we normalize each predictor, X ′iXi = T for each i. Then the above expression
can be simplified as

γ̂i = b
′
iPΦbi + 2

1
T
b′iPΦF

′Ui +
1

T2U
′
iF PΦF

′Ui +
1

T2X
′
i (F̂ −FR)PΦ̂(F̂ −FR)′Xi

+ 2
1

T2X
′
iFRPΦ̂(F̂ −FR)′Xi +

1
T2X

′
iF
(
RPΦ̂R

′ − PΦ

)
F ′Xi

= γi + εi,

where γi = b
′
iPΦbi and εi is the remaining expression, which consists of five terms. If

i /∈ Io, we have γi = 0 because of either PΦbi = 0 for i in Ib or bi = 0 for i in I\(Io ∪Ib).
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By definition, we have

[
1

NνT
F

N

∑
i=1

γ̂2
i bib

′
iF
′+

1
NνT

F
N

∑
i=1

γ̂2
i biU

′
i +

1
NνT

N

∑
i=1

γ̂2
iUib

′
iF
′+

1
NνT

N

∑
i=1

γ̂2
iUiU

′
i

]
F̃ = F̃ D̃.

Let R̃= 1
NνT ∑N

i=1 γ̂2
i bib

′
iF
′F̃ D̃−1. With this, we have

‖F̃ −FR̃‖√
T

=
1

NνT3/2

∥∥∥F N

∑
i=1

γ̂2
i biU

′
i F̃ D̃

−1
∥∥∥+ 1

NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUib

′
iF
′F̃ D̃−1

∥∥∥
+

1
NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUiU

′
i F̃ D̃

−1
∥∥∥ = I1 + I2 + I3. (A.6)

Propositions A.5 and A.6 have shown that ‖R̃‖ = Op(1) and ‖D̃−1‖ = Op(1), which
will be used in the following derivation. Now we investigate the above three terms
one by one. Consider I1.

1
NνT3/2

∥∥∥F N

∑
i=1

γ̂2
i biU

′
i F̃ D̃

−1
∥∥∥

≤ 1
NνT3/2

∥∥∥F N

∑
i=1

γ̂2
i biU

′
i (F̃ −FR̃)D̃−1

∥∥∥+ 1
NνT3/2

∥∥∥F N

∑
i=1

γ̂2
i biU

′
iFR̃D̃

−1
∥∥∥

≤ ‖F ‖√
T

‖∑N
i=1 γ̂2

i biU
′
i

∥∥
Nν
√

T
‖F̃ −FR̃‖√

T
‖D̃−1‖+ ‖F ‖√

T

‖∑N
i=1 γ̂2

i biU
′
iF
∥∥

NνT
‖R‖‖D̃−1‖.

For the first expression, by γ̂i = γi + εi, we have

1
Nν
√

T

∥∥∥ N

∑
i=1

γ̂2
i biU

′
i

∥∥∥ = 1
Nν
√

T

∥∥∥ ∑
i∈Io

γ2
i biU

′
i

∥∥∥+ 1
Nν
√

T

∥∥∥ ∑
i∈Io∪Ib

(2γiεi + ε2
i )biUi

∥∥∥.

The first term is Op(
1√
Nν

) since one can readily verify that E(‖∑i∈Io γ2
i biU

′
i ‖2) =

O(NνT). The second term is op(1) by the definition of εi (see (A.8) below) and
Proposition A.2. So the first expression is of smaller order relative to 1√

T
‖F̃ − FR̃‖,

the left hand side of (A.6). So it is negligible. Consider the second expression, note
that

1
NνT

N

∑
i=1

γ̂2
i biU

′
iF =

1
NνT

N

∑
i=1

(γ2
i + 2γiεi + ε2

i )biU
′
iF

=
1

NνT ∑
i∈Io

γ2
i biU

′
iF + 2

1
NνT ∑

i∈Io

γiεibiU
′
iF +

1
NνT ∑

i∈Io∪Ib

ε2
i biU

′
iF

(A.7)
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The first term on right hand side is Op(
1√

NνT
). For the second term, we note that

εi = 2
1
T
b′iPΦF

′Ui +
1

T2U
′
iF PΦF

′Ui +
1

T2X
′
i (F̂ −FR)PΦ̂(F̂ −FR)′Xi (A.8)

+ 2
1

T2X
′
iFRPΦ̂(F̂ −FR)′Xi +

1
T2X

′
iF
(
RPΦ̂R

′ − PΦ

)
F ′Xi

With the above result, we have

1
NνT ∑

i∈Io

εibiγibiU
′
iF = 2

1
NνT2 ∑

i∈Io

b′iPΦF
′UiγibiU

′
iF

+
1

NνT3 ∑
i∈Io

U ′iF PΦF
′UiγibiU

′
iF

+
1

NνT3 ∑
i∈Io

X ′i (F̂ −FR)PΦ̂(F̂ −FR)′XiγibiU
′
iF

+ 2
1

NνT3 ∑
i∈Io

X ′iFRPΦ̂(F̂ −FR)′XiγibiU
′
iF

+
1

NνT3 ∑
i∈Io

X ′iF
(
RPΦ̂R

′ − PΦ

)
F ′XiγibiU

′
iF .

