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LETTER Communicated by Hava Siegelmann

Multiorder Neurons for Evolutionary Higher-Order Clustering
and Growth

Kiruthika Ramanathan
kiruthika r@nus.edu.sg
Department of Electrical and Computer Engineering, National University
of Singapore, Singapore 117576

Sheng-Uei Guan
steven.guan@brunel.ac.uk
School of Engineering and Design, Brunel University, Uxbridge,
Middlesex UB8 3PH, U.K.

This letter proposes to use multiorder neurons for clustering irregularly
shaped data arrangements. Multiorder neurons are an evolutionary ex-
tension of the use of higher-order neurons in clustering. Higher-order
neurons parametrically model complex neuron shapes by replacing the
classic synaptic weight by higher-order tensors. The multiorder neu-
ron goes one step further and eliminates two problems associated with
higher-order neurons. First, it uses evolutionary algorithms to select the
best neuron order for a given problem. Second, it obtains more infor-
mation about the underlying data distribution by identifying the correct
order for a given cluster of patterns. Empirically we observed that when
the correlation of clusters found with ground truth information is used
in measuring clustering accuracy, the proposed evolutionary multiorder
neurons method can be shown to outperform other related clustering
methods. The simulation results from the Iris, Wine, and Glass data sets
show significant improvement when compared to the results obtained
using self-organizing maps and higher-order neurons. The letter also
proposes an intuitive model by which multiorder neurons can be grown,
thereby determining the number of clusters in data.

1 Introduction

Self-organizing maps (SOMs) (Kohonen, 1997) represent a type of neural
network proposed for clustering. They work by assigning a synaptic weight
(denoted by the column vector w( j)) to each neuron. The winning neuron
j(x) is the neuron that has the highest correlation with the input x, that is,
it is the neuron for which w( j)T x is the largest:

j(x) = arg j max ‖w( j)T x‖ (1.1)

Neural Computation 19, 3369–3391 (2007) C© 2007 Massachusetts Institute of Technology
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3370 K. Ramanathan and S. Guan

where the operator ‖ · ‖ represents the Euclidean norm of the vector. The
idea behind equation 1.1 is to select the neuron that exhibits maximum cor-
relation with the input. Often used instead of equation 1.1 is the minimum
Euclidean distance matching criterion (Kohonen, 1997):

j(x) = arg j min ‖w( j)−x‖, (1.2)

However, the use of the highest correlation or the minimum distance
matching criterion implies that (1) the features of the input domain are
spherical, that is, deviations are equal in all dimensions, and (2) the distance
between features must be larger than the distance between points in a
feature. These two implications of the data can be summarized in these
equations:

1 ≤ m,n ≤ d, m �= n, λm

(∑
I

)
≈ λn

(∑
I

)
(1.3)

∀x, y ∈ I, ‖xT y‖ if ( j(x) = j(y)) > ‖xT y‖ if ( j(x) �= j(y)). (1.4)

In these equations, the
∑

I operator represents the covariance of the data
matrix I, λm is the mth eigenvalue, d is the dimension of the input domain,
and x and y are arbitrary data vectors.

It could be difficult for an arbitrary set of data to fulfill these conditions,
especially in cases where such distributions of data are difficult to visualize
and detect due to the high dimensionality of the problem. Even when
the distribution of the data is detected through visualization, when the
conditions described in equations 1.3 and 1.4 are not satisfied, there is no
guarantee that the use of an SOM will solve the problem.

Consider, for example, the arrangements of data clusters in two dimen-
sions as shown in Figure 1. Table 1 summarizes the properties of these data
sets in terms of their ability to satisfy equations 1.3 and 1.4. Due to the
nature of the data, there is no guarantee that the SOM will be able to cluster
correctly the sets of data other than data A.

Several methods have been proposed to solve these problems. Second-
order metrics are a popular choice, as the use of an inverse covariance matrix
in the clustering metric captures linear directionality properties of a cluster
(Lipson, Hod, & Siegelmann, 1998). The concept of second-order curves
was expanded in several cases to include second-order shells (Krishnapu-
ram, Frigui, & Nasraoui, 1995). Kohonen discussed the use of weighted
Euclidean distance that captures different variances in the components of
input signals. The use of the Mahalanobis distance (Mao & Jain, 1996)
was also considered. On the other hand, nonparametric techniques such as
agglomeration (Blatt, Wiseman, & Domany, 1996) attempt to find arbitrary
shapes in the clusters. Improvements have been observed empirically in the
application of these second-order and arbitrarily shaped clusters. However,
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Evolutionary Multiorder Neurons 3371

Figure 1: Artificially generated two-dimensional two-class clusters illustrating
the weakness of SOMs.

Table 1: Summary of the Properties of the Data in Figure 1.

Spherical Clusters: Clusters are Sufficiently far apart:
Data Name Satisfies Equation 1.3? Satisfies Equation 1.4?

Data A Yes Yes
Data B Yes No
Data C No Yes
Data D No No

their performance is dependent on several factors, including their ability to
satisfy equation 1.4, the distribution of data, and the shape of the underlying
data.

