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a b s t r a c t

Designated verifier signature (DVS) allows the signer to persuade a verifier the validity of a statement
but prevent the verifier from transferring the conviction. Strong designated verifier signature (SDVS) is a
variant of DVS, which only allows the verifier to privately check the validity of the signer’s signature. In this
work we observe that the unforgeability model considered in the existing identity-based SDVS schemes
is not strong enough to capture practical attacks, and propose to consider another model which is shown
to be strictly stronger than the old one. We then propose a new efficient construction of identity-based
SDVS scheme, which is provably unforgeable under the newly proposed definition, based on the hardness
of Computational Diffie–Hellman problem in the random oracle model. Our scheme is perfectly non-
transferable in the sense that the signer and the designated verifier can produce identically distributed
signatures on the same message. Besides, it is the first IBSDVS scheme that is non-delegatable with respect
to (an identity-based variant of) the definition proposed by Lipmaa et al. (ICALP 2005).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In Eurocrypt 1996, Jakobsson, Sako and Impagliazzo (Jakobsson
et al., 1996) proposed the notion of designated verifier signature
(DVS in short), which allows Alice, the signer, to prove the valid-
ity of a statement � to Bob, the verifier, in such a way that Bob is
convinced about the validity of �, but different from ordinary sig-
nature schemes, he could not transfer the conviction to any third
party. This is called non-transferability, which requires Bob being
able to produce signatures that are indistinguishable from those
generated by Alice. After receiving a signature on a message from
Alice, Bob is ensured that Alice made the signature as he did not
sign the message.

DVS allows any third party to tell from a signature that either
Alice or Bob generated it. Let us consider the example given in
Saeednia et al. (2003). A public institution initiates a call for ten-
ders, asking some companies to propose their prices for a set of
devices. The institution may require each of the companies to sign
their offers. However, no company desires its offer to affect others’
decisions, because a company may capture a competitor’s signed
offer on the transmission line to the initiator and prepares its offer
accordingly to increase its chance of being selected. For this pur-

� This work was supported by a grant from CityU (Project No. 7002585).
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E-mail addresses: csqhuang@gmail.com (Q. Huang), tslyg@nus.edu.sg (G. Yang),
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pose, DVS can come to help. However, the signature could tell the
company which captures it on the line before getting to the initiator
that who the signer is, since now it is sure that the institution did not
produce this signature. This problem was addressed by Jakobsson
et al. (1996). They proposed the notion of strong designated veri-
fier signature (SDVS), which allows only the designated verifier to
privately verify a signature from the signer. Anyone who does not
have the verifier’s secret key could not tell who produced this sig-
nature. This notion has not been formalized until Laguillaumie et
al.’s work, where the property privacy of the signer (PSI) is defined
(Laguillaumie and Vergnaud, 2004).

Identity-based cryptography was introduced by Shamir (1984),
aiming to solve the problems of certificate management in public
key infrastrucute (PKI). In an identity-based scheme the public key
of a user can be a string related its identity, such as email address, IP
address and etc. There is a trusted party, named public key generator
(PKG), which is responsible for the generation of user secret keys
according to the user’s identity. Anyone can secretly send a message
to a user by encrypting the message under the user’s identity, even
before the user obtains its secret key from the PKG. In this paper
we focus on SDVS in the identity-based setting. That is, we study
identity-based strong designated verifier signature (IBSDVS).

1.1. Related work

Since the introduction of DVS, it (and its variants) have attracted
the attention of many researchers. Steinfeld et al. (2003) proposed
an extension of DVS, called universal designated verifier signature
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(UDVS), in which the holder of a signature can designate any third
party as the verifier for verifying the signature so that the verifier is
convinced of that the holder indeed holds the signer’s signature but
in the meanwhile it cannot transfer this conviction to others. Many
UDVS schemes have been proposed since then, e.g. Steinfeld et al.
(2004), Zhang et al. (2005), Laguillaumie et al. (2006), Huang et al.
(2006, 2007), and Vergnaud (2006). Later, Baek et al. (2005) pro-
posed the notion of universal designated verifier proof to eliminate
the verifier’s need of creating and registering a public key.

Susilo et al. (2004) proposed an efficient IBSDVS scheme, whose
unforgeability is based on Bilinear Diffie–Hellman (BDH) assump-
tion. Huang et al. (2008) also proposed an IBSDVS scheme based
on Diffie–Hellman key exchange, which has very short signatures,
i.e. the signature is the hash value of the common secret key
shared between the signer and the designated verifier. The security
of their scheme relies on a stronger assumption, i.e. Gap Bilin-
ear Diffie–Hellman (GBDH). Recently, Kang et al. (2009) proposed
another IBSDVS scheme which is secure based BDH assumption.
Security proofs of all these schemes are done in the random oracle
model (Bellare and Rogaway, 1993).

Lipmaa, Wang and Bao considered a new type of attacks against
DVS schemes, named delegatability attacks, in which Alice or Bob
could release a derivative of their (common) secret key to any third
party say Ted, so that Ted can use this derivative to produce sig-
natures on any message for Bob on behalf of Alice. They proposed
the notion of non-delegatability, which basically requires that if one
produces a valid signature with respect to Alice and Bob, it must
‘know’ the secret key of either Alice or Bob. Many DVS schemes
and variants have been shown to be vulnerable to delegatability
attacks in Lipmaa et al. (2005). In the same year, Li et al. (2005)
analyzed the security of other four designated verifier signature
schemes and showed that they are also deletagable. Besides those
schemes, it is also easy to show that the identity-based schemes
proposed in Huang et al. (2008), Cao and Cao (2009), and Kang et
al. (2009) are also vulnerable to this kind of attacks.

Recently, Zhang and Mao (2008) proposed an IBSDVS scheme
which to the best of our knowledge, is the first one in the identity-
based setting that is claimed to be non-delegatable. However, the
proof of non-delegatability of their scheme does not strictly follow
the definition proposed by Lipmaa et al. (2005). It is unknown if
there is an algorithm which can extract the secret key of either
Alice or Bob, given black-box oracle access to such a forger.

Laguillaumie and Vergnaud (2004) formalized the motivation
for the introduction of SDVS, and proposed the notion of privacy of
signer’s identity, which says that if one does not have the verifier’s
secret key, it cannot distinguish the signatures produced by signer
Alice for verifier Cindy from those by signer Bob for Cindy.

1.2. Our contributions

Our contributions in this paper are in twofold. First, we show
that the model of unforgeability of IBSDVS considered in the exist-
ing work such as Susilo et al. (2004); Zhang and Mao (2008); Kang
et al. (2009) is not strong enough to capture practical attacks. We
propose to consider another model of unforgeability, and demon-
strate that this model is strictly stronger than the old one by giving
an example that is secure under the old model but insecure under
the new one.

