Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

12-2015

BL-MLE: Block-level message-locked encryption for secure large
file deduplication

Rongmao CHEN
Yi MU

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Fuchun GUO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons

Citation

CHEN, Rongmao; MU, Yi; YANG, Guomin; and GUOQ, Fuchun. BL-MLE: Block-level message-locked
encryption for secure large file deduplication. (2015). IEEE Transactions on Information Forensics and
Security. 10, (12), 2643-2652.

Available at: https://ink.library.smu.edu.sg/sis_research/7358

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

2643

BL-MLE: Block-Level Message-Locked Encryption
for Secure Large File Deduplication

Rongmao Chen, Yi Mu, Senior Member, IEEE, Guomin Yang, Member, IEEE, and Fuchun Guo

Abstract— Deduplication is a popular technique widely used to
save storage spaces in the cloud. To achieve secure deduplication
of encrypted files, Bellare ef al. formalized a new cryptographic
primitive named message-locked encryption (MLE) in Eurocrypt
2013. Although an MLE scheme can be extended to obtain
secure deduplication for large files, it requires a lot of metadata
maintained by the end user and the cloud server. In this paper, we
propose a new approach to achieve more efficient deduplication
for (encrypted) large files. Our approach, named block-level
message-locked encryption (BL-MLE), can achieve file-level and
block-level deduplication, block key management, and proof of
ownership simultaneously using a small set of metadata. We also
show that our BL-MLE scheme can be easily extended to support
proof of storage, which makes it multi-purpose for secure cloud
storage.

Index Terms— Message-locked encryption,
proof of ownership, proof of storage.

deduplication,

I. INTRODUCTION

CCORDING to the analysis of the International Data

Corporation (IDC), the volume of data in the world will
reach 40 trillion gigabytes in 2020 [1]. In order to reduce the
burden of maintaining big data, more and more enterprises and
organizations have chosen to outsource data storage to cloud
storage providers. This makes data management a critical
challenge for the cloud storage providers. To achieve optimal
usage of storage resources, many cloud storage providers
perform deduplication, which exploits data redundancy and
avoids storing duplicated data from multiple users.

Deduplication Strategy. According to the architecture and
the granularity of data processing, deduplication strategies can
be mainly classified into the following types. In terms of
deduplication granularity, there are two main deduplication
strategies. (1) File-level deduplication: the data redundancy
is exploited on the file level and thus only a single copy

Manuscript received January 8, 2015; revised May 31, 2015 and
August 6, 2015; accepted August 6, 2015. Date of publication August 19,
2015; date of current version September 30, 2015. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Michel Abdalla. (Corresponding authors: Rongmao Chen and Yi Mu.)

R. Chen is with the Centre for Computer and Information Security Research,
School of Computing and Information Technology, University of Wollongong,
Wollongong, NSW 2522, Australia, and also with the College of Computer,
National University of Defense Technology, Changsha 410073, China (e-mail:
rc517 @uowmail.edu.au).

Y. Mu, G. Yang, and F. Guo are with the Centre for Computer and
Information Security Research, School of Computing and Information Tech-
nology, University of Wollongong, Wollongong, NSW 2522, Australia (e-mail:
ymu@uow.edu.au; gyang@uow.edu.au; fuchun@uow.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2470221

of each file is stored on the server. (2) Block-level dedu-
plication: each file is divided into blocks, and the sever
exploits data redundancy at the block level and hence performs
a more fine-grained deduplication. It is worth noting that
for block-level deduplication, the block size can be either
fixed or variable in practice, and each method has its advan-
tages and disadvantages [2]. In this work, we focus on the
block-level deduplication with fixed block size. From the
perspective of deduplication architecture, there are also two
strategies. (1) Target-based deduplication: users are unaware
of any deduplication that might occur to their outsourced
files. They just upload the files to the data storage server
which then performs deduplication upon receiving the data.
(2) Source-based deduplication: unlike target-based dedu-
plication, before uploading the data, the user first sends
an identifier/tag of the data (e.g., a hash value of the
data and thus much shorter) to the server for redundancy
checking and thus duplicated data would not be sent over
the network.

Large File Deduplication. In this paper, we focus on large
file deduplication. Normally block-level deduplication can
provide more space savings than file-level deduplication does
in large file storage. Taking as an example, Alice and Bob want
to store the same large file M in a server. Suppose the server
performs file-level deduplication, which means only one copy
of M will be saved. Later, Bob downloads M, appends several
new pages to it, and uploads the modified file (denoted by M")
to the server. Since M’ is different from M, the server needs
to store the whole file M’. However, if block-level dedupli-
cation is used, the server only needs to store the appended
pages (denoted by AM), reducing the space cost from
O(M| + |M'|) to O(|M| + |AM]). This approach can bring
a significant space saving since |AM| < |M’|. One drawback
of the more fine-grained block-level deduplication is that
it requires more processing resources. Fortunately, file-level
deduplication and block-level deduplication are not incompat-
ible with each other. In this paper, we present a technique that
can achieve both of them (i.e., dual-level deduplication).

Another aspect that should be taken into consideration is
the bandwidth savings from large file deduplication. It has
been reported that the cost of transferring data is almost
the same as the space cost of storing the same amount of
data for two months in the Amazon S3 server [3]. Since
uploading large files would consume extensive bandwidth,
source-based deduplication seems to be a better choice for
large file outsourcing. Unlike target-based deduplication which
requires users to upload their files regardless of the potential
data redundancy among those files, source-based deduplication

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

2644

could save the bandwidth significantly by eliminating the
retransmission of duplicated data. Therefore, in contrast to
target-based deduplication which saves only space, source-
based deduplication can in addition save network bandwidth,
which makes it more attractive in large file deduplication.
However, source-based deduplication also has a drawback.
A dishonest user who has learnt a piece of information about
a file may claim that he/she owns the file. Such a problem
has been identified by Halevi et al. in [4]. To overcome
such an attack, they proposed a new notion called Proof of
Ownership (PoW) where the user proves to the server that
he/she indeed owns the entire file. It is clear that PoW should
be implemented along with source-based deduplication. In the
rest of the paper, we consider POW as a default component in
source-based deduplication.

From the above analysis, we can see that it is desirable to
have Dual-Level Source-Based (DLSB) Deduplication for
large files. Such a mechanism can achieve the best savings on
space, computation, and bandwidth. In a DLSB Deduplication
system, the user firstly sends a file identifier to the server for
file redundancy checking. If the file to-be-stored is duplicated
in the server, the user should convince the server that he/she
indeed owns the file by performing a PoW protocol. Otherwise,
the user uploads the identifiers/tag of all the file blocks to the
server for block-level deduplication checking. Finally, the user
uploads data blocks which are not stored in the server.

Data Privacy. In the discussions above, we haven’t consid-
ered data privacy issues. In reality, end users may not entirely
trust the cloud storage servers. In order to protect data privacy,
files may be encrypted first before being uploaded to the server.
This brings a new challenge for deduplication since different
users will use different keys to perform encryption, which
would make two identical files completely different after being
encrypted. Although searchable encryption [6]-[8] can support
equality testing of encrypted data, cloud storage providers still
cannot perform any deduplication. The main reason is that, if
a user (say Bob) does not store his encrypted file on the server
due to deduplication, e.g., another user Alice has stored the
same file in the server, then Bob could not retrieve the original
file later since he cannot decrypt Alice’s file.

