Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

1-2011

Efficient strong designated verifier signature schemes without
random oracle or with non-delegatability

Qiong HUANG

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Duncan S. WONG

Willy SUSILO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation

HUANG, Qiong; YANG, Guomin; WONG, Duncan S.; and SUSILO, Willy. Efficient strong designated verifier
signature schemes without random oracle or with non-delegatability. (2011). International Journal of
Information Security. 10, (6), 373-385.

Available at: https://ink.library.smu.edu.sg/sis_research/7352

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Int. J. Inf. Secur. (2011) 10:373-385
DOI 10.1007/s10207-011-0146-1

REGULAR CONTRIBUTION

Efficient strong designated verifier signature schemes without
random oracle or with non-delegatability

Qiong Huang - Guomin Yang - Duncan S. Wong -
Willy Susilo

Published online: 24 August 2011
© Springer-Verlag 2011

Abstract Designated verifier signature (DVS) allows a
signer to convince a designated verifier that a signature is
generated by the signer without letting the verifier transfer
the conviction to others, while the public can still tell that
the signature must be generated by one of them. Strong DVS
(SDVS) strengthens the latter part by restricting the public
from telling whether the signature is generated by one of them
or by someone else. In this paper, we propose two new SDVS
schemes. Compared with existing SDVS schemes, the first
new scheme has almost the same signature size and mean-
while, is proven secure in the standard model, while the exist-
ing ones are secure in the random oracle model. It has tight
security reduction to the DDH assumption and the security
of the underlying pseudorandom functions. Our second new
scheme is the first SDVS supporting non-delegatability, the
notion of which was introduced by Lipmaa, Wang and Bao in
the context of DVS in ICALP 2005. The scheme is efficient

Q. Huang ()

Department of Computer Science and Engineering,
South China Agricultural University, Guangzhou, China
e-mail: csqghuang @alumni.cityu.edu.hk

Q. Huang - D. S. Wong
Department of Computer Science, City University of Hong Kong,
Hong Kong, China

D. S. Wong
e-mail: duncan@cityu.edu.hk

G. Yang

Temasek Laboratories, National University of Singapore,
Singapore, Singapore

e-mail: tslyg@nus.edu.sg

W. Susilo

School of Computer Science and Software Engineering,
University of Wollongong, Wollongong, Australia
e-mail: wsusilo@uow.edu.au

and is provably secure in the random oracle model based on
the discrete logarithm assumption and Gap Diffie-Hellman
assumption.

Keywords Strong designated verifier signature -
Non-delegatability - Non-transferability - Standard model -
Signature scheme

1 Introduction

Inundeniable signature [9], given a signature from Alice (the
signer), Bob (the verifier) cannot check the validity of it by
himself. Instead, Alice proves the validity (or invalidity) of
the signature to Bob interactively. Alice can decide when to
prove, but not whom to prove to. In Eurocrypt 1996, Jakobs-
son et al. [16] introduced the notion of designated verifier
proofs (DVP), which allows Alice to designate a verifier, say
Bob and proves the validity of a statement only to Bob. Bob
cannot transfer this conviction to anyone else. This is called
non-transferability and is usually achieved by proving either
the validity of the statement or the knowledge of Bob’s secret
key, so that Bob is also able to produce the ‘same’ proof
transcript. Designated verifier signature (DVS) is the non-
interactive version of DVP. A DVS is publicly verifiable and
a valid DVS means that it is generated either by Alice or
by Bob. Applications of DVS include voting [16], undeni-
able signature [12], deniable authentication [32] and several
other cryptographic schemes where it is required that only
certain parties can be convinced on something.

Also first pointed out in [16], in some applications, it is
desirable if other than Alice and Bob, a third party cannot tell
if a designated signature for Bob is indeed from Alice or from
someone else. This motivates a variant of DVS called Strong
Designated Verifier Signature (SDVS) [16]. An SDVS

@ Springer

374

Q. Huang et al.

requires that no third party can tell in a computationally indis-
tinguishable way on which signer is the one who generated
a given SDVS. SDVS was not formalized until 2004 [19]
where Laguillaumie and Vergnaud defined a property called
‘privacy of signer’s identity’ which captures the ‘strongness’
of SDVS.

