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Abstract

This paper studies the integration of the crowd workforce into a generic last-mile delivery setting
in which a set of known delivery requests should be fulfilled at a minimum cost. In this setting,
the crowd drivers are able to choose to perform a parcel delivery among the available and displayed
requests. We specifically investigate the question: what tasks should be displayed to an individual
driver, so as to minimize the overall delivery expenses? In contrast to past approaches, where
drivers are either (a) given the choice of a single task chosen so as to optimize the platform’s
profit, or (b) allowed full autonomy in choosing from the entire set of available tasks. We propose
a dynamic, customized display model, where the platform intelligently limits each driver’s choice
to only a subset of the available tasks. We formulate this problem as a finite-horizon Sequential
Decision Problem, which captures (a) the individual driver’s utility-driven task choice preferences,
(b) the platform’s total task fulfilment cost, consisting of both the payouts to the crowd-drivers
as well as additional payouts to deliver the residual tasks. We devise a stochastic look-ahead
strategy that tackles the curse dimensionality issues arising in action and state spaces and a non-
linear (problem specifically concave) boundary condition. We demonstrate how this customized
display model effectively balances the twin objectives of platform efficiency and driver autonomy.
In particular, using computational experiments of representative situations, we exhibit that the
dynamic and customize display strategy significantly reduces the platform’s total task fulfilment
cost.
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1. Introduction

The explosive growth of e-commerce (Young, 2019) has resulted in substantial demands for
field operation workforce. While technologies such as drones, droids, or autonomous vehicles may
well underpin the delivery infrastructure in the future, many e-tailers are presently adopting a
“crowd workforce” model. In crowdshipping, the last-mile delivery tasks are delegated, with the
help of online platforms, to a time-varying pool of willing individuals. Sampaio et al. (2019) show
that crowdshipping has the potential to reduce the overall delivery cost by lowering the barriers
for individual “workers” to voluntarily utilize their own resources (time and vehicles) to deliver
such packages. Such a crowdsourced workforce also provides a more elastic labor supply that can
efficiently respond to demand variations (e.g., during holiday season peaks) (Einav et al., 2016). As
many crowd drivers choose to perform delivery tasks that align well with their regular commuting
journeys, they may be willing to perform delivery tasks for rates that are lower than the dedicated
workers.

The role of the online platform is critical to the efficiency and viability of this crowd work-
force model, as its task assignment mechanisms directly affect the participation rate of the crowd
workforce (Chen et al., 2014; Kandappu et al., 2016). Very broadly speaking, the task assignment
mechanism can either be centralized (where the platform assigns tasks to available individual work-
ers) or decentralized (where individual workers select available tasks independently from a pool).
The two strategies illustrate a broad tension between efficiency and autonomy.

In practice, the choice of the task assignment mechanism depends heavily on the nature of the
tasks. For domains such as on-demand transportation or meal delivery, where tasks have short
expiration times, most online platforms (e.g., Uber, GrubHub) centralize task assignment, pairing
drivers and delivery requests quickly without elaborate driver consultation. In such scenarios,
because assignments are driven by the worker’s current (instantaneous) location, the chance of
worker rejection of centralized assignments is lower. The situation is, however, reasonably distinct
for overnight logistics tasks (a dominant fraction of the e-commerce market, Joerss et al. 2016),
where delivery tasks are known in advance, and the task-worker allocation usually happens over
a longer time window (e.g., tasks are posted by midnight, and workers have until 8 am to select
tasks). In such a scenario, the decentralized assignment mechanism could be more appealing as it
allows workers to choose preferred tasks based on their anticipated itinerary.

This paper focuses on an overnight last-mile delivery platform and explores how to design the
decentralized task assignment mechanism so that it possesses centralized-mechanism-like perfor-
mance. Our key idea is to have a mechanism capable of presenting a carefully curated subset of
available tasks (e.g., displayed on a worker’s mobile App) to crowd drivers, with the driver retain-
ing the autonomy of accepting a task from this subset (or optionally, declining any of the displayed

tasks). We hope to combine the best features of centralized and decentralized mechanisms.



We refer to this model of ‘centralized customization, autonomous selection’ as choice-based
crowdshipping. The selection of tasks displayed in such choice-based crowdshipping involves two
competing objectives. First, the platform should maximize the likelihood that a driver selects a
task—this likelihood is maximized if the platform displays all tasks. Second, the platform should
perform display customization to minimize its operation cost (e.g., to fully serve as many regions
as possible with crowd workers, so that most remaining tasks not selected are clustered around the
same neighborhood and can thus be completed by fewer dedicated platform employees than without
crowdshipping). The central theme of this paper is thus to develop and quantify the significance of
such display policies, which strategically incorporate both the choice behaviors of individual drivers
and the platform’s cost-minimizing objective.

To analyze choice-based crowdshipping in last-mile logistics, we introduce the Dynamic Task
Display Problem (DTDP). In DTDP, (a) there is a finite duration (Selection Period) over which
individual drivers arrive randomly and request the platform/App to display tasks from which to
make a selection, and (b) the platform dynamically determines the subset of displayed tasks for

each individually arriving driver. We make the following key contributions:

e We develop a model for selective customization of tasks displayed to a specific driver that takes
into account (i) the platform’s objectives in minimizing the total cost of delivery, including
the additional fleet & driver costs associated with fulfilling the tasks not selected by crowd
drivers; (ii) an individual driver’s likelihood to choose a specific task from a given displayed
list, presumed as and computed via a multinomial logistic choice model; and (iii) the statistical

arrival process of workers, with different spatial /route preferences, within the selection period.

e Given that an exact solution to the DTDP is computationally intractable for large instances,
we propose a stochastic look-ahead strategy constructed on two main pillars: (i) Value Func-
tion Approximation and (ii) Efficient Display Sets. With this approximation strategy, we
not only tackle the curse of dimensionality issue but also propose an effective way to solve

sequential decision problems with non-linear boundary conditions.

e We also numerically study the effectiveness of the proposed display strategies under varying
operating conditions, particularly the cases where optimal display policy differs from either
the full display or single display policies. We demonstrate that the customized display strategy
decreases the total fulfillment cost of the platform by shortlisting tasks more ideal to drivers
and the platform, even though the number of tasks selected by crowd drivers is lower than

the decentralized full display policy.

In summary, our core contribution is to introduce the concept of customized task display as

a mechanism to induce desirable (cost-reducing) crowd driver behaviors in crowdsourcing-based



overnight last-mile logistics operations. The remainder of this paper is organized as follows. In
Section 2, we summarize the relevant literature for the choice-based crowdshipping problem. Section
3 begins by describing the conceptual business model for overnight crowdshipping with a motivating
example. In the sequel, the choice-based crowdshipping problem is formulated as a Sequential
Decision Problem, and the choice behavior of drivers is modeled as an attraction model. In Section
4, we present the solution method for the optimal display policy. Sections 5 and 6 consist of
computational experiments to quantify the effectiveness of our proposed curated display policy.

Section 7 closes the paper with concluding remarks and some directions for future research.

