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ABSTRACT
Function signature recovery is important for binary analysis and

security enhancement, such as bug finding and control-flow in-

tegrity enforcement. However, binary executables typically have

crucial information vital for function signature recovery stripped

off during compilation. To make things worse, recent studies show

that many compiler optimization strategies further complicate the

recovery of function signatures with intended violations to function

calling conventions.

In this paper, we first perform a systematic study to quantify

the extent to which compiler optimizations (negatively) impact

the accuracy of existing deep learning techniques for function

signature recovery. Our experiments show that a state-of-the-art

deep learning technique has its accuracy dropped from 98.7% to

87.7% when training and testing optimized binaries. We further

identify specific weaknesses in existing approaches and propose

an enhanced deep learning approach named ReSIL (Revivifying

Function Signature Inference using Deep Learning) to incorporate

compiler-optimization-specific domain knowledge into the learn-

ing process. Our experimental results show that ReSIL significantly

improves the accuracy and F1 score in inferring function signa-

tures, e.g., with accuracy in inferring the number of arguments for

callees compiled with optimization flag O1 from 84.8% to 92.67%.We

also demonstrate security implications of ReSIL in Control-Flow

Integrity enforcement in stopping potential Counterfeit Object-

Oriented Programming (COOP) attacks.
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1 INTRODUCTION
Function signature recovery is a crucial step for many security

applications including code hardening [19, 21, 24, 31, 34, 35], bug

finding [26, 30], decompilation [2, 10], and clone detection [13]. A

stripped binary, however, only contains low-level information such

as instructions and register usage because compilers do not preserve

much language-level information, e.g., types, in generating the

binary executable. To make things worse, a recent study [20] shows

that many compiler optimization strategies further complicate the

recovery of function signatures with intended violations to function

calling conventions.

Many existing techniques to recover function signature [21, 31]

are often limited to custom and manually created rules based on

calling convention of the toolchain that generated the binary. For

example, TypeArmor [31] and τCFI [21] are based on the calling

convention that every function argument is properly set and re-

trieved at callee and caller sites. However, compiler optimizations

may violate such calling convention as demonstrated in the recent

study [20], where, e.g., a callee or caller may skip retrieving or set-

ting certain arguments, respectively, resulting in miscalculation of

the number of arguments at callees and callers. Also note that new

compiler optimization strategies are constantly being proposed and

added to our mainstream compilers including gcc
1
and clang

2
.

To avoid the reliance on a potentially brittle set of manually

created rules and keeping track of the latest optimization strategies,

recent years have witnessed an increased interest in leveraging

deep learning models trained on large and freely available code

repositories, e.g., EKLAVYA [6]. It uses a three layers Recurrent

Neural Network (RNN) to learn the number and types of arguments

from disassembled binary code. Meanwhile, no domain-specific

knowledge is assumed and everything is inferred from the training

data. However, the reported results in EKLAVYA show that the

accuracy in inferring the number of arguments at callee and caller

sites for optimized binaries (O1/O2/O3) is only around 80% (com-

pared to 97% for unoptimized ones (O0)). Moreover, the accuracy in

inferring even a coarse-grained type (considers different types of

integers, e.g., bool, short, int, and long as one type) for the third ar-

gument is only about 70% for optimized callees. Such low accuracy

has a significant negative impact on corresponding applications,

e.g., in enforcement of Control-Flow Integrity (CFI).

To dig up the underlying reasons of inferior performance of

deep learning approaches in recovering function signatures from

optimized binaries, we not only perform training and testing of a set

of deep learning models but also carefully analyze the instructions

at the corresponding callees and callers where the models make

mistakes in their classification. We find that most of the mistakes

1
https://ftp.gnu.org/gnu/gcc/gcc-10.2.0/

2
https://releases.llvm.org/download.html#10.0.1
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are not due to the learning capabilities of the models, but rather

the absence of evidence that function arguments are accessed or

prepared. For example, two callee functions with different numbers

of arguments could present exactly the same sets of instructions

to the deep learning model due to compiler optimizations. Such

absence of evidence in the representation of training and testing sets

is the critical cause of low accuracy. The natural question then is

howwe could design an enhanced representation of the training and

testing sets that incorporate all vital function signature evidences

even when optimization is enforced, so that we can revivify the

deep learning capabilities in function signature recovery.

To this end, our contribution in this paper is two-fold. First, we

identify root causes of inferior performance of existing deep learn-

ing approaches in recovering function signatures from optimized

binaries. Second, we propose ReSIL, with compiler-optimization-

specific domain knowledge injected into the representation of train-

ing and testing sets, to improve the capability of deep learning on

optimized binaries.

Difficulties in recovering function signatures for optimized binaries.
Compiler optimizations could potentially make two callees (callers)

with different signatures look very similar in terms of their raw

instructions because, e.g., the accessing and preparing of specific

arguments could be omitted, or that the same instructions could

operate on different types of arguments. Having two functions

with different ground-truth labels but seemingly identical function

bodies would therefore confuse a supervised deep learning model

in its training.

Incorporation of domain-specific knowledge in deep learning. We

address the challenge of inferring function signatures by incorpo-

rating compiler-optimization-specific domain knowledge into the

representation of samples to improve the quality of the dataset. For

example, our proposed system ReSIL selectively injects additional

instructions into the function body of optimized training samples

to reinstantiate evidence of the access or preparation of certain

function arguments. Note that such additional instructions injected
are soley based on the analysis of the optimized binary (e.g., child

function of the callee and parent function of the caller) without

relying on other information sources like the compilation process.

ReSIL supports ELF binaries on Linux x86-64 and is able to recover

function signatures with higher accuracy and F1 score compared

to EKLAVYA.

Application of ReSIL and security implications. We use CFI en-

forcement as an example of applications of ReSIL to demonstrate

its security implication. Due to the higher accuracy in recovering

function signatures which further limits the control transfer targets

allowed (only callees with matching function signatures) in an op-

timized binary, we show that stealthy Counterfeit Object-Oriented

Programming (COOP) attacks could be defeated.

Our paper makes the following key contributions.

• We identify an extensive set of intricacies that confuse cur-

rent deep learning approaches in inferring function signa-

tures, and show that the root causes are not about learning

capability but representation of binary samples.

• We propose ReSIL, a system that incorporates compiler-

optimization-specific domain knowledge to improve the ac-

curacy in inferring function signatures.

• We perform a thorough evaluation on ReSIL and show that

ReSIL can achieve better accuracy and F1 score in infer-

ring function signatures compared to EKLAVYA. We also

demonstrate the security implication of using ReSIL for CFI

enforcement.

2 BACKGROUND AND RELATEDWORK
In this section, we briefly discuss related work on function signature

recovery, machine learning approaches in general for analyzing

binaries, and more specifically EKLAVYA since it is closely related

to contributions we make in this paper.

2.1 Function Signature Recovery
Function signature recovery is an important step in binary analysis.

Variable liveness analysis and heuristics based on calling conven-

tions and idioms are usually used to recover function signatures.

EIWazeer et al. [9] apply liveness analysis to recover arguments,

variables, and their types for x86 executables. TIE [18] infers vari-

able types in binaries through formulating the usage of different

data types. Caballero et al. [3] make use of dynamic liveness analysis

to recover function arguments for execution traces. TypeArmor [31]

and τCFI [21] make use of liveness analysis and heuristics to re-

cover the number of arguments and widths of the argument-storing

registers at callee and indirect caller sites by inspecting the state

for the six integer argument registers. Both of them can be used to

enforce fine-grained CFI by matching the observed number of argu-

ments and arguments widths at indirect caller and callee sites. Zeng

et al. [33] propose to perform type inference based on debugging

information generated by the compiler. Yan et al. [20] demonstrate

how compiler optimization impacts function signature recovery

and propose heuristic methods to recover function signature more

precisely. Besides the difference of being a heuristic-based approach

vs. a machine-learning-based approach as we do in this paper, Yan

et al. [20] suffers from the requirement of having to constantly

update the corresponding heuristics manually by domain experts

whenever new compiler optimization strategies are incorporated

into our modern compilers.