A. Motivation of This Work

To resolve the above problem, Douceur et al. [9] pro-
posed a solution called Convergent Encryption (CE). CE is
a deterministic symmetric encryption scheme in which the
key K is derived from the message M itself by computing
K = H(M) and then encrypting the message as
C =E(K,M)=E(H(M), M) where H is a cryptographic
hash function and E is a block cipher. Using CE, any user
holding the same message will produce the same key and
ciphertext, enabling deduplication. Although CE and its vari-
ants have been widely deployed in many systems [10]-[12], a
formal treatment on their security is missing.

In Eurocrypt’13, Bellare et al. [13] formalized a new cryp-
tographic primitive called Message-Locked Encryption (MLE)
which subsumes Convergent Encryption. Although MLE
schemes can perform secure deduplication of encrypted data,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

they were proposed originally for file-level and target-based
deduplication. We could extend an MLE scheme for secure
DLSB-deduplication of large files by performing MLE on each
data block (i.e., treating a data block as a file) and employing
an existing Proof of Ownership scheme (e.g., the PoW scheme
in [4]). However, as we will show shortly, such an approach
is not efficient due to the large amount of metadata produced
in order to achieve all the security goals.

1) Metadata I (Block Identifiers): In DLSB-deduplication,
in addition to the file identifier, the server also has to store
a large number of block identifiers for redundancy checking.
Different from the actual files that are stored in a secondary
storage, these identifiers are stored in the primary memory
for fast access upon every upload request. Although a block
identifier is much shorter than the corresponding data block,
the overall storage costs can be significant due to the large
amount of data blocks in large files.

2) Metadata Il (Block Keys): To apply MLE at the block
level, each file block should be encrypted using a block
key which is derived from the data block itself. Therefore,
the number of block keys scales linearly with the number
of data blocks. The user has to maintain a lot of block keys for
decryption. The block key management hence is a challenge
for the user especially when the outsourced files are large.
A simple solution to solve the problem is that each user
encrypts all the block keys with a master key and uploads both
the encrypted block keys together with the encrypted file to the
server. In this way, each user only needs to keep the master key
locally which can be used to recover the block keys and hence
the encrypted data blocks. However, one drawback of such a
block key management mechanism is that the server requires
more space to store the (extra) encrypted block keys in addition
to the block identifiers. The drawback seems inherent since we
cannot apply deduplication on the encrypted block keys when
the master keys are different. Such an observation motivated us
to tackle the problem from a different angle by encapsulating
the block key inside the block identifier, which allows us to
apply the above block key management mechanism without
introducing extra storage overhead.

3) Metadata III (PoW Tags): As we have mentioned above,
it is a requirement to perform the Proof of Ownership pro-
tocol in source-based deduplication, especially for large files.
A trivial solution for PoW is to request the prover (i.e., users)
to upload some random data blocks specified by the server
(i.e., spot-checking). However, as discussed above, since the
actual data blocks are stored in the secondary storage, it is
more practical to use some short PoW tags to perform the
verification. Similar to the encrypted block keys, the PoW tags
would also require extra spaces on the data server.

To give a clearer picture, we take the practical MLE scheme
HCE2, introduced by Bellare er al. [13], as an example
to demonstrate the cost of performing DLSB-deduplication.
Given the public parameters P and a file M, the user first
computes the file identifier Tp < H (P, H(P,M)) by apply-
ing a cryptographic hash function H, and then separates M

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BL-MLE FOR SECURE LARGE FILE DEDUPLICATION

into n blocks, i.e., M = M[1]||...|[M[r].! For each block
M[i], the user computes the corresponding block key as
k; < H(P,M[i]), block identifier as T; < H(P,k;) and
then encrypts each block as C[i] < SE(P, k;, M[i]) using
a symmetric encryption algorithm S&. In addition, the block
keys will also be encrypted and uploaded to the server. Let Cy,
be the encrypted form of the block key k; using the user’s
master key. Therefore, the server needs to store the metadata of
size O(|Tol+ 27 1Til+ 2.7 |Cx; |+ 1Tpow]) for a file M where
Tpow is the tag for Proof of Ownership. This would result
in a significant space cost when the file (or block number)
is large. Among all the metadata, we can see that the block
identifiers and the encrypted block keys form the major storage
overhead. This motivated us to design a new scheme that can
combine the block identifier 7; and the encrypted block key
Cy, into one single element. More details are provided in
Section VII, where we compare several MLE-based schemes
with our proposed BL-MLE scheme for DLSB-deduplication.

B. Our Contributions

In this paper, we formalize the notion of Block-Level
Message-Locked Encryption (BL-MLE) for secure and
space-efficient large file deduplication in cloud storage.

o We propose the formal definition of BL-MLE which
captures new functionalities, i.e., dual-level deduplication,
block key management and proof of ownership, than
the conventional MLE. Security models are also defined
separately for each functionality to capture clear security
guarantees.

o« We present a concrete BL-MLE scheme that can effi-
ciently realize our design ideas outlined above. Moreover,
we also show that our BL-MLE scheme can be easily
modified to support efficient proof of storage and obtain
an improved PoW protocol with stronger security, which
makes our scheme multi-purpose for secure cloud storage.

o We show that our proposed scheme can indeed achieve
significant space savings and PoW bandwidth savings.
We also fully prove the security of the constructed scheme
under the proposed security models.

II. PRELIMINARIES

Before presenting our BL-MLE scheme, we briefly review
some relevant definitions and syntax of message-locked
encryption and its security definitions, Privacy and Tag Con-
sistency, proposed in [13].

A. Notations and Conventions

1) Guessing Probability: Given a random variable X with
min-entropy Heo(X) = —log(Max, Pr[X = x]), the guessing
probability of X is GP(X) = Max, Pr[X = x] = 27 Hx(),
Given a random variable Y, the conditional guessing prob-
ability GP(X|Y) of a random variable X with condi-
tional min-entropy Hoo(X|Y) is GP(X|Y) = > Pr[Y =
y]-Max, Pr[X = x|Y = y] = 2~ HoXI)

'In this paper, for two bit-strings x and y we denote by x||y their
concatenation.

2645

2) Unpredictable Block-Source: A block-source is a poly-
nomial time algorithm M that on input 1* returns (M, Z)
where M is a message vector over {0, 1}* and Z € {0, 1}*
denotes some auxiliary information. Let n(1) denote the vector
length, i.e., the number of blocks. For all i € [1,n(4)], M[i]
represents the i’ block of the message M. We say M is an
unpredictable block-source if GP 4 = Max;{GP(M[i]|Z)} is
negligible.