The first term is bounded in norm by

1
T
‖PΦ‖

1
Nν ∑

i∈Io

‖F ′Ui‖2

T
‖bi‖2γi = Op(

1
T
).

The second term is is bounded in norm by

1
T
√

T
‖PΦ‖

1
Nν ∑

i∈Io

‖F ′Ui‖3

T
√

T
‖bi‖γi = Op(

1
T
√

T
).

The third term can be decomposed into

1
NνT3 ∑

i∈Io

b′iF
′(F̂ −FR)PΦ̂(F̂ −FR)′FbiγibiU

′
iF

+
1

NνT3 ∑
i∈Io

b′iF
′(F̂ −FR)PΦ̂(F̂ −FR)′UiγibiU

′
iF

+
1

NνT3 ∑
i∈Io

U ′i (F̂ −FR)PΦ̂(F̂ −FR)′FbiγibiU
′
iF

+
1

NνT3 ∑
i∈Io

U ′i (F̂ −FR)PΦ̂(F̂ −FR)′UiγibiU
′
iF .

By Proposition A.2, the first expression is op(
1√

NνT
), the remaining three expressions

are all op(
1√

NνT
) + op(

1
T ). So the third term is op(

1√
NνT

) + op(
1
T ). By the same
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arguments, we can show that the fourth and fifth terms are both op(
1√

NνT
) + op(

1
T ).

Given this, we have

1
NνT ∑

i∈Io

εibiγibiU
′
iF = op(

1√
NνT

) + Op(
1
T
).

The third term on the right hand side of (A.7) can be shown to be op(
1√

NνT
) + op(

1
T )

similarly as the second one and the details are omitted. With these results,

I1 = Op(
1√
NνT

) + Op(
1
T
).

Consider I2.

1√
T
‖I2‖ =

1
NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUib

′
iF
′F̃ D̃−1

∥∥∥ = 1
NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUib

′
iF
′F̃ D̃−1

∥∥∥
≤
‖∑N

i=1 γ̂2
iUib

′
i‖

Nν
√

T
‖F ′F̃ ‖

T
‖D̃−1‖.

It suffices to investigate ∑N
i=1 γ̂2

iUib
′
i/(Nν

√
T), which is equal to

1
Nν
√

T
∑

i∈Io

γ2
iUib

′
i + 2

1
Nν
√

T
∑

i∈Io

γiεiUib
′
i +

1
Nν
√

T
∑

i∈I0∪Ib

ε2
iUib

′
i.

The first term is Op(
1√
Nν

). For the second term, by the definition of εi,

1
Nν
√

T
∑

i∈Io

εiγiUib
′
i = 2

1
Nν
√

TT
∑

i∈Io

b′iPΦF
′UiγiUib

′
i

+
1

Nν
√

TT2 ∑
i∈Io

U ′iF PΦF
′UiγiUib

′
i

+
1

Nν
√

TT2 ∑
i∈Io

X ′i (F̂ −FR)PΦ̂(F̂ −FR)′XiγiUib
′
i

+ 2
1

Nν
√

TT2 ∑
i∈Io

X ′iFRPΦ̂(F̂ −FR)′XiγiUib
′
i

+
1

Nν
√

TT2 ∑
i∈Io

X ′iF
(
RPΦ̂R

′ − PΦ

)
F ′XiγiUib

′
i

= 2II1 + II2 + II3 + 2II4 + II5, say.

We show the convergence rates of II1, . . . , II5 one by one. For II1, its (s, l)-th element
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(s = 1, . . . , T and l = 1, . . . ,r) can be decomposed into

1
Nν
√

TT
∑

i∈Io

b′iPΦF
′[Uiuis −E(Uiuis)]γibil +

1
Nν
√

TT
∑

i∈Io

b′iPΦF
′E(Uiuis)γibil,

which is Op(
1√

NνT
) + Op(

1
T
√

T
). So we have

II1 = Op(
1√
NνT

) + Op(
1
T
).