2.2 Machine Learning for Binary Analysis
Machine learning methods have been adopted for different bi-

nary analysis tasks. For example, function (boundary) identifi-

cation [1, 29, 32] is the preliminary of many advanced binary

analysis, including our proposed system in this paper, ReSIL, and

EKLAVYA [6]. Laika [8] uses Bayesian unsupervised learning to de-

tect data structures given a memory image of the program. Caliskan

et al. [4] use random forest to infer programmer identity. Rosen-

blum et al. [25] make use of linear Support Vector Machines (SVMs)

to infer the compiler family, versions, optimization options, and

source languages. DEBIN [12] recovers debugging information in

stripped binaries including symbol names, types, and locations

on three architectures (x86, x64, and ARM) using Extremely Ran-

domized Trees classification and Conditional Random Field model.



Pizzolotto and Inoue [23] recognize both the compiler and the pres-

ence of optimizations using a Long-Short Term Memory network

and a Convolutional Neural Network. CATI [5] uses Convolutional

Neural Network (CNN) to infer variable types by taking the instruc-

tion context into account. Our approach, ReSIL, belongs to this

category of leveraging powerful machine learning techniques, with

a focus on improving the accuracy in analyzing optimized binaries
specifically.

2.3 EKLAVYA
EKLAVYA [6] is a representative and state-of-the-art project that

applies machine learning techniques to recover function signatures,

and is closely related to contributions we are making in this paper.

We discuss it in slightly more detail. All instructions are represented

in a 256-dimensional vectors and labels denoting the number (types)

of arguments serving as input to a RNN. It has four tasks:

• Task 1: Inferring the number of arguments for each function

based on instructions from the caller ;
• Task 2: Inferring the number of arguments for each function

based on instructions from the callee;
• Task 3: Recovering the type of arguments based on instruc-

tions from the caller ;
• Task 4: Recovering the type of arguments based on instruc-

tions from the callee;

The classes of argument types are defined as

τ ::= int |char | f loat |void ∗ |enum |union |struct with different types

of integers (e.g., 32-bit integers and 64-bit integers) merged into one

single type int . All the instructions (with a limit of 500) preceding

a direct call instruction are used in tasks 1 and 3, whereas only

instructions in the callee itself are used in tasks 2 and 4.

A key observations is that EKLAVYA uses instructions in a func-

tion body as input to RNN without considering whether they ac-

tually access the argument registers (potentially introducing extra

noise) or whether they provide complete representation of all ar-

guments (potentially missing key inputs). In this paper, we first

provide detailed analysis on the extent to which these drawbacks

would misguide the machine learning model when processing op-

timized binaries (our first contribution in this paper), and then

propose applying compiler-optimization-specific domain knowl-

edge in the representations of the input binary to improve model

accuracy (our second contribution in this paper).

3 WHY DEEP LEARNING TECHNIQUES FALL
SHORT OF OPTIMIZED BINARIES

In this section, we take a deep dive into the reasons why existing

deep learning techniques fall short of recovering function signa-

tures from optimized binaries. We first present our experiments

with a state-of-the-art deep learning technique EKLAVYA and its

overall accuracy and F1 scores in processing unoptimized and opti-

mized binaries (Section 3.1). Due to the difficulty in explainability

of machine learning models in general, our next task is to analyze

optimized binary samples with which EKLAVYA makes mistakes in

its recovery of function signatures in order to shed light on possible

reasons of its inferior performance (Section 3.2).

3.1 Accuracy in Inferring Function Signatures
We evaluate the accuracy of inferring the number and types of

arguments for a state-of-the-art deep learning approach, named

EKLAVYA [6]. The experiments are performed on a server machine

with two 32-core AMD Ryzen ThreadRipper 3GHz CPUs, 128GB of

RAM, and four GeForce RTX 2080 Ti GPUs with 12GB of memory.

We choose the same dataset used in EKLAVYA, which includes

binutils, coreutils, findutils, sg3utils, utillinux, inetutils, diffutils, and
usbutils, and compile them with the latest compiler version. We

intentionally use the latest compiler versions as optimization strate-

gies keep being improved. Note that this also means that we are

not replicating the experiments in the EKLAVYA paper. We focus

on function signature inference in x86-64 Linux, and the binaries

are generated by using two commonly used compilers, gcc-10 and

clang-10, with different optimization levels ranging from O0 to

O3. We use the same sanitization method in EKLAVYA to remove

duplicated functions. The resulting dataset contains 2,584 differ-

ent binaries, 51,907 distinct functions, and 104,046 direct callers.

Table 1 shows the percentage of functions with specific number

of arguments in different optimization levels. We find that most

functions have fewer than 3 arguments in these real-world appli-

cations. Therefore, we only report recovery results for the first 3

arguments, most of which are pointers, 32-bit integers, and 64-bit

integers. The ground truth is collected by parsing the DWARF de-

bug information [7], which has the source-level information about

each argument.

Table 1: Number of arguments of functions in dataset

Opt Number of Arguments (%)

0 1 2 3 4 5 6 7 8 9

O0 7.36 32.50 31.41 18.11 7.21 3.29 0.08 0.01 0.02 0.01

O1 9.58 30.26 30.46 17.27 6.72 3.27 1.37 0.58 0.37 0.12

O2 8.93 27.43 31.49 18.02 7.43 3.72 1.61 0.72 0.48 0.19

O3 7.76 21.50 32.97 20.12 9.38 4.53 2.20 0.86 0.45 0.24

We use 5-fold cross-validation to perform training and testing.

The average results are shown in Table 2 and Table 3 with the

definitions of accuracy given in Definition 1.

Acc =
TP +TN

TP +TN + FP + FN
(1)

whereTP ,TN , FP , and FN are the true positive, true negative, false

positive, and false negative predictions, respectively. True positive

and true negative predictions are the cases correctly classified by

the model.

As shown in Table 2, when optimization is enabled (O1/O2/O3),

the accuracy in inferring the number of arguments drops compared

to that for unoptimized callees and callers. This is mainly because

that optimizations eliminate unnecessary argument reading (read-

ing from argument registers) or preparing (writing to argument

registers) instructions. Probably a bit counter-intuitive, another

observation is that binaries compiled with O1 typically have lower

accuracy than those compiled with O2 and O3. We will discuss in

more details the reasons behind this in Section 3.2.

Table 3 shows more interesting results. First, the accuracy in

inferring the types for the second and third arguments are lower

than that for the first argument. When counting the type distri-

bution, we realize that more than 95% of the first arguments are



Table 2: Accuracy of EKLAVYA in inferring number of arguments.
T
a
s
k

Opt
Clang Gcc

CI T Acc% CI T Acc%

T
a
s
k
1

O0 4,946 5,157 95.91 4,232 4,332 97.69
O1 3,903 4,276 91.28 3,248 3,593 90.40

O2 1,463 1,568 93.30 1,706 1,926 88.58

O3 223 234 95.30 526 568 92.61

T
a
s
k
2

O0 2,000 2,022 98.91 2,175 2,209 98.46
O1 1,772 2,089 84.83 1,349 1,542 87.48

O2 725 797 90.97 1,008 1,136 88.73

O3 150 159 94.34 390 425 91.76

Task 1: Inferring the number of arguments from callers.

Task 2: Inferring the number of arguments from callees.

CI: Number of callers/callees correctly inferred.

T: Number of callers/callees in the testing set.

Table 3: Accuracy of EKLAVYA in inferring types of arguments

T
a
s
k Arg Opt Clang Gcc

CI T Acc% CI T Acc%

T
a
s
k
3

1st

O0 4,236 4,370 96.93 3,977 4,086 97.33
O1 3,868 3,997 96.77 3,257 3,379 96.39

O2 1,440 1,470 97.96 1,740 1,817 95.76

O3 212 217 97.70 537 547 98.17

2nd

O0 2,981 3,260 91.44 2,567 2,804 91.55
O1 2,727 2,955 92.28 2,114 2,333 90.61

O2 1,115 1,166 95.63 1,052 1,155 91.08

O3 151 156 96.79 334 355 94.08

3rd

O0 1,729 1,869 92.51 1,447 1,590 91.01
O1 1,615 1,743 92.66 1,242 1,367 90.86

O2 845 874 96.68 703 768 91.54

O3 123 127 96.85 222 234 94.87

T
a
s
k
4

1st

O0 1,799 1,871 96.15 1,963 2,049 95.80
O1 1,809 1,927 93.88 1,360 1,420 95.77

O2 716 735 97.41 1,012 1,047 96.66

O3 147 150 98.00 381 390 97.69

2nd

O0 1,079 1,215 88.81 1,170 1,327 88.17
O1 1,087 1,252 86.82 851 954 89.20

O2 492 528 93.18 648 710 91.27

O3 115 121 95.04 278 293 94.88

3rd

O0 489 579 84.42 528 633 83.41
O1 514 612 83.99 409 473 86.47

O2 240 265 90.57 320 361 88.64

O3 59 66 89.39 143 156 91.67

Task 3: Inferring argument types from callers.