Jakobsson et al. [16] suggested a generic approach for
constructing SDVS. Each user in the system holds two key
pairs, one for DVS and the other for public key encryption.
To sign amessage M, Alice uses her signing key to generate a
DVS signature on M for Bob and encrypts the signature under
Bob’s encryption key. The ciphertextis set as an SDVS. Upon
receiving the SDVS, Bob decrypts it and checks the signa-
ture’s validity using the DVS verification keys of both Alice
and Bob. This approach is conceptually simple; however, it
requires the full encryption of a DVS signature, which usually
makes the scheme less efficient and the resulting signature
bigger in size.

(Non-delegatability). In quite a number of DVS schemes
such as [19,26,28,29], Alice can delegate her signing capa-
bility to a third party say Teddy, by giving Teddy a piece
of information derived from her secret key without giv-
ing away her secret key. Teddy can then generate signa-
tures on behalf of Alice. This property may be useful in
some applications, e.g. proxy signature. However, there are
applications in which this is not desirable, e.g. e-voting and
online e-library subscription [22]. Suppose that Alice sub-
scribes to an electronic library service provided by Bob. To
access the service, Alice sends her DVS to Bob, so that
Bob cannot show to others the access history of Alice. If
the DVS scheme is delegatable, Alice can give the delega-
tion information to Teddy so that Teddy can also access the
service while Bob cannot tell whether the user is Alice or
Teddy.

In ICALP 2005, Lipmaa et al. [22] introduced the notion
called non-delegatability in the context of DVS. A DVS is
non-delegatable if someone can generate a valid DVS sig-
nature on behalf of Alice for the designated verifier Bob,
then it must ‘know’ the secret key of either Alice or Bob. In
other words, there exists an extractor such that given oracle
access to the forger algorithm (and the message), it outputs
the secret key of either the signer or the verifier. In [21,22],
many DVS schemes were shown to be delegatable.

1.1 Our work

In the line of research on (S)DVS, there are some problems
which remain unsolved since their introduction, for example:

1. constructing an SDVS without random oracles and with
better efficiency than the generic construction [16];
2. constructing a non-delegatable SDVS; and

@ Springer

3. constructing a non-delegatable DVS in the standard
model.

In this work, we give affirmative answers to the first two
open problems. We propose a new SDVS scheme provably
secure without random oracles. It is simple and more efficient
than the aforementioned generic construction. Conceptually,
our idea is to make signer S share a common key K with des-
ignated verifier V. To sign a message M for V, S uses K as
the key to select a pseudorandom function PRF. The SDVS is
simply the output of the PRF on input M. The security of the
scheme, i.e. unforgeability and privacy of signer’s identity, is
tightly reduced to the pseudorandomness of the PRF and the
intractability of Decisional Diffie-Hellman (DDH) problem.
The scheme also enjoys perfect non-transferability, as S and
V can produce the same signature on any message.

This new scheme is delegatable, because the key for the
pseudorandom function is derived from the common key
shared between S and V, and anyone with this key can sign
messages on behalf of S. We then propose another efficient
construction of SDVS, which to the best of our knowledge, is
the first non-delegatable SDVS scheme. Our scheme makes
use of the standard Fiat—Shamir heuristic to convert a proof
of knowledge proof into a non-interactive one. The non-del-
egatability stems from the fact that the signature is a (non-
interactive) proof of knowledge of the secret key of either
S or V. The price we pay is that the security of the second
scheme can only be proven in the random oracle model [4].
Unforgeability of the scheme is based on discrete logarithm
(DL) assumption, while the privacy of signer’s identity relies
on the intractability of Gap Diffie-Hellman (GDH) problem.