For II2, it is bounded in norm by

‖II2‖ ≤
1
T
‖PΦ‖

1
Nν ∑

i∈Io

‖U ′iF ‖2

T
‖Ui‖√

T
‖bi‖γi = Op(

1
T
).

For II3, it can be written as

1
Nν
√

TT2 ∑
i∈Io

b′iF
′(F̂ −FR)PΦ̂(F̂ −FR)′FbiγiUib

′
i

+
1

Nν
√

TT2 ∑
i∈Io

U ′i (F̂ −FR)PΦ̂(F̂ −FR)′FbiγiUib
′
i

+
1

Nν
√

TT2 ∑
i∈Io

b′iF
′(F̂ −FR)PΦ̂(F̂ −FR)′UiγiUib

′
i

+
1

Nν
√

TT2 ∑
i∈Io

U ′i (F̂ −FR)PΦ̂(F̂ −FR)′UiγiUib
′
i

= III1 + III2 + III3 + III4, say.

For III1, its (s, l)-th element is equal to

1
Nν
√

TT2 ∑
i∈Io

b′iF
′(F̂ −FR)PΦ̂(F̂ −FR)′Fbiγiuisbil,

which is bounded in norm by

1√
NνT

‖F ′(F̂ −FR)‖2

T2

∥∥∥ 1√
Nν ∑

i∈Io

biγiuisbilb
′
i

∥∥∥ = Op(
1√
NνT

)
‖F ′(F̂ −FR)‖2

T2 .

Given this, we have

‖III1‖ = Op(
1√
Nν

)
[‖F ′(F̂ −FR)‖2

T2

]
.
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For III2, it is bounded in norm by

‖PΦ̂‖
‖(F̂ −FR)′F ‖

T
1

Nν ∑
i∈Io

‖U ′i (F̂ −FR)‖
T

‖Ui‖√
T
‖bi‖2γi

= Op(1)
[ 1

Nν ∑
i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2‖(F̂ −FR)′F ‖
T

= op(1)
[ 1

Nν ∑
i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
.

Terms III3 and III4 are both

op(1)
[ 1

Nν ∑
i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
,

which can be proved by the same arguments as in III2. With these results, we have
that

II3 = op(
1√
Nν

)
‖(F̂ −FR)′F ‖

T
+ op(1)

[ 1
Nν ∑

i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
.

Consider II4. It can be decomposed into

1
NνT
√

T
∑

i∈Io

b′iRPΦ̂(F̂ −FR)′FbiγiUib
′
i

+
1

NνT2
√

T
∑

i∈Io

U ′iFRPΦ̂(F̂ −FR)′FbiγiUib
′
i

+
1

NνT
√

T
∑

i∈Io

b′iRPΦ̂(F̂ −FR)′UiγiUib
′
i

+
1

NνT2
√

T
∑

i∈Io

U ′iFRPΦ̂(F̂ −FR)′UiγiUib
′
i

= III5 + III6 + III7 + III8, say.

For III5, its (s, l)-th element is equal to

1
NνT
√

T
∑

i∈Io

b′iRPΦ̂(F̂ −FR)′Fbiγiuisbil

which, by |tr(A′B)| = ‖A‖‖B‖, is bounded in norm by

1√
NνT
‖R‖‖PΦ̂‖

‖(F̂ −FR)′F ‖
T

∥∥∥ 1√
Nν ∑

i∈Io

biγiuisbilb
′
i

∥∥∥=Op(
1√
NνT

)‖‖(F̂ −FR)′F ‖
T

.
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With this, we therefore have

‖III5‖ = Op(
1√
Nν

)
‖(F̂ −FR)′F ‖

T
.

For III6, its (s, l)-th element is equal to

1
NνT2

√
T

∑
i∈Io

U ′iFRPΦ̂(F̂ −FR)′Fbiγiuisbil

which is bounded in norm by

1
NνT
√

T
‖R‖‖PΦ̂‖

‖(F̂ −FR)′F ‖
T

∥∥∥ ∑
i∈Io

biγiuisbilU
′
iF
∥∥∥

=
[
Op(

1√
NνT

) + Op(
1

T
√

T
)
]‖(F̂ −FR)′F ‖

T
.

With this result, we therefore have

‖III6‖ =
[
Op(

1√
NνT

) + Op(
1
T
)
]‖(F̂ −FR)′F ‖

T
.

For III7, it is bounded in norm by

‖R‖‖PΦ̂‖
1

Nν ∑
i∈Io

‖(F̂ −FR)′Ui‖
T

‖Ui‖√
T
‖bi‖2γi = Op(1)

[ 1
Nν ∑

i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
.