Task 4: Inferring argument types from callees.

CI: Number of callers/callees correctly inferred.

T: Number of callers/callees in the testing set.

32-bit integers and pointers, which are relatively easy to tell apart.

On the other hand, a lot more of the second and third arguments

are 64-bit integers, which are more difficult to recognize as the

compiler typically uses similar instructions to access 64-bit integers

and pointers regardless of optimization settings. We will discuss

this in more detail in Section 3.2.

We also use F1 score (see its definition in Definition 2) to measure

the performance of EKLAVYA in inferring the number of arguments;

see Table 4 and Table 5 for the F1 score in inferring the number of

arguments and the type of the second argument. Note that here we

report the F1 score for fine-grained type inference, so that we can

compare it with our approach. We only analyze the result for the

second argument as it has a wider variety of different types. We

also skip the analysis on callees with three or more arguments due

to its small sample size. Note that MF (last column in the tables)

measures the F1-score of the aggregated contributions of all classes;

see its definition in Equation 4.

F1i = 2 ×
Pci × Rci
Pci + Rci

(2)

Table 4: F1 score of EKLAVYA in inferring the number of arguments

T
a
s
k

C
P
L

O
p
t Number of Arguments

0 1 2 3 4 5 6 7 8 MF

T
a
s
k
1 C
l
a
n
g

O0 0.89 0.97 0.97 0.98 0.93 0.88 0.87 0.93 0.92 0.96
O1 0.78 0.93 0.92 0.93 0.89 0.86 0.85 0.85 0.88 0.91

O2 0.83 0.94 0.93 0.95 0.95 0.88 0.88 0.86 0.92 0.93

O3 0.82 0.94 0.94 0.97 0.95 0.97 0.99 0.89 0.80 0.95

G
c
c

O0 0.92 0.98 0.98 0.98 0.97 0.96 0.97 0.98 0.94 0.98
O1 0.80 0.92 0.91 0.92 0.89 0.89 0.89 0.91 0.88 0.90

O2 0.73 0.92 0.88 0.91 0.84 0.85 0.85 0.84 0.86 0.89

O3 0.77 0.95 0.92 0.94 0.89 0.88 0.89 0.86 0.77 0.93

T
a
s
k
2 C
l
a
n
g

O0 0.98 0.99 0.99 0.99 0.98 0.97 0.00 0.00 0.00 0.99
O1 0.79 0.87 0.87 0.86 0.82 0.83 0.65 0.39 0.40 0.85

O2 0.89 0.92 0.93 0.90 0.90 0.89 0.82 0.75 0.74 0.91

O3 0.93 0.96 0.98 0.95 0.94 0.90 0.82 0.47 0.78 0.95

G
c
c

O0 0.99 0.99 0.99 0.98 0.97 0.96 0.00 0.50 0.00 0.98
O1 0.80 0.89 0.90 0.89 0.87 0.85 0.67 0.48 0.43 0.88

O2 0.85 0.91 0.90 0.89 0.85 0.85 0.73 0.69 0.55 0.89

O3 0.90 0.93 0.93 0.93 0.88 0.89 0.75 0.56 0.43 0.92

Task 1: Inferring the number of arguments from callers.

Task 2: Inferring the number of arguments from callees.

Table 5: F1 scores in inferring the type of the second argument.

T
a
s
k

C
P
L

O
p
t Type of Arguments

int8 int16 int32 int64 float pointer enum struct union MF

T
a
s
k
3 C
l
a
n
g

O0 0.93 0.80 0.96 0.82 0.00 0.94 0.93 0.83 0.98 0.95
O1 0.87 0.17 0.95 0.81 0.00 0.94 0.93 0.74 0.97 0.94

O2 0.93 0.22 0.97 0.84 - 0.96 0.91 0.90 - 0.96

O3 0.75 - 0.97 0.77 - 0.98 0.80 - - 0.98

G
c
c

O0 0.77 0.31 0.93 0.76 0.00 0.94 0.75 0.50 0.96 0.93
O1 0.62 0.10 0.89 0.78 - 0.93 0.78 0.59 - 0.92

O2 0.66 0.00 0.91 0.80 - 0.93 0.71 0.90 - 0.92

O3 0.86 - 0.91 0.83 - 0.95 0.80 - - 0.95

T
a
s
k
4 C
l
a
n
g

O0 0.93 0.33 0.97 0.55 0.17 0.93 0.25 0.36 0.88 0.91
O1 0.39 0.25 0.87 0.57 0.22 0.92 0.34 0.19 0.22 0.89

O2 0.63 0.00 0.91 0.74 1.00 0.95 0.47 0.89 - 0.94

O3 0.95 - 0.90 0.81 - 0.97 0.93 - - 0.95

G
c
c

O0 0.91 0.10 0.96 0.55 0.39 0.93 0.29 0.69 0.88 0.91
O1 0.48 0.25 0.89 0.64 0.50 0.94 0.42 0.44 0.00 0.91

O2 0.61 0.33 0.91 0.70 1.00 0.94 0.59 0.00 0.00 0.93

O3 0.76 - 0.96 0.85 1.00 0.97 0.73 - - 0.96

Task 3: Inferring argument types from callers.

Task 4: Inferring argument types from callees.

“-" denotes cases where the testing dataset does not have the corresponding type of

argument.

where Pci and Rci are the Precision and Recall for class i, and

they are defined as:

Pci =
TPi

TPi + FPi
Rci =

TPi
TPi + FNi

(3)

where TPi , FPi and FNi are the true positive prediction, false

positive prediction, and false negative of class i respectively.

MF = 2 ×
micro-Pc×micro-Rc

micro-Pc+micro-Rc

(4)

micro-Pc =

n∑
i=1

TPi

n∑
i=1

TPi +
n∑
i=1

FPi

micro-Rc =

n∑
i=1

TPi

n∑
i=1

TPi +
n∑
i=1

FNi

(5)

where n is the number of labels in testing set.

As shown in Table 4, the F1 score for callers (task 1) with zero

arguments is relatively low. It shows that existing deep learning

techniques have difficulties in distinguishing callers which actually

do not have any arguments from callers which do not prepare

any argument due to compiler optimization. Meanwhile, It also



shows that the F1 score for callers compiled with optimization is

generally lower compared to non-optimized callers. The F1 score

for task 2 in Table 4 delivers a similar message that callees compiled

with optimization has a lower F1 score in inferring the number of

arguments compared with unoptimized callees. In addition, the F1

score in inferring callees with more than five arguments suffers a

significant drop.

Table 5 shows that the F1-score for 64-bit integers (int64) is low

but that for pointers is higher, which implies EKLAVYA does not

have a good performance in distinguishing between 64-bit integers

and pointers.

3.2 Four Key Scenarios that Contribute to the
Lower Accuracy

The overall statistics presented in Section 3.1 show that existing

deep learning approaches fall short on analyzing optimized bina-

ries. In this section, we dig deeper into the reasons behind that

observation by analyzing the instructions in functions to which

EKLAVYA makes mistakes in inferring the number and type of

function arguments. We compile our findings into the following

four key scenarios.

3.2.1 Missing argument-reading instructions. This refers to cases

where argument-reading instructions are missing in optimized bina-

ries due to, e.g., dead code elimination, dead argument elimination,

constant propagation, and other optimization strategies. This sce-

nario could be the result of the following two sub-cases.

Arguments are accessed in helper functions (denoted as Helper).
There are cases where the access of an argument is in helper func-

tions when optimization is enabled. Here, a helper function is a

function that performs part of the computation and is called by the

callee being analyzed. Figure 1a and 1b show such an example in

which all the arguments of function lua_toboolean are accessed
in helper function index2adr. If the input to the deep learning en-

gine only consists of the function body of lua_toboolean (which
is the case for existing deep learning approaches like EKLAVYA),

the training sample would confuse the deep learning model since

the sample label indicates multiple arguments whereas the function

body (helper excluded) does not have the corresponding argument

reading instructions.