Lipson and Siegelmann (2000) proposed the generalized higher-order
neuron (HON) structure, a parametric algorithm that extended second-
order surfaces to arbitrary order hypersurfaces, thereby giving rise to a con-
tinuum of possible cluster shapes between the classic spherical-ellipsoidal
unit and the fully nonparametric agglomerative algorithm. To summarize,
HON relaxes the shape restriction of classic neurons by replacing the weight
vector or covariance matrix of a classic neuron with a general higher-order
tensor, which can capture multilinear correlations among the signals associ-
ated with the neurons. They can also capture shapes with holes or detached
areas.
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3372 K. Ramanathan and S. Guan

It must be noted that the higher-order neuron proposed by Lipson and
Siegelmann (2000) is different from that used by Balestrino and Verona
(1994). Although Balestino and Verona also used the term higher-order
neurons to denote their work, their higher-order neurons were not used
in competitive learning and clustering. Lipson and Siegelmann show that
the higher-order neurons proposed are tensors and that their order pertains
to their internal tensorial order rather than the degree of their inputs. The
proposition of Lipson and Siegelmann’s higher-order neurons paves the
way for a natural extension, and it is this idea of higher-order neurons that
we use in this letter.

A difference also has to be established between higher-order neurons
as described by Lipson and Siegelmann (2000) and used in this letter and
other high-dimensional clustering methods. Ben-Hur, Horn, Siegelmann, &
Vapnik (2001), for instance, proposed a method of clustering using support
vectors. The method maps the data into high dimensions and finds hyper-
spheres in the high dimensions. The hypersphere data are then mapped
back to determine the final clustering arrangement.

In contrast to the above-described algorithm, HONs are parametric
methods, where the clusters are represented by their eigentensors, which
are derived from their covariance matrices. There is no higher-dimensional
mapping.

The use of higher-order neurons opens the possibility of parametrically
extending neuron shapes to a continuum of shapes both intuitively and
using simulation results. Before the development of higher-order neurons,
arbitrary cluster shapes could be identified only by nonparametric methods
such as agglomerative clustering. The introduction of higher-order neurons
now enables the representation of clusters using the corresponding eigen-
tensors. The clusters can be trained with Hebbian learning. Also, unsuper-
vised learning with higher-order neurons can be extended to supervised
(Lipson & Siegelmann, 2000) and semisupervised learning.

Despite the advantages of higher-order neurons, preliminary experi-
ments showed a significant difference in their performance across prob-
lems and across clusters in the same problem. We observed that the choice
of neuron order plays an important part in the clustering accuracy of the
neurons. In higher-order neurons, this choice of neuron order is manual
and hence could be suboptimal.

In this letter, we aim to solve the problem of neuron order by using evolu-
tionary algorithms to extend the idea of higher-order neurons. The proposal
of evolutionary higher-order neurons (eHONs or multiorder neurons) aims
to serve two purposes. To illustrate the problem scope, consider the simple
data distribution shown in Figure 2. Due to the nonspherical nature of clus-
ters 2 and 3, the use of SOMs may not be suitable in correctly clustering the
patterns in Figure 2. It is difficult to visualize whether higher-order neurons
can be used to solve this problem. From Figure 2, we can see that cluster
2 is spherical in nature. This cluster alone can be clustered properly by an
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Evolutionary Multiorder Neurons 3373

Figure 2: Hypothetical clusters to illustrate the performance scope of eHONs.

SOM. Cluster 1 is elliptical in nature, and cluster 3 has a shape like a banana.
If the order of these clusters can be identified, then the clustering can be
performed more accurately.

In higher-order neurons, all the clusters in the problem are given only
one order. Multiple orders, such as required for the clusters in Figure 2,
are not provided. As a result, the higher-order neuron may not be able
to correctly cluster a situation provided in cluster 1. The two purposes of
eHONs are:

1. To identify the correct order for a given set of data and cluster them
according to the order

2. To identify the possibilities of multiple ordered clusters, assign a
suitable order for each cluster, and perform clustering

The problem of order choice that occurs in HONs is thus circumvented
by the use of eHONs. Evolutionary algorithms take into account that dif-
ferent clusters in the same problem may not be of the same order and use
homogeneous coordinates to combine different orders of neurons together.
Because evolutionary higher-order neurons are used to create a multiorder
solution to a problem, the terms evolutionary higher-order neurons (eHONs)
and multiorder neurons will be used interchangeably in this letter.

The rest of the letter is organized as follows. Section 2 explains the
related theory of higher-order neurons and evolutionary algorithms. Section
3 describes the evolutionary learning of the higher-order neurons. Section
4 describes the results of higher-order neurons and evolutionary higher-
order neurons on real-world data. Section 5 proposes a method for growing
eHONs, enabling automatic detection of clusters. The letter concludes with
some remarks and future extensions.

2 Related Theory

In the rest of the letter, we adopt the same notation as that of Lipson and
Siegelmann (2000):

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/19/12/3369/817054/neco.2007.19.12.3369.pdf by SIN
G

APO
R

E M
AN

AG
EM

EN
T U

N
IV user on 06 O

ctober 2022



3374 K. Ramanathan and S. Guan

x, w: Column vectors
W, D: Matrices
x( j), D( j): The j th vector/matrix corresponding to the j th neuron
xi , Di j : Element of a vector/matrix
xH, DH : Vector/matrix in homogeneous coordinates
m: Order of the high-order neuron
d : Dimensionality of the input
N: Number of neurons in a cluster

We define the following terms as used in the letter:

Higher order neurons (HON): The method proposed by Lipson and Siegel-
mann (2000), which represents a cluster by a neuronal order and tensorial
structure. Section 2.1 describes the higher-order neuronal structure and
their training algorithm.