1.2 Related work

DVS has attracted a lot of attention since its introduction,
and many variants have been proposed. They include ring
signature [25,27], in which the validity of a signature shows
that the signature is from a group of signers but tells nothing
about the actual identity of the real signer, universal desig-
nated verifier signature (UDVS) [14,18,28,31,33], in which
someone who holds the signer’s standard signature can des-
ignate any party as the verifier and transform the signature
to a DVS signature for that party, multi-designated verifiers
signature (MDVS) [16,20], in which the signer can desig-
nate multiple parties as verifiers for checking the validity of
a signature and identity-based designated verifier signature
(IBDVS) [5,11,15,30], which is a DVS in the identity-based
setting. In the study of SDVS, Huang et al. [15] and Bhaskar
et al. [5] independently proposed an efficient construction,
which has short signatures. A signature in their scheme is
simply the hash of a message and a common key shared

Efficient strong designated verifier signature schemes

375

between S and V. The security of their scheme is analyzed
in the random oracle model.

Since the introduction of non-delegatability [22] in the
context of DVS, many schemes have been shown to be del-
egatable, e.g. [19,26,28,29]. In Lipmaa et al. [22], also pro-
posed the first non-delegatable DVS with security based on
DDH assumption in the random oracle model. Huang et al.
[13] constructed a UDVS scheme with non-delegatability
from Boneh-Lynn—Shacham signature [8]. Very recently,
Huang et al. [11] proposed the first non-delegatable IBDVS
scheme, which is based on Gentry and Silverberg’s hierar-
chical identity-based encryption scheme [10].

1.3 Outline

In the next section, we give the formal definition of SDVS,
as well as its security model. We then review in Sect. 3 the
definition of PRFs and the assumptions used in our schemes.
The two new SDVS schemes, one without random oracles
and the other one with non-delegatability property, are pre-
sented in Sects. 4 and 5, respectively. We compare these two
new schemes with some existing (S)DVS schemes in Sect. 6
and conclude the paper in Sect. 7.

2 Strong designated verifier signature

Definition 1 (SDVS) A Strong designated verifier signature
(SDVS) scheme consists of the following (probabilistic) poly-
nomial time (PPT) algorithms.

— Kg: takes as input 1¥ where k is a security parameter and
outputs a public/secret key pair, i.e. (pk, sk) < Kg(1%).

— Sign: takes as input the secret key of signer S, pub-
lic keys of S and V (the designated verifier) and
message M, and outputs a signature o, ie. 0 <«
Sign(sks, pky, pky, M).

— Ver: takes as input the secret key of V, public keys
of S and V, message M and an alleged signature o,
and outputs a bit b, which is 1 for acceptance of o
as a valid signature, and O for rejection, i.e. b <«
Ver(sky, pky, pky, M, o).

The correctness of SDVS requires that for any
(oky, sky) < Kg(19), (oky, sky) < Kg(1)
and any message M € {0, 1}*, we have

Pr[Ver(sky, pky, pky, M,
Sign(sks, pky, pky, M)) = 1] = 1.

A secure SDVS should be unforgeable, non-transferable
and satisfying the privacy of signer’s identity. If an SDVS

is said to be non-delegatable, it should also support non-
delegatability.

Unforgeability It requires that no one other than the signer
S and the designated verifier V can produce a valid signature.
We consider the following game played between a challenger
C and a PPT adversary A.

1. C prepares the key pairs for S and V, i.e. (pky, sks)
and (pk,, sky), and gives (pk,, pk,) to A.
2. Aissues queries to the following oracles.

— Osign: Given a message M, it uses sk, to generate
a signature o on M, which is valid w.r.t. pk; and
pk,, and returns it to A.

— Osim: Given a message M, it uses sk, to generate
a simulated signature o on M, which is valid w.r.t.
pk, and pk,, and returns it to A.

— Over: Given a query of the form (M, o), the oracle
returns a bit b which is 1 if o is a valid signature on
M w.r.t. pkg and pk,, and 0 otherwise.

3. Aoutputs a forgery, (M*, 0*) and wins if

(a) Ver(sky, pky, pky, M*,0%) =1, and
(b) it did not query Osjgn and Ogjm on input M*.