Arguments are not used (denoted asUnread). There are also cases
with unused arguments in callees, usually due to fixed prototype

of the function (e.g., virtual functions). However, the label given

to the deep learning engine in existing approaches always have

these unused arguments counted, which would confuse the training

process. As shown in Figure 2, the first and third arguments of

jpeg_free_large are not used, but the label used in the training

set indicates that it has three arguments.

3.2.2 Missing argument-preparing instructions (denoted asWrap-
per). If a caller is in a wrapper function, an optimized compiler may

decide not to reset the argument registers but simply “pass them

through” from the caller of the wrapper function. Here, a wrapper

function is a subroutine whose main purpose is to call another

subroutine. As shown in Figure 3, function ar_emul_append is a

wrapper function and existing deep learning approaches only use

1 LUA_API int lua_toboolean (lua_State *L, int idx) {
2 const TValue *o = index2adr(L, idx);
3 return !l_isfalse(o);
4 }
5 push %rax
6 callq 4021f0 <index2adr >
7 mov %rax ,%rcx
8 mov 0x8(%rax),%eax
9 test %eax ,%eax
10 je 402674 <lua_toboolean +0x24 >
11 cmp $0x1 ,%eax
12 jne 40266f <lua_toboolean +0x1f >
13 xor %eax ,%eax
14 cmpl $0x0 ,(%rcx)
15 setne %al
16 pop %rcx
17 retq

(a) Arguments being accessed in a helper function
1 index2adr:
2 4021f0: 85 f6 test %esi ,%esi
3 402206: 48 3b 4f 10 cmp %rcx ,(%rdi+0x10)

(b) Argument reading instructions in the helper function
1 0000000000402650 <lua_toboolean >:
2 push %rax
3 d6 f6
4 48 d6 4f 10
5 callq 4021f0 <index2adr >

(c) ReSIL inserting instructions at callee
Figure 1: Arguments are accessed in helper function

1 GLOBAL(void) jpeg_free_large (j_common_ptr cinfo , void
FAR * object , size_t sizeofobject) {

2 free(object);
3 }
4 mov %rsi ,%rdi
5 jmpq 400950 <free@plt >
6 caller site:
7 mov 0x70(%r14 ,%r15 ,8) ,%rsi
8 mov %r12 ,%rdi
9 mov %rbp ,%rdx
10 callq 41b6b0 <jpeg_free_large >

Figure 2: Not reading argument registers

1 ar_emul_append:
2 mov 0x2f8e19 (%rip),%rax
3 test %rax ,%rax
4 je 342bf
5 sub $0x8 ,%rsp
6 call 352b0

Figure 3: Missing argument-preparing instructions

the four instructions from Line 2 to Line 5, none of which accesses

an argument register, to infer the number of arguments of the caller

at Line 6, while the ground-truth label indicates five arguments. It

would, again, confuse the training process.

We can see that in both cases of missing argument-reading and

missing argument-preparing instructions, the label of the training

sample does not tally with instructions in the function body for

optimized binaries, which affects the training quality of deep learn-

ing models and in turn accuracy of function signature recovery. To

rectify this problem, our key idea would be to make the label and

representation of function body agree; see how ReSIL achieves this

in Section 4.



1 mov %eax ,%esi
2 test %r15 ,%r15
3 je 51e1ad
4 lea 0xe0(%rsp),%rdi
5 callq (func_one (&cc,c))

(a) %esi used to pass argument

1 mov %ebp ,%esi
2 test %rax ,%rax
3 je 43ae6f
4 mov %ebp ,%edi
5 callq obj_attrs_order(i)

(b) %esi used to store temporary
Figure 4: Indistinguishable argument register usage

1 mov %rdi, %rbx
2 mov %rsi , %rdi (pointer)
3 mov %rdx, %rsi
4 call 505a00

(a) tr: append_char_class

1 mov %rdi, %rbp
2 mov %rsi , %rdi (size_t)
3 sub %rsp, 0x8
4 call 402640

(b) tr: xmemdup
Figure 5: Example of Indistinguishable types

3.2.3 Indistinguishable cases. The next key reason to lower accu-

racy when dealing with optimized binaries refers to cases where

even human experts would not be able to classify correctly with all

information presented.

Argument registers used for other purposes (denoted as Temp). As
described in the Intel Manual [14], all argument registers could also

be used as scratch registers to store temporary values. This serves

as noise to the deep learning engine, sometimes to the extent that it

is impossible to distinguish the intended usage of a register. There

is hardly any evidence for distinguishing the two cases even for

human experts, not to mention a machine learning engine; see an

example in Figure 4.

We had considered handling such cases by accommodating infor-

mation from the callee. However, some argument-reading instruc-

tions at the callees could have been eliminated due to optimization

(as discussed above) while similar optimization is absent at the

caller site, which introduces mismatches and uncertainties. In addi-

tion, we are not able to get actual target for an indirect caller from

a binary. Therefore, it remains infeasible to distinguish them with

reasonable accuracy.

Indistinguishable argument types (denoted as Indis-type). There
simply isn’t enough evidence for a machine learning engine to tell

some types apart as the same (or similar in general) instruction

can be used in an optimized binary to access different types of

arguments. This problems also makes it hard for a deep learning

engine to differentiate various integer types (e.g., int and long),

which could provide significant benefits to security applications

like CFI. We further discuss this in Section 5.2. It is more difficult

to distinguish these cases for optimized binaries since compiler

optimizations remove many redundant instructions that would

provide information to help distinguish them. Figure 5 shows such

an example.

3.2.4 Irrelevant instructions (denoted as Irrelevance). The last con-
tributor to lower accuracy in processing optimized binaries refer

to noise in the training and testing samples. Current deep learning

approaches take the entire function body as input, where many in-

structions are not related to the identification of the number (types)

of arguments. Such noise may affect the performance of machine

learning as shown by Sharma et al. [28]. As shown in Figure 1a,

Table 6: Number of intricacy cases

Opt #Helper #Unread #Wrapper #Temp
O0 0 0 0 6,803

O1 1,182 1,189 819 3,218

O2 349 568 82 1,630

O3 78 151 6 266

Total 1,609 1,908 907 11,917

many instructions are not relevant to argument reading, such as

instructions at Line 9 and Line 11.

Table 6 shows the number of occurrences of Helper , Unread,
Wrapper , and Temp in our dataset. They are calculated by making

use of static binary analysis based on TypeArmor and then the re-

covered signature is compared with the ground truth. It is clear that

the complications of Helper , Unread,Wrapper only occur in opti-

mized binaries, which partially explains why existing deep learning

approaches have lower accuracy in analyzing them. Interestingly,

the number of these cases in binaries compiled with O1 is larger

than those compiled with O2 and O3. Our further analysis shows
that O1 binaries simply have larger number of functions compared

to O2 and O3 binaries. In other words, the numbers reported in

Table 6 do not necessarily imply the likelihood of occurrences in

different optimization levels. Another interesting observation is

that unoptimized binaries are more likely to use argument registers

to store temporary values (case Temp).
We do not report the number of cases for Indis-type and Ir-

relevance as it is difficult to define what kind of instructions are

considered similar and that almost every callee would have irrele-

vant instructions.

4 RESIL: REHABILITATING DEEP LEARNING
ON OPTIMIZED BINARIES

In the previous section, we detail four complication scenarios that

contribute to the lower accuracy of deep learning when processing

optimized binaries. In this section, we present our solutions to

these four scenarios and propose ReSIL to incorporate compiler-

optimization-specific domain knowledge into the representation of

samples to make deep learning models regain its learning capability.

4.1 Missing Argument-Related Instructions
As discussed in Section 3.2, the problem here is that the function

body (with missing argument-reading or argument-preparing in-

structions) does not match with ground-truth labels, causing diffi-

culties in the learning process. Intuitively, we need to correct such

mismatches so that deep learning can regain its learning capability

and high accuracy. Such correction in ReSIL takes different forms

depending on the nature of the mismatches.