For III8, it is bounded in norm by

1√
T
‖R‖‖PΦ̂‖

1
Nν ∑

i∈Io

‖U ′iF ‖√
T
‖(F̂ −FR)′Ui‖

T
‖Ui‖√

T
‖bi‖γi

= Op(
1√
T
)
[ 1

Nν ∑
i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
.

With the results on III5, III6, III7 and III8, we have that

II4 =
[
Op(

1√
Nν

) + Op(
1
T
)
]‖(F̂ −FR)′F ‖

T
+ Op(1)

[ 1
Nν ∑

i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
.

Consider the fifth term. One can readily show that

II5 =
[
Op(

1√
Nν

) + Op(
1
T
)
]
‖RPΦ̂R

′ − PΦ‖.
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Given this, we conclude that

1
Nν
√

T
∑

i∈Io

γiεiUib
′
i = op(

1√
Nν

) + Op(
1
T
) + Op(1)

[ 1
Nν ∑

i∈Io

‖(F̂ −FR)′Ui‖2

T2

]1/2
.

The term 1
Nν
√

T ∑i∈I0∪Ib
ε2

iUib
′
i is asymptotically negligible. Given this, we therefore

have

I2 = Op(
1√
Nν

) + Op(
1
T
) + Op(

N1−ν

T
√

T
).

Consider I3. Note that

1√
T
‖I3‖ =

1
NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUiU

′
i F̃ D̃

−1
∥∥∥

=
1

NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUiU

′
i (F̃ −FR̃)D̃−1

∥∥∥+ 1
NνT3/2

∥∥∥ N

∑
i=1

γ̂2
iUiU

′
iFR̃D̃

−1
∥∥∥.

We use Ia and Ib to denote the above two expressions. Further consider Ia, which is
bounded by

Ia≤
‖∑N

i=1 γ̂2
iUiU

′
i ‖2

NνT
‖F̃ −FR̃‖√

T
‖D̃−1‖≤

(
max

1≤i≤N
γ̂2

i

)‖∑N
i=1UiU

′
i ‖2

NνT
‖F̃ −FR̃‖√

T
‖D̃−1‖.

By γ̂i = γi + εi, together with the maximal inequality and E(‖uit‖8) ≤ ∞, we can
readily verify max1≤i≤N γ̂2

i = Op(1). This result, together with

1
NνT
‖

N

∑
i=1
UiU

′
i ‖2 = Op(

N1−ν

T
) + Op(

1
Nν

),

indicates that under N1−ν

T → 0, term Ia is of smaller order relative to ‖F̃−FR̃‖√
T

, and is
therefore negligible.

Next consider Ib, which, by γ̂i = γi + εi, is bounded by

Ib ≤
1

NνT3/2

∥∥∥ N

∑
i=1

γ2
iUiU

′
iFR̃D̃

−1
∥∥∥+ 2

1
NνT3/2

∥∥∥ N

∑
i=1

γiεiUiU
′
iFR̃D̃

−1
∥∥∥

+
1

NνT3/2

∥∥∥ N

∑
i=1

ε2
iUiU

′
iFR̃D̃

−1
∥∥∥ = II6 + 2II7 + II8 say.

For II6, we have

II6 ≤
1√
NνT

‖∑N
i=1 γ2

i [UiU
′
i −E(UiU

′
i )]F ‖√

NνT
‖R̃‖‖D̃−1‖
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+
1
T
‖∑N

i=1 γ2
i E(UiU

′
i )‖2

Nν

‖F ‖√
T
‖R̃‖‖D̃−1‖,

which is Op(
1√

NνT
) + Op(

1
T ). For II7, note that

1
NνT3/2

N

∑
i=1

εiγiUiU
′
iFR̃D̃

−1

= 2
1

NνT5/2

N

∑
i=1
b′iPΦF

′UiγiUiU
′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
U ′iF PΦF

′UiγiUiU
′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
X ′i (F̂ −FR)PΦ̂(F̂ −FR)′XiγiUiU

′
iFR̃D̃

−1

+ 2
1

NνT7/2

N

∑
i=1
X ′iFRPΦ̂(F̂ −FR)′XiγiUiU

′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
X ′iF

(
RPΦ̂R

′ − PΦ

)
F ′XiγiUiU

′
iFR̃D̃

−1

We use III9, . . . , III13 to denote the above five terms. For III9, it is bounded in norm by

III9 =
1
T
‖R̃‖‖D̃−1‖‖PΦ‖

1
Nν ∑

i∈Io∪Ib

‖U ′iF ‖2

T
‖Ui‖√

T
‖bi‖γi = Op(

1
T
).

For III10, it is bounded in norm by

‖III10‖ =
N1−ν

T
√

T
‖PΦ‖ · ‖R̃‖ · ‖D̃−1‖ · 1

N

N

∑
i=1

‖U ′iF ‖3

T
√

T
‖Ui‖√

T
γi = Op(

N1−ν

T
√

T
).

