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Abstract. The indistinguishability security of a public-key cryptosys-
tem can be reduced to a computational hard assumption in the random
oracle model, where the solution to a computational hard problem is
hidden in one of the adversary’s queries to the random oracle. Usually,
there is a finding loss in finding the correct solution from the query
set, especially when the decisional variant of the computational prob-
lem is also hard. The problem of finding loss must be addressed towards
tight(er) reductions under this type. In EUROCRYPT 2008, Cash, Kiltz
and Shoup proposed a novel approach using a trapdoor test that can
solve the finding loss problem. The simulator can find the correct solu-
tion with overwhelming probability 1, if there exists a trapdoor test for
the adopted hard problem. The proposed approach is efficient and can
be used for many Diffie-Hellman computational assumptions. The only
limitation is the requirement of a trapdoor test that must be found for
the adopted computational assumptions.

In this paper, we introduce a universal approach for finding loss,
namely Iterated Random Oracle, which can be applied to all compu-
tational assumptions. The finding loss in our proposed approach is very
small. For 260 queries to the random oracle, the success probability of
finding the correct solution from the query set will be as large as 1/64
compared to 1/260 by a random pick. We show how to apply the iter-
ated random oracle for security transformation from key encapsulation
mechanism with one-way security to normal encryption with indistin-
guishability security. The security reduction is very tight due to a small
finding loss. The transformation does not expand the ciphertext size.
We also give the application of the iterated random oracle in the key
exchange.

Keywords: Random oracle · Indistinguishability security under com-
putational assumptions · Finding loss
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1 Introduction

Security reduction is a kind of reduction techniques in cryptography where we
construct a simulator that uses an adversary’s attack to solve a mathematically
hard problem. According to the type of attack and the type of hard problem,
cryptosystems have the following two popular types of security reduction.

– Unforgeability security based on a computational hard problem (UF-CHP).
This type of security reduction has been used to prove the security of digital
signature schemes. We construct a simulator that uses a forged signature from
the adversary to solve a computational hard problem.

– Indistinguishability security based on a decisional hard problem (IND-DHP).
This type of security reduction has been used to prove the security of encryp-
tion schemes. We construct a simulator that uses the guess of random message
in the challenge ciphertext from the adversary to decide whether a solution in
a given instance is correct or incorrect.

Roughly speaking, a computational problem is to find a correct solution to a
given instance, while a decisional problem is to decide whether or not a solution
in a given instance is correct. A computational hard problem is always harder
than its decisional variant. However, without any additional assumption, it seems
impossible to carry out a security reduction for a cryptosystem with indistin-
guishability security based on a computational hard problem. We call this type
of reduction IND-CHP for short. This is because the guess from the adversary
only has two answers: 0 or 1, which cannot provide sufficient information to find
a correct solution. Fortunately, IND-CHP reduction becomes possible with the
help of random oracles. Random oracles were first introduced by Bellare and
Rogaway in [5] for designing efficient protocols. In the random oracle model, at
least one hash function namely H is treated as a random oracle where responses
on queries are assumed to be uniformly distributed. Anyone especially the adver-
sary has no advantage in guessing the hash value of an input before querying
the input to the random oracle. With the help of this “magical” property, many
cryptosystems such as asymmetric encryption and key exchange can achieve
IND-CHP security reduction.

The IND-CHP security reduction is programmed as follows. Suppose the
simulator aims to compute C[I, P ] as the solution to a given instance I under a
computational hard problem P . The simulator who controls the random oracle
programs the simulation using the instance I. In the simulation, the adversary
must make a set of queries including a challenge query denoted by Q∗

to the ran-
dom oracle to break the security, and the solution C[I, P ] can be extracted from
this challenge query. Different from UF-CHP and IND-DHP security reductions,
the simulator solves the hard problem using the adversary’s query set to ran-
dom oracles instead of the adversary’s forgery or guess. This distinctive security
reduction arises a very important and interesting question:

How to find the correct solution from the adversary’s query set?
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We call this problem as a finding problem and the reduction has a finding
loss, if the simulator can only succeed in finding the correct solution from the
query set with a probability less than 1. When the decisional variant of the
computational hard problem P is easy, there is no finding loss by verifying all
solutions extracted from each query. However, when the decisional variant is
also hard, it seems finding loss cannot be avoided. In this work, we focus on the
non-trivial case that the decisional variant of P is also hard.

1.1 Finding Loss in Previous Approaches

In the IND-CHP security reduction, when the adversary can break a scheme
simulated using an instance I, the challenge query will appear in the adversary
query set and contain the solution C[I, P ] to the instance I. The reduction after
disclosing the simulation is equivalent to that the adversary who is given an
instance I will make a set of queries including a challenge query Q∗

= C[I, P ].
Using this disclosed reduction, we can use the following theories to describe how
the finding problem is addressed.

The traditional approach in the literature is described in Theory 1. It has been
applied to many cryptosystems such as [8] for IND-CHP security reductions.

Theory 1 (Traditional Approach). Suppose an adversary, who is given an
instance I generated by the simulator, must make a set of queries Q (|Q| = q)
including a challenge query Q∗

= C[I, P ] to the random oracle. We can construct
a simulator who controls the random oracle to solve the hard problem P using
the query set Q in O(1) time with success probability 1/q.

It is easy to construct such a simulator. Given an instance I, the simulator
forwards the instance to the adversary. Then, the challenge query is equal to the
solution for the simulator. A random pick from the query set with q number of
queries therefore has the success probability 1/q.

In the security reduction, the adversary can make a polynomial number of
queries to the random oracle. The query number q can be as large as q = 260, and
hence the success probability of finding the correct solution is 1/260. It means
that all cryptosystems using this traditional approach in reduction will have
at least 60-bit security loss. In the concrete security of group-based cryptosys-
tems, we must expand the corresponding group size with 60-bit more security to
compensate the security loss. This compensation at least requires 120-bit length
more of security parameter in group choice, and it is therefore accompanied with
inefficient group operation and large group representation.

In EUROCRYPT 2008, Cash, Kiltz and Shoup [10] introduced the first novel
approach for finding loss. They proposed a new computational problem called the
twin Diffie-Hellman problem. This new problem is as hard as the Computational
Diffie-Hellman (CDH) problem even given access to a corresponding decision
oracle. The heart of their approach is a trapdoor test, which allows the simulator
to simulate an effective decision oracle without knowing any of the corresponding
discrete logarithms. Their approach can be summarized using a theory described
as follows.
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Theory 2 (Cash-Kiltz-Shoup). Suppose an adversary, who is given instances
(I1, I2) generated by the simulator, must make a set of queries Q (|Q| = q)
including a challenge query Q∗

= C[I1, P ] || C[I2, P ] to the random oracle. We
can construct a simulator who controls the random oracle to solve the hard prob-
lem P using the query set Q in O(q) time with nearly success probability 1,
if there exists a trapdoor test on solutions to a given instance and a created
instance under the hard problemP.

The simulator can be constructed as follows. Given an instance I, the simulator
sets I1 = I, Then, it randomly chooses a trapdoor and creates the second instance
I2 from I1 and the trapdoor. The trapdoor test holds with the property that a
query Q = Q1 || Q2 can pass the trapdoor test run by the simulator if and only if
Q1 = C[I1, P ] and Q2 = C[I2, P ] except with a negligible probability. Therefore,
only the challenge query can pass the test and the simulator can successfully find
the correct solution C[I, P ] without any finding loss after all queries are tested.

Based on this theory, Cash, Kiltz and Shoup [10] proposed many twin schemes
based on original schemes using two key pairs, whose IND-CHP security reduc-
tions are tight(er) without any finding loss. The price to pay for an encryption
scheme is two times less efficient in terms of key size and computations compared
to the original one, but the size of ciphertext is not changed. However, this theory
has a limitation. It can only be applied to those cryptosystems whose underling
computational assumptions have a corresponding trapdoor test. The trapdoor
test proposed in [10] is a very special construction and it can be adopted by
some computational Diffie-Hellman hard problems only.

1.2 Our Contribution

We propose a completely new approach for finding loss, namely iterated random
oracle, which can be applied to all computational hard problems. Instead of using
a trapdoor test to find the correct solution, the simulator in our approach can
remove most of useless queries such that a random pick from remaining queries
will merely have a small finding loss only. The corresponding theory is described
as follows.

Theory 3 (Iterated Random Oracle). Let H be a random oracle. Suppose
an adversary, who is given instances (I1, I2, · · · , In) generated by the simulator,
must make a set of queries Q (|Q| = q) including a challenge query Q∗

= Q(n)

∗
to the random oracle, where Q(n)

∗ is defined as

Q(i)

∗ = H(Q(i−1)

∗ ) || C[Ii, P ] || i : i ∈ [1, n], H(Q(0)

∗ ) = 0ε is an empty string.