Self-organizing maps (SOM): A competitive neuronal structure for unsu-
pervised learning introduced by Kohonen (1997).

Evolutionary self-organizing maps (eSOM): A model of self-organizing
maps proposed by Painho and Bacao (2000).

Evolutionary higher-order neurons (eHONs), or Multiorder neurons: Pro-
posed in this letter as an evolutionary batch mode version of higher-
order neurons. They use evolutionary methods to train HONs, evolving
not only the self-organizing map structure but also the order of each
neuron.

2.1 Higher-Order Neurons. The HON structure (Lipson, Hod, & Siegel-
mann, 1998) generalizes the spherical and ellipsoidal scheme proposed by
the self-organizing maps and second-order structures. The use of a higher-
order neuron structure gives rise to a continuum of cluster shapes between
the classic spherical-ellipsoidal clustering systems and the fully parametric
approach. Clusters of data in the real world usually have arbitrary shapes.
The “shape” of a cluster is categorized using the order of the neuron repre-
senting it.

The constraint of the single-order neuron (used by SOMs) comes from
the fact that the weight w( j) of the neuron is of the same dimensionality as
the input x, a single point in the domain. However, the neuron is modeling
a cluster of points with attributes such as directionality and curvature.

To circumvent this restriction, the higher-order neuronal structure aug-
ments the neuron by allowing it to map geometric and topological informa-
tion, that is, a second-order neuron will allow for the orientation and size
components of the cluster, thus introducing a new metric to the system. Each
higher-order neuron therefore aims to represent not only the mean value
of the data points but also the principal directions, curvatures, and other
features of the cluster in these directions. Lipson and Siegelmann (2000)
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Evolutionary Multiorder Neurons 3375

intuitively expressed a higher-order metric as defining a multidimensional
shape with an adaptive topology, as opposed to defining a sphere. They
also showed that higher-order neurons exhibit stability and good training
performance with Hebbian learning.

2.1.1 Tensorial Multiplication and Neuron Shapes. A second-order neuron
is typically expressed by Lipson and Siegelmann (2000) as a matrix D( j) ∈
Rdxd that expresses the direction and size properties of a neuron for each
dimension of the input, where d is the number of dimensions. The Euclidean
distance metric in equation 1.2 can therefore be rewritten as

j(x) = arg j min ‖D( j)(w( j) − x)‖ (2.1)

where D( j) can simply be expressed by a product of its eigenvalue and
eigenvector matrices as

D( j) =




1√
σ1

0 . . . 0

0
1√
σ2

:

: . 0

0 . . . 0
1√
σd







vT
1

vT
2

:

vT
d




. (2.2)

In contrast to equation 1.2, the second-order neuron in equation 2.1 is rep-
resented by two variables, (D( j), w( j)), where D( j) represents the rotation
and scaling and w( j) represents translation. As D( j) can be obtained by the
eigenstructure of the correlation matrix of the data associated with neuron
j , equation 2.2 is rewritten as

D( j) = λ( j)− 1
2 V( j). (2.3)

Here, λ( j) refers to the eigenvalues of D( j) in diagonal form, and V( j) pro-
duces its unit eigenvectors in matrix form.

Since the eigenvalues of a matrix A can be written as

AV = λV,

A= VTλV,

the expression ‖D( j)(w( j) − x)‖ in equation 2.1 can be written as

‖D( j)(w( j) − x)‖ = (w( j) − x)T D( j)T D( j)(w( j) − x). (2.4)
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3376 K. Ramanathan and S. Guan

From equation 2.2, D( j)T D( j) can be written as

D( j)T D( j) = [
vT

1 vT
2 . . . vT

d

]




1
σ1

0 . . . 0

0
1
σ2

:

: . 0

0 . . . 0
1
σd







vT
1

vT
2

:

vT
d




= R( j)−1. (2.5)

R( j) here is the inverse of the correlation matrix, R( j) = ∑
x( j)x( j)T ∈ Rdxd .

The minimum Euclidean distance rule can therefore be written as

j(x) = arg j min[(x − w( j))T R( j)−1(x − w( j))], j = 1, 2 . . . , N. (2.6)

This use of the correlation matrix for clustering was used by Gustafson and
Kessel (1979). Although the use of the correlation matrix somewhat simpli-
fies the clustering process, it still requires the optimization of two terms,
R( j) and w( j). Since separate optimization cannot be easily derived, Lipson
and Siegelmann (2000) proposed the combination of the two parameters
into one expanded covariance matrix in homogeneous coordinates as

R( j)
H =

∑
x( j)

H x( j)T
H , (2.7)

where x( j)
H ∈ R(d+1)x1. This expanded matrix was proposed by Faux and Pratt

(1981), and it contains coordinate permutations of xH = [ x
1

]
, involving 1 as

one of the multiplicands. The Euclidean distance matching criterion now
can be written as

j(x) = arg j min[XT R( j)−1 X]

j(x) = arg j min ‖R( j)−1x‖, j = 1, 2 . . . , N. (2.8)