B. Message-Locked Encryption
According to [13], a standard message-locked encryption
scheme consists of five algorithms, Setup, KeyGen, Enc, Dec,
and TagGen.
o Setup: takes 1%, returns a public parameter P;
o KeyGen: takes P and a message M, returns a message-
derived key K
o Enc: takes P, message-derived key K and message M,
returns a ciphertext C;
o Dec: takes P, message-derived key K and ciphertext C,
returns a message M;
o TagGen: takes P and ciphertext C, returns a tag T.
An MLE scheme is a standard symmetric-key encryption
scheme which uses a deterministic function to map a message
to an encryption key. An MLE scheme also has a tag gener-
ation algorithm that derives a tag from a ciphertext. The tag
serves as an identifier of the message for equality test. Identical
data always result in equal tags regardless of the ciphertext
which can be randomized. Apart from the formal definition
of MLE, they also proposed the formal security definitions,
including privacy and tag consistency, to capture the security
requirements on MLE. Due to the special key generation
mechanism, no MLE scheme can achieve the conventional
IND-type security. Bellare et al. then defined a new privacy
model which captures chosen distribution attacks for MLE
schemes. For tag consistency, it means the message indicated
by a tag must be consistent with that underlying the ciphertext.
In Crypto’13, Abadi ef al. [14] proposed a stronger notion of
MLE. However, the scheme proposed in [14] is less efficient
than the original schemes proposed by Bellare et al. [13].

C. Proof of Ownership

Proof-of-Ownership (PoW) [4] is an interactive protocol
between a prover (file owner) and a verifier (data server).
By executing the protocol, the prover convinces the verifier
that he/she is an owner of a file stored by the verifier.
As mentioned earlier, PoW is necessary for source-based
deduplication. Here, we briefly describe the PoW protocol
in [4] which presents three schemes that differ in terms of
security and performance. All three require both the user and
the server to build the Merkle trees [15] on a buffer, whose
content is derived from the pre-processed file. The server only
keeps root and challenges the client to present valid sibling
paths for a subset of leaves of the Merkle tree. Therefore,
the bandwidth costs would be a super-logarithmic number of
sibling paths of the Merkle tree.

III. BLOCK-LEVEL MESSAGE-LOCKED ENCRYPTION

We now describe the definition of Block-Level Message-
Locked Encryption (BL-MLE) for DLSB-deduplication.

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

2646

It will capture additional functionalities including dual-
level deduplication, block keys management, and proof of
ownership, compared with a normal file-level MLE.

A. Definition

1) Syntax: A block-level message-locked encryption
scheme is specified by the following algorithm.

o Setup: fakes a security parameter A as input and returns
the system parameters P.

o KeyGen: takes the public parameters P and a file
message M = M[1]||...|IM[n] as input, and returns a
master key kiyqs and block keys {ki}1<i<n generated using
the following two sub-algorithms respectively,

— M-KeyGen: takes P and M as input, returns the
master key kmas;

— B-KeyGen: rakes P and M[i] as input, returns the
block key k;.

o Enc: takes public parameters P, a block message M[i]
and the corresponding block key ki as input, returns the
block ciphertext C[i].

o Dec: takes public parameters P, a block ciphertext C[i]
and a block key k; as input, returns M[i] or L.

« TagGen: takes public parameters P and a file M as input,
returns the file tag To and block tags {T;}1<i<n generated
using the following two sub-algorithms respectively,

— F-TagGen: takes P and M as input, returns the file
tag Top;

— B-TagGen: takes P, M and the block index i as
input, returns the block tag T;.

o ConTest: takes a block tag T; and a block ciphertext C[i]
as input, returns True or False.

o EqTest: takes as input two block tags T, T' and the
corresponding file tags Ty, Ty, returns True or False.

o B-KeyRet: rakes a master key ka5, a block tag T;, and
a block ciphertext C[i] as input, returns a block key k;/L.

o PoWPrf: takes a challenge Q and a file M as input,
returns a response P.

o PoWVer: takes a challenge Q, the file tag Ty, the block
tags {T;}1<i<n, and the response P as input, returns True
or False.

Remark 1: Unlike a standard MLE scheme, our BL-MLE
scheme performs encryption per block. Given a file, we split
it into blocks before encryption. The KeyGen algorithm pro-
duces the master key and block keys using the sub-algorithm
M-KeyGen and B-KeyGen respectively. The former is used
to encrypt block keys while the latter are derived from the
file blocks and used to encrypt and decrypt block messages.
For the tag generation algorithm TagGen, we also define two
sub-algorithms, F-TagGen and B-TagGen. The file tag can
be used as the file identifier for file-level deduplication, and
the block tag severs multi-purposes, including block identifier,
encrypted block key, and PoW tag.

To achieve DLSB-deduplication, equality testing of data
block can be done with block identifiers using the algo-
rithm EqTest. Therefore, we need to ensure that the block
identifier (i.e., block tag) is actually consistent with the
uploaded data block to prevent duplicate faking attack.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

The algorithm ConTest is introduced for this purpose. As the
block tag also serves as an encrypted block key, we define the
algorithm B-KeyRet for block key retrieval. Given a block
tag, the corresponding block ciphertext and the master key,
the user can compute the block key and then decrypt the block
ciphertext.

Also, we require that the block tags constructed in a
BL-MLE scheme can be used as PoW tags. Here we introduce
two algorithms PoWPrf and PoW Ver for proof of ownership.
The algorithm PoWPrf outputs the response to a challenge
based on the data file and PoWVer is used to verify whether
the response is correct or not.

2) Correctness: For BL-MLE, except the file space
MsgSppr—-mre(A), we also define the block Space
BISppr—mre(A) for any 1 € N. The following correctness
conditions are required for a BL-MLE. For all 1 € N,
P <Setup(1*) and all M € MsgSppr—mrLe(4), we require
the following correctness.

1) Decryption Correctness. For all block message M[i] €
BISpar_mre(4), block key ki <B-KeyGen(M[i])?
and block ciphertext C[i] <Enc(k;, M[i]), we have
that, Dec(k;, C[i]) = M[i];

2) Tag Correctness. For any two block message
M[i], M'[¢] S BISppr—mre(A) such that
M[i] = M'[t], block key k; <«B-KeyGen(M[i]),
block ciphertext C[i] <Enc(k;, M[i]), block tag
T; <«B-TagGen(M,i) and 7/ < B-TagGen(M/, 1),
we have that, Pr[ConTest(7;, C[i]) = True] = 1 and
Pr[EqTest(7T;, T/) = True] = 1;

3) B-Key-Retrieval Correctness. For any block message
M[i] € BISppr—mre(1), master key kpqs <«M-
KeyGen(M), block key k; <«B-KeyGen(MJi]),
block ciphertext C[i] <—Enc(k;, M[i]) and block tag
T; < B-TagGen(M,i), we have that, B-KeyRet
(kmas, Ti, Cli]) = ki3

4) PoW Correctness. For all tags T <«TagGen(M), any
challenge Q, P <« PoWPrf(M, Q), we have that,
Pr[PoWVer (T, P) = True] = 1.

B. Security Definitions for BL-MLE

In this section, we formalize the security definitions for
BL-MLE schemes. In a BL-MLE scheme, a large file is
split into blocks before being encrypted, hence apart from
the requirement that the message is unpredictable, each block
should also be unpredictable when considering the privacy of
block encryption. Therefore, we only consider unpredictable
block-source in this paper (i.e., GP o is negligible).