We can construct a simulator who controls the random oracle to solve the hard
problem P using the query set Q in O(n) time with success probability at least
1/(nq

1
n ).
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The simulator construction and probability analysis are given in Sect. 3. We give
an example in the next subsection to overview the simulator construction and
the probability analysis. When this theory holds, the success probability is 1/640
for q = 260 and n = 10. We can further increase the success probability to 1/64
by repeating hash operations for ten times. In comparison with the traditional
approach with success probability 1/260 only, our approach significantly improves
the success probability even with a small integer n. We compare the different
approaches for finding loss in Table 1.

We show how to apply the iterated random oracle in encryption and key
exchange for tight(er) reduction. In the application to encryption, we show how
to use a key encapsulation mechanism with one-way security to construct an
encryption scheme with indistinguishability security against a chosen-plaintext
attack and a chosen-ciphertext attack. The security transformation from one-
way security to indistinguishability security will only have a small finding loss.
Notice that the security reduction for encapsulation mechanism with one-way
security does not have the finding loss because the adversary must return the
encapsulation key, which can be programmed as the solution to the computa-
tional hard problem in the reduction. Therefore, our security transformation is
equivalent to a provably secure encryption under IND-CHP security reduction
with a small finding loss. The transformation is n times (n = 10) less efficient
in terms of key size and computations. However, the transformation does not
expand the ciphertext size when the generation of key encapsulation is indepen-
dent of public key. Many encryption schemes such as the ElGamal encryption
[21] and BF-IBE [8] can be modified into key encapsulation mechanisms captur-
ing this property. We also study the application of the iterated random oracle in
an identity-based non-interactive key exchange protocol and other key exchange
protocols.

Table 1. Comparison of different approaches for finding loss. The finding efficiency
refers to the time cost of picking a query from the query set. The query efficiency
refers to the time cost of generating the challenge query. Here, q is the size of query
set including the challenge query and n is the maximum iteration time.

Theory 1 Theory 2 Theory 3 (Ours)

For all problems � × �
Success probability 1

q
1 1

n·q
1
n

Finding efficiency O(1) O(q) O(n)

Query efficiency 1 2 O(n)

1.3 Overview of the Approach

For simplicity, we use the concrete CDH problem as an example to describe the
overview of the approach in the iterated random oracle. Suppose an adversary,
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who is given instances Ii = (g, gai , gb) for all i ∈ [1, n] generated by the
simulator, must make a query set Q (|Q| = q) including a challenge query Q∗

=
An to the random oracle, where An is defined as

Ai = H(Ai−1) || gaib || i : i ∈ [1, n], H(A0) = 0ε is an empty string.

We can construct a simulator to solve the CDH problem using the query set Q

with success probability at least 1/(nq
1
n ). Given as input an instance (g, ga, gb)

under a cyclic group G of prime order p, the aim of the simulator is to find
gab from the query set generated by the adversary. This reduction is mainly
composed of two tasks: (1) how to generate the instances Ii = (g, gai , gb), i ∈
[1, n] for the adversary, namely instance generation and (2) how to pick the query
from the adversary’s query set, namely query selection.

Instance Generation. The simulator randomly chooses d ∈ [1, n], a1, a2, · · · ,
ad−1, ad+1, · · · , an ∈ Zp and sets ad = a. Then, it gives Ii = (g, gai , gb)
for all i ∈ [1, n] to the adversary who is required to make a query set includ-
ing An. It requires that the adversary does not know d. Since all instances are
chosen randomly, this requirement holds trivially. In the instances given to the
adversary, the simulator can compute gaib = (gb)ai for all i ∈ [d + 1, n] by itself
since all related ai are known. This is very important in the query selection for
a small finding loss.

Query Selection. In this phase, a query is defined as either a candidate query or a
useless query. The simulator will randomly pick a query from candidate queries,
after all useless queries are removed. Before introducing what are useless queries
and how to remove them, we first introduce what all iterated queries look like.

The query Q = H(Q′
) || Q || i in the iterated random oracle is an iterated

query, composed of an oracle response, a weight (the solution will appear here)
and an iteration time. All iterated queries to the random oracle can be depicted
in an arbitrary tree, where a node denotes a response on a query and an edge
denotes a query. The root is an empty string. The edge Q = H(Q′

) || Q || i starts
from the node H(Q′

) and ends at the node H(Q), which is depicted at the level
i. When the maximum iteration time is n, the height of this arbitrary tree is n.
For example, the two queries Q(1)

1,2 = 0ε ||Q(1)
1,2 || 1 and Q(2)

2,1 = H(Q(1)

1,2) ||Q(2)
1,2 || 2

can be depicted in a path from the root to a leaf shown in Fig. 1.
According to the property of random oracle, if Q∗

= An appears in the
query set, all queries A1, A2, · · · , An must appear in the query set. Now, we can
roughly describe what are useless queries. First, all queries with iteration time
which is not equal to d are useless queries. Second, a query Q with iteration
time equal to d is a useless query if there is no valid path from the node H(Q)
to a leaf node at the level n. Here, a valid path is the path where all edges for
i ∈ [d + 1, n] in this path are valid queries whose weights are equal to gaib. The
simulator can verify whether a path is valid or not, because gaib = (gb)ai for all
i ∈ [d + 1, n] are computable using ai. All queries with iteration time equal to n
are candidate queries.
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Fig. 1. Example 1 Fig. 2. Example 2

Probability Analysis. Based on the above instance generation and query selection,
we can prove there must exist an integer i∗ ∈ [1, n] satisfying the minimum
probability 1/q

1
n . Precisely, for those queries with iteration time i∗, the success

probability of picking a valid query from candidate queries is 1/q
1
n . The integer i∗

is adaptively decided by the adversary in query set generation, while the integer
d is randomly chosen by the simulator. When d = i∗ (i.e. the simulator happens
to embed the solution in this level), all useless queries with iteration time i∗ will
be removed and the corresponding success probability is 1/q

1
n . Therefore, we

yield the success probability result by

Pr[suc] =
n∑

i=1

Pr[suc|d = i] Pr[d = i] ≥ Pr[suc|d = i∗] Pr[d = i∗] =
1

nq
1
n

.

We now give four simple examples where n = 2 and q = 8 to analyze the
above result. The corresponding success probability of Pr[suc|d = i∗] for some i∗

should be at least 1/
√

8. We use a solid line to denote a query at the level i if it
has a valid weight equal to gaib. Otherwise, we denote the query with a dashed
line. In this arbitrary tree, Q(i)

denotes a query at the level i. Notice that all
queries from the same node have at most one query with a valid weight, but all
queries at the same level i could have more than one valid query whose weights
are all valid and equal to gaib.

In these examples, if the adversary only makes two queries at the first level,
we immediately have Pr[suc|d = 1] = 1

2 ≥ 1√
8

when d = 1. Therefore, in the
following examples, the adversary is assumed to make three queries at the first
level.

– Suppose the query set can be depicted as the tree in Fig. 1. When d = 1, the
two queries Q(1)

1,1,Q
(1)

1,2 will be removed because their nodes do not have a valid
path such that only one query is remained at this level. Therefore, we have
Pr[suc|d = 1] = 1 ≥ 1√

8
.

– Suppose the query set can be depicted as the tree in Fig. 2. When d = 1, the
query Q(1)

1,1 will be removed because this node does not have a valid path such
that two queries are remained at this level. Therefore, we have Pr[suc|d =
1] = 1

2 ≥ 1√
8
.
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Fig. 3. Example 3 Fig. 4. Example 4

– Suppose the query set can be depicted as the tree in Fig. 3. When d = 2, it is
easy to see that Pr[suc|d = 2] = 3

5 ≥ 1√
8
.

– Suppose the query set can be depicted as the tree in Fig. 4. The result is
exactly the same as Fig. 3, where Pr[suc|d = 2] = 3

5 ≥ 1√
8
.

1.4 Other Related Work

The UF-CHP security reduction with a tight reduction for digital signatures has
been studied in [1,2,6,13,14,24–26]. A tight reduction requires no abortion in
signature simulation and enables to solve a hard problem from the forged signa-
ture. With the help of random oracles, it seems easier to achieve a tight reduction
by adding a random bit after the message to be signed. In this reduction, the
simulator uses the bit to control the hash values of messages to be signed and
to be forged, such that the probability of abortion is very small.

The IND-DHP security reduction with a tight reduction for encryption has
been studied in [4,7,9,15,16,22,23,26–28]. To achieve a tight reduction, the simu-
lator must be able to simulate decryption queries for CCA security and private key
queries for identity-based encryption and its variants. It also requires the simula-
tor to program the challenge ciphertext into a one-time pad or an indistinguishable
ciphertext depending on the given instance. We note that the approaches for tight
reduction are different. This is because there is no general technique enabling a
tight reduction for encryption, especially without random oracles.