2.1.2 Higher Orders. Equation 2.8 can be extended beyond the second-
order neuron structure. The use of the ellipsoidal neuron (or the second-
order neuron) can capture only linear properties, not curved directions.
Higher-order geometrics were introduced by Lipson and Siegelmann (2000)
for the purpose of capturing more complex spatial configurations. The
higher-order extended covariance matrix requires the creation of a higher-
order correlation matrix. This can be obtained by multiplying the vector
xH by itself, in successive outer products, more than once. The process
yields a covariance tensor rather than a covariance matrix, such that R( j)

H ∈
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Evolutionary Multiorder Neurons 3377

R(d+1)x(d+1). A covariance tensor of order m, for instance, can be obtained
by 2(m − 1) outer products of xH by itself. Consequently, the inverse of the
tensor can be used to compute the higher-order correlation of x with the
tensor, using a tensor multiplication (⊕):

j(x) = arg j min ‖R( j)−1 ⊕ xm−1
H ‖, j = 1, 2, . . . , N. (2.9)

The metric in equation 2.8 will not necessarily be spherical; it may be disjoint
or even take several other forms.

2.1.3 The HON Training Algorithm. The higher-order unsupervised learn-
ing algorithm proposed by Lipson and Siegelmann (2000) is performed as
follows:

1. Select the number of clusters (or number of neurons) K and the order
of the neurons (m) for a given problem.

2. The neurons are initialized with ZH =
n∑

i=1
x2(m−1)

i . ZH is the covari-

ance tensor of the data, initialized to a midpoint value. In the case
of a second-order problem, the covariance tensor is simply the cor-

relation matrix, ZH =
n∑

i=1
xT

i xi . For higher-order tensors, this value is

calculated by writing down xm−1
H as a vector with all the mth degree

permutations of {x1, x2, . . . , xd , 1} and finding ZH as the matrix sum-
ming the outer product of all these vectors. The value of the inverse of
the tensor is found and normalized using its determinant f to obtain
Z−1

H / f .

3. The winning neuron for a given pattern is computed using

j = arg j min ‖Z−1
H / f ⊕ x(m−1)‖. (2.10)

4. The winning neuron is now updated using ZH,new = ZH,old + ηx2(m−1)
i ,

where η is the learning rate. The new values of ZH and Z−1
H / f are

stored.

5. Steps 3 and 4 are repeated.

Ideally, while the first-order neuron finds spherical shapes and the
second-order neuron finds ellipsoidal shapes (with two principal direc-
tions), the third-order neuron, which makes use of the covariance tensor
(having a cubical shape), finds four principal directions and copes with
banana-shaped clusters. Figure 3 shows the neuron information of first-,
second-, and third-order neurons, respectively.
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3378 K. Ramanathan and S. Guan

Figure 3: The internal representation of a self-organizing neuron is a point for
a (a) first-order neuron, (b) two eigenvectors (and values) for the second-order
neuron, and (c) four eigenvectors (and values) for the third-order neuron. More
eigenvectors (and values) are encoded in the higher-order tensors of neurons
with a higher order.

2.2 Evolutionary Self-Organizing Maps. Evolutionary algorithms
have been used to find global solutions in many applications, including
neural network applications for supervised learning (Yao, 1993). Inspired
by this, Painho and Bacao (2000) apply genetic algorithms to clustering
problems with good effect. The genetic algorithm applied is simple and re-
tains the form of SOMs, but with evolutionary representation of the weights.
Genetic algorithms (Goldberg, 1989) make use of the Darwinian theory of
the survival of the fittest. The parameters to be determined are encoded
as an array of elements, also called a chromosome. The chromosomes are
evaluated and allowed to reproduce according to their fitness values, so as
to allow the development of new chromosomes with better fitness values.

More simply, since the objective is to maximize the value ‖w(k)T x‖ for
each pattern x, a population of real coded chromosomes encodes w(k) for
each cluster k. Each chromosome therefore consists of K ∗ d elements, where
K is the number of clusters and d is the dimension of the input data. The
chromosomes are evaluated in batch mode so as to maximize

K∑
k=1

∑
x∈Ck

‖w(k)T x‖. (2.11)
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Evolutionary Multiorder Neurons 3379

Crossover and mutation are performed, and a new generation of chromo-
somes is produced. The process is continued until the system stagnates or
a maximum number of epochs is reached.

3 Evolutionary Higher-Order Neurons

We propose evolutionary higher-order neurons (eHONs) as an extension
of the higher-order neuron structure and the evolutionary self-organizing
map. The idea of evolutionary higher-order neurons is motivated by the
following reasoning. While Lipson and Siegelmann’s (2000) higher-order
neurons are shown to exhibit improved performance, some of our simula-
tions (presented in section 4) showed that the order of the neuron plays an
important part in the meaning of the clusters formed. A higher-order neuron
does not necessarily perform better than a lower-order neuron. In the HON
algorithm described in section 2, the order of the neuron is prespecified by
the user (Lipson & Siegelmann, 2000).