Second, we propose another efficient IBSDVS scheme, which
is based on Gentry–Silverberg hierarchical identity-based encryp-
tion scheme (Gentry and Silverberg, 2002) and makes use of the
standard technique of non-interactive zero-knowledge proof of
knowledge obtained via Fiat–Shamir heuristic. Thus our scheme is
secure in the random oracle model. The purpose of using a proof of
knowledge is to obtain the non-delegatability. Though our scheme
does not outperform other schemes such as Susilo et al. (2004);

Zhang and Mao (2008); Huang et al. (2008); Kang et al. (2009),
in terms of signature size, it is provably unforgeable with respect
to the stronger model. The underlying assumption of unforgeabil-
ity of our scheme is the widely studied CDH assumption, which is
weaker than those assumptions used in Susilo et al. (2004); Zhang
and Mao (2008); Huang et al. (2008); Kang et al. (2009). Moreover,
our scheme is non-delegatable, and the proof follows the definition
proposed by Lipmaa et al. (2005), i.e. there is an extractor which,
given a forger algorithm, can extract the secret key of either the
signer or the verifier in the black-box manner. Our construction
of IBDVS also enjoys perfectly non-transferability in the sense that
the signer’s signatures can be perfectly simulated by the designated
verifier. In addition, we show that our scheme supports the privacy
of signer’s identity as defined in Laguillaumie and Vergnaud (2004);
Huang et al. (2008). As discussed in Sections 2.4 and 6.2, the privacy
of signer’s identity of our scheme is stronger than that of Huang et
al.’s scheme Huang et al. (2008).

1.3. Paper organization

In the next section we give the definition of IBSDVS and its secu-
rity model. Some mathematical background is given in Section 3.
We show in Section 4 that there is a gap between the old definition
of unforgeability and the new one considered here. Our IBSDVS
scheme is proposed in Section 5. We also prove its security with
respect to the given security definitions in the random oracle in
Section 6, along with a comparison between our scheme and other
existing schemes. The paper is concluded in Section 7.

2. Identity-based strong designated verifier signature

A strong designated verifier signature scheme (SDVS) Jakobsson
et al. (1996) consists of four (probabilistic) polynomial-time algo-
rithms, one for key generation, one for the signer to sign for a
designated verifier, one for the designated verifier to simulate the
signer’s signature, and the other for the designated verifier to check
the validity of a signature. Identity-based strong designated veri-
fier signature (IBSDVS) is the analogy of SDVS in the identity-based
setting. Below is the formal definition of it.

Definition 2.1 (IBSDVS). An identity-based strong designated ver-
ifier signature scheme consists of five (probabilistic) polynomial-
time algorithms, described as below:

• Setup: The algorithm takes as input 1k where k is the security
parameter, and outputs a master key pair for the PKG, i.e. (mpk,
msk)←Setup(1k), where mpk is published, and msk is kept secret
by the PKG.
• Extract: The algorithm takes as input the master secret key msk and

an identity id which can be a string of arbitrary length, and out-
puts the corresponding secret key uskid for the user with identity
id, i.e. uskid←Extract(msk, id).
• Sign: The algorithm takes as input the secret key of the signer

uskS, the identities of the signer and the designated verifier, i.e.
idS and idV, the master public key mpk and a message M∈ {0, 1}∗,
and outputs a signature �, i.e. �←Sign(uskS, idS, idV, mpk, M).
• Ver: The algorithm takes as input a message M, the identities of

the signer and the verifier, i.e. idS and idV, the verifier’s secret
key uskV, the master public key mpk and a purported signature �,
and outputs a bit b, which is 1 for acceptance or 0 for rejection,
i.e. b←Ver(M, idS, idV, uskV, mpk, �).
• Sim: The algorithm takes as input the secret key of the verifier

uskV, the identities of the signer and the designated verifier, i.e.
idS and idV, the master public key mpk and a message M, and
outputs a signature �, i.e. �←Sim(uskV, idS, idV, mpk, M).
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The completeness requires that for any (mpk, msk)←Setup(1k),
any idS, idV ∈ {0, 1}∗, uskS←Extract(msk, idS), uskV←Extract(msk,
idV), any message M∈ {0, 1}∗, let �←Sign(uskS, idS, idV, mpk, M)
and � ′ ←Sim(uskV, idS, idV, mpk, M), it holds that

Pr[Ver(M, idS, idV , uskV , mpk, �) = 1] = 1, and

Pr[Ver(M, idS, idV , uskV , mpk, � ′) = 1] = 1

where the probabilities are taken over the random coins used in
Setup, Extract, Sign and Sim, and the random choices of idS, idV and
M.

Besides the completeness, a non-delegatable IBSDVS scheme
should additionally satisfy unforgeability, non-transferability, pri-
vacy of signer’s identity and non-delegatability, which are defined
in the following.

2.1. Unforgeability

Roughly speaking, unforgeability requires that any third party
other than the signer and the designated verifier, cannot forge a
signature on behalf of the signer with non-negligible probability.
Formally, it is defined by the following game played between a
game challenger C and a probabilistic polynomial-time adversary
A:

1. C generates a master key pair (mpk, msk), and invokes A on input
mpk.

2. The adversary can issue queries to the following oracles adap-
tively for polynomially many times:
• OE: Given a query id from A, the oracle computes

uskid←Extract(msk, id), and returns uskid to A.
• OSign: Given a query of the form (idS, idV, M), the oracle returns

a signature � on M valid with respect to idS and idV back to A.
• OSim: Given a query of the form (idS, idV, M), the oracle returns

a signature � on M valid with respect to idS and idV back to A.
• OVer: Given a query of the form (idS, idV, M, �), the oracle

returns a bit b which is 1 if � is a valid signature on M with
respect to the signer idS and the designated verifier idV, and
0 otherwise.

3. Finally, A outputs its forgery, (id∗S, id∗V , M∗, �∗). It wins the game
if
(a) 1← Ver(M∗, id∗S, id∗V , uskV∗ , mpk, �∗);
(b) A did not query OE on input id∗S and id∗V ; and
(c) A did not query OSign and OSim on input (id∗S, id∗V , M∗) and

(id∗V , id∗S, M∗).

Definition 2.2 (Unforgeability). An IBSDVS scheme is said to be (t,
qE, qSign, qSim, qVer, �)-unforgeable if there is no adversary A which
runs in time at most t, issues at most qE queries to OE, at most
qSign queries to OSign, at most qSim queries to OSim, and at most
qVer queries to OVer, and wins the game with probability at least
�.

Remark 1: In the model of unforgeability of IBSDVS scheme con-
sidered in previous work such as Zhang and Mao (2008), Susilo
et al. (2004), and Kang et al. (2009) there is a restriction that the
adversary is not allowed to ask the target signer and verifier to
sign any message or verify the validity of a signature. Thanks to the
restriction, the old model of unforgeability is not strong enough to
capture practical attacks in which the adversary asks the signer to
sign a message for a verifier, or it eavesdrops the communication
between the signer and the verifier. In Section 4 we show that the
model of unforgeability we consider here is strictly stronger than

the old one by giving an example scheme that is secure under the
old model but insecure under ours.

2.2. Non-transferability

Non-transferability says that given a message-signature pair
(M, �) which is accepted by the designated verifier, it is
infeasible for any probabilistic polynomial-time distinguisher
to tell whether the message was signed by the signer or
the designated verifier. Formally, we consider the following
definition.

Definition 2.3 (Non-Transferability). An IBSDVS scheme is non-
transferable if the signature output by the signer is computationally
indistinguishable from that output by the designated verifier,
i.e.