Definition 2 (Unforgeability) An SDVS scheme is (7, gsign,
qSim> qVer, €)-unforgeable if no adversary A which runs in
time at most ¢, issues at most gsjgn queries to Osign, gSim
queries to Ogjm and gyer queries to Oyer, can win the game
with probability at least €.

Non-transferability Given a message/signature pair (M, o),
it should be infeasible for any PPT distinguisher to tell
whether o was generated by the signer or simulated by the
designated verifier. Formally, we consider the following def-
inition.

Definition 3 (Non-transferability) An SDVS is non-trans-
ferable if there exists a PPT simulation algorithm Sim which
takes as input sk,, pky, pk, and a message M and out-
puts a simulated signature that is indistinguishable from real
signatures generated by the signer on the same message.
That is, for any PPT distinguisher D, any (pk,, sky) <«
Kg(1%), (pky, sky) < Kg(1%) and any message M e
{0, 1}*, it holds that

UO <~ Slgn(SkYa ka7 pkv’ M)’

pe| 9 <« Sim(sky, pky, Pky, M), T 1
b <35 {0, 1}, 2
b’ < D(pky, sky, pky, sky, 0p)
< e(k),

@ Springer

376

Q. Huang et al.

where € (k) is a negligible function! in the security parameter
k, and the probability is taken over the randomness used in
Kg, Sign and Sim, and the random coins consumed by D. If
the probability is equal to 1/2, we say that the SDVS scheme
is perfectly non-transferable (or source hiding).

Privacy of Signer’s Identity (PSI) First defined by
Laguillaumie and Vergnaud [19], it formalizes the motiva-
tion of SDVS, i.e. no one can tell signatures generated by
signer Sp for V apart from signatures by S; for V, if it does
not know the secret key of V. Below is the formal definition
of PSI, modeled by a game played between the challenger C
and a distinguisher D.

1. C generates key pairs for signers Sp, S1 and verifier V,
i.e. (Pky,, sky), (PKy,, sks) and (pk,, sky), and in-
vokes D on input (pky,, pKy, , Pky).

2. D issues queries adaptively as in the unforgeability
game, except that now all the oracles take an additional
inputd € {0, 1} indicating which signer responds to the
query. That is, the oracles generate and verify signatures
w.L.t. pky, and pk,,.

3. D submits a message M*. C tosses a coin b € {0, 1},
computes the challenge signature o <«
Sign(sks, . pky, . pky, M*) and returns o to D.

4. D continues to issue queries as in Step 2. Finally it out-
puts a bit 4’ and wins the game if

(a) b =b;and
(b) itdid not query Oygr on input (d, M*, o*) for any
d € {0, 1}.

Definition 4 (Privacy of Signer’s Identity) An SDVS
scheme is (¢, gsign, 4Sim» GVer, €)-PSI-secure if no adversary
D which runs in time at most #, issues at most gsjgn queries
to Osign, gsim queries to Ogim and gver queries to Oyer, can
win the game above with probability that deviates from 1/2
by more than €.

Remark 1 1f the signing/simulation algorithm of an SDVS
scheme is deterministic, D in the game above should also
be restricted from asking Ogjgn and Ogjm for a (simulated)
signature on M* for any d € {0, 1}. Otherwise, D breaks the
PSI trivially.

Non-delegatability Intuitively, it requires that if one pro-
duces a valid signature on a message, it must ‘know’ the
secret key of either S or V. So a signature itself is a proof of
knowledge of the secret key of either S or V. Formally, we
consider the following definition.

1A function f : N — N is negligible in the security parameter k if
for every polynomial ¢ (-), there exists some ko € N such that for every

k > ko, f(k) < 1/q(k).

@ Springer

Definition 5 (Non-delegatability) Let « € [0, 1] be the
knowledge error and F a forger algorithm. Let Fj; be F
with M as its input, and oracle calls to Fy; be counted as
one step. An SDVS scheme is non-delegatable with knowl-
edge error k if there exists a positive polynomial poly(-) and
a probabilistic oracle machine K such that for every PPT
algorithm F, machine /C satisfies the following condition:

— Denote by € the probability that F on input M pro-
duces a valid signature on M. For every (pky, sky) <
Kg(1%), (pk,, sky) < Kg(1%), and every message M e
{0, 1}*, if € > «, then on input M and on (black box)
oracle access to Fys, K produces either sk; or sk,
in expected polynomial time with probability at least

(€ — «)/poly(k).