Moreover, for a given data set, only a single order of neuron is used to
represent all of the clusters in their work. We feel that this is a limitation to
the algorithm. Data are usually distributed irregularly, with some classes
having spherical, elliptical, banana-shaped, or even higher-order forms.

We propose in this letter a messy evolutionary algorithm (Goldberg, Deb,
& Korb, 1991) based multiorder HONs. The algorithm is outlined below.

3.1 Batch Version of HONs. Genetic algorithms (GA) are used in neu-
ral network applications with various scopes. Many of these GA-based
neural networks (GANNs) are developed using batch mode training (Yao,
1993). A corresponding batch mode training version of HONs has also been
developed to facilitate the process of developing eHONs.

The batch algorithm developed is similar to the online algorithm pro-
posed by Lipson and Siegelmann (2000) in section 3.1. However, instead
of choosing a winning neuron by using j = arg j min ‖Z−1

H / f ⊕ x(m−1)‖, we
implemented a batch minimization criterion such as the one used in equa-
tion 2.11 of the evolutionary SOMs in section 3.2. The algorithm focuses on
minimizing equation 3.1:

K∑
k=1

∑
x∈Ck

‖(Zk
H

)−1/
fk ⊕ x(m−1)‖. (3.1)

Preliminary simulation results to compare the effect of the batch mode
algorithm with the online version developed by Lipson and Siegelmann
(2000) showed that the batch mode implementation has results similar to
those of the online version.
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3380 K. Ramanathan and S. Guan

3.2 Chromosome Initialization. The initialization of chromosomes is
done as outlined by the following steps:

1. Each data point is randomly assigned to one of the K clusters.

2. The covariance tensor of order m, Zk
H , for the cluster k ∈ K is initial-

ized as

Zk
H =

∑
x∈Ck

x2(m−1). (3.2)

3.3 Chromosome Structure. Each chromosome is coded as an array of
structures, each consisting of two components: the order of a chromosome
and the value of the tensor, as given below:
struct chromosome
{

neuron NEURON[K];
};
struct neuron
{

int order;
int tensor[][];

};
A tensor, regardless of the neuron order, is flattened out into a Kro-

necker matrix (Graham, 1981) in a form similar to that used by Lipson and
Siegelmann (2000).

3.4 Kronecker Notation. The Kronecker tensor product flattens out the
elements of X ⊕ Y into a large matrix formed by taking all the possible
products between the elements of X and those of Y. If X is a 2 × 2 matrix,
then,

X ⊕ Y =
[

Y.X1,1 Y.X1,2

Y.X2,1 Y.X2,2

]
(3.3)

Each term in equation 3.3 is a matrix of the size of Y. The Kronecker notation
makes the internal structure of a higher-order tensor easy to perceive, and
the eigenvalues of the tensor can be used in finding the equivalent of the
minimum distance rule in equation 3.1.

3.5 Global Search: Muation. Global search for eHONs is simulated by
large-range mutation. There are two criteria for large-range mutation:

1. A random element in a tensor is mutated with a probability p1.

2. The order of the tensor is changed with a probability p2. The tensor
is now reinitialized using equation 3.2.
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3.6 Fitness Function. The fitness function is the optimization of the
expression in equation 3.1. The expression is minimized so as to maximize
the cluster tightness.

3.7 Algorithm Summary. The eHON algorithm can be summarized as:

1. Initialize a population of chromosomes denoting a set of multiorder
tensors

2. While termination criterion is not met
a. Evaluate each chromosome x using f (x) =

K∑
k=1

∑
x∈Ck

‖(Zk
H)−1/

fk ⊕ x(m−1)‖.
b. Select the fittest chromosome.
c. Perform mutation and reproduction.

4 Experimental Results

Evaluation of the system is performed according to consistency with the
ground truth information, which is measured by the number of misassigned
patterns, that is, the number of patterns not clustered together with their
true class.

Mutation is carried out as follows. Mutation of a random element in
the tensor is performed with an arbitrary probability of 0.2. The order of
a tensor is changed with a probability of 0.1. Arbitrary values of muta-
tion were chosen because we were interested in the scope of the eHON.
Other values of the mutation and crossover probability did not show a
significant change in the accuracy of the eHON. Each chromosome could
take an order between 1 and 3. The relatively low order of neurons was
preferred for this preliminary work because higher-order neurons require
more computational effort than those of lower orders. We therefore felt
that orders between 1 and 3 were sufficient to illustrate the scope of
eHON.

4.1 Data and Algorithm Descriptions. This section compares the re-
sults of four algorithms:

1. eHONs: Higher-order self-organizing neurons with evolutionary ca-
pabilities that identify the best possible order for a chromosome based
on a population generated with various multiorder chromosomes.

2. HON: The higher-order neuron structure proposed by Lipson and
Siegelmann (2000). Simulations were run with order 2 and order 3.
Order 2 detects elliptical, oval, and, to a certain extent, banana shapes;
order 3 detects other higher-order shapes to a certain extent.
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3. SOM: The self-organizing map or HON of order 1 (Kohonen, 1997).
This algorithm detects spherical clusters and, to some extent, oval-
shaped clusters.