{Sign(uskS, idS, idV , mpk, M)} ≈ {Sim(uskV , idS, idV , mpk, M)}

where the two ensembles are indexed by (idS, idV, M). That is,
for any probabilistic polynomial-time distinguisher D, for any (mpk,
msk)←Setup(1k), any identities idS, idV ∈ {0, 1}∗, any message
M∈ {0, 1}∗, let uskS←Extract(msk, idS) and uskV←Extract(msk, idV),
it holds that∣∣∣∣Pr

[
�0 ← Sign(uskS, idS, idV , mpk, M), �1 ← Sim(uskV , idS, idV , mpk, M)

b←${0, 1}, b′ ← D(mpk, msk, idS, idV , �b)
: b′ = b

]
− 1

2

∣∣∣∣ < �(k)

where �(k) is a negligible function1 in the security parameter k, and
the probability is taken over the randomness used in Setup, Extract,
Sign and Sim, and the random coins consumed by D.

If the two distributions are identical, we say that the IBSDVS
scheme is perfectly non-transferable.

Remark 2: The definition of non-transferability above is actu-
ally very strong, in the sense that even the trusted authority (the
PKG) cannot tell correctly that a signature is from the signer or
from the designated verifier, with a probability non-negligibly
larger than one-half. One can also define a weaker version of non-
transferability, by restricting the distinguisher from obtaining the
master secret key.

2.3. Non-delegatability

Intuitively, non-delegatability requires that to generate a valid
signature on a message, one has to ‘know’ the secret key of the
signer or the designated verifier. Formally, we consider the fol-
lowing definition, which is an extension of the definition given in
Lipmaa et al. (2005) to the identity-based setting.

Definition 2.4 (Non-delegatability). Let �∈ [0, 1] be the knowledge
error. An IBSDVS scheme is (t, �)-non-delegatable if there exists a
black-box knowledge extractor K that, for every algorithm F that
runs in time at most t, satisfies the following condition:

For every (mpk, msk)←Setup(1k), every idS, idV ∈ {0, 1}∗, every
uskS←Extract(msk, idS), uskV←Extract(msk, idV), and every mes-
sage M∈ {0, 1}∗, ifFproduces a valid signature on M with respect
to idS, idV with probability � > �, (denote this specific algorithm
by FS,V,M), then on input M and on oracle access to FS,V,M,K
produces either uskS or uskV in expected time t/(�−�), without
counting the time to make oracle queries. Note that the proba-
bility of F is taken over the choice of its random coins and the
choices of the random oracles.

1 A function f : N→ N is negligible in the security parameter k if for every polyno-
mial q( · ), there exists some K ∈N such that for every k > K, f(k) < 1/q(k).
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2.4. Privacy of signer’s identity

Privacy of signer’s identity, first defined by Laguillaumie and
Vergnaud (2004), is the formalization of the motivation for the
introduction of strong designated verifier signature. Basically, it
says that one cannot distinguish Alice’s signature for Bob from
Cindy’s signature for Bob, if the distinguisher does not know Bob’s
secret key. Below we give a formal definition of privacy of signer’s
identity of IBSDVS schemes. Consider the following game played
between the challenger C and a distinguisher D.

1. C generates the master key pair (mpk, msk) and invokesDon input
mpk.

2. D issues queries adaptively for polynomially many times as in
the unforgeability game.

3. D outputs two signer identities id∗S0
, id∗S1

and a verifier identity

id∗V , along with a message M∗. C then tosses a coin b∈ {0, 1},
computes uskS∗

b
← Extract(msk, id∗Sb

), and signs the message by
�∗ ← Sign(uskS∗

b
, id∗Sb

, id∗V , mpk, M∗). It returns �∗ back to D.
4. D continues to issue queries as in Step 2. Finally it outputs b′ and

wins the game if b′ = b and
(a) D did not query OE on input id∗V ;
(b) D did not query OVer on input (id∗Sd

, id∗V , M∗, �∗) for any
d∈ {0, 1}.

Definition 2.5 (Privacy of signer’s identity). An IBSDVS scheme is
said to be (t, qE, qSign, qSim, qVer, �)-PSI-secure if there is no adversary
D which runs in time at most t, issues at most qE queries to OE, at
most qSign queries to OSign, at most qSim queries to OSim, and at most
qVer queries to OVer, and wins the game above with probability that
deviates from one-half by more than �.

Remark 3: Our definition of privacy of signer’s identity is actu-
ally stronger than the one considered in Huang et al. (2008). In
their definition, the adversary cannot ask oracle OE for secret keys
of id∗S0

and id∗S1
, nor ask OSign and OSim on input (id∗Sd

, id∗V , M∗)
and (id∗V , id∗Sd

, M∗) for any d∈ {0, 1}; while in our definition it is
allowed to do so. They have the restriction mainly because their
signing algorithm is deterministic, and there is only one possible
signature for each tuple (idS, idV, M). While our signing algorithm
is randomized, there are exponentially many possible signatures
for each identity-message tuple.

Remark 4: We stress that if the IBSDVS scheme is provably
secure in the random oracle model, all the adversaries in games of
unforgeability, non-transferability, non-delegatability and privacy
of signer’s identity have access to the random oracles. The defini-
tions of these security properties are modified accordingly to take
into account the numbers of queries to the random oracles issued
by the adversaries.

3. Mathematical background

In this section we review some number-theoretic assumptions
that will be used in the proofs of our IBSDVS scheme.

(Admissible pairings): Let G and GT be two cyclic groups
of large prime order p. The mapping ê : G×G→ GT is said
to be an admissible pairing, if (1. bilinearity) ∀u, v∈G and
∀a, b∈Z, ê(ua, vb) = ê(u, v)ab; (2. non-degeneracy) ∃u, v∈G such
that ê(u, v) /= 1T , where 1T is the identity element of GT ; and (3.
computability). there exists an efficient algorithm for computing
ê(u, v) for any u, v∈G.

(CDH assumption): LetG be a cyclic group of prime order p, and
g be a random generator of G.

Definition 3.1 (CDH assumption). We say that the CDH assumption
(t, �) holds in G if there is no adversary A that runs in time at most
t and

Pr
[
a, b←$Zp, Z ← A(g, ga, gb) : Z = gab

]
> �

where the probability is taken over the random choices of a, b∈G
and random coins consumed by A.

(DBDH assumption): Let G,GT , ê be defined as above, and g be
a random generator of G.

Definition 3.2 (DBDH assumption). We say that the DBDH assump-
tion (t, �)-holds in the bilinear setting (G,GT , p, g, ê), if there is no
adversary A that runs in time at most t and

Pr
[

a, b, c←$Zp, Z0←$GT , Z1 ← ê(g, g)abc, d←${0, 1}, d′ ← A(g, ga, gb, gc, Zd) : d′ = d
]

> �

where the probability is taken over the random choices of
a, b, c ∈Zp, d∈ {0, 1}, and Z0 ∈GT , and the random coins consumed
by A.