Arguments are read in helper functions (Helper). A simple solu-

tion is to include all instructions in the helper function, but that

will also include many irrelevant instructions which would at the

same time hurt the learning process. Instead, we make use of inter-

procedural analysis to find all (potential) argument-reading in-

structions (process of which is identical to that detailed in existing

work [20]), and “summarize” them with our newly introduced in-

struction set before inserting the summarized instructions ahead

of the call to the helper function. Such summarizing instructions



serve as part of the input samples to the machine learning model.

Note that the summary instructions inserted preserve the operand

information with only the opcode being replaced, to signal to the

machine learning engine that the corresponding argument related

instructions are present in a helper function.

Our newly introduced instruction set includes the following

opcode that is not defined in the Intel Manual [14]:

• 0xd6 is used to summarize any single-byte argument-reading

instructions.

• 0x0f 0x25 is used to summarize any two-byte argument-

reading instructions whose operand is an integer.

• 0x0f 0x27 is used to summarize any two-byte argument-

reading instructions whose operand is floating-point.

• 0x0f 0x38 0x51 is used to summarize any three-byte argument-

reading instructions whose single operand is an integer.

• 0x0f 0x38 0x53 is used to summarize any three-byte argument-

reading instructions whose single operand is floating-point.

The key idea of introducing our new opcodes here to summarize

the argument-reading instructions is two-fold. First, once these in-

structions with our new opcode are inserted into the function body,

we correct the mismatches between function body and ground-

truth labels. Note that we do not need to tell the deep learning

engine what these newly introduced opcodes mean, as the deep

learning engine is supposed to be able to learn their meanings given

sufficient number of training samples. Second, such insertion of

only summary instructions avoids “over-correcting” with other

noisy instructions.

For the example in Figure 1a and 1b, we identify the two argument-

reading instructions in function index2adr and insert two sum-

mary instructions with our newly defined opcode; see Line 3 and

Line 4 in Figure 1c
3
. We perform the same correction to both train-

ing and testing samples.

We emphasize here that our identification of argument-reading

instructions in the helper function does not need to be 100% ac-

curate, e.g., an instruction reading %rcx not for argument reading

but for accessing temporary storage could also be summarized and

inserted into the function body. We leave such potential “noise” for

the deep learning engine to figure out, as our additional treatment

here is not to replace the deep learning engine but to present to it

the corrected samples.

Arguments are not used (Unread). In this case, ReSIL takes a

simpler approach to correct the label so that the deep learning clas-

sification would eventually output the number of arguments used

by a function rather than the number of arguments the function (to

be more precise — its source code) has. Therefore, in the training

set, we label function jpeg_free_large in Figure 2 as using two

arguments.

One may question the extent to which such a change in the

expected output of the machine learning engine would impact its

usefulness in specific application scenarios. For example, in the

case of CFI, it will lead to the use of a CFI policy that the number

of arguments passed at the caller site should be equal or larger than
that at the targeted callee site. However, we argue that such impact

would be minimal as existing fine-grained CFI enforcements always

3
The opcode for the instruction at Line 4 is 0x3b with 0x48 being the prefix used to

indicate use of a 64-bit register.

1 ar_emul_append:
2 48 0f 25 c7 op %rdi
3 48 0f 25 c6 op %rsi
4 48 0f 25 c2 op %rdx
5 0f 25 c1 op %ecx
6 41 0f 25 c0 op %r8d
7 mov 0x2f8e19 (%rip),%rax
8 ......
9 call 352b0

Figure 6: Inserted instruc-
tions at caller sites

1 402650 <lua_toboolean >:
2 402650: push %rax
3 402651: callq 4021f0
4 402656: mov %rax ,%rcx
5 402659: mov 0x8(%rax),%eax
6 40265c: test %eax,%eax
7 40265e: je 402674
8 402660: cmp $0x1,%eax
9 402663: jne 40266f
10 402665: xor %eax,%eax
11 402667: cmpl $0x0 ,(%rcx)
12 40266a: setne %al
13 40266d: pop %rcx
14 40266e: retq

Figure 7: Irrelevant instruction
removal

apply exactly the same policy due to the conservative inferencing

at callees and callers [21, 31].

ReSIL obtained the corrected ground-truth label by examining

the presence or absence of attribute __attribute__((unused))
or by performing static binary analysis [20] to find out the number

of argument registers that are actually used. Such analysis is only

performed for the training samples.

Arguments are not set in wrapper functions (Wrapper). For the
same reason outlined above, here we summarize the argument-

preparing instructions in caller of the wrapper function (identified

in the same way as in related work [20]) with our newly introduced

opcodes, and then insert them into the wrapper function. Figure 6

shows the result of our insertion (Line 2 to Line 6) to the example

shown in Figure 3. Note that we cater for cases where argument-

preparing instructions appear in both the wrapper function and its

caller. We perform this analysis and correction for both training

and testing samples.

4.2 Indistinguishable Cases
Since these are indistinguishable cases (number of arguments and

argument types) where not enough evidence is present in the func-

tion body for the deep learning engine to perform classification,

ReSIL simply outputs the top five inferencing results rather than

only the top one as in the existing approach EKLAVYA. For the

example in Figure 5b, the top five outputs for the type of the second

argument are <pointer , int64, int32, f loat , int8> with probabilities

<0.876, 0.124, 3.18e-05, 2.23e-05, 2.44e-07>. We can see that it has a

nonnegligible probability being a 64-bit integer.

4.3 Irrelevant Instructions
We consider an instruction relevant if it accesses any argument

registers or stack addresses. Meanwhile, any branch instructions are

also considered relevant. For example, the irrelevant instructions

in function lua_toboolean are shown in Figure 7 with light gray

color, which are not included as input to the deep learning engine

(for both training and testing samples) in ReSIL.

4.4 Classification Output of ReSIL
With our corrections to the deep learning engine discussed above,

the output of ReSIL for a target function a includes:



• Number of arguments. At the callee site a, ReSIL outputs

the number of arguments used by a while at the caller site,

ReSIL outputs the number of arguments that are passed to

a. Note that the ground-truth of the two outputs could be

different. Also note that ReSIL outputs the top five most

likely values.

• Types of arguments. Each argument of a is defined as:

τ ::= int8|int16|int32|int64|pointer |struct | f loat . Different
from the struct type in EKLAVYA, we only use struct to
represent an argument on the stack whose aligned size is

bigger than 16 bytes. We also don’t have types enum and

union used in EKLAVYA since ReSIL always outputs the

corresponding container type.

5 EVALUATION
In this section, we evaluate the accuracy of ReSIL in inferring

the number and types of arguments. The implementation of the

neural network remains the same as in EKLAVYA, while the data

processing routine is written in Python with 1,850 lines of code

which extracts the binary code for each function, inserts our special

instructions for callees and callers, and corrects labels for callees

that do not use some of their arguments.

We base our ground truth (the number and types of arguments)

on information collected by an LLVM [17] pass and on DWARF v4

debugging information [7] which is the default setting for gcc and

clang. We use LLVM to collect source-level information, including

the number and types of arguments for each callee and caller as well

as their source line numbers. We then compile the test applications

with DWARF information and link the source-level line numbers

with binary-level addresses using the DWARF line number table.

Different from EKLAVYAwhich obtains the ground truth by parsing

the DWARF debug information, the ground truth we obtained is of

finer-grain. For example, if one function has an argument whose

type is a structure and its size is less than 16-bytes, it will be passed

by two consecutive integer argument registers. In this case, ReSIL

uses the ground truth by LLVM as the function has two arguments

rather than one. Note that the ground truth is collected at the

compiler intermediate level after optimization. That is, the ground

truth we collected focus on how many arguments one function will

use rather than the number of arguments it has.

We use the same dataset described in Section 3.1 to perform the

evaluation, in which a five-fold cross-validation is used to perform

training and testing. Specifically, we randomly split each compli-

cation case in Table 6 into five folds (one used for testing and the

remaining for training). For other callees (callers) which are not in

the complication cases, we randomly split each utility package into

five folds. Note that the training set contains all binaries compiled

with multiple optimization levels from both compilers. The test

results are reported on different categories of optimizations for

different compilers.