The IND-CHP security reduction is a special reduction requiring the help of
random oracles, where the simulator solves a hard problem using the adversary’s
queries instead of its direct attack. How to find the correct solution from the
adversary’s query set is necessary to achieve a tight reduction. The problem
of finding loss only exists in this reduction type especially when the decisional
variant is also hard. The traditional approach for finding loss is via a random
pick, which results in a huge finding loss. The first non-trivial approach was
introduced by Cash, Kiltz and Shoup [10] in EUROCRYPT 2008. The proposed
trapdoor test can be used to solve finding loss during the corresponding IND-
CHP security reductions. They had shown that the proposed approach can be
applied to Diffie-Hellman key exchange [17], Cramer-Shoup encryption [16], BF-
IBE [8] and password-authenticated key exchange [3] to achieve the tightness
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of security reduction. This approach, however, requires that the computational
hard problem can be embedded with a trapdoor test on solutions to a given
instance and a created instance. This work has been extended and applied in
[11,12] but they still have the same restriction. There is no efficient approach for
finding loss in the IND-CHP security reduction without any restriction on the
adopted computational hard assumptions.

The rest of this paper is organized as follows. We use an example to introduce
how the IND-CHP security reduction works in Sect. 2. The generalization of
computational hard problems is also given and discussed. In Sect. 3, we prove the
correctness of Theory 3. Then, we show how to apply the iterated random oracle
for encryption in Sect. 4 and key exchange towards tight(er) security reduction
in Sect. 5.

2 IND-CHP Security Reduction and Generalized
Problems

2.1 An Example of IND-CHP Security Reduction

Let G be a cyclic group of the prime order p and g be a generator. Let H :
{0, 1}∗ → {0, 1}n be a one-way hash function. Considering the following bare
ciphertext CT without a public/secret key pair, where x, y ∈ Zp and coin ∈
{0, 1} are chosen randomly and secretly.

CT = (c1, c2, c3) =
(
gx, gy, H(gxy) ⊕ mcoin

)

Suppose there exists an adversary who can distinguish the message mcoin ∈
{m0,m1} in CT with a non-negligible advantage ε in a polynomial time, where
the two messages {m0,m1} ∈ {0, 1}n are adaptively chosen by the adversary.
We can construct a simulator to solve the CDH problem in the random oracle
model, where H is set as a random oracle controlled by the simulator.

Before we introduce how to program the security reduction, we first introduce
the nice feature of using random oracle in security reduction. In the random
oracle model, the message is encrypted with H(gxy), which is a random string
from {0, 1}n and is independent of its hash input gxy and (gx, gy). Without
making a query on gxy to the random oracle, the ciphertext CT is a one-time pad
encryption on mcoin because H(gxy) is random and independent of (gx, gy) in the
ciphertext. Then, the success probability of guessing the encrypted message is 1

2
only. According to the assumption, the adversary can distinguish the encrypted
message with probability 1

2 + ε. This assumption indicates that the adversary
ever queried gxy to the random oracle with probability 2ε [8]. That is, one of
queries in the adversary’s query set is equal to gxy. This query is called challenge
query, which is used to break the security of cryptosystem.

The security reduction works as follows. Given (g, ga, gb), the simulator aims
to compute gab. Upon receiving m0,m1 ∈ {0, 1}n from the adversary, the simu-
lator creates the challenge ciphertext as CT = (c1, c2, c3) = (ga, gb, R), where
R is a random string from {0, 1}n. What the simulator will do is to wait for
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queries from the adversary. Notice that if the adversary does not make a query
on gab to the simulator, the adversary cannot either distinguish the message with
a non-negligible advantage or distinguish the simulation ciphertext from the real
ciphertext. According to the assumption, the group element gab will appear in
one of queries with probability 2ε. Suppose the adversary made q queries to
the random oracle in total. The simulator randomly picks one of queries as the
solution to the CDH problem. We have the randomly picked element is equal
to gab with probability 2ε

q . That is, the simulator will solve the hard problem
with probability 2ε

q in the corresponding security reduction. This completes the
description of security reduction. This reduction has a finding loss whose corre-
sponding success probability is in the linear of hash query number q.

We note that the above bare ciphertext cannot be decrypted by anyone when
the CDH problem is hard. However, in the real encryption scheme, the encryptor
and the decryptor know more information than the bare ciphertext. When treat-
ing gx as the public key and y is the chosen random number by the encryptor,
we have that the bare ciphertext is equivalent to the hashed ElGamal encryption
scheme, where the encryptor knows y and the decryptor knows the secret key
x such that the ciphertext can be created and decrypted respectively. Roughly
speaking, a secure encryption scheme is constructed in the way that a computa-
tional hard problem can be easily solved by the encryptor and decryptor with an
additional secret, while outsiders (adversaries) without knowing a secret must
solve the computational hard problem in order to break the scheme.

2.2 Generalized Computational Hard Problems

We generalize all computational hard problems into the following description.
I: The input arbitrary string (also known as instance)
P : The computational problem

C[I, P ]: The solution to the instance I under the computational problem P .

For example, given an instance I = (g, ga, gb) ∈ G, based on different problems
P , the solution can be

C[I, P1] = gab, C[I, P2] = g
b
a .

The generalized computational hard problem is defined as

Pr
[
A(I, P ) = C[I, P ]

]
≤ ε,

where no adversary who is given (I, P ) can find a solution C[I, P ] with a non-
negligible advantage ε. Here, ε is a function of the security parameter in the
generation of the instance I.

For the computational hard problem (I, P ), anyone can verify whether a solu-
tion is correct or not if the decisional variant of this problem is easy. However,
if the decisional variant is also hard, it seems no one can verify the correctness
of a solution. However, this observation is not correct because the instance gen-
erator, who generates the instance, can generate the instance in the way that
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it knows its correct solution. Taking the CDH problem in a cyclic group as an
example where the DDH problem is also hard. The instance generator can ran-
domly choose a, b ∈ Zp and set the instance to be (g, ga, gb), where the solution
gab is computable by the instance generator. Hence, for the computational hard
problem P , we assume the instance generator enables to generate an instance I
such that C[I, P ] can be efficiently computed. This assumption is necessary to
support the definition of computational hard problems whose decisional variants
are also hard. We emphasize the importance of this property here because the
simulator in the iterated random oracle requires generating some instances indis-
tinguishable from the challenge instance, such that the simulator can compute
solutions to all self-generated instances under the challenge hard problem P .

3 Iterated Random Oracle and Its Proof

In the iterated random oracle, each query will be programmed using iterations,
and hence it will be called as an iterated query. An iterated query is composed
of an oracle response, a weight (the solution to a hard problem will appear here)
and an iteration time. They are put together using a concatenation symbol “||”.
Given a hash list recording all iterated queries and their responses, we can depict
all queries in the hash list using an arbitrary tree. The height of this arbitrary
tree is n, where n is the maximum time of iteration. The details are described
in the following subsections.

3.1 Iterated Query and Tree Representation

Iterated Query. We define an iterated query Q to the random oracle as

Q = Response || Weight || Iteration Time = R || Q || i,

where R is a response on a query from the random oracle H (an empty string
0ε is assumed as the initialized response), Q is a weight (any arbitrary string)
chosen by the adversary and i is the iteration time. The iteration time denotes
the minimum time for making such an iterated query. If i = 1, it means the
adversary can immediately make such a query. Otherwise, for example, given
Q1 = 0ε||Q1||1 and Q2 = H(Q1)||Q2||2, it requires the adversary to query Q1

first before Q2. We will use the following symbols associated with queries and
responses in the following representations.

– Q(i)
is an iterated query with the iteration time i.

– Q
(i)
j,k is the weight in the iterated query Q(i)

j,k.
– Q is the set of all queries made by the adversary.
– Q

(i) is the set of all iterated queries whose iteration time are all equal to i.
– H(Q(i)

) is the response from the random oracle on the query Q(i)
.
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Tree Representation. Suppose the adversary only makes the above iterated
queries to the random oracle, and an empty hash list L is used to record all
queries and responses. We can depict all queries and corresponding responses
using an artitrary tree (such as Fig. 5), where the root is the empty string 0ε.

– All edges denote iterated queries and their end nodes denote their correspond-
ing responses.

– The query Q(i)

j,k = H(Q(i−1)
) || Q

(i)
j,k || i is the edge with connection between the

node H(Q(i−1)
) and the node H(Q(i)

j,k) at the level i. Here, j in this query

represents that Q(i−1)
is the j-th query at the level i − 1 counted from left to

right, and k in this query represents that H(Q(i)

j,k) is the k-th child of H(Q(i−1)
)

counted from left to right.
– The height of the arbitrary tree is the maximum time of iteration in all iterated

queries.