4. A gap between the unforgeability models

In previous work on IBSDVS, i.e. Zhang and Mao (2008); Kang et
al. (2009); Susilo et al. (2004), it is commonly required in the game
of unforgeability that the adversary cannot ask the oracles OSign

and OSim for a signature on any message with respect to the target
signer id∗S and the target verifier id∗V . The proofs of unforgeability of
these schemes heavily rely on this restriction. Specifically, they base
the unforgeability of the schemes on the Bilinear Diffie–Hellman
assumption.2 The common method in the security reductions is to
set the master public key to be g1 = ga, and control the output of the
random oracles so that uskS∗ = H(id∗S)a = gab and uskV∗ = H(id∗V )a =
gac . The generation/verification of a signature will involve the com-
putation of the common secret key shared between the signer and
the verifier, i.e. ê(uskS, H(idV)) = ê(H(idS), uskV). If the adversary suc-
ceeds in forging a signature with respect to id∗S and id∗V , the BDH
problem solver then can find the solution to the given BDH prob-
lem by computing the common secret key shared between id∗S and
id∗V from the forged signature. Since the problem solver does not
know ê(g, g)abc during the simulation, it could not sign any mes-
sage nor verify the validity of a signature with respect to id∗S and
id∗V . That is where the restriction in the old unforgeability game
comes from. Such a restriction reduces the level of unforgeability
of IBSDVS schemes significantly. In this section we show that our
new definition of unforgeability is strictly stronger than the old one
considered in Zhang and Mao (2008); Kang et al. (2009); Susilo et
al. (2004). Namely, we give an IBSDVS scheme that is secure under
the old definition (with the restriction) but insecure under the new
one. Here we take Kang–Boyd–Dawson IBSDVS scheme Kang et
al. (2009) as an example. Before any further discussion, we briefly
review their scheme as below:

Kang–Boyd–Dawson IBSDVS Scheme: Let (G,GT , g, p, ê) be
defined as in Section 3. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Z∗p
be two cryptographic hash functions. The public key of the PKG is
(G,GT , g, p, ê, H1, H2, g1 = g˛), where ˛←$Zp is the master secret
key. The secret key of each identity id is uskid = H1(id)˛. To sign a
message M for a designated verifier with identity idV, the signer

2 Briefly, the Bilinear Diffie–Hellman assumption states that given g, ga , gb , gc for
some random a, b, c ∈Zp , it is infeasible to find ê(g, g)abc .
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with identity idS chooses at random k∈Z∗p and computes

t = ê(g, H1(idV ))k, T = gk · uskH2(M,t)
idS

, � = ê(T, H1(idV )).

The signature on M is (�, t), which can be verified by checking if

�
?=t · ê(H1(idS), uskidV )H2(M,t) (1)

The designated verifier can simulate the signature by choosing at
random k∈Z∗p, and computes

t̂ = ê(g, H1(idV ))k and �̂ = t̂ · ê(H1(idS), uskidV )H2(M,t̂).

It was shown in Kang et al. (2009) that the scheme is unforgeable
with the aforementioned restriction, based on the hardness of BDH
problem.

The attack: If we consider the strengthened model of unforge-
ability (Def. 2.2), it is easy to show that Kang–Boyd–Dawson IBSDVS
Scheme is forgeable. Consider Eq. (1) in the verification of a sig-
nature (�, t). An adversary against the unforgeability can forge a
signature on any message as follows:

1. Choose at random a message M from the message space and the
target identities id∗S and id∗V , and ask the oracle OSign to sign M
with respect to id∗S, id∗V , which returns a valid signature (�, t).

2. Compute SKS∗,V∗ = (�/t)H2(M,t)−1
, which is the common secret

key shared between id∗S and id∗V . Since the group is of prime
order p which is public, the computation of SKS∗,V∗ is feasible.

3. To sign a message M′, choose at random t′ ∈GT and compute
� ′ = t′ · SKH2(M′,t′)

S∗,V∗ . The signature on M′ with respect to id∗S and
id∗V is (� ′, t′).

The attack above can also be easily modified so that after eaves-
dropping only one signature on any message (not chosen by the
adversary), the adversary then forges signatures on any message
for the verifier on behalf of the signer. This attack shows that there
is a big gap between the unforgeability of IBSDVS schemes with the
aforementioned restriction and that defined in Def. 2.2. In the next
section we propose an IBSDVS scheme that is provably unforgeable
under Def. 2.2.

5. Our non-delegatable IBSDVS

5.1. The scheme

Our IBSDVS scheme is based on Gentry–Silverberg hierarchical
identity-based encryption scheme Gentry and Silverberg (2002).
Different from previous IBSDVS schemes, the generation of a sig-
nature in our scheme does not involve the computation of the
common secret key shared between the signer and the verifier.
Instead, the signer uses its own secret key to produce an identity-
based designated verifier signature, and then somehow ‘encrypts’
the signature for the designated verifier so that it leaves a trap-
door for the simulator of unforgeability game to generate (or
verify) a signature even without the secret keys of the signer and
the verifier (in the random oracle model). Below is the detailed
construction of our IBSDVS scheme. Setup(1k): The PKG chooses
two cyclic groups of prime order p of k bits, G and GT , a ran-
dom generator g of G, and an admissible pairing ê : G×G→ GT .
It selects at random ˛←$Zp, sets g1 = g˛, and selects three collision-
resistant hash functions, H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G \ {1}, H3 :
({0, 1}∗)3 ×G3 ×G2

T → Zp, H4 : G×GT → G and H5 : G→ Zp, which
will be modeled as random oracles in the security proofs. The mas-
ter public key is set to be mpk = (g, g1, H1, H2, H3, H4, H5), and the
master secret key is msk = ˛. Extract(msk, id): The secret key of a
user with identity id is set to be uskid = H1(id)˛. Sign(uskS, idS, idV,

mpk, M): To sign a message M with respect to the designated verifier
(with identity idV), the signer (with identity idS) does as follows:

1. Choose at random r←$Zp. Set S̄1 = uskS · H2(M)r , and s = H5(S̄1).
2. Set S2 = gs, T = ê(H1(idV), g1)s, and S1 = S̄1 · H4(S2, T).
3. Using r and hash function H3, compute the following proof of

knowledge:

S3 = PK

{
ˇ : ê(H2(M), g)ˇ = ê(S̄1, g)

ê(H1(idS), g1)
∨ ê(H2(M), g)ˇ

= ê(S̄1, g)
ê(H1(idV ), g1)

}
(M̄) (2)

where M̄ = (idS, idV , M, S1, S2, S̄1). Readers can refer to Section
5.2 for the details of the generation and verification of (2).

4. Set � = (S1, S2, S3).

Ver(M, idS, idV, uskV, mpk, �): After receiving a signature � = (S1,
S2, S3) and a message M from the signer (with identity idS), the ver-
ifier (with identity idV and secret key uskV) does as the following:

1. Compute T = ê(uskV , S2), S̄1 = S1/H4(S2, T) and s = H5(S̄1).

2. Check if S2
?=gs, and check the validity of the proof of

knowledge S3 with respect to S̄1 and the ‘message’ M̄ =
(idS, idV , M, S1, S2, S̄1). It rejects if either fails, and accepts oth-
erwise.

Sim(uskV, idS, idV, mpk, M): To simulate a signature on M, the
verifier does as the signer, except that S̄1 is computed as S̄1 = uskV ·
H2(M)r .