1) Privacy: Similar to the MLE scheme, our BL-MLE
scheme cannot achieve the conventional semantic security. For
MLE, Bellare ef al. [13] proposed PRV$-CDA which is a
strong privacy notion where the encryption of unpredictable
message must be indistinguishable from a random string of
the same length [16]. In this paper, we follow the idea in [13]
to define the privacy model. Here, we modify the notion
PRV$-CDA slightly for BL-MLE (denoted by PRV$-CDA-B)
as it produces file tag and block tags separately from the

2For simplicity, we will omit P in the input of the algorithms in the rest
of the paper.

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BL-MLE FOR SECURE LARGE FILE DEDUPLICATION

ciphertext. We say a BL-MLE scheme is secure under chosen
distribution attacks if no polynomial-time adversary A has
a non-negligible advantage in the following PRV$-CDA-B
game:

Setup: The adversary A sends the challenger the descrip-
tion of a unpredictable block-source M. The challenger
then generates and sends A the system parameter P.
Challenge: The challenger picks randomly b < {0, 1}. If
b = 0, then runs the source M as, (Mg, Z) < M(A).
Otherwise, if b = 1, chooses M1 uniformly at ran-
dom from {0,1}Mol Ser M = M. Suppose n(l)
is the block numbers. For each i = 1,...,n(1), the
challenger computes k; <B-KeyGen(M[i]) and then
computes the ciphertext as, C[i] <Enc(k;, M[i]). The
challenger also computes the file tag and block tags
as follows, Ty <F-TagGen(M), T; <« B-TagGen(M[{]).
Set T = {Tp, Th, ..., Tu(s)}. Finally, the challenger gives
auxiliary information Z, tags T, and the ciphertext C to
the adversary.
Output: After receiving (C, T, Z), the adversary outputs
his guess b’ on b and wins the game if b’ = b.
We refer to such an adversary A as a PRV$-CDA-B
adversary and define adversary 4’s advantage as,

AM 1
Advpgys cpap(d) = | Prlb = bl — EI'

Definition 2: We say that a BL-MLE scheme is
PRVS$ — CDA — B secure if for any unpredictable block
source M and any polynomial-time PRV$-CDA-B adversary
A, ,tzlg\/[advantage in the chosen distribution attack game,
AdvpRys.cpas(4). is negligible.

2) Tag Consistency: For BL-MLE, we define a similar
security notion as STC by following the more general def-
inition, STC2 in [14] since we also consider randomized
tags. Therefore, instead of comparing tag value directly, our
definition uses ConTest and EqTest algorithms to check the
tag consistency. We say a BL-MLE scheme is secure under
duplicate faking attack (DFA) if no polynomial-time adversary
A has a non-negligible advantage in the following DFA game:

Setup: The challenger generates and sends A all the system

parameters P.

Output: Eventually, A outputs < M*,i,c*, T* >.

If ConTest(T*,c*) — False, output 0; Otherwise,

if M*[i] #Dec(B-KeyGen(M*[i]), c*),EqTest(B-TagGen

(M*[i]), T*) — True, output 1.

We refer to such an adversary A as a DFA adversary and
define adversary .4’s advantage as AdvE;‘FA(/l) in the above
game as the probability that the game outputs 1.

Definition 3: We say a BL-MLE scheme is DFA-secure if
for any polynomial-time DFA adversary A, the advantage
Adv“D“FA(l) is negligible.

3) PoW Security: As for the security of proof-of-ownership,
similar to the security definition in [18], we consider the prob-
ability that an attacker who knows partial information about
the file can convince the server the he/she owns the entire file.
Based on the idea of the “bounded retrieval mode” [17], [18],
we assume that the attacker only knows partial information

2647

(a bounded number of blocks) of the file. We say a BL-MLE
scheme is secure against an uncheatable chosen distribution
attack if no polynomially bounded adversary A has a non-
negligible advantage against the challenger in the following

UNC-CDA game:

Setup: The challenger generates and sends A the system
parameters P.

Challenge: The adversary sends challenger the BL-MLE-
valid source M. And the challenger runs M as (M, Z) <«
M(A) and sends the proof query Q = (i,v;) with the
auxiliary information Z to the adversary.

Output: Finally, the adversary outputs the proof P¥,
which passes the verification, i.e., POWVer(TagGen(M),
P*, Q) — True. Let the expected honest response be P,
i.e., POWPrf(M, Q) — P. If P* # P, the challenger
outputs 1, otherwise output 0.

We refer to such an adversary .4 as an UNC-CDA adversary
and define adversary .A’s advantage Ad”éﬁl/c\:/-lCDA(’l) as the
probability that the game outputs 1.

Definition 4: We say that a BL-MLE scheme is UNC-CDA
secure if for any unpredictable block-source M and any
polynomial time UNC-CDA adversary A, the advantage
Advﬁ,{l/é/_lCDA(/l) is negligible.

IV. THE PROPOSED BL-MLE SCHEME
A. Construction

Before presenting the
introduce the symmetric
the following construction. Let G,Gr be two
multiplicative groups with the same prime order p.
Let g be the generators of G and I be the identity element
of Gr. A symmetric bilinear map isamape: G x G — Gr
such that e(u® 0?) = e(,v)® for all u,o € G
and a,b € Zp. It is worth noting that e can be efficiently
computed and e(g, g) # 1.

full scheme, we briefly
bilinear map used in

Setup(1#). On input 14, the algorithm generates a prime p, the
descriptions of two groups G, Gr of order p, a generator
g of G and a bilinear map ¢ : G x G — G7. Choose an
integer s € N and three hash function H; : {0, 1}* — Lp,
Hy : {Zp}* — G, H3 : G — {Z,}*. Pick s elements
randomly uy, us, ..., us < G. The system parameters are
P=<p,g,G Gr,e, H, Hy, H3, s, ui,ua, ..., g >.

KeyGen(M). Given a data file M = M[1]||...|[M[n] where
forall 1 <i < n, M[i] € {Z,}®, compute the master key
kmas and each block key k; as follows,

M-KeyGen(M): take M, output ky,qs = H1(M);
B-KeyGen(M[i]): take M[i], output k; = Hy(M[i]).

Enc(k;, M[i]). Given a block message M[i], and the cor-
responding block key k;, output the block ciphertext
as C[i] = Ha(k;) & M[i].

Dec(k;, C[i]). Given a block ciphertext C[i], and the corre-
sponding block key k;, compute M[i] = H3(k;) & C[i].
If k; = Hy(M[i]), output M[i]; otherwise output L.

TagGen(M). Given the file M = M[1]||...||M[n], output the
file tag Ty and each block tag 7; as follows,
M-TagGen(M): take M, generate the master key kg5,
output 7p = gk""”;

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

2648

B-TagGen(M, i): take M and the block index i, gen-
erate the master key k,,g, the corresponding block key
k; and block ciphertext C[i], spht C[i] into s sectors:
{Clill[j1}1<j<s, and output, T; = (k; H Clilljl YKimas
In our scheme, some auxiliary data aux; = e(k,, To) is
also generated and attached to the block tag 7; during
block tag generation. Please refer to Section IV-B for some
discussions on 7; and aux;.