2. Related Literature

In a broad classification, dynamic task display problem (DTDP) is associated with two research
streams: crowd workforce in transportation and logistics and assortment and display optimization
models. The former stream aims to take advantage of the under-utilized resources in passenger
and/or parcel transportation (Wang and Yang, 2019; Le et al., 2019; Alnaggar et al., 2019; Savels-
bergh and Ulmer, 2022). Assortment, or display optimization models, however, leverage human
choice behaviors when (mainly) a customer faces multiple options at a moment of decision (Kok
et al., 2008). In this review, we present the features of the DTDP that are linked to these two

research areas.

2.1. Crowd workforce in transportation and logistics

The DTDP is essentially a crowdshipping problem as its primary purpose is to efficiently inte-
grate willing crowd drivers to serve a set of transportation requests. Initial studies in the crowd-
shipping literature have explored the benefits of accommodating crowd drivers into existing delivery
fleets, assuming that these drivers accept any task as long as it is feasible in their stated prefer-
ences. Archetti et al. (2016) and Arslan et al. (2019) contemplate platforms giving centralized
decisions to routing, assignment, and scheduling problems in a setting in which drivers’ journey and
time flexibility are informed in advance or dynamically, respectively. In a similar vein, Kafle et al.
(2017) considers a centralized job assignment model for crowdshipping where delivery of parcels
is done via the synchronization of trucks and crowd drivers in a relay-like mechanism. Dayarian
and Savelsbergh (2020) generalizes this stream of research by integrating future information into
the planning. A group of related studies, Rai et al. (2018), Paloheimo et al. (2016), Simoni et al.
(2019), and Mancini and Gansterer (2022) investigate the impact of crowdshipping on sustainability
and environmental considerations under similar centrally modeled business model presumptions.

After a rapid success of crowdsourced based transportation and logistics services, a stream of
research explores tactical strategies for self-scheduled drivers (Yildiz and Savelsbergh, 2019; Ulmer
and Savelsbergh, 2020; Gurvich et al., 2019; Dai and Liu, 2020). In contrast to crowd drivers,



self-scheduled drivers form a semi-independent workforce, where they work according to their own
schedules by performing tasks without choice autonomy. Therefore, these models primarily exam-
ine decisions like setting compensation schemes to coordinate the tension between transportation
demand and driver supply.

The efficiency of crowd-based transportation platforms depends on keeping the correct number of
drivers available. Therefore, understanding the determinants of crowd driver behaviors that attract
or lay off them under different circumstances is crucial (Taylor, 2018). Empirical and experimental
studies have shown that the drivers’ willingness to work depends primarily on the detour distance,
the amount of compensation paid for task completion, and demographic factors such as age (Miller
et al., 2017; Le and Ukkusuri, 2018). In particular to the choice autonomy, past works (e.g., Chen
et al. (2014) and Kandappu et al. (2016)) have shown that centralized task assignment allows the
platform to explicitly maximize the chosen performance metrics (e.g., overall task completion rate or
worker efficiency). However, as centralized planning is one-sided, some drivers may find the centrally
allocated assignment undesirable and choose not to accept them. In the long run, this could lead to
significant driver attrition. On the other hand, the decentralized paradigm allows individuals to have
complete control over their choices and thus usually fosters higher worker satisfaction. Yet studies
suggest that in such a paradigm, a small percentage of committed drivers (the super agents) could
dominate the task pool, choosing the most desirable tasks when they become available immediately,
thus leading to the marginalization of less active drivers (Musthag and Ganesan, 2013). This again
would lead to the deterioration of the pool of crowd workers and less efficient workforce utilization.

Centralized task assignment mechanisms are widely used for real-time operations with a few
exceptions. As a result, there is limited attention to customized task display /assignment mechanisms
in the operations research literature. However, we are aware of the papers by Mofidi and Pazour
(2019), Horner et al. (2021), and Ausseil et al. (2022) studying the concept that platforms offer a
menu of task options to drivers. Mofidi and Pazour (2019) explore a bi-level optimization problem
in the case a driver chooses a task from the menu. However, the driver’s task selection behavior
is considered to be deterministic. That is, the platform is assumed to know drivers’ preference
rankings among the revealed tasks and considers that the driver will always choose the top one. In
the study by Horner et al. (2021), authors explicitly consider the driver’s task choice autonomy by
introducing a new mechanism. Following Stackelberg game principles, the platform first displays a
curated menu for each driver in a batch. Then each driver responds to the menu by revealing which
task she would like to perform (with the possibility of rejecting all). At the last stage, the platform
matches drivers to their preferred tasks with the objective of maximizing its own utility. Finally,
Ausseil et al. (2022) enrich the menu of task options by analyzing the potential conflicts that may
arise due to the same task being offered to different drivers.

In contrast to these past studies, we are the first ones to study crowdshipping in the overnight



delivery setting. The overnight delivery problem differs substantially from the real-time task as-
signment problems, especially in the way the unassigned/not selected orders/tasks are handled at
the end of the selection period. Also, we explicitly model the stochastic driver choice model and

incorporate the discrete choice model in our formulation with the possibility of rejecting the delivery.

2.2. Assortment and display optimization

The DTDP is closely related to assortment /display optimization problems as the platform’s only
tool to influence drivers’ task selections is to decide which tasks to display. When the platform offers
options, drivers’ task-selecting behavior should be incorporated into the decision process. In our
problem formulation, we use a discrete choice model to reflect drivers’ decisions as a function of a
set of displayed tasks and their relative preferences to each other. For the assortment optimization
problem where customers face multiple products while browsing for their needs, such as flight and
accommodation searches, Multinomial Logit models (MNL) are dominantly used (e.g., see Talluri
and Van Ryzin (2004) and Gallego et al. (2018)). In the most general form, these problems aim to
determine what product group to offer to each customer segment to maximize the overall expected
revenue of the seller. In a dynamic setting, which is the most similar setting to our problem, these
product groups are determined considering finite inventory and stochastic customer arrivals (see
Bernstein et al. 2015). On the other hand, this study explores and generalizes the analysis to the
case where the leftover (unsold) inventory has a nonlinear valuation depending on the volume.

Display problems have also received attention lately in the last-mile logistic domain with the
attended home delivery services. In these services, customers choose desired time windows to
receive their parcels among the displayed time windows. Yang et al. (2016) introduce the choice-
based demand management models by using time-window displays and fees as tools to minimize the
operational cost of home delivery. Along with the popularity of time-slot management, a similar
approach is implemented in different areas such as repair jobs, patient home visits, or steering
consumers toward green choices (Ulmer and Thomas, 2019; Demirbilek et al., 2019; Agatz et al.,
2021).

In conclusion, to our knowledge, this paper is one of the first to consider explicit stochastic task
selection in the crowdshipping domain. Even though some features of the problem are individually
studied in the different literature streams, this study distinguishes itself from them by formulating
drivers’ task selection as an attraction model. This modeling allows us to explore the various
no-choice behaviors and their impact on the platform’s delivery expenses. In addition and more
importantly, with the proposed model, we quantify the benefits of dynamic customization of display

tasks over the fully centralized and decentralized job allocation mechanisms.