5.1 Performance Evaluation
5.1.1 Accuracy. Our goal is to evaluate the accuracy of inferences

for the four tasks by using the approach we proposed in Section 4 to

correct the complication scenarios we identified. Results are shown

in Table 7 and Table 8, which are the average accuracy for the five

Table 7: Accuracy in inferring the number of arguments. Numbers
in gray backgroud show that ReSIL improves the accuracy in infer-
ring the number of arguments even only using the top 1 output as the
inference number.

T
a
s
k

O
p
t

A
p
p Clang Gcc

CI T Acc% CS% CI T Acc% CS%

T
a
s
k
1

O0
R5 4,996

5,157
96.88 96.88 4,236

4,332
97.78 95.94

E 4,946 95.91 99.00 4,232 97.69 98.99
R1 4,947 95.93 99.57 4,202 97.00 99.69

O1

R5 4,046

4,276

94.62 96.62 3324

3,593

92.51 93.49

E 3,903 91.28 98.80 3248 90.40 98.39

R1 3,969 92.82 99.19 3221 89.65 98.69

O2

R5 1,511

1,568

96.36 97.94 1,751

1,926

90.91 93.89

E 1,463 93.30 99.01 1,706 88.58 98.55

R1 1,492 95.15 99.56 1,694 87.95 98.70

O3

R5 230

234

98.29 98.42 531

568

93.49 94.41

E 223 95.30 99.28 526 92.61 98.72

R1 228 97.44 99.66 517 91.02 99.09

T
a
s
k
2

O0
R5 2,006

2,022
99.21 99.55 2,181

2,209
98.73 98.78

E 2,000 98.91 99.30 2,175 98.46 99.37
R1 2,002 99.01 99.46 2,167 98.10 99.54

O1

R5 1,936

2,089

92.68 95.12 1,444

1,542

93.64 95.78

E 1,772 84.83 98.86 1,349 87.48 98.90

R1 1,894 90.67 99.13 1,415 91.76 99.21

O2

R5 756

797

94.86 97.01 1,063

1,136

93.57 95.86

E 725 90.97 99.28 1,008 88.73 99.08

R1 746 93.60 99.30 1,044 90.00 99.14

O3

R5 152

159

95.60 96.32 406

425

95.53 96.57

E 150 94.34 99.70 390 91.76 99.27

R1 150 94.34 99.63 399 93.88 99.08

Task 1: Inferring the number of arguments for callers.

Task 2: Inferring the number of arguments for callees.

Opt: Optimization level.

R5: ReSIL with top 5 outputs. E: EKLAVYA. R1: ReSIL with top 1 output.

CI: Number of callers/callees correctly inferred.

T: Number of callers/callees.

CS: Confidence score.

folds under different compilers with different optimization levels.

Note that we present accuracy of ReSIL with its top five output, top

one output, and top one output for coarse-grained type inference

for comparison with EKLAVYA on argument types. Confidence

scores are computed by calculating the geometric means using

softmax probability with matrix scaling calibration [11].

Table 7 shows that ReSIL (with its top one output) generally

outperforms EKLAVYA with its most significant improvement in

inferring the number of arguments at callees (Task 2) when op-

timization is enabled, especially for callees compiled by O1. This

agrees with the statistics of the complication scenarios in Table 6

from which we can see that complications happen mostly in callees

compiled with O1. The confidence score of ReSIL top one output is

comparable with EKLAVYA.

The accuracy in identifying the type of an argument at the caller

site (Task 3) is comparable with the result of EKLAVYA; see Table 8.

If we only use ReSIL’s top one output as the inferred label, we can

see that the accuracy of ReSIL in identifying the argument type in a

finer-grained manner is a bit lower especially for binaries compiled

by gcc. This is because there are many misidentifications among

different types of integers and between 64-bit integers and pointers.

For binaries compiled by clang, the main misidentification comes

from the indistinguishability between 64-bit integers and pointers.

We stress that this comparison between ReSIL and EKLAVYA

isn’t fair as ReSIL performs a much finer-grained inferencing of

argument types. To establish a fairer comparison, we re-group the

finer-grained types identified by ReSIL to be as close to that in



Table 8: Accuracy in inferring the type of argument.

CPL Arg Opt
ReSIL EKLAVYA Top 1 of ReSIL Top 1 of ReSIL coarse-grained type

T
CI Acc% CS% CI Acc% CS% CI Acc% CS% CI Acc% CS %

Clang

1st

O0 4,254 97.35 98.43 4,236 96.93 99.60 4,224 96.66 99.69 4,237 96.96 99.65 4,370
O1 3,892 97.37 98.79 3,868 96.77 99.62 3,870 96.82 99.75 3,883 97.15 99.72 3,997

O2 1,458 99.18 98.86 1,440 97.96 99.81 1,449 98.57 99.86 1,452 98.78 99.84 1,470

O3 213 98.16 99.24 212 97.70 99.82 212 97.70 99.91 214 98.62 99.87 217

2nd

O0 3,028 94.45 95.79 2,981 92.98 99.19 2,967 92.55 99.23 2,989 93.23 99.16 3,206
O1 2,777 93.98 96.00 2,727 92.28 99.29 2,726 92.25 99.23 2,756 93.27 99.13 2,955

O2 1,134 97.26 96.61 1,115 95.63 99.50 1,115 95.63 99.56 1,120 96.05 99.50 1,166

O3 153 98.08 97.33 151 96.79 99.64 150 96.15 99.69 151 96.79 99.61 156

3rd

O0 1,753 93.79 96.34 1,729 92.51 99.10 1,723 92.19 99.32 1,740 93.10 99.19 1,869
O1 1,630 93.52 97.12 1,615 92.66 99.24 1,608 92.25 99.53 1,628 93.40 99.44 1,743

O2 849 97.14 97.69 845 96.68 99.57 840 96.11 99.54 846 96.80 99.44 874

O3 125 98.43 99.59 123 96.85 99.43 125 98.43 99.75 125 98.43 99.75 127

Gcc

1st

O0 3,980 97.41 98.49 3,977 97.33 99.63 3,952 96.72 99.67 3,975 97.28 99.62 4,086
O1 3,279 97.04 97.87 3,257 96.39 99.49 3,248 96.12 99.56 3,276 96.95 99.47 3,379

O2 1,751 96.37 97.74 1,740 95.76 99.52 1,733 95.38 99.56 1,746 96.09 99.50 1,817

O3 534 97.62 98.49 537 98.17 99.53 531 97.07 99.62 534 97.62 99.55 547

2nd

O0 2,611 93.12 94.42 2,567 91.55 99.06 2,540 90.58 99.01 2,588 92.30 98.86 2,804
O1 2,151 92.20 93.43 2,114 90.61 98.91 2,082 89.24 98.88 2,137 91.60 98.60 2,333

O2 1,077 93.25 93.74 1,052 91.08 99.11 1,029 89.09 98.80 1,056 91.43 98.58 1,155

O3 333 93.80 95.86 334 94.08 99.36 328 92.39 98.98 332 93.52 98.81 355

3rd

O0 1,443 90.75 94.39 1,448 91.07 98.93 1,402 88.18 99.10 1,453 91.38 98.85 1,590
O1 1,246 91.15 95.22 1,242 90.86 98.83 1,220 89.25 99.04 1,262 92.32 98.80 1,367

O2 705 91.80 94.97 703 91.54 99.11 688 89.58 99.06 711 92.58 98.88 768

O3 219 93.59 96.65 222 94.87 99.40 216 92.31 99.57 219 93.59 99.46 234

(a) From instructions of callers

CPL Arg Opt
ReSIL EKLAVYA Top 1 of ReSIL Top 1 of ReSIL coarse-grained type

T
CI Acc% CS% CI Acc% CS% CI Acc% CS% CI Acc% CS%

Clang

1st

O0 1,821 97.33 98.54 1,799 96.15 99.68 1,808 96.63 99.66 1,809 96.69 99.65 1,871
O1 1,842 95.59 97.33 1,809 93.88 99.59 1,820 94.45 99.53 1,839 95.43 99.39 1,927

O2 719 97.82 98.47 716 97.41 99.76 714 97.14 99.84 718 97.69 99.81 735

O3 148 98.67 99.54 147 98.00 99.84 148 98.67 99.87 148 98.67 99.87 150

2nd

O0 1,114 91.69 95.33 1,079 88.81 99.16 1,090 89.71 99.06 1,092 89.88 99.02 1,215
O1 1,122 89.62 93.56 1,087 86.82 99.19 1,087 86.82 99.00 1109 88.58 98.90 1,252