Efficiency: It is readily seen that the proposed IBSDVS scheme
above is practically efficient. The master public key consists of two
group elements ofG and the description of five hash functions. The
secret key of each user contains merely one element of G. A signa-
ture consists of two elements of G, two elements of GT and three
elements ofZp. The signing algorithm requires two exponentiations
in G, four exponentiations in GT and three pairing evaluations. The
verification of a signature requires one exponentiation in G, four
exponentiations in GT and five pairing evaluations.

5.2. Details of generation and verification of (2)

To generate the proof of knowledge (2), the signer does as the
following:

1. Choose r0, e1, z1←$Zp.
2. Compute R0 = ê(H2(M), g)r0 and R1 = ê(H2(M), g)z1 ·

(ê(S̄1, g)/ê(H1(idV ), g1))
−e1 .

3. Set e = H3(idS, idV , M, S1, S2, S̄1, R0, R1), e0 = e− e1 and
z0 = r0 + ˇe0.

The proof of knowledge S3 is set to be S3 = (R0, e0, z0, R1, z1). 3

A designated verifier with identity idV can produce an indistin-
guishable proofs of knowledge similarly. The difference is to replace
the subscripts of the variables above with their complements.

To verify a proof of knowledge S3 = (R0, e0, z0, R1, z1), the verifier
does as the following:

3 Actually, one can set S3 = (e0, z0, e1, z1) which has smaller size. However, for the
sake of simplicity in the security proofs, we choose to include the R values in S3.
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1. Compute e1 = H3(idS, idV , M, S1, S2, S̄1, R0, R1)− e0.
2. Accept if the two equations below hold, and reject otherwise.

ê(H2(M), g)z0 ?=R0 ·
(

ê(S̄1, g)
ê(H1(idS), g1)

)e0

, (3)

ê(H2(M), g)z1 ?=R1 ·
(

ê(S̄1, g)
ê(H1(idV ), g1)

)e1

. (4)

The proof of knowledge can be simulated without the knowl-
edge of ˇ efficiently in the random oracle model. Namely, the
simulator randomly selects e0, z0, e1, z1←$Zp, computes

R0 =
ê(H2(M), g)z0

(ê(S̄1, g)/ê(H1(idV ), g1))
e0

and

R1 =
ê(H2(M), g)z1

(ê(S̄1, g)/ê(H1(idV ), g1))
e1

,

and then patches the random oracle H3 with
((idS, idV , M, S1, S2, S̄1, R0, R1), e), i.e. setting
H3(idS, idV , M, S1, S2, S̄1, R0, R1) = e. It is easy to see that the
simulated proof also passes the verification above, and the
simulated proof is perfectly indistinguishable from a real proof
generated by the signer or the designated verifier.

Moreover, given two valid tuples (R0, e0, z0, R1, z1) and
(R0, e′0, z′0, R1, z′1) and two different answers to the query
(idS, idV , M, S1, S2, S̄1, R0, R1) returned by the random oracle H3,
say e and e′ /= e, there is an efficient algorithm which extracts the
secret ˇ from the two tuples.

If e0 /= e′0. Let R0 = gr0 for some r0 ∈Zp. From the two instances
of Eq. (3) we have that z0 = r0 + e0ˇ0 and z′0 = r0 + e′0ˇ0. Then ˇ0

can be obtained by computing ˇ0 = (z0 − z′0) · (e0 − e′0)−1. It can be

verified that ê(S̄1, g) · ê(H1(idS), g1)−1 = ê(H2(M), g)ˇ0 . On the other
hand, if e− e0 /= e′ − e′0, the extractor can extract another ˇ1 ∈Zp

from (e1, z1, e′1, z′1) as above, such that ê(S̄1, g) · ê(H1(idV ), g1)−1 =
ê(H2(M), g)ˇ1 .

6. Security analysis and comparison

6.1. Proofs

Theorem 6.1. If CDH assumption (t, �)-holds in G, the IBDVS
scheme above is (t′, qH1 , qH2 , qH3 , qH4 , qH5 , qE, qSign, qSim, qVer, �′)-
unforgeable, where t′ = �(t) and �′ < 16q2

H1

√
qH3

√
�+ (2/p).

Proof. Given an adversary A against the unforgeability of the
IBSDVS scheme, we use it to build another algorithm B for solv-
ing the CDH problem. Given a random instance of CDH problem,
(g, g1 = ga, g2 = gb),B aims to find gab. It works as follows:

Setup: B invokes A on input mpk = (g, g1). Note that the mas-
ter secret key is msk = log gg1 = a that is unknown to B. It selects at
random two distinct indices iS, iV from {1, 2, · · · , qH1 }, and then sim-
ulates oracles forA as below, which includes random oracles H1, H2,
H3, H4, H5, extraction oracle, signing oracle and verification oracle.

Query: B simulates the following oracles for A by maintaining
five hash tables, HT1, HT2, HT3, HT4, HT5. For simplicity, we assume
that A does not issue repeated queries to the oracles,4 and that
A would not use a hash value before asking the corresponding
random oracle on the input.

4 If a query was asked before, B retrieves the answer from its memory and returns
it.

• H1 Query: Given the i-th query idi,B selects a distinct wi←$Zp

at random. If i /∈ {iS, iV },B sets H1(idi) = gwi ; otherwise, it sets
H1(idi) = gwi

2 . In either case, B stores the tuple (idi, H1(idi), wi)
into table HT1 and returns H1(idi) back to A.
• H2 Query: Given a query M,B randomly selects a distinct m∈G,

stores (M, m) into table HT2, and returns m.
• H3 Query: Given a query (idS, idV , M, S1, S2, S̄1, R0, R1),B

chooses at random a distinct e←$Zp, and sets
H3(idS, idV , M, S1, S2, S̄1, R0, R1) = e. It returns e to A and
stores ((idS, idV , M, S1, S2, S̄1, R0, R1), e) in table HT3.
• H4 Query: Given a query (S2, T),B selects at random a distinct

T̄←$G. It returns T̄ and stores ((S2, T), T̄) into table HT4.
• H5 Query: Given a query S̄1,B chooses at random a distinct s←$Zp.

It returns s and stores (S̄1, s) into table HT5.
• Extract Query: Given an identity id,B retrieves the tuple

(id, H1(id), c, w) from table HT1. If id /∈ {idiS
, idiV },B computes

the user secret key as uskid = gw
1 and returns it to A; otherwise,

it aborts.
• Sign/Sim Query: Thanks to the perfect non-transferability, it suf-

fices to consider how to answer Sign queries. Given a query
(idS, idV , M),B retrieves the tuple (idS, H1(idS), cS, tS) from HT1.
We consider the following cases:
• idS /∈ {idiS

, idiV }: B generates the user secret key of idS as in the
simulation of Extract oracle, and then computes the signature �
by running the Sign algorithm on input (uskS, idS, idV, mpk, M).
• idV /∈ {idiS

, idiV }: B generates the user secret key of idV, and
prepares the answer as above using uskV.
• {idS, idV } = {idiS

, idiV }: B selects at random S̄1←$G. Note that
there exists some r ∈Zp (unknown to B) such that S̄1 = H(idS)a ·
H2(M)r . B then calls the random oracle H5 on input S̄1, and gets
s. It computes T = ê(H1(idV), g1)s and S2 = gs, asks the random
oracle H4 on input (S2, T) and obtains the answer T̄ = H4(S2, T).
It then sets S1 = S̄1 · T̄ , and calls the simulator of the proof
of knowledge to produce S3 in the way specified in Section
5.2. In case there is any collision when patching the oracles
H3, H4, H5,B aborts. This event occurs only with probability
at most (qSign + qSim)(3(qSign + qSim)+ qH3 + qH4 + qH5 )/p in the
whole simulation. Denote this upper bound by �1.