ConTest(7;, C[i]). Given a block ciphertext C[i] and the
block tag 7; with auxiliary data aux;, split C[i] into s
sectors: {Cli][j]}1<j<s. Let To be the corresponding file

tag. Check whether, e(7;, g) = aux; - e(HI luc[l][] To).
If so, output 1; otherwise, output O.
EqTest(T;, T/, Ty, T;). Given two block tags T;, T/ and the

corresponding file tags 7o, 7;;, check whether e(7;, T) 2

e(T/, Tp). If so, output 1; otherwise, output 0.
B-KeyRet(k;,45, Ti, C[i]). Given a block ciphertext C[i] and

the block tag T;, split C[i] into s sectors: {C[i][j]}1<j<s»

and compute the corresponding block key, k; = le’”‘” .
(Hj Lu]]) I If Dec(k;, C[i])=L, output L; other-
wise, output k;.

PoWPrf(M, Q). For a challenge query Q = {(i, v;)}, com-
pute the block tag 7; where i is the position of a queried
block. Finally, output the proof Pr as Pr = H(i, 01)€0 Tlvi

PoWVer(Pr, {T;}1<i<n, Q). Given a proof Pr for a challenge
query Q = {(i, v;)}, compute the Veriﬁcation information
Vr = H(l meo I Ui and check Py = Vr. If so, output 1;
otherwise, output 0

B. Design Considerations

1) Guarded Decryption: In our scheme, the decryption
algorithm additionally checks the validity of the decrypted
message. By recomputing the block key using the decrypted
message, it can tell whether the output message is the correct
one or not. If it fails, then L is returned. This additional
property enables the user to be sure that the encrypted data
downloaded from the cloud server is the one he/she intends
to obtain (TC-secure).

2) Block Tag Generation: Since the tag constructed in a
BL-MLE scheme should enable equality testing of block data
and block key management, we embed the master key, block
key and the ciphertext in the block tag. The master key serves
as the encryption key to encrypt the block key. Since both the
encryption algorithm and the master key generation algorithm
are deterministic, different owners of the same file would
produce the same block tags and hence the server can also
perform deduplication on the block tags.

3) Block Sectors: Another consideration is the block tag
size. It is desirable that the length of the block tag should be
less than that of the corresponding block ciphertext. In order
to shorten the size of the block tag, the block ciphertext
is split into s sectors. Each sector is one element of Z,
and hence the size of a block tag is just 1/s of the cor-
responding block ciphertext. It is worth noting that in our
scheme we assume M[i] € {Z,}® and hence C[i][j] € Z,
IM[i]| = |C[i]|. However, we should be careful about
the length of each block message which is represented as

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

bit-strings in practice. In order to make sure that each sector
is the element of Z,, we set [M[i]| = s - (log, p — 1) instead
of s -log, p.

4) Consistency Testing: In a BL-MLE system, we require
that the block tag construction should achieve strong tag
consistency. For our algorithm ConTest, besides the block
ciphertext C[i] and the block tag T;, we need some addi-
tional information, i.e., aux; = e(k;, Tp), for the con-
sistency checking. However, aux; does not need to be
stored on the server. It is only required when the user
uploads the file block and the block tag. Once the server
has checked that C[i] and 7; are consistent, aux; can be
discarded.

5) Equality Testing: Note that in our scheme two identical
block messages may belong to different files and hence
have two distinct block tags. In order to support block data
redundancy checking using these distinct block tags, we use
paring to do the equality testing. This approach has been used
in [8] and [14].

C. Correctness Analysis

We can observe that the BL-MLE scheme satisfies the
requirement of decryption correctness as we use symmet-
ric encryption. It is also obvious that the construction also
achieves PoW correctness. For the other algorithms, we verify
their correctness as follows.

1) Tag Correctness: Consider the block ciphertext C[i]
of a block message M[i] and the corresponding block tag
T, = (ki - , U C[l][j)k”““‘ where ks is the correspond-
ing master key and file tag Typ = gFmes. For ConTest
algorithm we have e(Tl,g) = e((ki [T}= C[l][j Yemas o) =

e(ki, To) - e([Tj= A7 70). For EqTest algorlthm con-
sider another block tag T = ki [T;= Ay,

C'[t] is the ciphertext of block message M’ [¢] and k| is the
corresponding block key, k., is the corresponding master

key, and Tj = ¢ kmas is the correspondlng file tag. We have,

Cli
e(T;, T()) = e(k; 14 ,g)kmas mas, and e (t’TO) =

etk IT}= luC[t][/ g)k”““' kmas . Suppose that M[i] = M/[r],
since the encryption and key generation algorithm are deter-
ministic, k| = k;, C'[¢][j]1 = Cli][j] for (1 < j <s) (notice
that ks, kmas’ would be different when M # M'). Therefore,
we have e(T;, Ty) = e(T}, To).

2) B-Key-Retrieving Correctness: For a given block cipher-

text C[i] and block tag T; = (k; HS C[i][j])k”“” where
-1
kmas 1S the correspondlng master key, we have T; kmas

C

(kl H] L1051)kmm k,,wu = k H]: i Clillj]
— N

ki — 7‘[mas H uC[l][]

nas where

which means

V. SECURITY ANALYSIS

In this section, following the security models defined previ-
ously, we show that the proposed scheme achieves the design
goals in terms of security guarantees, more precisely, data
privacy, tag consistency and PoW security.

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BL-MLE FOR SECURE LARGE FILE DEDUPLICATION

A. Complexity Assumption

We introduce two complexity assumptions for the following
security analysis. Let G be a group with prime order p and g
is the generator.

1) Discrete Logarithm (DL) Assumption: Given g¢ € G
where a € Z,, there is no polynomial time algorithm can
compute a with non-negligible probability.

2) Computational Diffie-Hellman (CDH) Assumption:
Given g%, g” € G where a,b € Zp, there is no polyno-
mial time algorithm can compute g% with non-negligible
probability.

B. Privacy

We prove the PRV$-CDA-B security of our scheme when
modeling Hj, H>, H3 as random oracles.

Theorem 5: Let Hi, H>, H3 be the random oracles. Then
if there exists a PRV$-CDA-B adversary A with advantage
€ (1) against our scheme, there is an algorithm B that solves
the CDH problem with probability AdngH(i) such that for
all 2 e N,

2e(4)
n(2)q2,3(4)

where (1) is the min-entropy of block-source M, n(1) is the
block message number and q1(1), q2,3(1) are the number of
queries to Hy, H 3 respectively by the adversary.

Proof: Due to the space limitation, here we only
describe the proof sketch. Suppose that algorithm B is given
as input a random 1nstance of CDH problem, go, &G, go e G.
Its goal is to output go € G. Algorithm B simulates the
challenger and interacts with the adversary A as follows.