For III11, it can be decomposed into

1
NνT7/2

N

∑
i=1
b′iF

′(F̂ −FR)PΦ̂(F̂ −FR)′FbiγiUiU
′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
U ′i (F̂ −FR)PΦ̂(F̂ −FR)′FbiγiUiU

′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
b′iF

′(F̂ −FR)PΦ̂(F̂ −FR)′UiγiUiU
′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
U ′i (F̂ −FR)PΦ̂(F̂ −FR)′UiγiUiU

′
iFR̃D̃

−1
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For the first term, ignore R̃D̃−1, its (s, l)-th element is equal to

1
NνT7/2

N

∑
i=1
b′iF

′(F̂ −FR)PΦ̂(F̂ −FR)′FbiγiuisU
′
iFlR̃D̃

−1

which is bounded in norm by

‖F ′(F̂ −FR)‖2

T2 ‖PΦ̂‖
1

NνT3/2

∥∥∥ N

∑
i=1
biγiuisU

′
iFlb

′
i

∥∥∥
=
[
Op(

1
T
√

T
) + Op(

1√
NνT

)
]‖F ′(F̂ −FR)‖2

T2 .

Given this, we therefore have that the first term is

[
Op(

1
T
) + Op(

1√
NνT

)
]‖F ′(F̂ −FR)‖2

T2 = op(
1
T
) + op(

1√
NνT

).

For the remaining three terms, it is easy to show that they are

Op(
1√
T
)
[ 1

Nν ∑
i∈Io∪Ib

‖U ′i (F̂ −FR)‖2

T2

]1/2
= op(

1
T
) + op(

1√
NνT

).

Given these results, we have

III11 = op(
1
T
) + op(

1√
NνT

).

For III12, it can be decomposed into

1
NνT5/2

N

∑
i=1
b′iRPΦ̂(F̂ −FR)′FbiγiUiU

′
iFR̃D̃

−1

+
1

NνT5/2

N

∑
i=1
b′iFRPΦ̂(F̂ −FR)′UiγiUiU

′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
U ′iFRPΦ̂(F̂ −FR)′FbiγiUiU

′
iFR̃D̃

−1

+
1

NνT7/2

N

∑
i=1
U ′iFRPΦ̂(F̂ −FR)′UiγiUiU

′
iFR̃D̃

−1

By the same arguments in III11, the first term is

[
Op(

1
T
) + Op(

1√
NνT

)
]‖F ′(F̂ −FR)‖

T
= op(

1
T
) + op(

1√
NνT

).

The remaining three terms all involves ‖U ′(F̂ −FR̃)‖/T. By result (c) of Proposition
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A.2, we can readily show that they are

Op(
1√
T
)
[ 1

Nν ∑
i∈Io∪Ib

‖U ′i (F̂ −FR)‖2

T2

]1/2
= op(

1
T
) + op(

1√
NνT

).

With these results, we have

III12 = op(
1
T
) + op(

1√
NνT

).

Final consider the last term III13. By the same arguments, we can readily show that

III13 =
[
Op(

1√
NνT

) + Op(
1
T
)
]
‖RPΦ̂R

′ − PΦ‖ = op(
1
T
) + op(

1√
NνT

).

With the results on III9, . . . , III13, we have

II7 = op(
1√
NνT

) + Op(
1
T
) + Op(

N1−ν

T
√

T
).

Finally, consider II8. By the definition, ε2
i consists of 15 terms, where 5 terms are

squared ones and 10 terms are cross-product ones with a coefficient of 2. For
simplicity, we consider the five squared terms. The five terms are