• Ver Query: Given a query (M, idS, idV, �) where � = (S1, S2, S3), we
consider the following two cases:
• idV /∈ {idiS

, idiV }: B generates the user secret key of idV, runs
the verification algorithm on input (M, idS, idV, uskV, mpk, �)
and returns the decision bit.
• idV ∈ {idiS

, idiV }: B looks up the table HT5: for each tuple (S̄1, s)
in HT5,B checks if S2 = gs. If such a tuple is found, B stops
the look-up. Note that according to the simulation of H5, with
probability at most (qH5 + qSign + qSim)/p, there are more than
one satisfactory tuples. Denote the bound by �2. B computes
T = ê(H1(idV), g1)s, asks the random oracle H4 on input (S2, T)

and obtains the answer T̄ . It then checks if S̄1
?=S1/T̄ . If not, B

returns 0 indicating that the signature is invalid with respect to
idS, idV; otherwise, B checks the validity of the proof of knowl-
edge S3 with respect to the ‘message’ (idS, idV , M, S1, S2, S̄1). If
invalid, B returns 0; otherwise it returns 1.
If there is no such a tuple in HT5,B simply returns 0. In this case,

instead of asking H5 for s,A chose s by itself. Let S̄1 be S1/H4(S2,
ê(H1(idV), g1)s). Since the output of oracle H5 is random, with
probability at most 1/p, the s and S̄1 chosen by A satisfies that
H5(S̄1) = s. Hence, with probability at least (1−1/p), the signature
submitted by A is invalid with respect to idS, idV.

Forge: Finally, A outputs its forgery, (id∗S, id∗V , M∗, �∗) where
�∗ = (S∗1, S∗2, S∗3), and S∗3 = (R∗0, e∗0, z∗0, R∗1, e∗1). Assume that the
forgery is valid. If {id∗S, id∗V } /= {idiS

, idiV },B aborts. The valid-
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ity of �∗ guarantees that with probability at least (1−1/p)
there exist a tuple ((id∗S, id∗V , M∗, S∗1, S∗2, S̄∗1, R∗0, R∗1), e∗) in HT3,
a tuple ((S∗2, T∗), T̄∗) in HT4 and a tuple (S̄∗1, s∗) in HT5 such
that S∗2 in the first tuple is equal to that in the second tuple,
S̄∗1 in the first tuple is equal to that in the third tuple, gs∗ = S∗2
and S∗1/T̄∗ = S̄∗1. B rewinds A to the status of querying oracle
H3 on input (id∗S, id∗V , M∗, S∗1, S∗2, S̄∗1, R∗0, R∗1). It chooses at ran-
dom e′∗ /= e∗ ∈Zp, and answers A with e′∗. It then continues
to simulate oracles for A as in Query phase. Suppose that, A
outputs a successful forgery once again, say (id′∗S, id′∗V , M′∗, � ′∗)
where � ′∗ = (S′∗1, S′∗2, S′∗3) and S′∗3 = (R′∗0, e′∗0, z′∗0, R′∗1, z′∗1). If (id′∗S,
id′∗V , M′∗, S′∗1, S′∗2, S̄∗′1 , R′∗0, R′∗1) /= (id∗S, id∗V , M∗, S∗1, S∗2, S̄∗1, R∗0, R∗1),B
aborts. Otherwise, B calls the extractor (see Section 5.2) to extract
the secret randomness r∗ from (S∗1, S∗2, S̄∗1, (S∗3, S′∗3)). Retrieve the
tuples (id∗S, H1(id∗S), wS) and (id∗V , H1(id∗V ), wV ) from HT1.

• If ê(H2(M∗), g)r∗ = ê(S̄∗1, g)/ê(H1(id∗S), g1), we have that

S̄∗1 = H1(id∗S)a · H2(M∗)r∗ . Recall that H1(id∗S) = gwS
2 = gbwS .

Hence, B recovers gab from S̄∗1 by computing gab =(
S̄∗1/H2(M∗)r∗)1/wS .

• If ê(H2(M∗), g)r∗ = ê(S̄∗1, g)/ê(H1(id∗V ), g1), we have that

S̄∗1 = H1(id∗V )a · H2(M∗)r∗ . Recall that H1(id∗V ) = gwV
2 = gbwV .

Hence, B recovers gab from S̄∗1 by computing gab =(
S̄∗1/H2(M∗)r∗)1/wV .

In either case B solves the given CDH problem.
Probability analysis: There are some cases in the first run of A

in which B aborts.

1. A collision occurs when patching the oracles H3, H4, H5 in sim-
ulating oracles Sign and Sim. As analyzed above, the event does
not occur with probability at least 1−�1.

2. A issues a query to Extract oracle on input idiS
or idiV , or

{id∗S, id∗V } /= {idiS
, idiV } in the forgery phase. According to the

game specification, A could not issue queries to Extract oracle on
input id∗S, id∗V in order to win the game. Hence, this event does

not occur with probability at least 1/

(
qH1

2

)
= 2/qH1 (qH1 − 1) >

2/q2
H1

, due to the random choices of iS, iV.
3. B believes that A’s forgery is invalid. This does not occur with

probability at least (1−1/p)�′, where the factor 1−1/p is due to
the same reason in the second case in answering a Ver query.

Conditioned on that B does not abort, the simulation of the ora-
cles byB is perfect, except that the simulation of Ver oracle is at most
(�2 + qVer/p) different from a real oracle, where qVer/p comes from
that A guesses the output of H5 correctly in the qVer queries to ora-
cle Ver (the second case in the simulation of oracle Ver). Therefore,
in the first run of A, algorithm B does not abort with probability at
least

ε ≥ 2

q2
H1

(1− �1)
(

1− �2 −
qVer

p

)((
1− 1

p

)
�′ − 1

p

)

where the last 1/p comes from that A guesses the value
H3(id∗S, id∗V , M∗, S∗1, S∗2, S̄∗1, R∗0, R∗1) correctly. A similar analysis with
that in Pointcheval and Stern (2000); Boneh et al. (2004) shows
that with probability at least � ≥ ε2/16qH3 ,A outputs a successful
forgery in the second run that satisfies the aforementioned con-
ditions (given in the Forge phase), which, together with the valid
forgery in the first run, enables B to solve the given CDH problem.