The hash list and the tree representation have the following connections.
First, this is an arbitrary tree because the adversary can make any number of
iterated queries Q = R || Q || i with the same R and i. Second, all edges
starting from the same node are the depiction of queries with the same R and i
but distinct weights Q. Third, all iterated queries are different such that all nodes
are distinct, but the weights in those queries (edges) from different nodes could
be the same. For example, the weight Q

(2)
3,1 must be different from Q

(2)
3,2 because

the queries Q(2)

3,1,Q
(2)

3,2 already have the same oracle response and iteration time.

However, Q
(2)
3,2 could be equal to Q

(2)
1,1 in Fig. 5. This observation is very important

in the analysis of success probability for the iterated random oracle. Finally, the
total query number is equal to the total number of edges in this arbitrary tree,
if all queries are iterated queries.

In the random oracle model, the adversary can make any arbitrary string
as a query chosen by itself. However, we focus on the defined iterated queries
only. We emphasize that our focus does not compromise any problem because
all other queries that cannot be described in this arbitrary tree must be not the
challenge query and will be removed from the query set before selection.

3.2 Proof of Theory 3

It is complicated to prove this theory directly especially the analysis of success
probability. We split the proof for this theory into the following steps.

Simulator Construction. Given as input an instance I and the problem P ,
the simulator aims to compute C[I, P ]. The simulator generates (I1, I2, · · · , In)
for the adversary as follows.

– Randomly choose d ∈ [1, n] and set Id = I. We have C[Id, P ] = C[I, P ].
– Choose random instances I1, I2, · · · , Id−1, Id+1, · · · , In under the problem P

such that C[Ii, P ] for all i ∈ [1, n]/{d} are known by the simulator.
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Fig. 5. An example of arbitrary tree generated from iterated queries and responses.

– Set and give (I1, I2, · · · , In) to the adversary.

According to the assumption, the adversary will make a query set Q to the
random oracle including a challenge query Q∗ ∈ Q, where Q∗

= Q(n)

∗ . Accord-
ing to the definition of Q(i)

and the property of random oracles, the adversary
must ever make all challenge queries Q(1)

∗ ,Q(2)

∗ , · · · ,Q(n)

∗ to the random oracle.
Otherwise, the adversary cannot generate Q∗ ∈ Q. Notice that C[I, P ] exists in
Q(d)

∗ ∈ Q
(d). The simulator will solve the hard problem by removing all use-

less queries in Q
(d), picking a random query from the remaining set Q

(d) and
extracting the weight from the picked query as the solution to the hard problem.
The success probability of finding the correct solution will be the one given in
our theory.

Further Tree Representation. We further define queries and weights in order
to clarify how to remove all useless queries from Q

(d).

– The query Q(i)

j,k is a challenge query if Q(i)

j,k = Q(i)

∗ .

– The weight Q
(i)
j,k is a valid weight if Q

(i)
j,k = C[Ii, P ].

– The query Q(i)

j,k is a valid query if it has a valid weight.
– A path from a node to a leaf is a valid path if all edges in this path are valid

queries.
– The query Q(i)

j,k is a child query of Q(i−1)
if Q(i)

j,k = H(Q(i−1)
)||Q(i)

j,k||i.
– The query Q(i)

j,k is a candidate query if there exists a valid path from the

node H(Q(i)

j,k) to a leaf node at the level n. All queries in Q
(n) are defined as

candidate queries.
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– The query Q(i)

j,k is a useless query if there is no valid path from the node

H(Q(i)

j,k) to a leaf node at the level n.

We note that all queries that cannot be depicted in this arbitrary tree or can
only be depicted outside this arbitrary tree are useless queries. The maximum
number of edges in this tree is q. About the relationship among valid query,
challenge query and candidate query, we have a challenge query must be both a
valid query and a candidate query. The definition of valid query and candidate
query are independent. There must exist one valid path only from the root to a
leaf at the level n because all queries from the root have only one valid query.
There could exist more than one valid query in Q

(i) for any i ≥ 2, but each
query has one valid child query at most. In Fig. 5, we use a solid edge to denote
a valid query and a dashed edge to denote an invalid query.

We have two important observations in the following two claims.

Claim 1. If Q(i)
is a candidate query, it must have a valid child query.

According to the definition of candidate query, there exists a valid path from
the node H(Q(i)

) to a leaf node at the level n. The first edge in this valid path
is a valid query comprising of the response H(Q(i)

). This is the valid child query
of Q(i)

.

Claim 2. If Q(i)
is a candidate query and its child query denoted by Q(i+1)

is
a valid query, we have that Q(i+1)

is also a candidate query.

We prove by contradiction. According to the first claim and the tree repre-
sentation, there exists only one valid child query of Q(i)

denoted by Q(i+1)
. All

paths starting from the node H(Q(i)
) through invalid child queries of Q(i)

must
be invalid paths. If all paths starting from the node H(Q(i)

) through the edge
Q(i+1)

are invalid paths either, there is no valid path from the node H(Q(i)
)

to a leaf node. Hence Q(i)
is not a candidate query. Therefore, the assumption

is incorrect and there should exist a valid path starting from the node H(Q(i)
)

through the edge Q(i+1)
, which implies that Q(i+1)

is also a candidate query.

Lemma 1. If the following rate

R(i) =
The number of valid queries in Q

(i)

The number of candidate queries in Q
(i)

<
1

q
1
n

holds for all i ∈ [1, n], the adversary must make more than q candidate queries.

Proof. Let N = q
1
n . All queries in Q

(i) must be either valid or invalid. Let
V Qi denote the number of valid queries at the level i of tree. Let IQi denote
the number of invalid queries at the level i of tree. If the rate R(i) holds for all
i ∈ [1, n], we have the following deduction from the first level to the last level
based on the above two claims, where only candidate queries are counted.
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– Level 1. All queries are from the root and there is one valid query only, which
is also a candidate query. That is, V Q1 = 1. To make sure the rate is less than
1/N , the adversary must make IQ1 ≥ (N − 1) · V Q1 + 1 invalid queries that
are also candidate queries. The total number of candidate queries in this level
therefore is V Q1 + IQ1. Hence, according to the Claim 1, the total number of
valid queries in the next level is V Q1 + IQ1.

– Level 2. According to the result in the level 1, the number of valid queries
is V Q2 = V Q1 + IQ1. According to Claim 2, these valid queries are also
candidate queries. To make sure the rate is less than 1/N , the adversary must
make IQ2 ≥ (N − 1) · V Q2 + 1 invalid queries that are also candidate queries.
The total number of candidate queries in this level therefore is V Q2 + IQ2.
Hence, according to Claim 1, the total number of valid queries in the next
level is V Q2 + IQ2.

– Level 3. According to the result in the level 2, the number of valid queries
is V Q3 = V Q2 + IQ2. According to Claim 2, these valid queries are also
candidate queries. To make sure the rate is less than 1/N , the adversary must
make IQ3 ≥ (N − 1) · V Q3 + 1 invalid queries that are also candidate queries.
The total number of candidate queries in this level therefore is V Q3 + IQ3.
Hence, according to Claim 1, the total number of valid queries in the next
level is V Q3 + IQ3.

– The result in the level i is the same as the previous analysis.
– Level n − 1. According to the result in the level n − 2, the number of valid

queries is V Qn−1 = V Qn−2+IQn−2. According to Claim 2, these valid queries
are also candidate queries. To make sure the rate is less than 1/N , the adver-
sary must make IQn−1 ≥ (N − 1) · V Qn−1 + 1 invalid queries that are also
candidate queries. The total number of candidate queries in this level therefore
is V Qn−1 + IQn−1. Hence, according to Claim 1, the total number of valid
queries in the next level is V Qn−1 + IQn−1.

– Level n. According to the result in the level n − 1, the number of valid
queries is V Qn = V Qn−1 + IQn−1. To make sure the rate is less than 1/N ,
the adversary must make IQn ≥ (N − 1) · V Qn + 1 invalid queries. The total
query number in this level therefore is V Qn + IQn. All queries are treated as
candidate queries.

From the above analysis, we obtain the following results for all i ∈ [1, n].

V Q1 + IQ1 = N + 1
V Qi + IQi ≥ V Qi + (N − 1) · V Qi + 1

= N · V Qi + 1
> N · V Qi

= N · (V Qi−1 + IQi−1).

Then, we yield

n∑

i=1

(V Qi + IQi) > (V Qn + IQn) > Nn−1(V Q1 + IQ1) > Nn = q.
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This completes the proof of Lemma 1. �
Based on the above definitions and explanations, we are ready to give the

proof of Theory 3.

Proof of Theory 3. In the simulation, the number d is randomly chosen by the
simulator and all instances (I1, I2, · · · , In) are indistinguishable. The adversary
therefore does not know d. The query set Q generated by the adversary hence is
independent of d.