3. The Dynamic Task Display Problem

In this section, we describe the Dynamic Task Display Problem (DTDP). We first provide
an overview on exactly how our proposed paradigm of choice-based crowdshipping would work in
practice. After the problem definition, we provide a Markov decision process (MDP) formulation for
the DTDP. The objective of the DTDP is to minimize the platform’s total cost of order fulfillment,
which is the sum of the total reward paid to crowd drivers and the expenses for engaging contract

drivers (who are hired to deliver packages not selected by crowd drivers).

3.1. Choice-based crowdshipping system architecture

Our research problem is motivated by a real-world overnight package delivery platform that
utilizes both crowdsourced and contract drivers. Consider a platform engaging crowd drivers by
asking them to browse and select tasks on a smartphone App daily. Such browsing and selection
are enabled during a Selection Period, typically spanning several hours in the evening, before the
commitment deadline for the deliveries to be performed the next day. During this selection period,
individual crowd drivers arrive at the platform randomly. When each driver arrives, the platform
decides which unassigned tasks should be displayed. Manipulating the set of displayed tasks allows

the platform to affect the collective selection behavior of crowd drivers.

Day n-1 Day n
A

r N S —

Cut-off time Cut-off time for contract resources will

for tasks the selection period engage the remaining task

| |
Accumulating Selection/Browsing Period Finalize delivery plans,

tasks carry out deliveries

Figure 1: Operational workflow for an overnight delivery platform that utilizes both crowd and contract drivers.

Figure 1 visualizes the operational workflow of this platform. All tasks to be delivered in day
n should already arrive in day n — 1 before the first cut-off time, after which the platform decides
which tasks should be displayed to an individual crowd driver whenever such a driver interacts with
the platform. The platform’s decision should depend on the remaining tasks and crowd drivers’
self-declared preferences. After the termination of the selection period, the platform will separately
determine how many (hours of) contract drivers to hire to deliver the remaining tasks. From the
platform’s perspective, the objective is to minimize the total cost required to engage both crowd and
the contract drivers.

Since it is expensive to engage contract drivers, the platform would naturally aim to reduce the
needs for such drivers. Two major factors affect the number of required contract drivers: 1) the

number of remaining tasks and 2) the spatial distribution of remaining tasks.



Therefore, if possible, the platform should aim to not only reduce the number of residual, unse-
lected tasks, but also avoid having these tasks scattered across a large number of zones. Since crowd
drivers perform their selections in an uncoordinated fashion, the distribution of these residual tasks
is thus outside the platform’s direct control and dependent on the actions of the crowd drivers. How-
ever, the platform can indirectly control a crowd driver’s task selection by curating a personalized
list of tasks displayed to an individual driver to suit her self-reported spatial preferences.

An illustrative example in Figure 2 demonstrates how a customized task display can help to
reduce the platform’s fulfillment cost. Let the incoming driver be the last driver to come in before
the cut-off time. Assume that this driver has a capacity of 1 and prefers Zone 1 over Zone 2. Assume
that there are three remaining tasks in Zone 1 and one remaining task in Zone 2. We can choose
one of the three display options for this driver: Dp) show tasks in both zones, Ds) shows tasks in
Zone 1, and D3) show the task in Zone 2.

Let P;(D;) be the probability that the driver would choose a task from Zone 4, given a display
set D;. If the driver decides not to serve, set i = 0. For example, for Dy, the probability that the
driver will choose one task from Zones 1 and 2 are 0.6 and 0.3, respectively, while the probability

of choosing nothing is 0.1.

Task Commitment Probabilities

Zone 1 Zone 2
Disp Set 1: Disp Set 2 : Di: Pi(D1) = 0.6, Po(D1) =0.3, Po(D1) =01

Disp Set 3: § Do: Py(D3) = 0.85, Py(D2) =0.15
Ds:{2} :

Driver

Destination Ds: Py(D3) = 0.75, Py(D3) =0.25

Figure 2: An example of personalized display set.

The platform aims to minimize the total cost, which includes the cost of engaging contract
drivers. For this example, we assume that the fixed cost of engaging a contract driver is $100 for
any zone with residual, unselected tasks, and the variable cost for serving each additional task in
the same zone is $10/task. The expected costs of contract workers for the three display options are

computed below:

o Display Set 1: If the driver picks a task from Zone 1, there are 2 and 1 remaining tasks in
Zones 1 and 2 respectively, resulting in a cost of (1004-2-10)+(1004-10) = 230. Similarly, if the
driver picks a task from Zone 2, the resulting cost will be 130. Finally, if the driver chooses not
to serve, the resulting cost will be 240. The expected cost is thus: 0.6-2304-0.3-13040.1-240 =



201.
e Display Set 2: The expected cost is: 0.85 - 230 4+ 0.15 - 240 = 231.5.
e Display Set 3: The expected cost is: 0.7 - 130 + 0.3 - 240 = 157.5.

In the above example, the use of display set Dj3 (i.e., showing the crowd driver tasks only from
Zone 2) results in the lowest expected cost. This is even though the driver strongly prefers Zone 1
and thus has a significantly higher probability of not choosing any task in display set D3. This is
caused by the high fixed cost of engaging a contract driver. Consequently, whenever possible, the
platform would desire to adopt a display set that helps to reduce the number of zones with residual,
unselected tasks.

Of course, this is an overly simplified example designed only to demonstrate the benefits of
display set customization. The complete model should capture the complexity of having more zones
and heterogeneous driver preferences. Moreover, we also have to consider the sequential nature
of the decision-making process; i.e., drivers make their selection asynchronously and sequentially,
and thus earlier display decisions impact the pool of tasks available for selection by future drivers.
Lastly, our model should also explicitly incorporate how drivers choose tasks, given their preferences
and the display set.

The subsidiary benefit of selective display policies is to quantify their impact under varying
boundary conditions , i.e., the cost regime for the contract backup drivers. The motivating example
contemplates a specific dedicated cost function as it considers the spatial costs of all unassigned
tasks and the total number. To examine different cost models, we draft a generic cost function in

the following model capable of addressing the spatial feature of the unassigned tasks.

3.2. DTDP as a Markov decision process

The challenge of DTDP is the uncertain nature of drivers’ choices, which can be affected by the
set of tasks displayed to them. This implies that what the platform displayed to the earlier drivers
might affect the tasks left in the later stage. However, these impacts of earlier display sets can be
summarized by X;, the set of remaining tasks at period ¢. This means that the planning problem
can be made Markovian if we include X; as part of the state variables.

Based on this insight, we formulate the DTDP as a Markov decision process (MDP) with the
following crucial MDP components. For easier reference, we summarize the notations used in our

formulation in Table 1.

3.2.1. Selection horizon and decision epochs
Crowd drivers arrive within the selection horizon of [0, T]. The selection horizon is discretized in

equally-sized time intervals denoted by set 7 = {0,1,---,T}, in which the likelihood of more than



Table 1: Notations for DTDP.