Thus we have that,

� ≥ ε2

16qH3

≥ 1

4qH3 q4
H1

(1−�1)2
(

1−�2−
qVer

p

)2((
1− 1

p

)
�′ − 1

p

)2

(∗)
>

1

64qH3 q4
H1

((
1− 1

p

)
�′ − 1

p

)2

⇒ �′ <
(

8q2
H1

√
qH3

√
�+ 1

p

)(
1−1

p

)−1
<16q2

H1

√
qH3

√
�+2

p

where the inequality (*) follows from the fact that �1 < 1/2 and
�2 + qVer/p < 1/2. This completes the proof.

Theorem 6.2. The proposed IBSDVS scheme is perfectly non-
transferable (see Def. 2.3).

Proof. Recall that a signature (S1, S2, S3) from the signer satisfies
that

S1 = H1(idS)˛ · H2(M)r · H4(gs, ê(H1(idV ), g1)s), S2 = gs,

and a signature (S′1, S′2, S′3) from the designated verifier satisfies
that

S′1 = H1(idV )˛ · H2(M)r′ · H4(gs′ , ê(H1(idV ), g1)s′ ), S′2 = gs′ .

where s = H5(H1(idS)˛ ·H2(M)r) and s′ = H5(H1(idV )˛
H2(M)r′ ). Thus,

(S1, S2) (resp. (S′1, S′2)) is fully determined by S̄1 = H1(idS)˛ · H2(M)r

(resp. S̄′1 = H1(idV )˛ · H2(M)r′ ). Therefore, it is equivalent to consider
the indistinguishability between (S̄1, S3) and (S̄′1, S′3).

Since the group G is of prime order, H2(M) is a generator of
G, and thus H2(M)r perfectly hides the user secret key. Therefore,
uskS ·H2(M)r and uskV · H2(M)r′ are identically distributed. Given an
S̄1, there exist r, r′ ∈Zp such that S̄1 = uskS · H2(M)r = uskV · H2(M)r′ .
On the other hand, the proof of knowledge S3 is perfectly witness
indistinguishable, thus revealing no information about the ran-
domness r. Hence, (S̄1, S3) and (S̄′1, S′3) are identically distributed.
In a consequence, the signature � = (S1, S2, S3) is information-
theoretically hiding. �

Theorem 6.3. Assume that for some identities idS, idV ∈ {0, 1}∗ and
some message M∈ {0, 1}∗, the algorithm F can produce valid signa-
tures in time t and with probability �. Then the IBSDVS scheme is (64t/�,
1/p)-non-delegatable (see Def. 2.4) in the random oracle model.

Proof. Assume that � > � = 1/p, where 1/p is the probability that F
guesses correctly the hash value without asking the random oracle
H3. There is an extractor K that, on input � and black-box oracle
access to algorithm F, extracts the secret key of either the signer or
the designated verifier.

Let FS,V,M be a forger with input (idS, idV, M). Consider two
runs of FS,V,M on the same random input to FS,V,M . In both runs,
K executes FS,V,M step-by-step and simulates the random oracles
for A, except that K returns different random values (e versus e′)
as the answer to the hash query H3(idS, idV , M, S1, S2, S̄1, R0, R1).
Since S1, S2, S̄1, R0, R1 are in the input to the hash function, their
values must be unchanged in both of the two runs. If both
signatures, i.e. (S1, S2, S3 = (R0, e0, z0, R1, z1)) and (S1, S2, S′3 =
(R0, e′0, z′0, R1, z′1)), are valid, one can extract the user secret key as
follows:

1. Find in table HT5 (for the simulation of oracle H5) the tuple (S̄1, s)
such that gs = S2 and S̄1 is equal to that in the input to oracle H3,
and thus equal to S1/H4(S2, ê(H1(idV), g1)s). As discussed in the
proof of Theorem 6.1, the validity of the signature guarantees
that with probability at least (1− 1/p)(1− (qH5 + qSign + qSim)/p)
there is exactly one such tuple in the table.

2. Call the extractor of the proof of knowledge (described
in Section 5.2) to extract the randomness r from (S3, S′3).
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Table 1
Comparison between our scheme and other existing IBSDVS schemes.

Scheme Signature-size Non-Trans Non-Dele UF PSI RO Assump

Huang et al. (2008) Z
∗
p Perfect × Full

√ √
GBDH

Kang et al. (2009) 2GT Perfect × Weak ?
√

BDH
Susilo et al. (2004) 1G+ 1Zp + 1Z∗p Perfect ? Weak ?

√
BDH

Zhang and Mao (2008) 3G Perfect ? Weak ?
√

BDH
Ours 2G+ 2GT + 3Zp Perfect

√
Full

√ √
CDH

If ê(H2(M), g)r = ê(S̄1, g)/ê(H1(idS), g1), one can find uskS =
S̄1/H2(M)r . If ê(H2(M), g)r = ê(S̄1, g)/ê(H1(idV ), g1), one can find
uskV = S̄1/H2(M)r .

Now assume that Rewind is an algorithm that given oracle
access to FS,V,M , in time TR produces two different valid signatures
(S1, S2, S3 = (R0, e0, z0, R1, z1)) and (S′1, S′2, S′3 = (R′0, e′0, z′0, R′1, z′1))
on M with respect to idS, idV, such that (S1, S2, S̄1, R0, R1) =
(S′1, S′2, S̄′1, R′0, R′1). Then one can compute uskS or uskV with
probability (1− 1/p)(1− (qH5 + qSign + qSim)/p). Thus, given that
algorithm Rewind runs in expected time 56/((1− 1/p)(1− (qH5 +
qSign + qSim)/p)�) < 56/(7�/8) = 64/�, we have proven the theo-
rem.

The algorithm Rewind works as the following. We are given an
algorithmFS,V,M which returns a valid signature with probability at
least �, where the probability is taken over the random coins used
by FS,V,M and the random outputs of H3 (and H1, H2, H4, H5). Let H be
a matrix with a row for each possible set of random coins for FS,V,M

and the random outputs of the oracles H1, H2, H4 and H5, and one
column for each possible H3 value e. Write 1 in an entry if FS,V,M

outputs a valid signature with corresponding random choices and
the H3 value, and 0 otherwise. Using FS,V,M as a black box, we can
probe any entry in H, and the goal is to find two 1’s in the same row.
Note that � equals the fraction of 1-entries in the matrix H. Using
an algorithm from Damgård and Fujisaki (2002), Rewind can find
such 1-entries in time 56/((1− 1/p)(1− (qH5 + qSign + qSim)/p)�) <
64/�. �

Theorem 6.4. If DBDH assumption (t, �)-holds, our IBSDVS scheme
is (t′, qH1 , qH2 , qH3 , qH4 , qH5 , qE, qSign, qSim, qVer, �′)-PSI-secure, where
t′ ≈ t and �′ ≤ 2qH1 �+ (1/p).

Proof. Let D be a distinguisher for the PSI-security of our IBSDVS
scheme. We use it to construct another algorithm D for breaking
DBDH assumption. Given a random instance of DBDH problem, i.e.
(g, ga, gb, gc, Z), D invokes D on input (g, g1 = ga), and then simulates
oracles for it.

In the simulation of H1, D chooses at random i∈ {1, · · · , qH1 }.
For the j-th (j /= i) query idj, D randomly selects wj ∈Zp, stores
(idj, gwj , wj) in a hash table HT1, and returns gwj to D. For the i-
th query idi, D stores (idi, gb, ⊥ ) in HT1, and returns gb. Here
idi is the guess of id∗V that will be chosen by D as the target veri-
fier.