After receiving the challenge block-source M from A, B
sets the system parameters P =< p, g, G, Gr, e, Hy, Hy, H3,
S,U1, U, ..., ug > as follows: let g = gg, and for all k € {1, s},
chooses randomly ry <pg Z, and computes up = gy*.
Finally, A is given < p, g, G, Gr,e,s,uy, uy, ..., us > while
Hy, H>, H3 are random oracles controlled by B. B answers
the hash query (Hi, H», H3) by treating the hash functions
as random oracles. Precisely, for a new query, B returns a
randomly chosen value and it always output the same answer
for the same query (by recording the query history). During the
Challenge stage, suppose that the picked challenge file is M,
one can note that the adversary .A would not query the hash
function with M or its block due to the unpredictable block-
source M. B regards the master key as H;(M) = a~! and
computes the file tag as Ty = g% = go and for each
M[j], B picks a; < Zp,,C[j] <& {Zp}s randomly, splits
C[j] into s sectors C[j][1], C[j][2],. C[]][S] € Zp and
computes the block tag as, T[j] = g’ H _ rkC[] L

a’ab [Tizy ’][k the block key K[]] =
Hz(M[J]) s b, auxj = e(K[j1.To) = e(gy”". g6).
Hence, T[j] is consistent with the block ciphertext C[j].
Finally, after A outputs its guess, I3 picks a random tuple
(mi,ki,hkil) from H3 query list, chooses j <g [1,n(1)] and

)
2u(2)n(2)

q2,3(2) - n(2)

B
AdDCDH(i) . 2/‘(/0 5

Here,

output k;xj as the solution to the given instance of CDH.
Note that the game is identical to PRV$-CDA-B game from
the view of the adversary unless the challenge message M or

2649

M([j](j € [1,n(4)]) has been queried by adversary. Due to the
fact that M| is chosen uniformly at random from {0, 1}Mol and
C, T, T" are computed independently of M, we can apply the
min-entropy of the block-source M to bound the probability
to be less than Max{zﬂ"(ﬂgi)(z), 2. 32(/'}2/;’“)} In the simulation
above, we refer to K as the block keys of M. Then the event
that A issues a query for H3(K[j]) at some point for any
Jj €[1,n(4)] is > 2¢€(4). In this case, the probability that the
solution output by B is correct is 1/n(4).

C. Tag Consistency

For the tag consistency of our scheme, we have the follow-
ing result.

Theorem 6: Let Hy, H3 be the random oracles. Let A be a
DFA adversary that has advantage €(A) against our scheme.
Then there exist an algorithm B that solves the Discrete Log
Problem (DLP) with advantage at least €(1)/2.

The proof of above theorem should be clear based on
[21, Th. 2] and hence is omitted here due to the space
limitation.

D. PoW Security

For the security of our basic PoOW protocol, following the
model of UNC-CDA, we have the following theorem.

Theorem 7: Let Hy be a random oracle, then the adversary’s
advantage €()) in the UNC-CDA game against our scheme is,

() < (D () —g() +1

n(2) n(2) —q(2) +1
where n(1) is the total block number of the challenge-file,
t (1) is the number of blocks known to the adversary given the
auxiliary information, q(1) is the number of queried blocks
and p (1) is the min-entropy of block-source M.

Proof: Suppose that the challenge-file My consists
of n(1) blocks and blocks queried during the challenge stage
is My of which the number is of g(4) . We also refer to My
as the 7(4) blocks known to the adversary.

Let Bad be the event that all the blocks queried are
known to the adversary, ie., M; < M. As theA query
is chosen randomly, we have, Pr[Bad] < (%(%)q(i).
Therefore, the probability that there exists at least a
queried block which is unknown to the adversary, i.e.,

M, ¢ My, is, PrM, ¢ Mgl < 1 — (A5=403000),
Let Ayins

be the event that the adversary wins in
the UNC-CDA game, then we have, Pr[Ayins] =
Pr[Apins|BadlPr[Bad]l + Pr[Ayins|—Bad]Pr[—=Bad].
When the event Bad occurs, the adversary wins in the game
with probability 1 since it knows all the blocks queried by
the challenge. When the event Bad does not occur, i.e.,
M, ¢ My, As the whole challenge-file is chosen from
the block-source, we then apply the min-entropy to bound
the probability that adversary wins when event Bad does
not occur. Specially, we have, Pr[A,;,s|~Bad]
We can therefore bound the advantage
of the adversary as shown above.

)q(ﬂ) +)q(i))

2/1(/0 (=

1
30 -
Pr[Awins]

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

2650

VI. EXTENSION FOR PROOF OF STORAGE
A. Proof of Storage

In cloud storage, the server may be untrusted in terms of
security and reliability since it may have the incentive to
reduce the cost by shifting users’ data to slower and cheaper
storage devices. It may also intend to hide data loss/damage
due to accidents or attacks in order to save the reputation.
Therefore, it is also important for the users to do regular
checking on the availability of their data. In order to allow
the end user and the data storage server to perform secure and
efficient data storage checking, a new cryptographic primitive
called Proof of Storage (PoS) has been proposed to achieve
the goal [19]-[21].

B. Extension of Our Scheme

In this section, we extend our BL-MLE scheme to allow
secure and efficient PoS. In an efficient PoS protocol, it is
required that the server does not need to access the entire
file in order to convince the user that the data is intact.
This is important especially for large files. In our BL-MLE
scheme, the server stores the file tag and block tags for the
purpose of deduplication, block key management, and Proof
of Ownership. An interesting question is: can we also use
these tags for PoS? In this section, we affirm the answer by
presenting a PoS system which can be considered as a variant
of the PoS system in [22].

1) Setup: The setup is the same as our original
BL-MLE scheme. Let P = (p,g,G,Gr,e, Hy,
H>, H3,s,u1, us, ..., ug) be the system parameters.

2) Authenticator: In a PoS system, an authenticator is
generated by the data owner for each data block, and uploaded
to the server. During the PoS protocol, the verifier (either the
data owner or a third-party auditor) employs a spot-checking
mechanism to ask the server to present some (aggregated) data
blocks and the corresponding (aggregated) authenticators for
verification. In our BL-MLE scheme, a user generates both
file tag and block tags for a file. Inspired by the PoS system
in [21], we found that our master key k45 in fact can serve
as a user secret key and the corresponding file tag Ty = gkmas
can serve as the public key. Therefore, the block tags can be
used as the authenticators for individual data blocks. In other
words, the file tag and the block tags in our BL-MLE scheme
can play an additional role for PoS.

3) Merkle-Hash-Tree: Similar to the construction in [22],
we use a Merkle Hash Tree (MHT) in our PoS system. The
user creates an MHT where the i-th leaf node is e(k;, Tp)
(or aux; in our BL-MLE scheme). The root of the MHT is
kept by the verifier (either the user or a third-party auditor),
and all the leave nodes are sent to the data server. Notice
that aux; has to be sent to the data server anyway for tag
consistency checking. However, the server now should keep
these leaf nodes in order to perform the PoS protocol.

C. Improved PoW Protocol With Stronger Security

Following the observation from [23], we improve our PoW
protocol for stronger security based on the PoS protocol
construction. Note that in order to allow PoS, the server should

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

maintain the leaves of the Merkle-Hash-Tree. Equipped with
these additional data, we show that our proof of ownership
protocol can be improved to obtain stronger security by
requiring the prover (user) to returning data blocks instead
of aggregated block tags. Notice that here we can allow the
adversary to have all the tags of a file.