4. eSOM: The self-organizing map or HON of order 1 trained using
evolutionary algorithms similar to that proposed by Painho and Bacao
(2000). This algorithm also detects spherical clusters and, to some
extent, oval-shaped clusters.

Algorithms 1 to 4 will be applied to the following benchmark data
sets from the UCI machine learning repository (http://www.ics.uci.edu/
∼mlearn/MLRepository.html):

1. Iris data set (4 dimensions, 3 clusters, 150 patterns)

2. Wine data set (13 dimensions, 3 clusters, 178 patterns)

3. Glass data set (9 dimensions, 6 classes, 214 patterns)

Figure 4 shows the two-dimensional principal component projections of
these data sets.

4.2 Effect of eHONs: Studies on the Iris Data Set. Figure 5 compares
the clustering of the Iris data (with three clusters) using the SOMs, evolu-
tionary SOMs, HONs, and eHONs. It is observed that over an average of 10
runs, the number of misassigned patterns of the data is as low as 3.5 using
the eHON system as opposed to 4 using the HON system.

Similarly, the eHON is also shown as being capable of identifying a
suitable order for a given cluster. From the visualization of the Iris data in
Figure 4 and the performance of the self-organizing map, we can see that
a single-order neuron is sufficient to correlate one of the classes with the
ground truth information. However, the other two classes are closer to each
other and therefore need higher-order neurons. The eHON system correctly
identified order 2 as suitable for these clusters and order 1 to be sufficient
for the other cluster.

4.3 Correlation with Ground Truth Information in Real-World Data.
In this section we present the correlation with ground truth information (the
available class labels), for the Iris, Wine, and Glass data sets. We begin the
experimental analysis by observing the clustering accuracy across different
classes of each data set. Tables 2 and 3 show the correlation tables of the
clusters found and the ground truth information (class labels) for the Iris,
Wine, and Glass data sets when SOMs and higher-order neurons are used.
The number of misclustered patterns is marked in bold in the tables.

The tables can be read as follows. For instance, in Table 2, for the Iris data
clustered with neuron order 3, 50 patterns from class 1 are clustered together,
with 0 patterns clustered with patterns of either class 2 or 3. However,
2 patterns from class 2 are clustered with patterns of class 3 and 5 patterns
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Evolutionary Multiorder Neurons 3383

Figure 4: Distribution of data in the (a) Iris (three clusters), (b) Wine (three
clusters), and (c) Glass (six clusters) data sets.

from class 3 are clustered with patterns of class 2 (as indicated in bold). The
total number of misclustered patterns is noted below each table.

The following observations are made from Tables 2 to 4.:

� The best solution is obtained for the Iris and Wine data sets with
neuron order 2 and for the Glass data set with neuron order 1.
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Figure 5: Clusters of the Iris data using (a) SOMs, (b) eSOMs, (c) HONs, and
(d) eHONs.
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Evolutionary Multiorder Neurons 3385

Table 2: Correlation Between Ground Truth Information and Cluster Informa-
tion for the Iris Data Using Second- and Third-Order Neurons.

Neuron Order = 2 Neuron Order = 3

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 50 0 0 50 0 0
Class 2 0 48 2 0 48 5
Class 3 0 2 48 0 2 45

Total misclustered: 4 Total misclustered: 7

Table 3: Correlation Between Ground Truth Information and Cluster Informa-
tion for the Wine Data Using SOMs (First-Order neurons), Second-Order and
Third-Neurons.

Order = 1 Order = 2 Order = 3

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 27 0 13 36 8 0 35 9 2
Class 2 31 62 0 0 34 0 10 27 8
Class 3 1 9 35 23 29 48 14 35 38

Total misclustered: 54 Total misclustered: 60 Total misclustered: 78

� Different classes are better clustered with different orders of neurons.
For instance, in the Wine data set, order 1 is most suitable for class 2,
and order 2 is most suitable for classes 1 and 3.

The objective of the eHONs is therefore to solve for the best order for each
class using evolutionary algorithms. Tables 5 to 7 compare the total number
of misclustered patterns obtained when using SOMs, HONs, eSOMS, and
eHONs. The eSOMs and eHON algorithms were run 10 times, and the mean
results are presented.

4.4 Discussions. The results show the importance of the use of multi-
order neurons in clustering, as opposed to higher-order neurons. The use of
the evolutionary algorithm picks out the best possible cluster order for each
class, thereby enabling better correlation of clusters with the class labels,
making the clusters more meaningful. This property is observed in all three
data sets.

The introduction of cluster order serves a dual purpose. As shown in
the tables, there is an obvious improvement in clustering accuracy when
multiorder neurons are used. Although the improvement is beneficial, there
is a cost encountered in computation. Each higher-order neuron requires
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Table 5: Results of the Iris Data (Best Order: 1, 2, 2).

Algorithm Number of Misassigned Patterns

HON (higher-order neuron), order = 2 4
HON (higher-order neuron), order = 3 7
SOM (self-organizing map) HON order = 1 23
eSOMs (evolutionary evolved SOMs) 16
eHONs (to find the optimal order for a given class) 3.5

Table 6: Results of the Wine Data (Best Order: 2, 1, 2).