Oracles H2, H3, H4, H5 can be simulated naturally. Namely,
for a query, D randomly chooses its answer from the cor-
responding range of the function, and returns it. The query-
answer pairs are stored in separate tables, i.e. HT2, HT3, HT4,
HT5.

For the extraction oracle OE, given an identity id, if it is
the i-th query to H1, D aborts and outputs a random bit; other-
wise, let (id, gw, w) be the entry in HT1, D returns uskid = gw

1 to
D.

For the signing oracleOSign and the simulation oracleOSim, given
a query (idS, idV, M), if idS (resp. idV) is not the i-th query to H1,
D computes uskS (resp. uskV) as in the simulation of OE, and then

generates the signature � on M by following the Sign (resp. Sim)
algorithm. Since our scheme is perfectly non-transferable, the two
oracles are perfectly simulated. Since idS /= idV, it must hold that
either idS /= idi or idV /= idi.

For the verification oracle OVer, given a query (M, idS, idV, �)
where � = (S1, S2, S3), if idV is not the i-th query to H1, D simply
calls the Ver algorithm to give the answer as it knows uskV; oth-
erwise, it returns the answer in the same way as in the proof of
unforgeability, which causes at most qVer/p difference from a real
oracle.

At some timeDoutputs two signer identities id∗S0
, id∗S1

, a verifier
identity id∗V and a message M∗. If id∗V is not the i-th query to H1, D
aborts and returns a random bit. Otherwise, it tosses a random coin
b, computes usk∗Sb

, and produces �∗ on M∗ for id∗V using usk∗Sb
as

below:

• Choose at random r ∈Zp, and compute S̄∗1 = usk∗Sb
· H2(M∗)r .

• Set S∗2 = gc , and T∗ = Z, and S∗1 = S̄∗1 · H4(S∗2, T∗).
• Use r to generate S∗3 by following the generation of the proof of

knowledge described in Section 5.2.

It returns �∗ = (S∗1, S∗2, S∗3) back to D, which then contin-
ues to issue queries. D responses to the queries as before,
except that if D queries H5 on input S̄∗1 or queries H4 on
input (S∗2, T∗), D aborts and outputs 1. Finally D outputs a bit
b′. If D wins the game, D outputs 1; otherwise, it outputs
0.

Probability analysis: First of all, since i is randomly chosen
from {1, · · · , qH1 }, the probability that D did not query OE on input
the i-th identity and id∗V is exactly the i-th identity queried to
H1, is 1/qH1 . If D’s guess of i is wrong, it outputs 1 with prob-
ability 1/2 no matter Z = ê(g, g)abc or not. So we do not need to
consider it in the rest of the analysis. Conditioned on that D’s
guess of i is correct, we the analyze the probability that D outputs
1.

• Z = ê(g, g)abc: In this case, the challenge signature is identically
distributed as a real one. Let ε be the probability that D asks H5
on input S̄∗1 or asks H4 on input (S∗2, T∗). According to the sim-
ulation above, D outputs 1 in this case with probability at least
ε + (1− ε)(�′ + 1/2).
• Z←$GT : In this case, since Z is a random element of GT ,D has no

information about the value of H4(S∗2, Z) and S∗1 perfectly hides the
bit b. Moreover, since r is randomly chosen from Zp, it becomes
that S̄∗1 is also a random element of G. Thus, the probability that
it asks H5 on input S̄∗1 or asks H4 on input (S∗2, Z) is at most 2/p.
Hence, the probability that D outputs 1 in this case is at most
2/p + (1−2/p)/2.
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Let d be the bit D outputs. We then have that

� =
∣∣∣Pr[d = 1 ∧ Z = ê(g, g)abc]− Pr[d = 1 ∧ Z←$GT ]

∣∣∣
= 1

2

∣∣∣Pr[d = 1|Z = ê(g, g)abc]− Pr[d = 1|Z←$GT ]
∣∣∣

≥ 1
2

1
qH1

∣∣∣(ε+ (1− ε)
(

�′ + 1
2

))
−

(
2
p
+

(
1− 2

p

)
1
2

)∣∣∣
= 1

2qH1

∣∣∣1
2

ε+ (1− ε)�′ − 1
p

∣∣∣
= 1

2qH1

∣∣∣�′ +(
1
2
− �′

)
ε− 1

p

∣∣∣
≥ 1

2qH1

(
�′ − 1

p

)
since �′ ≤ 1

2

⇒ �′ ≤ 2qH1 �+ 1
p

This completes the proof.

6.2. Comparison

In Table 1 we give a comparison of our scheme with those
existing IBSDVS schemes, where Non-Trans indicates the level
of non-transferability; Non-Dele indicates if the scheme is non-
delegatable under the definition of Lipmaa et al. (2005); UF
indicates if the unforgeability of the scheme is ‘full’ (in the sense
of Def. 2.2), or ‘weak’ (in the sense of the definition discussed in
Section 4); PSI indicates if the scheme supports privacy of signer’s
identity; RO indicates if the security of the scheme is in the ran-
dom oracle model; and Assump indicates the assumption used in
the proof of unforgeability of the scheme. Note that the question
mark ‘?’ in column Non-Dele means that it is unknown whether the
scheme can be proved to be (non-)delegatable strictly under the
definition in Lipmaa et al. (2005), and ‘?’ in column PSI means that
it is unknown if the scheme supports privacy of signer’s identity.

To the best of our knowledge, before our work, the scheme pro-
posed by Huang et al. (2008) is the only IBSDVS scheme in the
literature that is unforgeable under Def. 2.2 (without the restric-
tion). However, the unforgeability of their scheme relies on a very
strong assumption, named GBDH assumption,5 which has an inter-
active oracle for answering the problem-solver’s queries, while
that of our scheme is a very weak and widely studied assumption,
CDH. In addition, Huang et al.’s scheme is delegatable, while ours is
non-delegatable. Besides, as discussed in Remark 3, the privacy of
signer’s identity of our scheme is also stronger than that of Huang
et al. (2008). In terms of signature size, our scheme has longer sig-
nature than that of Huang et al. (2008). However, since our scheme
relies on weaker assumption, it seems reasonable and unavoidable
to have larger signature size.

7. Conclusion

In this paper we proposed a new model of unforgeability of IBS-
DVS schemes, and showed that it is strictly stronger than the old one
considered in previous work. We then proposed a new efficient con-
struction of IBSDVS scheme, which is provably unforgeable under
the newly proposed model, based on CDH assumption in the ran-
dom oracle model. Our scheme enjoys perfectly non-transferability,
and is the first IBSDVS scheme that is provably non-delegatable.

5 Gap Bilinear Diffie–Hellman (GBDH) assumption says that given g, ga , gb , gc for
random a, b, c ∈Zp , and an oracle that takes as input gd , ge , gf , Z where d, e, f ∈Zp and
returns 1 if Z = ê(g, g)def and 0 otherwise, it is infeasible to find ê(g, g)abc .

We also showed that the scheme supports privacy of signer’s
identity.
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