Notation Description

T={1,2,...,T} Periods/Slots

Z Set of zones/clusters

tt(i, ) Movement cost between zone z; and z9

X; State at time ¢

Atk Arrival rate of driver designated to zone k at time t
Ty Reward for serving a task at zone z

dy Decision vector for drivers designated to k at period ¢
z Index shows delivery task location in zone z

k Index shows a driver’s destination to zone k

T Decision policy

C.(x) Cost of having x tasks remaining at the end of the browsing period in zone z
« Normalizing parameter for the choice model

ef. Driver’s effort of making delivery in zone z

one driver arriving in a single period is negligible. Each driver-arriving epoch t € T is a decision

epoch.

3.2.2. States
The state of the system at epoch t is represented by a vector of X; = [x1,--- ,xy,], in which
x;, © € Z, represents the number of unselected tasks in zone i. Set Z contains all geographical

zones that are mutually exclusive.

3.2.8. Actions and costs

Assume that at epoch t a driver who prefers zone k € Z arrives (we call them type-k drivers).
From the set of zones that still have remaining tasks, the decision to be made by the platform is
which zones to display to this driver (we assume that from each chosen zone, a task from that zone
will be chosen at random). We denote this decision as a vector D; = [dy,--- ,d,]|, where d; is a
binary variable indicating whether zone ¢ is shown to the driver. Upon seeing this display set, we
assume that the driver will choose a task from one of the displayed zones; more specifically, let p;
be the probability of choosing from zone i, and r; > 0 be the reward associated with this choice.
The driver may also choose to select no task and receive no reward, which is with probability pg
(the probabilistic choice model is described later in Section 3.2.4).

Let R;(D) be the expected reward paid to a driver with a chosen display vector D. At the end
of the selection horizon, or epoch 0 € T, the set of unselected tasks, Xg, will incur additional cost
to the platform according to the function C': Xg — R4. In other words, the boundary condition of
our MDP is Vp(Xo) = C(Xp). We assume that C(X,) has the following properties:

10



o O(Xo) =D .cpc(x0).
o c(ry)=0,if z,, =0.
e c(x,0) is increasing and concave.

With the above definition, we implicitly assume that each zone with remaining unselected tasks

needs to be served by one independent contract driver.

3.2.4. Transitions

At each epoch t € T, let Ay be the arrival rate for the type-k drivers. The state at the end of the
period changes with the displayed zones to the driver and, consequently driver’s choice. We use a
classical approach in handling how drivers choose among multiple alternatives, given a well-defined
utility function taking the distance of the driver’s destination and a task’s location into account.

Formally speaking, for a given display set d;; that is shown to a type-k driver, we denote the
probabilities of choosing nothing and a task from zone z as Py (0|dy) and Py(z|dy) respectively. We
assume that a driver’s zone choice probability depends only on the set of zones displayed and not
on the number of tasks shown for individual zones (the driver should be indifferent to tasks within
the same zone as all tasks in the same zone are equivalent and the driver is limited to selecting only
one task).

A classical approach in handling how individuals choose among multiple alternatives given a well-
defined utility function is the Multinomial Logistic (MNL) model (see Gallego et al. (2018)). With
the MNL model, a driver would choose a zone probabilistically according to a monotonic function
depending on their utility function. Let ug(z) be the utility of choosing zone z for the type-k drivers.
According to the framework by Ben-Akiva and Bierlaire (1999), the choice probability is defined as:

Pi(zdue) S
k\R|atk) = 5
eour(0) 1 Zledtk eau(l)
vk (0)
Pp.(0dy,) = (1)

e 43, eour()’

The implication of defining the choice probability using (1) is that the likelihood of not serving
increases when the display set size decreases. This is consistent with our modeling assumption and
the empirical studies mentioned in the introduction.

The utility function ug(z) can be calculated as:
uk('z) :Tz_efz_tt(zvk)v (2>

where r, and ef, refer to the reward and effort of serving a task in z (independent of type k), and

11



tt(z, k) is the movement cost for a type-k driver to move from zone z (where the task is) to her/his
preferred zone k.

In practice, it is not realistic to know or estimate the true utility of a driver. The probabilistic
nature of the MNL model allows us to make up for the inaccuracy in the estimation due to tangible
and intangible cost components not included in (2). By setting the value of the parameter a, we can
further control how drivers would choose their actions. When o — 0, drivers would just randomly
choose actions (utility values play no role in driver’s choice). When a@ — oo, drivers would choose

the action with highest utility value (this setting implies that (2) captures the true utility).

3.2.5. Objective function
In the DTDP, we seek a Markovian display policy II that minimizes the total expect delivery

cost for the platform:

. Il
mﬁnE[ZRt (D) + C(Xo)].
teT
3.2.6. Optimality equation
Let the value function V;(X};) denote the expected cost at period ¢ to terminal period 0, when

X, is the set of unassigned delivery requests. The recursive value function is defined as:

Vi(X,) = ZAk! min { 3 Pk<z|dtk><rz+w_1<xt—ez)) +Pk<0|dtk>v;_1(xt>}], 3)

keK ik Dy zE€dy,

where e, is a unit vector where 2t element equals 1, and Dy is the set containing all zones that
have positive task counts in time ¢. The value function V;(X;) has two sources of uncertainty: (i)
the choice made by the current driver k, and (ii) the type of the next arriving driver. For (i), it is
captured by Py(z|d;k) and Py (0|d;k) above, which indicate whether a task from zone z is chosen,
or the driver chooses not to perform any task. For (ii), it is handled by accounting for A\; over all

possible types Z.

4. Solution Approach

In this section, we provide details of the approximation approach for finding solution to our
formulated DTDP instances.

4.1. Motivation and overview of the stochastic look-ahead approach

Solving the DTDP, formulated as a finite-horizon MDP in Section 3, via backward fashion is not
possible when the number of zones/clusters exceeds trivially small values (less than 9 in practice).

The backward induction approach is unfortunately plagued by the exponential explosion of state
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and action space in the number of zones/clusters. In addition, the DTDP involves two additional
novel challenges: (i) uncertainty in drivers’ type, arrival times, and their task selection behavior
during the task selection phase, and (ii) the non-linear cost structure at the terminal period when
computing the fulfillment cost of unselected tasks.

To address these challenges, we propose a tractable and forward-looking stochastic look-ahead
method that balances the computational efficiency with respect to the problem size and the solution
quality. The look-ahead method has two essential pillars: (i) Value Function Approzimation (VFA)
to overcome the state space explosion and (ii) Efficient Display Sets to reduce the action space. The

role of these two pillars can be seen with the reorganization of the optimality equation as follows:

DF(Xi, k) = argmin (R(X;, d) + E{V(X{) | X, K} ), (4)
deDy

where X{ is the post-decision state right after the driver k is given the display set d but before
the next driver arrives. The VFA eliminates the need to pre-compute the values of each state. In
other words, only states that are encountered throughout the execution will be approximated (this
is similar to the reaching algorithm in dynamic programming). The impact of the Efficient Display
Sets is the elimination of some display subsets intelligently without compromising the solution
quality.