Algorithm Number of Misassigned Patterns

HON (higher-order neuron), order = 2 60
HON (higher-order neuron), order = 3 78
SOM (self-organizing map) HON order = 1 54
eSOMs (evolutionary evolved SOMs) 57
eHONs (to find the optimal order for a given class) 49

Table 7: Results of the Glass Data (Best Order: 2, 1, 1, 1, 3, 2).

Algorithm Number of Misassigned Patterns

HON (higher-order neuron), order = 2 176
HON (higher-order neuron), order = 3 157
SOM (self-organizing map) HON order = 1 119
eSOMs (evolutionary evolved SOMs) 115
eHONs (to find the optimal order for a given class) 110

the computation of the inverse of the higher-order tensor, which is intensive
in nature. This is a clear setback in the use of multiorder neurons. Several
other clustering algorithms, such as AHC (Blatt et al., 1996) and cluster
ensembles (Fred & Jain, 2002, 2005), can also be used instead to improve
clustering accuracy.

On the other hand, using the eHON, we also obtain the optimal order
of a particular cluster of patterns, thereby also giving information on the
shape of the cluster. We feel that this is a unique contribution of the eHON
algorithm that will allow it to be integrated with ensemble clustering ap-
proaches. We expect that cluster shape information can help to mold the
clustering ensembles to the required shape and improve clustering accu-
racy.

4.5 Limitations. As the eHON model improves on the model of the
higher-order neurons, their computational cost is equivalent to that of
the HONs. The computational complexity of the covariance tensor ZH and
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the inverse covariance tensor Z−1
H is high. Also, as the eHON makes use of

several chromosomes, the covariance tensor of each new chromosome has
to be evaluated.

The current implementation of the eHON algorithm takes into account
the computational complexity and implements only neurons with orders 1,
2, and 3. However, with these orders alone, it is not possible to capture com-
plex cluster shapes and overlapping clusters. Using the eHON algorithm to
identify more complex cluster structures will require higher computational
complexity.

5 Growing Multiorder Neurons: A Simplified Model

Cluster shape information can thus be incorporated into the ensemble al-
gorithms and thereby improve clustering accuracy. In all the problems dis-
cussed in section 4, the number of clusters to be formed is a predetermined
value that is found earlier and given to the system. However, determining
the number of clusters in a set of data patterns has been widely researched
(Blackmore & Miikkulainen, 1993; Dittenbach, Merkl, & Rauber, 2000; Fritze,
1995). The algorithms that these authors describe propose various ways to
increase dynamically the number of clusters, using certain threshold condi-
tions and stopping criteria. Dittenbach et al. (2000) go one step further and
create a hierarchical structure for clustering. Their setup not only increases
the number of clusters but also creates a hierarchy, thereby identifying the
relationship between clusters.

All the algorithms described above are implemented using self-
organizing maps (Kohonen, 1997) or other first-order clustering methods.
However, they can be converted into a batch version and adapted to the
use of higher-order neurons, thus creating a growing model for the number
of clusters. The method developed will then be an incremental approach
to increasing the number of clusters needed until the resulting number of
clusters meets the error criterion.

For illustration, we describe in this section a simple extension to eHONs
that can be used to determine the number of clusters. We begin the eHON
algorithm with two clusters and fix the number of training iterations to be
λ . We now determine the “spread” of each cluster and the total spread
of the eHON map. Effectively, this can be obtained by evaluating j(x) =∑
x∈ j

‖R( j)−1 ⊕ xm−1
H ‖ for each of the two clusters. The total spread of the

eHON can therefore be evaluated as the sum of the spread of each of the
clusters.

If the total spread after λ iterations is less than a given threshold τ ,
the cluster with the largest spread is reduced to two clusters. The eHON
algorithm is repeated, now with the patterns in the largest cluster, to find
two new clusters to represent the large cluster. The pseudocode of the
growing eHON can therefore be summarized as:
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Figure 6: The growing eHON model to incrementally determine the number of
clusters.

1. Set the number of clusters as two.

2. Implement eHON with all the available patterns.

3. IF the cluster spread is less than τ :
a. Complete training.

4. Else:
a. Repeat steps 1 to 3 with the patterns of the cluster with the largest

spread.

The process can be illustrated using the Iris data, as shown in Figure 6. Fig-
ure 6a shows two clusters of the Iris data of order 1 and order 2, respectively.
In Figure 6b, the larger cluster is further reduced into two smaller clusters,
each of order 2. The final clustering obtained has the same accuracy as that
reported in Table 5.

6 Conclusions

In this letter, we have introduced the concept of multiorder neurons or evolu-
tionary higher-order neurons (eHONs). While higher-order neurons are useful
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in clustering, their performance is heavily dependent on the prespecified
neuron order. It is desirable to determine the best order not just for the data
set but for individual clusters in it.

The global search capability of evolutionary algorithms makes them
an ideal choice of search algorithms for a problem of this nature, therefore
leading to the development of evolutionary higher-order neurons (eHONs),
also known as multiorder neurons. These eHONs work by identifying the
best order a cluster can take, thereby identifying the complexity of each
cluster. The clusters obtained are therefore better correlated with the class
labels, making them more meaningful.

eHONs were designed by implementing an evolutionary algorithm to
evolve the covariance tensors of neurons of multiple orders. The neurons
are denoted as structures of tensors, each structure having as its compo-
nents the order of the neuron and the Kronecker form of the tensor. The
evolutionary algorithm was performed using mutation, where the order of
the neuron and the value of tensor elements were mutated with a given
probability.