Remark 2 Our definition of non-delegatability is different
from the original one given in [22]. The definition in [22]
emphasizes that /C can output sk; or sk, in time polynomi-
ally proportional to the inverse of € — «, while our definition
requires that IC outputs a secret key in polynomial time with
probability polynomially related to € —«. However, similar to
the equivalence between the definitions of proofs of knowl-
edge [2], it can be shown that Definition 5 is equivalent to
that in [22].

Also notice that the non-delegatability defined above and
that in [22] is for signature generation. Another interesting
and related property is non-delegatability for signature ver-
ification. This property requires that in order to verify a des-
ignated signature, the verifier must ‘know’ the designated
verifier’s secret key. One can formally define non-delegat-
ability for verification analogously to Definition 5. However,
our scheme proposed in Sect. 5 can be only shown to be
non-delegatable for signing but not for verification. The diffi-
culty we encounter is that using forking lemma in the random
oracle model (as we do in the proof of non-delegatability
for signing of our second scheme) does not seem to help us
extract the entire secret key from the verifier’s one-bit output,
because given a signature the output of the hash function has
already been determined during the process of signature gen-
eration. If we rewind the verifier and assign a new hash value,
this would make the verification equation no longer hold. We
leave designing an SDVS scheme satisfying the non-deleg-
atability for verification as an open problem.

3 Tools and assumptions

In this section, we introduce the underlying tools and assump-
tions used in our SDVS schemes.

Pseudorandom Function Ensemble (PRF) Intuitively, the
output distribution of a pseudorandom function should be

Efficient strong designated verifier signature schemes

377

indistinguishable from that of a truly random function, if the
seed for the function is random.

Definition 6 (PRF [23]) Let {Ay, Bi}ren be a sequence of
domains and F = {PRF;};cn a function ensemble such that
the random variable PRF} assumes values in the set of Ay —
By functions. F is called an efficiently computable pseudo-
random function ensemble if

1. (efficient computation) There exist PPT algorithms 7
and V, and a mapping from strings to functions, ¢, such
that ¢ (Z(1¥)) and PRF;, are identically distributed and
V@i, x) = (i) (x).

2. ((t, €)-pseudorandomness) For every PPT oracle ma-
chine D which runs in time at most ¢,

‘Pr [DPRFk(l") - 1] —Pr [DRFk(l") - 1]‘ <e,

where R = {RF;}ien is the uniform function ensem-
ble (i.e. Yk, RFy is uniformly distributed over the set of
Ar — By functions).

Assumptions Let p, g be two large primes such thatg|p—1.
Let G be a multiplicative cyclic group of order g and g be its
generator.

Definition 7 (DL Assumption) The discrete logarithm (DL)
assumption (¢, €)-holds in G if there is no algorithm 4 which
runs in time at most ¢, and

Prx <= Zg: x' < A(g,8%) : X' =x]>¢,

where the probability is taken over the random choice of x
and the random coins used by A.

Definition 8 (DDH Assumption) The Decisional Diffie—
Hellman (DDH) assumption (¢, €) holds in G if there is no
algorithm 4 which runs in time at most ¢, and

Prla, b, c <g Zy; Zo < gab; Z1 < g% d <4 {0, 1};

d < Ag, g% g°, Zg) 1 d' =d] > e,

where the probability is taken over the random choices of
a,b,c e Zy,d e {0, 1} and random coins used by A.

Definition 9 (GDH Assumption) The Gap Diffie—Hellman
(GDH) assumption (7, €) holds in G if there is no algorithm
A that given access to a DDH oracle Ogqn, which on input
(81, 82, h1, ha) € G* tells if log, hi = log,, ha, runs in
time at most 7, and

Prla, b < Zg; Z < APWn (g, g% ¢b) : Z = g®] > ,

where the probability is taken over the random choices of
a, b € Z, and the random coins used by A.