IV1 =
1

NνT3/2

N

∑
i=1

[ 1
T
b′iPΦF

′Ui

]2
UiU

′
iFR̃D̃

−1

IV2 =
1

NνT3/2

N

∑
i=1

[ 1
T2U

′
iF PΦF

′Ui

]2
UiU

′
iFR̃D̃

−1

IV3 =
1

NνT3/2

N

∑
i=1

[ 1
T2X

′
i (F̂ −FR)PΦ̂(F̂ −FR)′Xi

]2
UiU

′
iFR̃D̃

−1

IV4 =
1

NνT3/2

N

∑
i=1

[ 1
T2X

′
iFRPΦ̂(F̂ −FR)′Xi

]2
UiU

′
iFR̃D̃

−1

IV5 =
1

NνT3/2

N

∑
i=1

[ 1
T2X

′
iF
(
RPΦ̂R

′ − PΦ

)
F ′Xi

]2
UiU

′
iFR̃D̃

−1

For IV1, it is bounded in norm by

IV1 = ‖PΦ‖2‖R̃‖‖D̃−1‖ 1
NνT3/2 ∑

i∈Io∪Ib

‖bi‖2‖F ′Ui‖3

T
√

T
‖Ui‖√

T
= Op(

1
T3/2 ).
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For IV2, it is bounded in norm by

IV2 = ‖PΦ‖2‖R̃‖‖D̃−1‖ 1
NνT5/2

N

∑
i=1

‖F ′Ui‖5

T2
√

T
‖Ui‖√

T
= Op(

N1−ν

T
1

T3/2 ) = op(
1

T3/2 ).

For IV3, it is bounded in norm by

4
1

NνT3/2

N

∑
i=1

[ 1
T2b

′
iF
′(F̂ −FR)PΦ̂(F̂ −FR)′Fbi

]2
UiU

′
iFR̃D̃

−1

+ 4
1

NνT3/2

N

∑
i=1

[ 1
T2b

′
iF
′(F̂ −FR)PΦ̂(F̂ −FR)′Ui

]2
UiU

′
iFR̃D̃

−1

+ 4
1

NνT3/2

N

∑
i=1

[ 1
T2U

′
i (F̂ −FR)PΦ̂(F̂ −FR)′Fbi

]2
UiU

′
iFR̃D̃

−1

+ 4
1

NνT3/2

N

∑
i=1

[ 1
T2U

′
i (F̂ −FR)PΦ̂(F̂ −FR)′Ui

]2
UiU

′
iFR̃D̃

−1

The first three terms are all op(
1√

NνT
) + op(

1
T ), which can be proved by the similar

arguments in III11. The last term is op(
1

Nν ) + op(
1
T ). Given this, we have

IV3 = op(
1

Nν
) + op(

1
T
).

For IV4 and IV5, we can show that they are both op(
1√

NνT
) + op(

1
T ) by the same

arguments in III11. With the above results, we have

II8 = op(
1

Nν
) + op(

1
T
).

Given this, we have

I3 = op(
1

Nν
) + Op(

1√
NνT

) + Op(
1
T
) + Op(

N1−ν

T
√

T
).

Given the results on I1, I2 and I3, we have the desired result. We have (a).

Consider (b). A close examination on the proof of result (a) indicates that

1√
T

∥∥∥F̃ −FR̃− 1
NνT3/2 ∑

i∈Io

γ2
iUib

′
iF
′F̃ D̃−1

∥∥∥ = Op(
1

Nν
) + Op(

1
T
) + Op(

N1−ν

T
√

T
).

With this result, we have

1
T
‖F ′(F̃ −FR̃)‖ ≤ ‖F ‖√

T
1√
T

∥∥∥F̃ −FR̃− 1
NνT3/2 ∑

i∈Io

γ2
iUib

′
iF
′F̃ D̃−1

∥∥∥
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+
1
T
‖ 1

NνT3/2 ∑
i∈Io

F ′γ2
iUib

′
iF
′F̃ D̃−1‖

The first term on the right hand side is Op(
1

Nν ) + Op(
1
T ) + Op(

N1−ν

T
√

T
) and the second

term is Op(
1√

NνT
). Given this result, we have

1
T
‖F ′(F̃ −FR̃)‖ = Op(

1
Nν

) + Op(
1
T
) + Op(

N1−ν

T
√

T
).

Result (c) is a direct result of result (b) given the arguments in the proof of result (e)
of Proposition A.2.

The proof of result (d) is very similar as that of Proposition A.3. Note that result
(d) is only different with Proposition A.3 in the last term on the right hand side. A
close examination on where the term Op(

N1−ν

T ) comes from (the first term of Ih,3)
indicates that this term can indeed be sharpened into Op(

N1−ν

T
√

T
). So we have (d).

This completes the whole proof. �

Proposition A.7. Under the assumptions of Proposition A.1, we have

‖Σ̃f |y − R̃′Σf |yR̃‖ = Op(
1

Nν
) + Op(

1√
T
).

where R̃ is defined in Proposition A.6. Let R∗ be defined in Proposition A.4, we have that

‖Φ̃− R̃′ΦR∗‖ = Op(
1

Nν
) + Op(

1√
T
).