The use of the multiorder neurons improves the performance of the best
higher-order neuron structure and is significantly better than the use of
SOMs and single-order neurons. The improvement in accuracy is as high
as 13% when compared to the use of SOMs (Iris data). From the results
obtained, we can observe that the development of eHONs shows promise
in the field of clustering.

We have also proposed a minor extension to the eHON model to develop
the system such that the optimal number of clusters can be incrementally
found. While the method proposed is mostly heuristic, the results using the
Iris data set show promise for further research using more sophisticated
algorithms.

While eHON is capable of finding an optimal cluster order, its use is still
confined to disjointed clusters of arbitrary shapes. Tensors of lower orders
such as described in this letter will not be capable of dealing with overlap-
ping clusters. However, as Lipson and Siegelmann (2000) have mentioned,
tensors of very high orders are capable of dealing with overlapping clus-
ters. Future work will therefore include adapting the eHON structure to
deal with overlapping clusters and investigate the effect of eHONs as the
system deals with higher-dimensional complicated data.

References

Balestrino, A., & Verona, B. F. (1994). New adaptive polynomial neural network.
Mathematics and Computers in Simulation, 37, 189–194.

Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V. (2001). Support vector clus-
tering. Journal of Machine Learning Research, 2, 125–137.

Blackmore, J., & Miikkulainen, R. (1993). Incremental grid growing: Encod-
ing high dimensional structure into a two-dimensional feature map. In

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/19/12/3369/817054/neco.2007.19.12.3369.pdf by SIN
G

APO
R

E M
AN

AG
EM

EN
T U

N
IV user on 06 O

ctober 2022



Evolutionary Multiorder Neurons 3391

IEEE International Conference on Neural Networks (ICNN’1993). Piscataway, NJ:
IEEE.

Blatt, M., Wiseman, S., & Domany, E. (1996). Supermagnetic clustering of data.
Physical Review Letters, 76(18), 3251–3254.

Dittenbach, M., Merkl, D., & Rauber, A. (2000). The growing hierarchical self-
organizing map. In International Joint Conference on Neural Networks, IJCNN’ 2000
(Vol. 6, pp. 15–19). Piscataway, NJ: IEEE Press.

Faux, I. D., & Pratt, M. J. (1981). Computational geometry for design and manufacture.
New York: Wiley.

Fred, A., & Jain, A. K. (2002). Data clustering using evidence accumulation. In Pro-
ceedings of the 16th International Conference on Pattern Recognition (pp. 276–280).
Los Alamitos, CA: IEEE Computer Society Press.

Fred, A., & Jain, A. K., (2005). Combining multiple clustering using evidence ac-
cumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6),
835–850.

Fritze, B. (1995). Growing grid: A self organizing network with constant neighbor-
hood range and adaptation strength. Neural Processing Letters, 2(5), 9–13.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning.
Reading, MA: Addison-Wesley.

Goldberg, D. E., Deb, K., & Korb, B. (1991). Don’t worry, be messy. In R. Belew
& L. Booker (Eds.), Proceedings of the Fourth International Conference in Genetic
Algorithms and Their Applications (pp. 24–30). San Mateo, CA: Morgan Kaufmann.

Graham, A. (1981). Kronecker products and matrix calculus: With applications. New York,
Wiley.

Gustafson, E., & Kessel, W. C. (1979). Fuzzy clustering with fuzzy covariance matrix.
In Proc. IEEE CDC (pp. 761–766). Piscataway, NJ: IEEE.

Kohonen, T. (1997). Self-organizing maps. Berlin: Springer-Verlag.
Krishnapuram, R., Frigui, H., & Nasraoui, O. (1995). Fuzzy and possibilistic shell

clustering algorithms and their application to boundary detection and surface
approximation–Parts I and II. IEEE Transactions on Fuzzy Systems, 3(1), 29–60.

Lipson, H., Hod, Y., & Siegelmann, H. T. (1998). Higher-order clustering metrics for
competitive learning neural networks. In Proceedings of the Israel-Korea Bi National
Conference on New Themes in Computer Aided Geometric Modeling. Tel-Aviv, Israel.

Lipson, H., & Siegelmann, W. T. (2000). Clustering irregular shapes using higher-
order neurons. Neural Computation, 12, 2331–2353.

Mao, J., & Jain, A. (1996). A self organizing network for hyper ellipsoidal clustering
(HEC). IEEE Transactions on Neural Networks, 7, 16–39.

Painho, M., & Bacao, R. (2000). Using genetic algorithms in clustering prob-
lems. Geocomputation 2000. Available online at http://www.geocomputation.org/
2000/GC015/Gc015.htm.

Yao, X. (1993). A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 8(4), 539–567.

Received July 13, 2006; accepted December 16, 2006.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/19/12/3369/817054/neco.2007.19.12.3369.pdf by SIN
G

APO
R

E M
AN

AG
EM

EN
T U

N
IV user on 06 O

ctober 2022


	Multi-order Neurons for evolutionary higher order clustering and growth
	Citation

	07-06-277.dvi