4 SDVS without random oracle
4.1 The scheme

We now propose an SDVS scheme which is secure without
random oracles. It is conceptually simple. A signature is the
output of a pseudorandom function on a message under a key
derived from the public key of the signer or the verifier and
the secret key of the other.

Let G be a cyclic multiplicative group of large prime order

q and g be its generator. Let A &ef AC), € &ef £(-) and y &ef

v (+) be positive polynomials in the security parameter k. Let
F = {PRFk}kefo,1y» be a family of pseudorandom func-
tions PRFg : {0, 1}* — {0, 1}¢ with key space {0, 1}”. We
assume that the message space is {0, 1}*. This assumption
can be removed if we use a collision-resistant hash function
to map arbitrarily long messages to {0, 1}*. We also assume
that elements of G can be encoded to y-bit strings. This new
SDVS scheme is described in Fig. 1, where for simplicity, we
omit the usage of the encoding, and simply use the shared key
(i.e. K = g™*) as the key for the pseudorandom function.

Difference from [5,15] The SDVS scheme in [5,15] has
short signature and shares a similar structure to that of ours. In
[5,15], a signature is the output of a hash function on M and a
common key shared between S and V. The security is shown
in the random oracle model based on the Gap Diffie—-Hellman
assumption (see Table 1, Sect. 6 for a detailed comparison).
It is also suggested in [15] to replace the hash function with
a symmetric encryption SE for obtaining a scheme secure
in the standard model. However, it is not clear if we can
obtain the provable security of the resulting scheme based
on the security of SE. The indistinguishability under cho-
sen-ciphertext attacks (IND-CCA) does not guarantee that
one cannot compute the encryption of a new message with-
out the knowledge of the secret key. Even if we assume that
SE is an authenticated encryption [3] which has both indis-
tinguishability under chosen-ciphertext attacks and cipher-
text integrity (IND-CTXT), the resulting SDVS scheme may
not satisfy all the security properties. Specifically, the IND-
CCA security does not imply that ciphertexts generated using
two different keys are indistinguishable. An adversary may
be able to learn some information about signers’ keys from
issuing signing queries, which avails it to distinguish the two
signers’ signatures. Hence, the PSI of the SE-based SDVS
scheme may not be guaranteed.

In our construction instead, we find that if the output of the
signing algorithm of an SDVS scheme looks indistinguish-
able from random strings, it also turns out that two different
signers’ signatures would be indistinguishable to each other.
As demonstrated in the proof of Theorem 3 (to be shown
later), the pseudorandomness of the SDVS signatures is a
sufficient condition to guarantee the PSI property. However,

@ Springer

378

Q. Huang et al.

Kg(1%):
x g Zq
return (pk, sk) := (g%, x)

Fig. 1 Our SDVS scheme in the standard model, SDVS;

Table 1 Comparison with other schemes

Sign(sks, pky, pk,, M):
parse sks as s
set K « pkis
return o «— PRF g (M)

Ver(sky, pkg, pk,, M, 0):
parse sk, as Ty
set K « pkiv

,
return o = PRF k(M)

[16] [20] [22] [5,15] SDVS; SDVS,
Type DVS MDVS DVS SDVS SDVS SDVS
PK size 1Z, 1G 2Z, 1z, 27, 1Z,
Signature size 2Zp +3Z4 ny + 1Gr 474 12(Q] L%J 474
Sign cost 4E 4E 4E 1E O(k)E 4E
Verification cost 6E 1E + 3P 6E 1E O(k)E SE
PSI X N X N Vv VA
Non-delegatability X X J X X Vv
Standard model X X X X Vv X
Assumptions DL CDH + GBDH DDH GDH DDH DL + GDH

it is not known if it is also a necessary condition. We leave
it as our future work to find a new SDVS construction which
uses a primitive weaker than PRF.