Proof of Proposition A.7. By definition,

Σf |y =
1
H

H

∑
h=1

E(ft|yt+1 ∈ Ih)E(f ′t |yt+1 ∈ Ih)

and

Σ̃f |y =
1
H

H

∑
h=1

[1
c

c

∑
l=1
f̃h,l

][1
c

c

∑
l=1
f̃h,l

]′
.

We therefore have

Σ̃f |y − R̃′Σf |yR̃=
1
H

H

∑
h=1

[1
c

c

∑
l=1
f̃h,l

][1
c

c

∑
l=1
f̃h,l

]′
− 1

H

H

∑
h=1
R̃′E(ft|yt+1 ∈ Ih)E(f ′t |yt+1 ∈ Ih)R̃
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=
1
H

H

∑
h=1

[
1
c

c

∑
l=1
f̃h,l − R̃′E(ft|yt+1 ∈ Ih)

][
1
c

c

∑
l=1
f̃h,l − R̃′E(ft|yt+1 ∈ Ih)

]′
+ R̃′

1
H

H

∑
h=1

E(ft|yt+1 ∈ Ih)

[
1
c

c

∑
l=1
f̃h,l − R̃′E(ft|yt+1 ∈ Ih)

]′
+

1
H

H

∑
h=1

[
1
c

c

∑
l=1
f̃h,l − R̃′E(ft|yt+1 ∈ Ih)

]
E(ft|yt+1 ∈ Ih)

′R̃.

By the fact that

f̃t − R̃′E(ft|yt+1 ∈ Ih) = (f̃t − R̃′ft) + R̃
′
[
ft −E(ft|yt+1 ∈ Ih)

]
,

we see that

‖Σ̃f |y − R̃′Σf |yR̃‖ ≤ 2
1
H

H

∑
h=1

∥∥∥1
c

c

∑
l=1

(f̃h,l − R̃′fh,l)
∥∥∥2

+ 2‖R̃‖2 1
H

H

∑
h=1

∥∥∥1
c

c

∑
l=1

[fh,l −E(ft|yt+1 ∈ h)]
∥∥∥2

+ 2‖R̃‖ 1
H

H

∑
h=1
‖E(ft|yt+1 ∈ Ih)‖

∥∥∥1
c

c

∑
l=1

[f̃h,l − R̃′fh,l]
∥∥∥

+ 2‖R̃‖2 1
H

H

∑
h=1
‖E(ft|yt+1 ∈ Ih)‖

∥∥∥1
c

c

∑
l=1

[fh,l −E(ft|yt+1 ∈ h)]
∥∥∥.

The first term on the right hand side is dominated by the third one, and therefore
is negligible. The second term is dominated by the fourth term. The third term is
Op(

1√
NνT

) + Op(
1
T ) + Op(

N1−ν

T
√

T
) due to result (d) of Proposition A.6. The fourth term

is Op(
1√
T
). Given this, under the condition N1−ν/T→ 0, we therefore have

‖Σ̃f |y − R̃′Σf |yR̃‖ = Op(
1

Nν
) + Op(

1√
T
).

As shown in the proof of Proposition A.4, Σf |y = ΦR∗DΩR
∗′Φ′, where R∗ and DΩ

are defined in Proposition A.4. Given this, we therefore have

‖Σ̃f |y − R̃′ΦR∗DΩR
∗′Φ′R̃‖ = Op(

1
Nν

) + Op(
1√
T
). (A.9)

Note that

(R∗′Φ′R̃)(R̃′ΦR∗) =R∗′Φ′(R̃R̃′ − Ir)ΦR∗ +R∗′Φ′ΦR∗

=R∗′Φ′(R̃R̃′ − Ir)ΦR∗ +R′Ω(Φ
′Φ)−1/2Φ′Φ(Φ′Φ)−1/2RΩ
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= Ir +R
∗′Φ′(R̃R̃′ − Ir)ΦR∗ = Ir + Op(

1
Nν

) + Op(
1
T
) + Op(

N1−ν

T
√

T
),

where the last result is due to result (c) of Proposition A.6. So the matrix R̃′ΦR∗ can
be asymptotically viewed as the eigenvector matrix of R̃′Σf |yR̃ since the error term,

Op(
1

Nν ) + Op(
1
T ) + Op(

N1−ν

T

√
T), is dominated by the estimation error of Σ̃f |y given

in (A.9). Given this, we have

‖Φ̃− R̃′ΦR∗‖ = Op(
1

Nν
) + Op(

1√
T
).