In a proof of ownership protocol, upon receiving a challenge
query O = {(i,v)} (i € [l,n]l,v; € Zp), we require
the user/prover to return u; = Z(i,v,-)EQ v;C[i1[j], 1 <
Jj < s. After receiving the proof, the server computes
[Tii.09e0 €ki> To)” and T = []; .o T}, and then checks

? : j
e(T,g) = H(i,u,-)eQ e(ki, To)"" - e(Hj‘:1 M?" » To).
VII. PERFORMANCE ANALYSIS

We combine each of the three MLE schemes proposed
in [13], namely CE, HCE2, and RCE,? with the PoW protocol
in [4]. We refer to XXX+PoW (XXX € { CE, HCE2, RCE })
as the extended MLE scheme for DLSB-deduplication with
proof of storage. It is worth noting that in the extended
MLE schemes, we assume that the master key for block key
encryption is also derived from the file in a determined way,
e.g., using a hash function.

A. Metadata Size

Below we provide a concrete comparison on the Dedup-
Metadata size for different schemes. More precisely, let the
block size in the extended MLE schemes be b-bits, then the
block number is n; = [¢/b] for a duplicated file of size z-bits.
Suppose the hash function applied in the scheme is SHA-256
of which the output has 256 bits. We then know from the
constructions of CE, HCE2 and RCE that both the block tag
and the block key are of 256 bits. Therefore, the total dedup-
metadata size of the extended MLE schemes is 512 - (n] + 1)
bits. One should note that here we assume both the file tag and
the PoW tag are also of 256 bits. As for our BL-MLE scheme,
to achieve 128-bit security, we choose the (Elliptic Curve)
group G with prime order p such that |p| = 257 (note that
each sector in our scheme has |p| — 1 = 256 bits). Therefore,
the block size in our scheme is 256 - s bits (s is the number of
sectors per block) and the block number is ny = [£/(256-5)].
Since each block tag is an element of the elliptic curve
group G, we have that the total dedup-metadata size of our
BL-MLE scheme is 257 - (ny + 1) bits. To give a clear picture,
we suppose that the cloud server stores f distinct files and
each file is of 1 TB on average. To give a fair comparison,
in both the extended MLE scheme and our BL-MLE scheme,
we set the block to be of the same size (i.e., b = 256 - s).
In particular, when the block size is 4 KB, 8 KB, 16 KB, s is
set to be 128, 256 and 512 respectively.

In the first case, we assume duplicated (i.e., same) files are
stored in the cloud storage. In this case, the space cost of
both the extended MLE scheme and our BL-MLE scheme is
independent from the number of users who share the same file,
under the assumption that the master key is directly derived
from the file. However, our approach still performs better than
the extended MLE scheme in terms of the total metadata size.

3In [24], Xu et al. provided a randomized construction similar to RCE.

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: BL-MLE FOR SECURE LARGE FILE DEDUPLICATION

™

2

—Extended MLE
—-BL-MLE I

o
2 q4f
R
n 12r
©
& 10f
el
BUR:
(o}
=R R
I
3 4
[
o 2t
ol i
5 10 15 20 25 30
Block Size (KB)
Fig. 1. Impact of Block Size on Dedup-Metadata Size (f = 1).
350— ! ! ! ! .
—_ ——Extended MLE
2-5 300 ~-BL-MLE
8 250}
%)
i
< 200
8
3 150¢
=
L 100f
3
B sof
o
2 4 6 8 10 12 14 16 18 20
f: Number of Files Stored in the Cloud Server
(Each file is supposed to be 1 TB on average)
Fig. 2. Impact of f on Dedup-Metadata Size (Block size: 4 KB).

The reason is that the tag in our construction can serve multi-
purposes (i.e., block identifier, the encrypted block key, PoW
tag), whereas the extended MLE scheme requires different
tags for different purposes. As shown in Fig. 1, the dedup-
metadata size of the extended MLE schemes decreases when
the block size grows. Specifically, the dedup-metadata size of
the extended MLE schemes is about 16 GB when the block
size is 4 KB whereas the dedup-metadata of our scheme is
approx 8 GB under the same setting. Generally speaking, the
size of dedup-metadata in our scheme is much smaller than
that of the extended MLE scheme when the block size is the
same. Moreover, as illustrated in Fig. 2, the space saving from
our BL-MLE scheme would be more significant when the file
number increases. In particular, when f = 20, the dedup-
metadata size of the extended MLE schemes is 320 GB while
that of our BL-MLE scheme is 160 GB when the block size
is 4 KB.

For the second case, we consider similar but different files
uploaded by different users. In this case, for both the extended
MLE scheme and the proposed scheme, if two users upload
two similar files, the server has to store all the encrypted
block keys for both files since the corresponding master keys
are different. Nevertheless, our construction can still reduce
the metadata size, since for the extended MLE scheme, it
still requires the block identifiers (one for all the duplicated
data blocks) in addition to the encrypted block keys. The
comparison between the two approaches for this case is
illustrated in Fig. 3. The dedup-metadata size of extended
MLE schemes decreases with the growth of the similarity
while that of our BL-MLE stays the same regardless of the
similarity. The reason is that in our BL-MLE scheme, the
encrypted block key can also be used as the block identifier.
Particularly, when the similarity is 0%, which means that these
two files are completely different, the case is the same as
shown in Fig. 3 (when f = 2). When these two files have the
similarity of 50%, the dedup-metadata size of extended MLE

2651

IS
S

——Extended MLE
—~-BL-MLE 1

W W
S, &

N}
@

3

Dedup-Metadata Size (GB)
= S

&l

% 20 40 60 80 100
Similarity of of two distinct files Stored in the Cloud Server (%)

Fig. 3. Impact of Similarity on Dedup-Metadata Size (Block size: 4 KB).

TABLE I
COMPUTATION TIME OF TAG GENERATION AND BLOCK KEY RETRIEVAL

. Number of Sectors per Block
Algorithms —¢7 128 256 | 512
TagGen 0.412s | 0.823s | 1.644s | 3.288 s
B-KeyRet | 0422s | 0.829s | 1.648s | 3292's

is 28 GB. Note that the difference will be more significant
when the number of similar files is large.

B. Communication

For the bandwidth consumption of PoW, our BL-MLE
scheme features a constant bandwidth since we use aggregated
block tags as the response. However, the security of the basic
PoW protocol in our BL-MLE scheme is weaker than that
in [4] as we assume that the attacker does not know all the
block tags. For the extended BL-MLE scheme with PoS, the
communication cost of the PoW is O(s) but now we can
achieve a much stronger security. However, the cost is still
smaller than that of [4].

C. Computation

To evaluate the computation cost of our BL-MLE scheme,
we implemented the scheme using the Pairing Based Cryptog-
raphy (PBC) library* (version 0.5.14). Our experiments are
conducted using C on a Linux machine (2.6.35-22-generic
version) with an Intel(R) Core(TM) 2 Duo CPU of 3.33 GHZ
and 2.00-GB RAM. To achieve 128-bit level security, the
scheme is implemented using bilinear groups of prime order
p where |p| = 256. Since the encryption and decryption
algorithms of our BL-MLE scheme are symmetric, we only
analyze the computation cost related to tag generation and
block key retrieval. As illustrated in Table I, the computation
time of both tag generation and block key retrieval increases
with the number of sectors per block. This is due to the
fact that for each sector, we need to compute one exponen-
tiation operation. Moreover, the computation cost of block
key retrieval is slightly higher than that of tag generation
due to the additional group inversion operation. Specifically,
when s = 128 (block size is 4 KB), the computation time is
0.823 seconds for tag generation and 0.829 seconds for block
key retrieval.