O2 498 94.32 96.12 492 93.18 99.41 489 92.61 99.34 493 93.37 99.22 528

O3 117 96.69 96.56 115 95.04 99.69 115 95.04 99.50 116 95.87 99.50 121

3rd

O0 514 88.77 92.40 489 84.46 98.87 494 85.32 98.65 495 85.49 98.60 579
O1 530 86.60 93.07 514 83.99 98.96 512 83.66 98.71 524 85.62 98.50 612

O2 243 91.70 95.54 240 90.57 99.17 238 89.81 99.36 241 90.94 99.22 265

O3 60 90.91 94.70 59 89.39 99.49 58 87.88 99.40 60 90.91 99.12 66

Gcc

1st

O0 1,988 97.02 97.93 1,963 95.80 99.65 1,969 96.10 99.58 1,974 96.34 99.57 2,049
O1 1,376 96.90 97.90 1,360 95.77 99.68 1,362 95.92 99.68 1,372 96.62 99.53 1,420

O2 1,023 97.71 97.86 1,012 96.66 99.67 1,013 96.75 99.56 1,015 96.94 99.53 1,047

O3 381 97.69 98.52 381 97.69 99.74 379 97.18 99.66 380 97.44 99.61 390

2nd

O0 1,213 91.41 94.49 1,170 88.17 99.08 1,182 89.12 89.37 1,186 89.07 99.10 1,327
O1 879 92.14 95.06 851 89.20 99.12 858 89.94 99.16 867 90.88 99.05 954

O2 660 92.96 95.16 648 91.27 99.12 646 90.99 98.89 654 92.11 98.77 710

O3 279 95.22 96.02 278 94.88 99.62 274 93.52 99.53 275 93.86 99.45 293

3rd

O0 552 87.20 92.93 528 83.41 98.92 532 84.04 98.62 536 84.68 98.58 633
O1 419 88.58 93.02 409 86.47 98.44 405 85.62 99.03 412 87.10 98.92 473

O2 327 90.58 93.84 320 88.64 99.23 317 87.81 98.67 322 89.20 98.49 361

O3 146 93.59 95.61 143 91.67 99.30 143 91.67 99.04 144 92.31 99.05 156

(b) From instructions of callees

CI: Number of callers/callees correctly inferred. T: Total number of callers/callees. CS: Confidence score.

EKLAVYA as possible, and present the results in the last three

columns of Table 8. We can see that now ReSIL has a comparable

accuracy with EKLAVYA when inferring a coarse-grained type. It

also shows that the insertion of our summary instructions also

helps argument type inferencing as they give evidence to the deep

learning model on the number of bits of the argument that are

being accessed.

Regarding recovery of argument types from the callee site (Task

4), we can see that ReSIL has its more significant improvement

in identifying types of the second and third arguments. Such im-

provement comes from the benefit of using the top five outputs. As

discussed in Section 3.1, most of the first arguments are 32-bit inte-

gers and pointers which are immune to the complication scenarios

we identified in Section 3.2.3; therefore, our accuracy in identifying

them is much higher.

5.1.2 F1 scores. We also use F1 score to measure the performance

of ReSIL for each class; see Table 9 and Table 10 for the F1 scores

improvement in different tasks.

Table 9 shows that ReSIL can effectively infer the number of

arguments when callers have zero arguments. This is mainly due to

the insertion of our summary instructions in wrapper functions that

do not prepare arguments due to compiler optimization. ReSIL also

performs better than EKLAVYA especially for callees compiled with

optimizations and callees with more than six arguments. Moreover,



Table 9: Improvement of F1 scores (F1ReSIL − F1EKLAVYA)% in inferring the number of arguments

T
a
s
k

C
P
L

O
p
t Number of Arguments

0 1 2 3 4 5 6 7 8 MF

T
a
s
k
1 C
l
a
n
g

O0 3.12 0.87 0.73 0.31 0.35 4.12 3.17 1.33 1.19 0.96
O1 9.20 2.45 2.93 2.21 3.74 5.76 5.44 3.31 5.80 3.23

O2 8.30 2.24 2.56 2.43 1.32 4.60 4.02 7.89 5.18 2.75

O3 9.79 3.87 2.43 1.85 3.01 0.69 -0.10 8.42 20.00 2.72

G
c
c

O0 4.89 -0.14 -0.34 -0.35 -0.41 1.16 0.39 -1.13 2.39 0.10
O1 7.99 2.19 1.59 1.17 1.70 2.14 2.60 3.90 2.47 2.11

O2 9.12 1.78 1.58 0.90 3.72 5.15 0.66 1.05 3.78 2.23

O3 0.76 0.36 -0.31 1.12 4.29 6.86 -1.28 -1.76 -2.14 0.88

T
a
s
k
2 C
l
a
n
g

O0 1.16 0.26 0.16 0.41 0.06 -0.04 51.67 0.00 0.00 0.27
O1 14.97 7.07 6.48 6.78 10.12 7.87 7.36 19.90 20.04 7.86

O2 7.14 4.47 3.41 4.08 1.40 -0.68 5.72 -0.28 3.71 3.81

O3 3.34 1.02 -0.17 0.87 2.87 1.35 9.53 19.44 -11.11 1.36

G
c
c

O0 0.64 0.41 0.39 0.04 -0.36 0.50 22.22 -50.00 0.00 0.28
O1 15.60 6.26 5.05 5.31 4.91 3.25 4.50 10.76 6.06 6.12

O2 9.99 4.72 4.32 4.33 5.05 5.28 0.94 3.52 10.71 4.89

O3 7.14 3.81 3.04 2.39 5.37 3.54 4.50 18.48 14.00 3.72

Task 1: Inferring the number of arguments from callers.

Task 2: Inferring the number of arguments from callees.

Table 10: Improvement of F1 scores (F1ReSIL − F1EKLAVYA)% in infer-
ring the type of the second argument

T
a
s
k

C
P
L

O
p
t Type of Arguments

int8 int16 int32 int64 float pointer struct MF

T
a
s
k
3 C
l
a
n
g

O0 1.44 3.81 1.56 2.63 0.00 0.91 17.44 -0.34
O1 2.22 -16.67 1.79 3.96 0.00 1.34 22.29 -0.10

O2 -1.76 0.00 1.41 6.12 - 1.45 9.52 0.56

O3 25.00 - 0.49 12.14 - 0.67 - 0.38

G
c
c

O0 4.73 8.67 2.72 5.61 0.00 1.51 29.68 0.20
O1 8.28 30.48 3.61 4.37 - 1.80 40.67 0.09

O2 5.62 0.00 1.14 3.59 - 1.36 3.33 -0.29

O3 -5.19 - 1.49 3.33 - 0.76 - -1.14

T
a
s
k
4 C
l
a
n
g

O0 4.36 16.67 2.43 7.70 56.67 1.25 10.16 0.42
O1 15.43 -8.33 4.79 5.90 33.33 1.52 3.33 0.69

O2 7.90 100.00 3.52 5.13 0.00 1.12 -88.89 0.21

O3 -25.00 - 4.37 9.40 - 1.84 - 1.78

G
c
c

O0 0.42 -10.00 2.68 6.43 51.11 1.37 -69.05 0.14
O1 16.04 0.00 5.41 4.22 -50.00 1.37 -11.11 0.89

O2 6.18 16.67 2.94 6.50 -16.67 1.23 33.33 0.41

O3 3.14 - 0.72 -1.76 0.00 -0.18 - -0.82

Task 3: Inferring argument types from callers.

Task 4: Inferring argument types from callees.

“-" denotes cases where the testing dataset does not have the corresponding type of

arguments.

we can see that ReSIL has a higher F1 score for callees which have

zero arguments.

Table 10 shows that ReSIL improves the performance in distin-

guishing between 64-bit integers and pointers. For example, we can

see that ReSIL improves the F1 score in inferring 64-bit integers for

callers and callees compiled by Clang with optimization level O3

by 12.14% and 9.40%, respectively.

5.1.3 Handling of complication scenarios. We also evaluate the ef-

fectiveness of ReSIL in dealingwith different complication scenarios.