This completes the proof. �

Proof of Theorem 2. Theorem 2 is a direct result of Propositions A.6 and A.7. �

25

Electronic copy available at: https://ssrn.com/abstract=3107612



B. Real-time Vintage Data

This section provides a detailed description of the real-time macro variables we
use in this paper. We first list the panel of 60 individual macroeconomic variables
obtained from the Archival Federal Reserve Economic database (ALFRED). For each
variable, we report the ALFRED mnemonics, a full variable description, and the
transformation code (trcode) used to ensure stationarity of the underlying data series.
The transformation codes generally follow the corresponding ones in the FRED-MD
database as discussed in McCracken and Ng (2016), which are based on the same
data source. The particular forms of the transformations are specified below. To fix
notation, let xraw

i,t and xtr
i,t denote the raw and transformed version of the ith variable

observed at time t, respectively, and let ∆ = (1− L), with a lag operator Lxraw
i,t = xraw

i,t−1.
We then apply one of six possible transformations:

1. lvl: xtr
i,t = xraw

i,t

2. ∆lvl: xtr
i,t = xraw

i,t − xraw
i,t−1

3. ∆2lvl: xtr
i,t = ∆2xraw

i,t

4. ln: xtr
i,t = ln

(
xraw

i,t

)
5. ∆ln: xtr

i,t = ln
(

xraw
i,t

)
− ln

(
xraw

i,t−1

)
6. ∆2ln: xtr

i,t = ∆2 ln
(

xraw
i,t

)
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No. Mnemonic Variable description trcode

1 INDPRO Industrial Production Index 5
2 AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 1
3 AWHNONAG Average Weekly Hours Of Production And Nonsupervisory Employees: Total private 2
4 AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 2
5 DSPI Disposable Personal Income 5
6 DSPIC96 Real Disposable Personal Income 5
7 PI Personal Income 5
8 CE16OV Civilian Employment 5
9 CLF16OV Civilian Labor Force 5
10 PAYEMS All Employees: Total nonfarm 5
11 MANEMP All Employees: Manufacturing 5
12 DMANEMP All Employees: Durable Goods 5
13 NDMANEMP All Employees: Nondurable goods 5
14 USCONS All Employees: Construction 5
15 USFIRE All Employees: Financial Activities 5
16 USGOOD All Employees: Goods-Producing Industries 5
17 USGOVT All Employees: Government 5
18 USMINE All Employees: Mining and logging 5
19 USPRIV All Employees: Total Private Industries 5
20 USSERV All Employees: Other Services 5
21 USTPU All Employees: Trade, Transportation & Utilities 5
22 USTRADE All Employees: Retail Trade 5
23 USWTRADE All Employees: Wholesale Trade 5
24 SRVPRD All Employees: Service-Providing Industries 5
25 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks 5
26 UEMP15OV Number of Civilians Unemployed for 15 Weeks & Over 5
27 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks 5
28 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over 5
29 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks 5
30 UEMPMEAN Average (Mean) Duration of Unemployment 2
31 UEMPMED Median Duration of Unemployment 2
32 UNEMPLOY Unemployed 5
33 UNRATE Civilian Unemployment Rate 2
34 PCE Personal Consumption Expenditures 5
35 PCEDG Personal Consumption Expenditures: Durable Goods 5
36 PCEND Personal Consumption Expenditures: Nondurable Goods 5
37 PCES Personal Consumption Expenditures: Services 5
38 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4
39 HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4
40 HOUST2F Housing Starts: 2-4 Units 4
41 CURRSL Currency Component of M1 5
42 DEMDEPSL Demand Deposits at Commercial Banks 6
43 M1SL M1 Money Stock 6
44 OCDSL Other Checkable Deposits 6
45 SAVINGSL Savings Deposits - Total 6
46 STDCBSL Small Time Deposits at Commercial Banks 6
47 STDSL Small Time Deposits - Total 6
48 STDTI Small Time Deposits at Thrift Institutions 6
49 SVGCBSL Savings Deposits at Commercial Banks 6
50 SVGTI Savings Deposits at Thrift Institutions 6
51 SVSTCBSL Savings and Small Time Deposits at Commercial Banks 6
52 TCDSL Total Checkable Deposits 6
53 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 6
54 PFCGEF Producer Price Index: Finished Consumer Goods Excluding Foods 6
55 PPICPE Producer Price Index: Finished Goods: Capital Equipment 6
56 PPICRM Producer Price Index: Crude Materials for Further Processing 6
57 PPIFCF Producer Price Index: Finished Consumer Foods 6
58 PPIFGS Producer Price Index: Finished Goods 6
59 PPIIFF Producer Price Index: Intermediate Foods & Feeds 6
60 PPIITM Producer Price Index: Intermediate Materials: Supplies & Components 6
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