According to Lemma 1, if the adversary makes q queries at most, there must
exist an integer i∗ ∈ [1, n] satisfying

R(i∗) =
The number of valid queries in Q

(i∗)

The number of candidate queries in Q
(i∗) ≥ 1

q
1
n

.

When d = i∗, the simulator can remove all useless queries in Q
(i∗) because

C[Ii, P ] for all i ∈ [d + 1, n] are computable by the simulator. Then, the success
probability of picking a valid query from all candidate queries is at least 1/q

1
n .

The success probability Pr[suc] given in Theory 3 holds because

Pr[suc] =
n∑

i=1

Pr[suc|d = i] Pr[d = i]

≥ Pr[suc|d = i∗] Pr[d = i∗]

=
1

q
1
n

· 1
n

.

This completes the proof of Theory 3. �

3.3 Variant

The success probability given in Theory 3 is the lower bound probability because
the probability Pr[suc|d = i] > 0 holds for all i �= i∗. We can repeat hash
operations in the iterated random oracle to obtain a larger lower bound success
probability.

Theory 4 (Improved Iterated Random Oracle). Let H be a random ora-
cle. Suppose an adversary, who is given instances (I1, I2, · · · , In) generated by
the simulator, must make a set of queries Q (|Q| = q) including a challenge
query Q∗

= Hk−1(Q(n)

∗ ) to the random oracle, where Q(n)

∗ is defined as

Q(i)

∗ = Hk(Q(i−1)

∗ ) || C[Ii, P ] || i : i ∈ [1, n], H(Q(0)

∗ ) = 0ε is an empty string.

We can construct a simulator who controls the random oracle to solve the hard
problem P using the query set Q with success probability at least k/(nq

1
n ). Here,

Hi(Q) is to repeat hash operation on Q for i times. Hi(Q) = H
(
Hi−1(Q)

)
and

H0(Q) = Q.
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Hk−1(Q(n)
∗ ) Hk−2(Q(n)

∗ ) · · · H(Q(n)
∗ ) Q(n)

∗
Hk−1(Q(n−1)

∗ ) Hk−2(Q(n−1)
∗ ) · · · H(Q(n−1)

∗ ) Q(n−1)
∗

· · · · · · · · · · · · · · ·
Hk−1(Q(2)

∗ ) Hk−2(Q(2)
∗ ) · · · H(Q(2)

∗ ) Q(2)
∗

Hk−1(Q(1)
∗ ) Hk−2(Q(1)

∗ ) · · · H(Q(1)
∗ ) Q(1)

∗

In this theory, the adversary must make k · n queries to obtain the challenge
query Q∗

= Hk−1(Q(n)

∗ ) ∈ Q.
The query on Hi(Q) requires the adversary to make a query on Hi−1(Q)

first. In particular, the query on Q(j)

∗ requires the adversary to make a query on
Hk−1(Q(j−1)

∗ ) to obtain Hk(Q(j−1)

∗ ) to compose Q(j)

∗ . The proof of this theory
is based on a slightly different lemma where the rate is k/q

1
n . This is because the

total number of queries in each level is k·(V Qi+IQi) instead of (V Qi+IQi). The
other analysis is similar and we omit them here without redundancy. Therefore
we have the success probability shown in the theory.

3.4 Comparison of Success Probability

We compare the success probability of finding the solution from the query set
among the traditional approach, the Cash-Kiltz-Shoup approach and the iterated
random oracle, where concrete integers n = 10 and k = 10 are chosen. The
result is given in Table 2. It shows that the iterated random oracle has a very
small finding loss compared to the traditional approach even the iteration time
n is very small. With a proper hash repeating time k, it further improves the
success probability. Notice that the Cash-Kiltz-Shoup’s approach is the most
efficient approach, but it is not a universal approach for any computational hard
problem.

Table 2. Comparison of success probability.

q = 240 q = 250 q = 260

Traditional approach 1
240

1
250

1
260

Cash-Kiltz-Shoup [10,11] 1 1 1

Iterated random oracle with n = 10, k = 1 1
160

1
320

1
640

Iterated random oracle with n = 10, k = 10 1
16

1
32

1
64

3.5 Comparison of Query Efficiency and Finding Efficiency

The price to pay for small finding loss from the iterated random oracle is the
efficiency loss in the generation of challenge query. Recall that the challenge
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query is associated with one instance computation in the traditional approach
(Theory 1) and two instance computations in the Cash-Kiltz-Shoup [10,11] app-
roach (Theory 2). The challenge query in the iterated random oracle is associated
with n instance computations and n queries or n ·k queries. The efficiency loss is
in the linear of n. Fortunately, n can be as small as 10 in the iteration. Further-
more, when the efficiency is mainly dominated by the computation of C[Ii, P ],
they can be performed in parallel because all computations are independent.

In the iterated random oracle, the simulator needs to compute C[Ii, P ] for
all i ∈ [d + 1, n], where d is randomly chosen from [1, n]1, in order to remove
all useless queries. Then, the simulator randomly picks one query from all can-
didate queries. Hence, the time cost of finding a solution is mainly dominated
by instance computations and the time complexity is O(n). In comparison with
the other two approaches, the simulator in the traditional approach (Theory 1)
directly picks one solution in a random way and the time complexity is O(1).
The simulator in the Cash-Kiltz-Shoup [10,11] approach (Theory 2) has to test
each query until it finds the correct solution. Therefore, their time complexity is
(q) more expensive than the iterated random oracle.

3.6 Remarks of Simulation Based on Theories

The introduced three theories for finding loss can be described as follows in a
general summary. Suppose an adversary, who is given an instance IA generated
by the simulator, must make a set of queries Q (|Q| = q) including a challenge
query Q∗

= C[IA, PA] to the random oracle. Here, C[IA, PA] is the solution to
the instance IA under the computational hard problem PA which is defined by
the simulator. We aim to construct a simulator to solve a hard problem P using
the query set Q.

In the corresponding simulator construction, the simulator is given an
instance I under the hard problem P and aims to solve it with the help of
the adversary. The simulator should construct an instance IA for the adversary
using the given instance I and define the hard problem PA such that C[I, P ] will
appear in the query set. The resulting results (IA, PA) from the traditional app-
roach, Cash-Kiltz-Shoup’s approach and our approach are different. We remark
that the successful construction of such a simulator is not the end of simulation.
It merely introduces the approach of how to find the correct solution from the
adversary’s query set. To complete the reduction, the simulator must enable to
use the created instance IA to simulate the proposed cryptosystem and make
sure the challenge query including C[IA, PA] will appear in the query set. This
is required in the security reduction because the adversary is not to solve a hard
problem for the simulator but is going to break a cryptosystem.

1 When d = n, the simulator does not need to compute any C[I, P ].
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4 Tight Security in Security Transformation
for Encryption

The principle application of the iterated random oracle is the security trans-
formation from a key encapsulation mechanism with one-way security to an
encryption with indistinguishability security, whose reduction is tight. In this
section, we show how to achieve such a security transformation without expand-
ing ciphertext size.

A key encapsulation mechanism (KEM) is an asymmetric encryption whose
encryption algorithm will generate a random key (a.k.a. the encapsulation key),
together with a corresponding ciphertext (a.k.a. the encapsulation). The random
key is then used for symmetric encryption while the encapsulation forms part of
the message ciphertext to deliver the random key in an asymmetric manner. Any
receiver who owns a valid secret key can decapsulate the random key from the
encapsulation. In the definition of one-way security for KEM, the challenger gen-
erates a challenge ciphertext CT ∗ for the adversary and the aim of the adversary
is to return the corresponding challenge random key.

We observe that any KEM with one-way security does not have a security loss
in finding a correct solution, if the random key is the solution to a computational
hard problem in security reduction. This is because the adversary only returns
one answer to the simulator, which is the correction solution to a hard problem.
However, in the IND-CHP security reduction with the help of random oracles,
the correct solution is hidden in a large query set made by the adversary. In this
section, we show how to fill this gap by using the iterated random oracle.

Our security transformation is based on the KEM of functional encryp-
tion, namely functional key encapsulation mechanism (FKEM). The functional
encryption can be seen as a generalized asymmetric encryption including pub-
lic key encryption, identity-based encryption and attribute-based encryption.
We adopt the FKEM because the iterated random oracle is a general approach
fitting for all asymmetric encryptions.

Our security transformation can be applied to any FKEM. However, this
generic transformation could be accompanied with a long ciphertext under iter-
ated random oracles. This is because the challenge ciphertext must be associated
with n different instances using the iterated random oracle, where the adversary
is required to compute n solutions to different instances. To obtain a short cipher-
text after transformation, these n instances must have shared input parameters.
We extract one special type of FKEM from all FKEM with the following two
properties.