The overall architecture of our solution approach is illustrated in Figure 3. At each driver
arrival epoch ¢, our method executes two steps. In the first step, the associated value function for
all possible states that can be reached from the current state X; is approximated. At the second
step, the efficient display sets are formed with respect to the approximated value functions. We

provide details of these two steps in the remainder of this section.

Efficient R
Display Set V;t—l(Xt—l) §4.2

t t—1
Current Possible
State States

Xt Xi—1

Ne
oe

Figure 3: Solution approximation architecture: VFA

4.2. Value function approximation (VFA)

In this section, we describe how to approximate the value function for a given state, which
involves estimating the total fulfillment cost for a given number of tasks and the number of periods

to go until the end of the selection period. The approximation is broken down into two phases:
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First, we define a set of simple yet practical display rules. Afterward, we use the probabilistic
information of future driver arrivals and the structure of the chosen display policy to approximate
the expected remaining tasks at the terminal decision epoch.

We start by introducing a generic state- and time-independent display policy: a single-task
display following predetermined zone sequence (SDPS). In this policy, each arriving driver is shown
a single task from the highest-ranked zone that is still with unselected tasks. When this zone is
fully served, the next zone is chosen following a predetermined sequence, which can be as simple as
using zone IDs (i.e., Zones 1, 2, ..., |Z]).

The idea of the VFA is to employ the described the SDPS policy from period ¢—1 until the end of
the selection period; i.e., period 0, and estimate the number of remaining tasks that has to be fulfilled
by the dedicated workforce under the assumption that the sequence of zones is predetermined. As
the boundary condition of the DTDP at the end of the selection period is not linear in the total
remaining tasks, it is crucial to estimate how many tasks will remain unselected for each zone to
achieve a good approximation. In the following, we explain how to compute the expected boundary

condition. For the ease of the exposition, we first introduce a few properties.

Proposition 1. When a display set consists of a single zone z € Z in time t, we define the
probability that a task is chosen as: P, = ZkeZ AiutDik», where pr, denotes the probability that a

type-k driver chooses a task in zone z when only zone z is displayed.

Proposition 1 shows that for each time epoch in the period of 7 € {t,---,0}, the probability

that a zone-z task will be chosen follows the Bernoulli distribution with parameter P,;.

Proposition 2. Consider a SDPS policy where the ranking order of the zones to be displayed is
predetermined. Let'Y denote the total number of tasks and [y] denote the index of the zone that is
displayed after y — 1 tasks have been committed, and let P(y,t) denote the probability of having a
total of y tasks chosen at the end of period t. Then, for each 0 <y < t, P(y,t) can be calculated

using the following recursive equation:
P(y,t) = P(y — 1,t = 1) Py + P(y,t — 1)(1 — Pyp) (5)

With the following boundary conditions:

t
PO,t)=](1 - Py,) Vt=1.T (6)
n=1
Py, t) =0 Yy >t (7)
P(1,1) = Py (8)
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Then, let X[ be the vector that denotes the number of tasks in each zone after y tasks have
been committed. Once the above values of P(y,t) are calculated using Proposition 2, the expected
total cost of operating under the SDPS policy with a predetermined display order for 1" periods

given an initial inventory vector X and number of total tasks Y can be obtained as follows:

min(Y,T) ny
VEPPS(Xp)= Y P(nT) (C(X[mzrz- (XT<z>—X["]<z>)> (9)
n=1 z=1

4.3. Efficient display sets (EDS)

We further employ the efficient display sets following the Theorem 1 in Talluri and Van Ryzin
(2004) and Lemma 1 in Bernstein et al. (2015) as the following proposition to reduce the action
space significantly. More precisely, the efficient display sets decrease the size of the action space
from 2"Z to ny.

Efficient display sets are formed systemically by calculating the marginal contribution of dis-
playing a single zone. To form efficient sets, we first define the expected cost generated by the zt"
task in zone z at period ¢, i.e., z € Dy, define A? ;(X;) = V;_1(X;) — Vie1(X; — e,). If we rewrite

the optimality equation in (3) as:

Vi(X;) = min { ZAZPk(z|d) (rz — fl(Xt)> } + Vim1(Xy). (10)

If a task from z is displayed and selected in period %, the expected total cost changes by the reward
given to the driver minus marginal penalty reduction in zone z. Let 7 (X, k) = r, — AF (X4, k)
denote the effective marginal cost of task in zone z in period t when driver k appears and z € D;.
Consider an ordering of zones so that 7 (X, k) < r,"Z (X, k) and let a set consisting of the zones
with marginal effective penalty given by Aj(X) = {z1,---, 21}

It is important to note that displaying solely efficient display sets introduced in the study by
Talluri and Van Ryzin (2004) is a dominant action when the boundary condition is in the form
of a linear function. Nevertheless, the DTDP generalizes the boundary conditions; therefore, the

dominance of the efficient display sets does not hold.

5. Experimental Setup and Solution Approach Validation

In this section, we describe the settings employed in our computational study. We first introduce
benchmark display policies and key performance indicators. We then validate our SDPS approach
using a set of small-enough instances where exact solutions are attainable. Lastly, we quantify the
impact of a dynamic and customized display policy through a real-life inspired scenario that is based

on open data in Singapore (utilizing both the map topology and the population distribution).
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5.1. Benchmark policies

We present two benchmark policies to compare the performance of the customized display (CD)

policy in Section 4.

e Full display (FD). In this policy, the platform display tasks from all zones that still have
tasks remaining. This policy can be considered as a fully decentralized display mechanism.
Given the remaining time epochs and the number of tasks in each zone, the value function of

this policy is approximated through simulations.

e Single display (SD). Given the earlier defined cost structure, an intuitive policy is to focus
on finishing tasks from a zone before moving on to other zones. In practice, the SD policy
selects the zone with fewest remaining tasks, breaking ties by zone index (choosing lower index
first). The SD policy can thus be thought of as a special case of the SDPS policy. Given the
remaining time epochs and the number of tasks in each zone, the value function of the SD

policy is calculated analytically using Equations (6), (7), (8), and (9).

5.2. Key performance indicators

In this section, we define four key performance indicators (KPIs) used in evaluating competing

policies.

e Fulfillment cost (FC). This is the objective function value we defined for our MDP formulation.
It summarizes the costs of paying all crowd drivers and the contract drivers at the end of the

selection period.
e Matched requests (MR). The ratio of requests served by the crowd drivers.

e Reward ratio (RR). The proportion of the total reward paid to the crowd drivers compared
to the total fulfillment cost.

e Drivers’ utility (DU). As the true utility of a driver is unknown to the platform, we derive
this metric by defining the maximum anticipated utility that an arriving driver is seeing. In

this metric, we quantify the impact of displaying more or few task types to drivers.

5.8. Solution approach validation

The stochastic look-ahead (LA) proposed in Section 4 consists of both state and action spaces
reduction techniques (termed VFA and EDS respectively). To understand the goodness of these
approximation ideas, we need instances that are small enough for the exact solution method.