Specifically, about 90% of callees with Unread that are incorrectly

inferred by EKLAVYA are now correctly inferred by ReSIL. For

callees with Helper which are incorrectly inferred by EKLAVYA,

ReSIL can correctly identify the number of arguments for around

50% of them. Note that EKLAVYA is able to correctly infer the

number of arguments for the majority of the callers with Temp,
but it would misidentify registers that are used to store temporary

value rather than passing arguments. Such inaccuracy is mitigated

by ReSIL with top five outputs. Meanwhile, nearly all callers with

Wrapper that are incorrectly inferred by EKLAVYA are correctly

recovered by ReSIL.

The result seems to suggest that ReSIL does not perform well

withHelper . To get a better idea if the relatively small improvement

comes from the ineffectiveness of ReSIL or the nondeterminism

introduced in the deep learning training process, we evaluate ReSIL

and EKLAVYA by repeating the 5-fold cross validation process ten

times. We consider the signature recovered (in)correctly if all these

ten runs give (in)correct results. The result can be found Table 11.

Table 11: Number of complication scenarios incorrectly recovered

O
p
t

Fold

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

E R5 R1 E R5 R1 E R5 R1 E R5 R1 E R5 R1

U
nr

ea
d O0 - - - - - - - - - - - - - - -

O1 129 17 19 141 16 19 123 10 16 124 20 30 132 14 19

O2 33 3 3 37 3 4 35 7 9 31 4 7 37 4 4

O3 7 1 1 6 1 2 3 0 0 10 0 0 7 1 1

H
el
pe
r O0 - - - - - - - - - - - - - - -

O1 64 38 49 72 30 34 67 32 39 78 35 45 54 35 46

O2 14 5 6 18 11 11 14 10 10 19 13 16 13 10 11

O3 3 1 1 1 2 2 1 0 0 0 1 1 1 0 0

Te
m
p

O0 4 3 3 6 6 9 8 1 5 4 2 5 1 2 7

O1 4 0 0 1 1 1 8 5 5 6 3 6 6 4 1

O2 2 0 0 2 0 1 1 0 0 3 1 1 3 0 2

O3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

W
ra
pp

er O0 - - - - - - - - - - - - - - -

O1 14 1 1 9 0 0 17 0 0 9 1 2 4 1 1

O2 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E: EKLAVYA R5: ReSIL with top five output. R1: ReSIL with top one output.

From the analysis result, we find that ReSIL can correctly infer

the number of arguments for all callees withHelper andUnread in

the testing set. Meanwhile, ReSIL provides limited improvement in

inferring the number of arguments for other callees since the cases

of Helper and Unread will confuse the deep learning model to

incorrectly infer the signature for them. We also find that ReSIL can

correctly identify all Wrapper cases which are wrongly inferred

by EKLAVYA. Moreover, ReSIL can also help identify function sig-

nature for callers which do not have any arguments.

5.2 Security Applications of ReSIL
In this subsection, we look into a specific application of ReSIL and

evaluate the extent to which ReSIL could be used to improve the

effectiveness and security of CFI enforcement.



After we recover the function signature at both the indirect

caller and callee sites, we can enforce CFI by allowing only control

transfers from indirect callers to callees with matching signature.

Specifically, we discuss how ReSIL can be used to defend against

practical Counterfeit Object-oriented Programming (COOP) [27].

We stress that our purpose in this subsection is to provide examples

of security applications in which ReSIL plays a critical part. We

leave a more systematic coverage of all security applications as our

future work.

5.2.1 Effectiveness against COOP. By exploiting a memory cor-

ruption vulnerability, COOP diverts execution flows to a chain of

existing virtual function calls (so-called vfgadgets) via an initial

vfgadget. The COOP paper [27] proposes two main types of initial

vfgadgets, the main-loop gadget (ML-G) and the recursive gadget

(REC-G). Such gadgets are responsible for dispatching the vfgadget

chain using virtual function calls. We use the published exploits for

Firefox [27] to show how ReSIL could stop such an exploit.

The details about the gadgets can be found in Figure 8. Function

nsMultiplexInputStream::Close is used as the ML-G gadget,

while when we use ReSIL to recover the number of arguments for

the indirect callers in it, the result suggests that it has one argument,

which is the top one output of ReSIL. However, the inferred number

of arguments for other three functions are two using ReSIL with the

top one output. Therefore, the target of this indirect caller cannot

be any of the three functions, suggesting that ReSIL successfully

stop the Firefox COOP exploit.

Figure 8: Gadgets used in COOP’s 64-bit Firefox exploit

When we use EKLAVYA to infer the number of arguments for

function MVariadicInstruction::getOperand, the result is that
it only has one argument as the access of the second argument is

in the helper function at address 0x7d7c60. The inter-procedural
analysis performed by ReSIL can identify the instruction that ac-

cesses the second argument and the summary instruction inserted

by ReSIL enables the deep learning model to correctly recover the

number of arguments for it.

5.2.2 Other applications of ReSIL. In addition to applying ReSIL to

help CFI enforcement, ReSIL can also be used to help binary code

reuse, fuzzing, function reuse detection, and malware similarity

analysis. Reusing binary code is useful especially in scenarios where

the source code is not available. Extraction of a functional code

block (e.g., function) allows a programmer to add that functionality

directly to other applications, and function signature is required

so that we know how to invoke this code block [3]. In addition, as

shown by Jain et al. [15], the inferred function signature can be

used to improve fuzzing and type-based fuzzing can trigger bugs

much earlier than existing solutions. Function signature (number of

arguments and argument types) is also an important feature to help

perform malware similarity and function reuse analysis [16, 22].

5.3 Limitations of ReSIL
By analyzing the results, we notice a number of limitations of ReSIL

in inferring function signatures for the following scenarios.

• Callees (Callers) with more than six arguments. We find

it more difficult to infer the number of arguments for a callee

(caller) with more than 6 arguments. This is because the higher-

order arguments are passed onto the stack and typically accessed

in the later part of a callee. At the caller, the compiler always

uses register %rsp plus some displacements to pass them. When

optimization is enabled, local variables are also accessed using

%rsp plus some displacements. This causes ReSIL to misclassify

some argument-preparing instructions as storing local variables.

• Callees (Callers) whose arguments are accessed (prepared)
by instructions of large sizes. It is more difficult to correctly

identify arguments accessed (prepared) with instructions more

than five bytes long. For example, instruction

mov %rdi, 0x25e088(%rip) has seven bytes, and ReSIL cannot

correctly infer that there is a reading on the first argument %rdi
and cause the number of arguments to be underestimated.

• Callees with complex functionalities. We find it easier for

ReSIL to correctly identify arguments which are accessed in

the first two to three basic blocks of callees. This is also the

limitation of RNN which does not have good performance for

long sentences.

• Callers whose argument-preparing instructions precede
ret, call, and jump instructions. It appears that ReSIL does

not consider argument-preparing instructions that precede a ret,

call, and jump instruction in recovering the number of arguments.

In addition to these limitations, we also find caseswhere EKLAVYA

can infer the function signature correctly while ReSIL cannot, but

the number of these cases is quite small (fewer than 10 in our

dataset). We show one example of such cases in Figure 9. Here,

callee stringer has one argument and the access of the argument

(%dil) is after the call instruction at Line 5. ReSIL infers that this

callee has zero arguments while EKLAVYA outputs one. This is

because ReSIL finds that there are no summarized instructions

inserted before the call instruction at Line 5, and it (incorrectly)

output that this callee has zero arguments.



1 000000000041 e810 <stringer >:
2 #18 instructions
3 41e84e: je 41e8b8 <stringer +0xa8 >
4 #7 instructions
5 41e86b: call 402070
6 #21 instructions
7 41e8ce: test %dil ,0x1

Figure 9: Number of arguments inferred correctly by EKLAVYA but
wrongly by ReSIL

6 CONCLUSION
In this paper, we study the underlying reasons why state-of-the-art

deep learning approaches suffer lower accuracy in recovering func-

tion signatures from optimized binaries, and propose ReSIL which

incorporates compiler-optimization-specific domain knowledge

into the samples. Experimental results show that ReSIL effectively

improves the accuracy and F1 score in identifying function signa-

tures. Our evaluation also shows that ReSIL effectively improves

security of CFI enforcement.
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