– Firstly, global system parameters Param will be defined for FKEM, where
many master key pairs (m̃pk1, m̃sk1), (m̃pk2, m̃sk2), · · · , (m̃pkn, m̃skn) can be
generated with this global parameters. We note that these global system para-
meters are very common in an asymmetric encryption. It could include the
definitions of pairing group, chosen generator and hash functions. All of these
parameters are shared and used by different users or authorities.
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– Secondly, the ciphertext encapsulation is computed without the input of mas-
ter public keys, which will be the shared input parameters for all generated
master key pairs. We note that many asymmetric encryptions fall into this
type, such as the ElGamal public-key encryption scheme [21], the Boneh-
Franklin identity-based encryption scheme [8] and the Waters identity-based
encryption scheme [30]. One instantiation is given at the end of this section.

In the remaining of this section, we first give the definition of FKEM under
our chosen type, and then show how to transform the FKEM with one-way
security to a functional encryption with indistinguishability security against a
chosen-plaintext attack (CPA) and a chosen-ciphertext attack (CCA).

4.1 Functional Key Encapsulation Mechanism

The functional key encapsulation mechanism (FKEM) is defined as follows.

Functional Key Encapsulation Mechanism

- Param
$← SysGen(1λ). This algorithm takes as input the security para-

meter λ and outputs the global system parameters Param.
- (mpk,msk) $← Setup(Param). This algorithm takes as input Param and

outputs the master key pair (mpk,msk).

- usk
$← KeyGen(Param,mpk,msk, upk). This algorithm takes as input

Param, the master key pair (mpk,msk) and upk (will be explained later)
and outputs the user secret key usk.

- (C,K) $← Encap(Param,mpk, str, r). This algorithm consists of two sub-
algorithms.

- C
$← Encapc(Param, str, r). This sub-algorithm takes as input Param,

a string str (will be explained later), a randomness r and outputs
the encapsulation C. The encapsulation generation is independent of
mpk.

- K
$← Encapk(Param,mpk, str, r). This sub-algorithm takes as input

(Param,mpk, str, r) and outputs the encapsulation key K.

- K
$← Decap(Param,mpk, upk, usk,C). This algorithm takes as input

(Param,mpk, upk, usk) and the encapsulation C, and outputs the encap-
sulation key K or ⊥.

Definition 1 (Correctness). For any (C,K) $← Encap(Param,mpk, str, r) and

usk
$← KeyGen(Param, mpk,msk, upk), we have that,

Decap(Param,mpk, upk, usk,C) =

{
K F (upk, str) = 1,

⊥ otherwise,
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where Param
$←SysGen(1λ) and (mpk,msk) $← Setup(Param). The function F

evaluates the relationship between the upk and the string str.

The key pair (mpk,msk), (upk, usk), the string str and the function F have
different representations in specified asymmetric encryptions. For example,

– In a public-key encryption, mpk = upk is the public key while msk = usk is the
corresponding secret. str is also a public key and the function F (upk, str) = 1
if and only if str = mpk = upk.

– In an identity-based encryption, upk is the identity of user and str is the
identity of receiver. The function F (upk, str) = 1 if and only if str = upk.

– In an identity-based broadcast encryption, upk is the identity of user and str
is the identity set of receivers. The function F (upk, str) = 1 if and only if upk
is one of identities in the identity set str.

– In a ciphertext-policy attribute-based encryption, upk is an attribute set of a
user while str is an access policy. The function F (upk, str) = 1 if and only if
the access policy str accepts the attribute set upk.

– In a key-policy attribute-based encryption, upk is an access policy for a user
while str is an attribute set. F (upk, str) = 1 if and only if the access policy
upk accepts the attribute set str.

– In an inner-product encryption, both upk and str are vectors. F (upk, str) = 1
if and only if the inner product upk · str = 0.

Definition 2 (One-Way FKEM). A functional key encapsulation mechanism
(SysGen, Setup,KeyGen, Encap,Decap) is one-way secure if for any PPT adver-
sary A,

AdvOW
A,FKEM(λ) = Pr

⎡

⎢⎢⎢⎢⎢⎣
K′ = K∗ :

Param
$← SysGen(1λ);

(mpk∗,msk∗) $← Setup(Param);

str∗ ← AOK(·)(Param,mpk∗);

(C∗,K∗) $← Encap(Param,mpk, str∗, r∗);
K′ ← AOK(·)(Param,mpk, str∗,C∗)

⎤

⎥⎥⎥⎥⎥⎦
≤ negl(λ),

where OK(·) is a key generation oracle that on input of any upk, returns

usk
$← KeyGen(Param,mpk,msk, upk) on the condition that F (upk, str∗) �= 1.

The definition of function encryption is similar with the FKEM except the
encryption algorithm and the decryption algorithm. The encryption algorithm
additionally takes as input a message and returns a ciphertext for the message
directly. While the decryption algorithm directly returns the message or outputs
failure. The corresponding security model under indistinguishability against a
chosen-plaintext attack and a chosen-ciphertext attack is also similar except that
the adversary outputs str∗,m0,m1 for challenge and the challenge ciphertext is
encrypted with a random message from {m0,m1} chosen by the simulator. We
define IND-CCA for FE in the following definition. The definition of IND-CPA
is the same as IND-CCA except that the adversary cannot access the decryption
oracle in the security model.
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Definition 3 (IND-CCA FE). A functional encryption (SysGen,Setup,
KeyGen, Encrypt, Decrypt) is IND-CCA secure if for any PPT adversary A,

AdvIND−CCA
A,FKEM (λ) = Pr

⎡

⎢⎢⎢⎢⎣

coin′

=
coin

:

Param
$← SysGen(1λ);

(mpk∗,msk∗) $← Setup(Param);

(str∗,m0,m1) ← AOK(·),OD(·)(Param,mpk∗);

coin
R← {0, 1}

CT∗ $← Encypt(Param,mpk, str∗, r∗,mcoin);

coin′ ← AOK (·),OD(·)(Param,mpk, str∗,CT∗)

⎤

⎥⎥⎥⎥⎦
≤ negl(λ),

where OK(·) is a key generation oracle that on input of any upk, returns

usk
$← KeyGen(Param,mpk,msk, upk) on the condition that F (upk, str∗) �=

1 and OD(·) is a decryption oracle that on input of any str,CT, returns

{m,⊥} $← Decrypt(Param,mpk, upk, usk,CT) on the condition that str �= str∗ or
CT �= CT∗.

4.2 Generic Conversion from OW-FKEM to IND-CPA-FE with
Tight Reduction

Let ParamOW be the global system parameters of FKEM with one-way security.
Let (m̃pki, m̃ski) for all i ∈ [1, n] be n master key pairs of FKEM and ũski be the
secret key of upk generated from (m̃pki, m̃ski). Here, n can be as small as n = 10
depending on the choice of security loss. We choose n pairs in order to compute
a different encapsulation key under each key pair, such that all n encapsulation
keys can be iterated together following the iterated random oracle approach to
generate the final encapsulation key. The functional encryption with IND-CPA
security is constructed as follows.

SysGen: Choose a secure one-way hash function H : {0, 1}∗ → {0, 1}�,
where the message space is {0, 1}�. The global system parameters of FE are

Parama = (ParamOW,H).

Setup: Set the master public key mpk and the master secret key msk of FE
as

mpk = (m̃pk1, m̃pk2, · · · , m̃pkn), msk = (m̃sk1, m̃sk2, · · · , m̃skn).

KeyGen: Taking as input Param,mpk,msk, upk, run the key generation
algorithm KeyGen(Param, m̃pki, m̃ski, upk)

$→ ũski for all i ∈ [1, n] and output
the private key usk for upk as

usk = (ũsk1, ũsk2, ..., ũskn).

Encrypt: Taking as input Param,mpk, str and a message m ∈ {0, 1}�, create
the ciphertext CT for upk as follows



Iterated Random Oracle: A Universal Approach for Finding Loss 767

– Choose a random r for the Encap algorithm.
– Compute C1 = Encapc(ParamOW, str, r).
– Compute Ki = Encapk(ParamOW, m̃pki, str, r) for all i ∈ [1, n].
– Compute the iteration as

Ai = H(Ai−1) || Ki || i : i ∈ [1, n], where H(A0) = 0ε.

– Set C2 = H(An) ⊕ m.

The output ciphertext is CT = (C1,C2).

Decrypt: Taking as input Param,mpk, str, upk, usk and a ciphertext
CT = (C1,C2), decrypt the message as

– Compute Ki = Decap(ParamOW, m̃pki, upk, ũski,C1) for all i ∈ [1, n].
– Compute the iteration as

Bi = H(Bi−1)||Ki||i : i ∈ [1, n], where H(B0) = 0ε.

– Compute m = C2 ⊕ H(Bn).