In this section, we consider 50 randomly generated instances consisting of eight zones located

along the perimeter of a circle, which are denoted as the set Ins. For each instance, 20 tasks
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are distributed randomly to eight zones with equal probability, implying a finite (albeit small)
probability of one or more zones having no delivery tasks. We set the length of the selection horizon
equal to the number of tasks, which ensures that there will always be at least one zone to display
to a driver. In all instances, the eight zones are identical. The driver’s reward for serving a zone
is r, = $30, and the cost of having z tasks remaining at the end of the planning horizon (i.e., the
payout for employing contract drivers) is equal to ¢(x) = 150/.

We assume that drivers’ destinations define their types. Without loss of generality, we assume
that type-k driver resides in zone k. Therefore completing a task in zone k is the most preferred
option. Furthermore, we assume that no additional effort is needed to complete a task. In that
sense, we calculate driver k’s utility for serving a task in zone z as ug(z) = r, — tt(z, k) and the no-
choice utility is u® = 0. Each driver’s arrival or a non-arrival is equally likely, hence A\, = \g = 1/9.

All parameters used in our validation are summarized in Table 2.

Table 2: Parameters used in the validation of our SDPS approach.

Selection horizon T 20
Number of zones ny 8
Number of delivery tasks np 20
Probability of no-arrival Ao 1/9
No-choice utility u? 1
Reward r,=r,z€/Z 30
Cost of non-completed tasks c.(x),z€7Z  az/x
Cost function coefficient Gy,2 € Z 150
MNL normalization parameter « 0.1

To quantify the effectiveness and the efficiency of the look-ahead method, we calculate the gap
in the total fulfillment cost and the run time using the equations displayed below.
Y icins FCi(Approzimation)
A QG — 1€ins -1
ve-ap FCi(Exact)
FC;(Approzimation)
MaxGap =
s o FC;(Exact)
CompTime(Approximation)
CompTime(Exact)

-1

TimeSaved =1 —

Table 3 presents the average, maximum cost gaps, and proportional time saved when one of the
following approximation methods is used to compute the total fulfillment cost: (i) EDS: uses only
the efficient display sets, (ii) VFA: uses only the value function approximation, and (iii) LA: uses
VFA and EDS together. For completeness, we also present the performance metrics from the full
display (FD) and the single display (SD) policies.

As seen from Table 3, using EDS reduces the run time by ~ 90%, and the differences in the
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Table 3: Average and maximum gaps in total fulfillment cost and average time saving.

Approximation EDS VFA LA (VFA + EDS) FD SD

Avg. Gap 0.0%  3.0% 3.0% 901%  24.0%
Max Gap 0.1% 4.6% 4.6% 11.4% 30.5%
Time Saved 90.2% 99.6% 99.9%

expected fulfillment cost are minimal. As stated earlier, the efficient display sets are not a dominant
display strategy as the maximum gap is slightly above 0%. Nevertheless, the EDS still generates
all possible state spaces, which can grow exponentially as the number of zones and tasks grows. On
the other hand, the approximation that only uses VFA performs relatively poorer compared to the
EDS, but the time saving is significant. Also, the cost gap remains in an acceptable range: 3% on
average and 4.6% for the maximum. The Look Ahead (LA) method, which combines both the EDS
and VFA methods, results in an average gap of 3%, essentially indistinguishable from the use of
VFA alone. As the computations of larger instances are not possible with exact approach or only
EDS, we use the LA policy in our case study that is at the city scale (using Singapore data).

In Table 3, we also observe the performances of two benchmark policies. If the platform employs
FD or SD policies, the fulfillment cost would be 9.1% or 24.0% higher on average compared to the

dynamic and customized display policy.

6. Case Study: A Singapore Study

Throughout this section, we present the results and analyze the behavior of the stochastic look-
ahead approach presented in Section 4 and observe its benefits compared to the Full Display (FD)
and Single Display (SD) policies using Singapore based case study.

6.1. Singapore case instance generation

To derive insights for realistic applications, we design experiments that use Singapore as a test
bed. We utilize Singapore’s 44 mutually exclusive zones as delivery zones (illustrated in Figure
4). We assume that the only depot is located in Zone 13, which is consistent with the setup
of our industry collaborator. We removed 13 zones with very low population densities, and the
resulting number of zones is 31 (nz). To calculate the distance between zones, we employed the
Haversine formula using the coordinates of the centroid of the polygon that represents each zone.
Furthermore, we set the number of delivery tasks (np) and the length of the selection horizon T to
be 1000. Table 4 summarizes the values of all parameters used in our case study.

While constructing the instances, we used the actual population of each zone and its distance

from the depot as the main metrics to determine the parameters for each zone. A task is assigned

18



Figure 4: Singapore Planning Zones

randomly to zone ¢ with probability 1;, where 1); is the fraction of the population that lives in zone
1. Similarly, the cost of unselected tasks to the platform differs from zone to zone, and it is inversely
proportional to the zone’s proximity to the depot and is further explained at the end of this section.

The crowd drivers ‘arrive’ (i.e., open the App to browse the displayed tasks and make a selection)
at different slots of the browsing period homogeneously. Similar to the validation instances, we
assume that the number of driver types is equal to the number of zones, with type k driver’s most
preferred zone being zone k. For a period, the probability of no driver arriving in a selection period
is A\g = 0.05, and the arrival probability for the type-k driver is proportional to the population of
zone k and is equal to A\, = ¢ /(1 — Ag). If a driver commits to deliver a task, she receives a reward
of $30 — this reward is independent of the zone within which the selected task lies. Each additional
kilometer of detour experienced by a driver translates into efforts equivalent to $1. Therefore, we
characterize the effort of serving zone z (ef,) as the distance from the depot to zone z, that is,
tt(13, z).

A driver chooses a task (zone) among the ones displayed on her mobile App; they also have the
option of not selecting any of the displayed zones and simply walking away. We model drivers’ choice
behavior using the MNL choice behavior model as outlined in Section 3.2. The no-choice utility,
u?, of each arriving driver equals $1 for the base scenario. However, we also test the sensitivity of
display policies by subsequently varying the value of this no-choice utility. It is important to note
that no-choice utility affects the attractiveness of available tasks, and if a driver needs to make a
significant detour to complete the delivery to a zone, they may be better off not choosing anything.

For the unselected /remaining tasks at the end of the browsing period, the platform has to incur
the fixed cost ¢,(x) = a,+/x for each zone having at least one such task. The cost coefficient a, varies

between 300 and 500 for each zone, and is proportional to the square of the distance from the depot
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Table 4: Parameters used in the Singapore case study.

Selection horizon T 1000

Number of zones ny 31

Number of delivery tasks np 1000
Probability of no-arrival Ao 0.05
No-choice utility u? 1

Reward r,=r,z€/Z 30

Cost of non-completed tasks c:(x),z€ Z a\/T

Cost function coefficient a 300 + (500 — 300)(&)2
MNL normalization parameter « 0.1

to the zone, normalized by the maximum distance from the depot to a zone. This parameterization
presents a challenge to the platform’s operational model, as it incurs higher costs in zones that most

drivers prefer less.