We should note that the MLE schemes are in general more
efficient in computation than our BL-MLE scheme since we
use public-key techniques to construct randomized tags in

4http://crypto.stanford‘edu/pbc

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

2652

our BL-MLE scheme whereas the tag construction in MLE
schemes is deterministic. We should remark that the efficiency
loss seems indispensable in order to achieve significant space
savings using randomized tag construction. A similar result
has been observed in [14] which describes a fully randomized
MLE scheme and leaves the construction of efficient random-
ized MLE schemes as an open problem.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we formalized a new primitive called Block-
Level Message-Locked Encryption for DLSB-deduplication of
large files to achieve space-efficient storage in cloud. We put
forward the following directions for further research. First, we
ask whether a fully randomized BL-MLE can be constructed
for lock-dependent messages [14] to obtain stronger privacy.
Secondly, the proposed scheme is proven secure in the random
oracle model, we ask whether it is possible to design efficient
BL-MLE schemes that are proven secure in the standard
model. Thirdly, our scheme uses public-key techniques in tag
constructions and hence is less computation-efficient than the
MLE schemes, we ask if there are other more efficent ways to
construct BL-MLE schemes. Lastly, it is also an interesting
research problem to design BL-MLE schemes supporting
variable size data blocks.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their
insightful feedbacks that have greatly improved this work.

REFERENCES

[1] J. Gantz and D. Reinsel. (2012). The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East. [Online].
Available: http://www.emc.com/collateral/analyst-reports/idc-the-digital-
universe-in-2020.pdf

[2] The Pros and Cons of File-Level Vs. Block-Level Data Deduplication
Technology. [Online]. Available: http://searchdatabackup.techtarget.com/
tip/The-pros-and-cons-of-file-level-vs-block-level-data-deduplication-
technology, accessed Jan. 2, 2015.

[3] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security Privacy, vol. 8,
no. 6, pp. 4047, Nov./Dec. 2010.

[4] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. 18th ACM Conf. Comput.
Commun. Secur., 2011, pp. 491-500.

[5] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Proc. CRYPTO, 2007, pp. 535-552.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘“Public
key encryption with keyword search,” in Proc. EUROCRYPT, 2004,
pp. 506-522.

[71 D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy (S&P),
May 2000, pp. 44-55.

[8] G. Yang, C. H. Tan, Q. Huang, and D. S. Wong, “Probabilistic public
key encryption with equality test,” in Proc. CT-RSA, 2010, pp. 119-131.

[9] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,

“Reclaiming space from duplicate files in a serverless distributed file

system,” in Proc. 22nd ICDCS, 2002, pp. 617-624.

A. Adya et al., “FARSITE: Federated, available, and reliable storage for

an incompletely trusted environment,” in Proc. 5th Symp. OSDI, 2002,

. 1-14.

ﬁfrl). W. Storer, K. M. Greenan, D. D. E. Long, and E. L. Miller, “Secure

data deduplication,” in Proc. 4th ACM Int. Workshop Storage Secur.

Survivability (StorageSS), 2008, pp. 1-10.

Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The least-authority

filesystem,” in Proc. 4th ACM Int. Workshop Storage Secur.

Survivability (StorageSS), 2008, pp. 21-26.

M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked

encryption and secure deduplication,” in Proc. EUROCRYPT, 2013,

pp- 296-312.

[10]

[11]

(12]

[13]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

[14] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages,” in
Proc. CRYPTO, 2013, pp. 374-391.

R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. CRYPTO, 1987, pp. 369-378.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A block-cipher
mode of operation for efficient authenticated encryption,” in Proc. Sth
ACM Conf. Comput. Commun. Secur., 2001, pp. 196-205.

G. D. Crescenzo, R. J. Lipton, and S. Walfish, “Perfectly secure
password protocols in the bounded retrieval model,” in Proc. 3rd Conf.
Theory Cryptogr. (TCC), 2006, pp. 225-244.

S. Dziembowski, “Intrusion-resilience via the bounded-storage model,”
in Proc. TCC, 2006, pp. 207-224.

G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp. 598-609.
D. Cash, A. Kiip¢ii, and D. Wichs, “Dynamic proofs of retrievability
via oblivious RAM,” in Proc. EUROCRYPT, 2013, pp. 279-295.

H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. 14th ASIACRYPT, 2008, pp. 90-107.

Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud comput-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847-859,
May 2011.

J. Xu and J. Zhou, “Leakage resilient proofs of ownership in cloud
storage, revisited,” in Proc. ACNS, 2014, pp. 97-115.

J. Xu, E. Chang, and J. Zhou, “Leakage-resilient client-side dedupli-
cation of encrypted data in cloud storage,” Cryptol. ePrint Arch., Tech.
Rep. 2011/538, 2011. [Online]. Available: http://eprint.iacr.org/2011/538

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

Rongmao Chen received the B.S. and M.S. degrees
in computer science from the National University
of Defense Technology, China, in 2011 and 2013,
respectively. He is currently pursuing the Ph.D.
degree with the School of Computer Science and
Software Engineering, University of Wollongong,
Australia. His major research interests include
cryptography, data security and privacy in cloud
computing, and network security.

Yi Mu (SM’03) received the Ph.D. degree from
Australian National University, in 1994. He is
currently a Professor, the Head of the School of
Computer Science and Software Engineering, and
the Codirector of the Centre for Computer and
Information Security Research with the University of
Wollongong, Australia. His current research interests
include information security and cryptography. He is
the Editor-in-Chief of the International Journal of
Applied Cryptography, and serves as an Associate
Editor for ten other international journals. He is a
member of the International Association for Cryptologic Research.

Guomin Yang received the Ph.D. degree in
computer science from the City University of
Hong Kong, in 2009. He was a Research Scientist
with Temasek Laboratories, National University of
Singapore, from 2009 to 2012. He is currently a
Senior Lecturer and a DECRA Fellow with the
School of Computer Science and Software Engi-
neering, University of Wollongong. His research
mainly focuses on applied cryptography and network
security.

Fuchun Guo received the B.S. and M.S. degrees
from Fujian Normal University, China, in 2005
and 2008, respectively, and the Ph.D. degree from
the University of Wollongong, Wollongong, NSW,
Australia, in 2013.

He is currently an Associate Research Fellow
with the School of Computer Science and Software
Engineering, University of Wollongong. His primary
research interest is the public-key cryptography, and
in particular, protocols, encryption and signature
schemes, and security proof.

Authorized licensed use limited to: University of Wollongong. Downloaded on October 18,2022 at 09:26:32 UTC from IEEE Xplore. Restrictions apply.

	BL-MLE: Block-level message-locked encryption for secure large file deduplication
	Citation

	BL-MLE: Block-Level Message-Locked Encryption for Secure Large File Deduplication