This completes the description of FE construction. Without counting the
size of the encrypted message, the ciphertext size is the same as FKEM. That
is, the generic conversion from OW-FKEM to IND-CPA-FE does not expand
the ciphertext size. This conversion without expanding ciphertext requires that
the encapsulation is independent of the master public key m̃pk. Otherwise, the
ciphertext is composed of n number of distinct C1 generated under a different
m̃pki. In the following theorem, we prove that the IND-CPA security of FE can
be tightly reduced to one-way security of an FKEM.

Theorem 1. Let H be a random oracle. If there exists an adversary A who
makes q queries to H has an advantage ε in the IND-CPA security model against
the constructed encryption scheme, then we can construct a simulator B that has
advantage AdvOW

B,FKEM(λ) = 2ε

nq
1
n

in breaking the underlying FKEM in the one-

way security model.

Proof. Suppose there exists an adversary A who can break the above encryption
scheme with an advantage ε. We construct a simulator B to break the one-way
security of the underlying FKEM. The reduction works as follows.

Setup: B first obtains (ParamOW, m̃pk
∗
) from FKEM. It then picks a random

d ∈ [1, n], and runs the setup algorithm Setup(ParamOW) $→ (m̃pki, m̃ski) for all
i ∈ [1, n]\d to generate master key pairs. Finally, it sets mpk = (m̃pk1, ..., m̃pkn)
where

m̃pki =

{
m̃pki if i �= d,

m̃pk
∗

otherwise ,
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and Param = ParamOW where H is treated as a random oracle controlled by the
simulator. Finally, the simulator returns (Param,mpk) to A.

H-Query: B maintains a hash list L to record all queries to the random oracle
H. If a query Q has been made and appears in the list (Q,R), B responds with
the same response R. Otherwise, the simulator randomly chooses R from {0, 1}�

as the response R = H(Q) and adds (Q,R) into the list.

Phase 1: A requests the secret key of upk in this phase, which is adaptively
chosen by the adversary. The simulator B first queries upk to the key generation
oracle OK(·) which returns ũsk and sets ũskd = ũsk. For all other i ∈ [1, n]\d, B
runs KeyGen(Param, mpki,mski, upk)

$→ ũski by itself to compute ũski. Finally, it
sets usk = (ũsk1, ũsk2, ..., ũskn) and returns usk to A as the query response.

Challenge: A outputs two distinct challenge messages m0,m1 from {0, 1}n and
a challenge string str∗ with the restriction that for any upk queried in the Phase
1, F (upk, str∗) �= 1. B then forwards str∗ to FKEM and obtains the challenge
encapsulation ciphertext C∗. Finally, B randomly chooses R ∈ {0, 1}� and sets
the challenge ciphertext as

CT∗ = (C∗,R).

Phase 2: A issues more secret key queries on any chosen upk such that
F (upk, str∗) �= 1. B responds the same as in the Phase 1.

Output: Finally, A outputs its guess coin′ ∈ {0, 1}. B then follows the approach
in Theory 3 to find the underlying key K∗ from the recorded hash list L to break
the FKEM.

This completes the description of simulation and solution. All master key
pairs are generated from the setup algorithm of FKEM. They are therefore
indistinguishable from the view of the adversary, such that the adversary has
no advantage in guessing d. The random oracle is simulated using truly ran-
dom string, and hence the simulator performs a correct simulation on the ran-
dom oracle. Let C∗ = Encapc(ParamOW, str∗, r∗). Since C∗ is generated from the
encapsulation algorithm and R∗ is randomly chosen, the challenge ciphertext is
a one-time pad unless the adversary queries A∗

n, which is defined as

A∗
i = H(A∗

i−1) || Encapk(ParamOW, m̃pki, str
∗, r∗) || i : i ∈ [1, n], H(A∗

0) = 0ε.

We have

K∗ = Encapk(ParamOW, m̃pkd, str
∗, r∗) = Encapk(ParamOW, m̃pk

∗
, str∗, r∗),

in A∗
d is the solution to the FKEM. The approach of finding the correct encapsu-

lation key exactly falls into Theory 3 where the simulator can successfully pick a
valid query with probability 1/(nq

1
n ). According to the definition of advantage,

the adversary will make such a query with probability 2ε to the random oracle.
We therefore yield Theorem 1. �
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4.3 Generic Conversion from OW-FKEM to IND-CCA-FE

Given an FKEM composed of

C = Encapc(ParamOW, str, r),

Ki = Encapk(ParamOW, m̃pki, str, r) : i ∈ [1, n],

we have shown how to construct an IND-CPA FE via

CT =
(
Encapc(ParamOW, str, r), H(An) ⊕ m

)
,

where Ai = H(Ai−1) || Ki || i : i ∈ [1, n], and H(A0) = 0ε.
We can further transfer the conversion from FKEM to FE with IND-CCA

security by applying the Fujisaki-Okamoto transformation approach [19,20]. This
approach requires two more one-way secure hash functions H1,H2 in the global
system parameters and they are also treated as random oracles in the security
proof. The first hash function H1 has the same output space as the randomness
r and the second one H2 has the same output space as H.

Taking as input Param,mpk, str and a message m ∈ {0, 1}�, the encryption
algorithm for IND-CCA security works as follows.

– Choose a random string σ ∈ {0, 1}� and compute r = H1(σ,m).
– Run the IND-CPA encryption algorithm using the randomness r to encrypt

σ, which returns

(C1,C2) =
(
Encapc

(
ParamOW, str,H1(σ,m)

)
, H(An) ⊕ σ

)
.

– Set C3 = H2(σ) ⊕ m.

The output ciphertext is

CT = (C1,C2,C3) =
(
Encapc(ParamOW, str,H1(σ,m)), H(An) ⊕ σ, H2(σ) ⊕ m

)
.

In the corresponding decryption algorithm, the decryptor first runs the IND-
CPA decryption algorithm to obtain σ, and then it computes H2(σ) ⊕ C3 to
obtain m. Finally, it outputs the message m if C1 is the generation using the
randomness H1(σ,m). Otherwise, it simply returns ⊥.

It is not hard to obtain the security proof based on the proposed security
reduction for CPA security and the Fujisaki-Okamoto transformation. First, all
key queries will be generated the same as the proof in Theorem 1; Second, all
decryption queries will be responded using the Fujisaki-Okamoto transformation
approach. Finally, the challenge ciphertext is simulated using (C∗,R1,R2), where
C∗ is the challenge encapsulation from FKEM and R1,R2 are random strings.
From the view of the adversary, if the adversary has an advantage in distin-
guishing the encrypted message, it must make a query on σ. The probability
of obtaining σ is bounded by a random guess which is negligible for a large
� and bounded by breaking the IND-CPA construction. While the probability
of breaking the IND-CPA construction is bounded by making a query on An.
Therefore, if σ appears in the query list with probability 2ε, the probability of
querying An is nearly 2ε. The simulator then is able to break the underlying
FKEM with probability 2ε/(nq1/n) by applying the approach in Theory 3.
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4.4 Identity-Based Key Encapsulation Mechanism

At the end of this section, we give an instantiation using the Park-Lee identity-
based encryption [28], which can be modified to a key encapsulation mechanism
satisfying the requirement for short ciphertext in transformation. We choose this
scheme as an example because there is no security loss during the private key
simulation. By using the iterated random oracle, the corresponding encryption
with indistinguishability security can be tightly reduced to solve the Bilinear
Diffie-Hellman problem.

SysGen: This algorithm takes as input the security parameter λ. It selects
a pairing group PG = (G,GT , g, p, e) and one secure one-way hash function
H1 : {0, 1}∗ → G. Then it randomly chooses u ∈ G. The global system
parameters Param are

Param = (PG, u,H1).

Setup: It randomly chooses α ∈ Zp and computes e(g, g)α. The algorithm
returns a master public/secret key pair (mpk,msk) as

mpk = e(g, g)α, msk = α.

KeyGen: The key generation algorithm takes as input Param, an identity
ID ∈ {0, 1}∗ and the master key pair (mpk,msk). It randomly chooses s, tk ∈
Zp and creates the private key as

dID = (d0, d1, d2, d3) =
(
tk, gs,

(
H1(ID)utk

)s
, gαus

)
.

It requires that the random number tk for ID is the same in the private key
generation.

Encap: The encryption algorithm takes as input Param, the master public
key mpk and an identity ID. It randomly chooses r, tc ∈ Zp and creates the
ciphertext and the encapsulation key as follows.

C = Encapc(Param, ID, r) =
(
tc, (H1(ID)utc)r, gr

)
,

K = Encapk(Param,mpk, ID, r) = e(g, g)α·r.