6.2. Base case results

In this section, we discuss the behavior and the performance of the dynamic and customized
display (CD) policies in the Singapore case study. We compare the performance of CD policy to
the two baseline policies, Full Display (FD) and Single Display (SD), using the KPIs described in
Section 5.2.

Table 5: Base case results.

Policy  Fulfillment Cost Matched Requests ~ Reward Ratio Driver Utility
Ave Max Ave Max Ave Max Ave Max

FD 4.8% 7.8% 4.9% 6.6% 0.0% 2.2% 32.5%  53.1%
SD 8.9% 11.1%  -31.7%  -33.3% -373% -39.0% -43.1% -70.2%

Table 5 summarizes the average and the maximum of the percent difference of the four compar-
ison metrics for the two baseline policies compared to the CD policy. Figure 5 shows the range of
the percent differences of the same metrics. The percent difference is calculated as the value of the
baseline policy minus the value of the CD policy divided by the value of the CD policy. Therefore, a
positive difference means that the metric value for the baseline policy is higher than the CD policy,
and a negative difference means vice versa.

The results show that the CD policy provides substantial cost savings over the FD and SD
policies. The gap between the CD and FD policies varies from 2.6% to 7.8%, with an average of
4.8%. For the FD policy, the number of tasks completed by the drivers is 4.9% higher on average;
however, the reward ratio of the platform stays constant. FD policy provides drivers a greater

choice autonomy, which decreases their likelihood of leaving the system empty-handed. However,
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although more reward is paid to the drivers in the FD policy, because of its decentralized nature,
drivers usually end up myopically selecting tasks that do not help with fulfillment cost reduction.

Compared to the FD and CD policies, SD policy performs much worse. On average, imple-
menting an SD policy costs 8.9% more than the CD policy, and the cost gap ranges between 5.1%
and 11.1%. This is primarily caused by the decrease in the number of matched requests. In other
words, while the SD policy aims to direct individual drivers towards tasks minimizing the total cost,
a lack of sufficient choices results in a notable increase in drivers choosing nothing. This leads to
an increased number of unselected tasks, which results in much higher cost for engaging contract
drivers. This is also demonstrated in significantly lower reward ratio. Our proposed CD policy
effectively mediates between the two extremes of FD and SD, increasing the number of matched
tasks by providing a driver with greater number of choices but selectively, guiding drivers’ choices
to reduce the number of zones requiring contract drivers at the end.

As expected, the FD policy is the most beneficial for the drivers as displaying everything on hand
gives them a better chance to maximize their utilities. The SD policy is the least beneficial policy
for the drivers as the single zone displayed is independent of the driver’s preferences. In aggregate,
the CD policy scores in between these two policies. However, this is not always true when the
evolution of the driver’s utility is observed throughout the selection period. For the FD policy, the
driver’s potential utility is the highest among all policies until 7' = 150, and then decreases sharply.
As drivers arriving early can choose the most preferred zones, the least desired zones are left for the
drivers arriving towards the end of the selection period. The driver’s maximum potential utility in
the SD policy is relatively constant throughout the selection period, confirming the aim of the SD
policy. The driver’s utility in the CD policy is very close to the driver’s utility in the SD policy
at the early and mid stages of the selection period. However, the driver’s utility increases towards
the end of the selection horizon, surpassing the utility for the FD policy. This verifies that the CD
policy saves some of the more attractive zones for the later decision periods.

In the FD policy, the number of zones displayed is always equal to the number of zones with a
positive number of tasks. The SD policy always displays a single zone to the driver. The number of
zones displayed in the CD policy lies somewhere in between, aiming for a more intelligently designed
display set for the arriving drivers. That said, the cardinality of the display set varies over time.
Figure 7 presents the number of zones with a remaining task and the number of displayed zones as
a function of the remaining time epochs (left), as well as the number of displayed zones normalized
to the number of zones with a remaining task (right). The CD policy generally does not display
more than six zones in a given time epoch. The number of displayed zones decreases naturally over
time with the decreasing number of zones with an available task. However, towards the end of the
selection period, the percentage of displayed zones increases up to 50%. Moreover, as the end of the

selection period approaches, the number of displayed zones averages below 1, which implies that

22



= = [
N IS o
L ! | 1

Driver Utility
)

0 50 100 150 200 250 300 350 400
Remaining Time Epochs

Figure 6: Evolution of driver’s utility over time.

the CD policy chooses to display nothing if the expected cost benefit from displaying a zone does

not cover the expected reward to be paid to the drivers.
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Figure 7: Number of eligible and displayed zones over time.

Finally, we discuss the implications of implementing a slight variation of the SD policy: Clearance-
L. Similar to the SD policy, the Clearance-L policy aims at minimizing the potential expenses in
engaging contract drivers, but it is allowed to show up to L zones instead of just 1. When L =1,
this policy is equivalent to the SD policy. If L is ever greater than the number of zones with re-
maining tasks, the policy will simply show all remaining zones. We calculate the expected total
fulfillment cost of the Clearance-L policy for L = 1 to n, through simulation and compared it with
the total procurement cost of the CD policy in Figure 8. As seen from the chart, the percent gap of

the total cost decreases as L increases, hits a turning point, and then follows a generally increasing
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trend. For our instances, Clearance-3 is the best performing Clearance policy, with an average total
procurement cost of 2.7% higher than the CD policy. Moreover, the average procurement cost of
this policy is less than both SD and FD policies. Therefore, when implementing the CD policy is
not computationally feasible, one can adopt a Clearance-Li policy as a cost-effective alternative to
the FD or SD policies.

9% -+ .
—— Clearance-L Cost Difference
8% -
7% A

6% -

5% A

Percent Difference

4%

3% A
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L

Figure 8: Cost gap of the Clearance-L policy vesus L.

6.3. Sensitivity analysis: No-choice utility

The utility that a crowdsourced driver does not serve any task displayed by the platform’s
App (u?), plays a role in determining a driver’s selection behavior and, thereby, the performance
of different display strategies. Note that our model allows ‘no choice’ to be a legitimate selection
outcome and thus be associated with a non-zero utility. To study the impact of this parameter, we
vary u? while keeping the other parameters as shown in Table 4. For each driver, we vary the no-
choice utility between 0 and ug ., where ud _ is defined as the maximum potential utility the driver
d can get by completing a task. This range helps us to examine a wide variety of selection regimes.

0_,d
For example, when v’ = u% .,

the no-choice utility is equal to that of the most-preferred task and
higher than that of all other tasks, indicating a regime characterized by low task attractiveness. At
the other extreme, u’ = 0 represents a case where there is a low likelihood of a driver refusing all
tasks. Note that zero utility does not imply zero choice probability, as the choice probability is

calculated as a function of e rather than u itself.
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Figure 9 studies the relative performance of our proposed CD policy vis-a-vis the SD and FD
policies. As CD always has the lowest F'C value, the graph plots the percent gap (i.e., the percentage
by which the FC' of SD and FD policies exceed that of CD). In general, the FD policy beats the
SD policy. As the no-choice utility increases, the FC gap between FD and CD decreases, whereas
the FC gap between SD and CD increases. This also implies that the FC gap between FD and
SD increases. Especially for the large values of the no-choice utility, the likelihood of a crowd
driver leaving the platform without choosing anything increases significantly when a single zone is
displayed. Because of this, the number of tasks completed is significantly less for the SD policy than
the CD policy, which is the primary driver of the increasing gap in total fulfillment costs between
these two policies.

However, even for very high values of no-choice utility, the FD policy suffers from the inefficiency
of autonomy. As the platform does not have control over what the driver chooses under the FD
policy, the contract driver costs incurred are higher than the CD policy, even though the number of
tasks completed is higher with the FD policy for all values of no-choice utility. Although the cost
of this inefficiency decreases with the increased no-choice utility, the fulfillment cost under the FD
policy is 3% higher when u® = u ... This shows that even when the crowd drivers have a relatively
very high likelihood of leaving the platform without choosing anything, it is still beneficial for the

platform to limit their options rather than providing them full autonomy.

6.4. Sensitivity analysis: MNL normalization parameter (o)

As stated in Equation (1), the relative likelihood of a crowd driver choosing a particular zone z
depends on (i) driver k’s utility of serving zone z, ug(z), and (ii) the MNL normalization parameter,
a. In particular, o controls the amount of increase (or decrease) in the likelihood of a driver choosing

a zone when the utility of the driver increases (or decreases). In other words, larger differences in
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driver utilities translate into larger differences in the likelihood and the choice probabilities as «
increases. To study the impact of this translation, we vary « from 0.01 to 1 while keeping the other
parameters as shown in Table 4. As the marginal effect of « is more significant when its value is
smaller, we vary « in smaller ranges when it is closer to 0.1 and increase the step size as « grows

larger.
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Figure 10: FC gaps of FD and SD with respect to a.

Figure 10 illustrates the relative difference in FC of our proposed CD policy compared to the
SD and FD policies for various « values. For all « values, our proposed CD policy outperforms the
SD and FD policies in terms of fulfillment costs (FC). Compared to the FD and SD policies, the
benefit of operating under the CD policy is the highest when the drivers are the most indifferent.
One thing to notice is that when o = 0.01, the probability of a driver leaving the platform without
choosing any of the provided options is the highest among all other values of «, even with the same
display set. Therefore, optimizing display policy becomes even more important in these settings.

The benefit obtained by using the CD policy decreases as « increases to 0.35 and then starts
to increase slightly as a grows larger. Under the FD policy, the drivers are increasingly inclined
to choose the zone that yields the highest utility to them as « tends to 1. Therefore, the benefit
of such a policy to the platform starts to decrease as « increases. Under the CD policy, increasing
« increases the no-choice probability when the only zone that is displayed has a driver utility less

than 1. This explains the slight increase in the FC gap of the SD policy.

26



7. Concluding Remarks

In this work, we consider the “Choice-based Crowdshipping” problem, where an online plat-
form/mobile App is used to allocate overnight package delivery tasks to a pool of crowdsourced
delivery workers. Taking advantage of the reasonably long (overnight) selection period, during
which individual workers interact with the platform and commit to a specific delivery job, we inves-
tigate a mechanism that lies between the two extremes of (a) purely centralized, which is efficient
in recommending tasks, but runs the risk of reducing worker acceptance rates, and (b) purely de-
centralized, which results in higher worker acceptance rates but can result in less favorable spatial
distribution of unselected tasks. Our major contributions are the formalization of a mechanism for
coming up with customized display, where individually arriving workers are presented with a choice
of tasks from multiple carefully-chosen zones to balance the desire for a higher worker acceptance
rate and a globally favorable spatial clustering of unselected tasks. The customized display process
is formalized as a Markov Decision Process that dynamically selects the set of displayed tasks,
taking into account (a) the spatial properties of currently-unselected tasks and (b) the anticipated
future driver arrivals.

Our numerical experiments demonstrate significant benefits for our customized display mecha-
nism, which achieves a favorable trade-off between worker selection rates and total platform cost
than achievable by either purely-centralized or decentralized approaches. Under tested settings, SD
policy results in overall task matched rates 31.7% lower than our CD policy; compared against the
fully-decentralized FD approach, our CD approach achieves only modest 4.9% lower task matched
rates. More importantly, even with a lower task matched rate, CD results in a total platform cost
that is significantly (4.8%) lower than the decentralized FD approach on average, primarily by
proactively reducing the contract driver cost in fulfilling the unselected tasks. (In addition, total
platform costs with the CD policy are also 8.9% lower than the centralized alternative, where the
lower crowdsourced task acceptance rate sharply pushes up the cost spent on contract drivers.)

We believe that our findings and insights have practical implications for the broader crowd-
shipping business and the design of online task assignment /selection platforms. In particular, for
scenarios where the task-worker matching needs not be performed instantaneously, our work demon-
strates the benefits of dynamically tailoring the list of tasks displayed to each worker by considering
the spatio-temporal statistics of future worker arrivals. Our work also suggests the importance of
designing platform behavior to balance the desire for worker autonomy and assignment efficiency,
especially for scenarios where task fulfillment is achieved through a combination of an elastic crowd-
sourced worker pool, backstopped by contracted resources (delivery workers, trucks, etc.). There

are several additional aspects and refinements possible within this broad area.

e Non-Stationary Driver Arrivals: Our numerical analysis in this paper assumed a time-homogeneous
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Poisson process for driver arrivals. In practice, many deadline-based online platforms exhibit
a non-stationary pattern, with a significantly higher rate of worker arrivals closer to the dead-
line. Our formulation can, however, be relatively easily modified to handle such non-stationary
statistics. In particular, one potential approach is to adjust period lengths according to ar-
rival rates (e.g., make period length inversely proportional to the arrival rate), and thereby
maintaining our model’s basic assumption of a negligible probability of two or more driver

arrivals within any slot.

Multiple Task Selection: To simplify the analysis, we assume that each driver is able to select
at most one task. Thus, a natural direction for the future work is to extend this analytical
framework to accommodate scenarios where individual crowd drivers can commit to multiple
tasks. This will require changes to the underlying sequential decision problem, incorporating
additional constraints (e.g., capacity constraints associated with each driver’s vehicle) and
updated preference models (e.g., higher preference to select two proximately-located tasks).
In general, this will likely lead to significantly higher computational complexity and will thus

require powerful heuristics.

Driver’s Task Selection Model: In our present work, we’ve modeled the driver’s selection
choice via a MNL model, where the utility associated with a task is a linear function of the
task reward and the delivery detour. Alternative variants of utility definitions are certainly
possible and would influence the resulting display choices. Empirical studies will be needed to
determine whether additional behavioral effects (e.g., the tendency of users selecting only the

top-most 1 or 2 responses for online search queries) manifest in a crowdsourcing mobile App.
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