Decap: The decryption algorithm takes as input Param, the master public
key mpk, an identity ID, a private key dID and a ciphertext C = (C0,C1,C2).
It computes the random key as

K = e(d3,C2) ·
(

e(C1, d1)
e(C2, d2)

)− 1
tc−tk

.
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The correctness of the decapsulation is showed as follows.

K = e(d3,C2) ·
(

e(C1, d1)
e(C2, d2)

)− 1
tc−tk

= e(gαus, gr) ·
⎛

⎝
e
(
(H1(ID)utc)r, gs

)

e
(
gr,

(
H1(ID)utk

)s)

⎞

⎠
− 1

tc−tk

= e(g, g)αr · e(u, g)rs ·
(
e(u, g)rs(tc−tk)

)− 1
tc−tk

= e(g, g)αr.

Theorem 2. Let H1 be a random oracle. If there exists an adversary who can
break the Park-Lee identity-based key encapsulation mechanism with (t, q1, qk, ε)
in the one-way security model, where the adversary makes q1 queries to H1 and
qk numbers of private keys, then we can construct a simulator to solve the BDH
problem with (t + Ts, ε) where Ts denotes the time cost of simulation.

Proof. Suppose there exists an adversary A who can break the identity-based
encryption scheme. We can construct a simulator B to solve the BDH problem.
Given as input the instance (g, ga, gb, gc) in the pairing group PG, the simulator
aims to compute e(g, g)abc. B interacts with the adversary as follows.

Setup: B picks a random z ∈ Zp, sets u = gz−a, α = ab and computes e(g, g)α =
e(ga, gb). Then, it gives Param = (PG, u) and mpk = e(g, g)α except H1 to the
adversary, where H1 is treated as a random oracle controlled by the simulator.

H-Query: B maintains a hash list L1 to record all queries to the random
oracle H1. If a query IDi has been made and (IDi, xi, yi,H1(IDi)) is in the
list, B responds with H1(IDi). Otherwise, B randomly chooses xi, yi ∈ Zp, sets
H1(IDi) = gxia+yi and adds (IDi, xi, yi,H1(IDi)) into the hash list.

Phase 1: A requests private keys of identities in this phase. For the query on ID,
B first runs the H1 query to get the corresponding (ID, x, y,H1(ID)), randomly
chooses s ∈ Zp and computes the private key as

d0 = tk = x

d1 = gb+s

d2 = gb(y+xz)+s(y+xz)

d3 = gzs+zb−sa,

which can be computed by the simulator. Let s′ = b + s and tk = x. We have

(d1, d2, d3) =
(
gs′

, (H1(ID)utk)s′
, gαus′)

=
(
gb+s, (gxa+ygx(z−a))b+s, gbag(z−a)(b+s)

)

=
(
gb+s, gb(y+xz)+s(y+xz), gzs+zb−sa

)
.
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Therefore, dID = (d0, d1, d2, d3) is a valid private key of ID.

Challenge: The adversary A outputs an identity ID∗ for challenge, where the
adversary never requested the private key of ID∗. Let the query response of
ID in the random oracle be (ID∗, x∗, y∗,H1(ID∗)). The simulator B sets the
challenge encapsulation as

C∗ =
(
x∗, g(y+x∗z)c, gc

)
.

Ler r = c and tc = x∗. We have

C∗ =
(
tc, (H1(ID∗)utc)r, gr

)

=
(
x∗, (gx∗a+y∗

gx∗(z−a))c, gc
)

=
(
x∗, g(y+x∗z)c, gc

)
.

Therefore, C∗ is a valid challenge encapsulation whose corresponding key K∗ is

e(g, g)αr = e(g, g)abc.

Output: Finally, A outputs K∗ and the simulator outputs K∗ as the solution to
the BDH problem.

This completes the simulation and solution. We have that a, z are chosen
randomly and independently such that both Param and mpk are indistinguishable
from the real scheme. x, y are chosen randomly and independently such that the
random oracle simulation is correctly performed. x∗, c are chosen randomly and
independently such that the challenge ciphertext is indistinguishable from the
real scheme. According to the definition of advantage and the assumption, we
have the adversary will output K∗ with probability ε and the simulator will solve
the BDH problem with probability ε. This completes the proof of Theorem 2. �

5 Tight Reduction for Key Exchange

The iterated random oracle can also be applied in the key exchange for tight(er)
reduction in the IND-CHP security reduction. However, we observe that the
application is a little complicated due to many different definitions of key
exchange protocols. In this section, we discuss how to apply the iterated random
oracle for this cryptographic primitive and what will occur during the applica-
tions.

Identity-Based Non-Interactive Key Exchange (IB-NIKE). In the
Sakai-Ohgishi-Kasahara IB-NIKE protocol [29], the private key of ID is dID =
H1(ID)α, where α ∈ Zp is the master secret key and H1 : {0, 1}∗ → G is a
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collision-resistant hash function. Here, the IB-NIKE is constructed over a pair-
ing group. The NIKE between IDA and IDB is defined as

K = H
(
e(dIDA

,H1(IDB))
)

= H
(
e(dIDB

,H1(IDA))
)

= H
(
e
(
H1(IDA),H1(IDB)

)α)
,

where H : {0, 1}∗ → {0, 1}� is another secure one-way hash function.
The above IB-NIKE protocol is provably secure in the random oracle model

(assuming H1,H are random oracles) under the BDH assumption. The finding
loss exists because the simulator cannot decide which query in the adversary’s
query set is the correct solution to the BDH problem. We can apply the iterated
random oracle by iterating the section keys as follows.

– Compute the private key dID of ID as

dID =
(
H1(ID, 1)α, H1(ID, 2)α, · · · ,H1(ID, n)α

)
.

– Compute the i-th intermediate key between IDA and IDB as

Ki = e
(
H1(IDA, i),H1(IDB , i)

)α

.

– The final section key between IDA and IDB is H(EKn) where

EKi = H(EKi−1) || Ki || i : i ∈ [1, n], where H(EK0) = 0ε.

It is not hard to prove its security when the simulator can simulate all private
keys except H(IDA, d)α and H(IDB , d)α where e

(
H1(IDA, d),H1(IDB , d)

)α

is
programmed as the solution to the BDH problem. By applying Theory 3, we
have the final security reduction will have a very small finding loss.

In comparison with the original scheme, ours gives a tighter reduction. We
admit that our scheme requires each user to store n private keys. Although
n can be as small as 10, the final key length is still longer compared to the
length of original scheme by expending group size for security loss. Therefore,
this construction is somewhat theoretically interesting only for short length.
However, when parallel computation is allowed, all pairing computations and
hash group operations in our scheme can be completed in parallel within a
group. Our scheme will reduce the time cost because there is no need to expand
group size for security loss.

Other (Authenticated) Key Exchange. Similarly, we can utilize the above
approach to solve the finding loss in other key exchange protocols by generating
n keys for each user instead of one. Only the d-th sub-key can be programmed
to solve a hard problem while the others can be simulated or computed by
the simulator. However, it seems that we still have to resort to the help of
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decision oracle [18] because the simulator cannot simulate some section keys for
the adversary. Let upkA and upkB be the challenge public keys. In the security
model for key exchange, the adversary is allowed to launch section key query
between for example upkA and a corrupted user namely upkC. Notice that the
secret key of uskA is unknown (only the d-th sub-key is programmed as unknown).
When the secret key of uskC is also unknown, the simulator cannot simulate the
section keys correctly for the adversary especially on the random oracle without
the help of decision oracle. If the assumption still needs a decision oracle, there
is no finding loss in security reduction because the simulator can use the decision
oracle to find the correct solution.

We emphasize that there is still a benefit of applying the iterated random
oracle for key exchange, whose security assumption is a strong computational
assumption with a decision oracle. Notice that the iterated random oracle will
exponentially consume the hash queries from the adversary if it wants to hide
the challenge query. Then, the simulator can make less number of queries to the
decision oracle especially when the simulator wants to simulate the section key
and find the correct solution. That is, by applying the iterated random oracle,
we can adopt a strong computational assumption where the access time to the
decision oracle is bounded with a small number. This assumption is better than
the assumption with q times access to the decision oracle.

6 Conclusion

Finding loss is a common security loss in those security reductions for indistin-
guishability security under computational hard assumptions, when their deci-
sional variants are also hard. This security loss will result in a significant loose
reduction by a random pick because the number of queries can be as large as
260. The novel Cash-Kiltz-Shoup’s approach is efficient without any finding loss,
but can only be applied to a computational hard problem with a trapdoor test.
We proposed a completely new approach, namely the iterated random oracle,
as a universal approach for finding loss, which can be applied to any computa-
tional hard problem without any restriction on the adopted hard problem. The
finding loss in this approach is very small. The corresponding success probabil-
ity is 1

64 compared to 1
260 by a random pick. This approach has been applied

to achieve a security transformation for encryption and key exchange towards
tight(er) reductions.
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