4.2 Security analysis

As a pseudorandom function is a (deterministic) message
authentication code with strong unforgeability under chosen
message attacks [3], we have that after obtaining many sig-
natures on messages of its choice, the adversary cannot forge
a new pair. Also, the pseudorandomness of the function tells
that after obtaining many outputs, the output of the function
on a new input still looks random to the distinguisher. Hence,
the adversary against the PSI cannot distinguish which signer
produced the challenge signature. Formally, we have the fol-
lowing theorems, which together show that the security of
SDVS; is tightly reduced to the pseudorandomness of PRF
and the hardness of DDH problem.

Theorem 1 Suppose that A is an adversary that (t, qsign,
QVer, €)-breaks the unforgeability of SDVS|. There exists an
algorithm A\ that (t1, €4qn)-breaks the DDH assumption and
an algorithm A; that (t, €pif)-breaks the pseudorandomness
of F witht), 1y ~ t and €4an + €prt > € — (gsign + gSim +
qu,-)Z_Z.

As we shall see later (Theorem 2), the scheme SDVS; is
perfectly non-transferable. Hence, it suffices to consider the
case in which the adversary in the games of unforgeability
and privacy of signer’s identity does not make query to Ogjm,
as the queries can perfectly be handled by Osgign.

Proof We prove the theorem by a series of games. Let A be
an adversary against the unforgeability of the SDVS| above.
Let G; be the i-th game, and X; be the event that A outputs a
valid forgery in Game G; without violating the constraints.

@ Springer

Go: This is the original game. The challenger C chooses
a,b <y 7Z; and invokes A on input (pky, pk,) =
(g% g"). Let K := pké’ = pki = g For each sign-
ing query M and each verification (M, o), C simulates the
corresponding answer using g% as the key for the pseudo-
random function. The adversary finally outputs (M*, o*)
and wins the game if M* is new and 0* = PRF gu» (M™).
By definition, we have that

Pr[Xo] = €. @Y

Gi: This game differs from Game Gy in that when han-
dling the adversary’s queries, the key for the pseudoran-
dom function is chosen at random from G, i.e. K < G.
Besides, the validity of the adversary’s forgery is checked
w.r.t. this random key. If the success probabilities of the
adversaries in games G and Gy differ non-negligibly, it
leads to an algorithm for breaking the DDH assumption.
Therefore, we have that

[Pr[X1] — Pr[Xo]| < €ddn (2)

for some algorithm A; that (¢, €4gn)-breaks the DDH
assumption with | = t. A works as below.

Given a DDH problem instance, i.e. G, g, g, g°, gb . Z
where Z is either equal to g% or a random element of G, A,
sets pk, := g% and pk, := g” and invokes A on input
(pky, pky) and the group description G, g, g. To answer
a signing query on message M, A; computes and returns
o < PRFz(M); to answer a verification query (M, o), it

computes and returns o 2 PRFz(M). Finally, A outputs
its forgery, (M*, o*). The adversary A; then tests whether

Efficient strong designated verifier signature schemes

379

o* = PRFz(M*). If so, it outputs 1, meaning that Z = g%,
otherwise, it outputs 0, meaning that Z is randomly chosen
from G. If Z = g“?, the game simulated by A; is Game Gy,
and A outputs a valid forgery with probability Pr[Xo]. If Z is
arandom element in G, the game simulated by .4; is Game
G, and A outputs a valid forgery with probability Pr[X].
Let b be the bit output by .A;. Then, we have

[Pr[b = 1|Z = g“*] — Pr[b = 1|Z < G]|
= |Pr[Xo] — Pr[X]].

By the DDH assumption, we then have Eq. (2).

Gy: In Game Gy, the key for the pseudorandom function is
independent from the two public keys, and the adversary
can obtain information about the function only via issuing
queries. We now modify the game so that the pseudoran-
dom function is replaced with a truly random function.
That is, the signature on a message is now randomly cho-
sen from {0, 1}¢. We have

[PriX2] — Pr[X1]| < €p. 3

To see the equation above, we construct an algorithm A,
to (22, €prf)-break the pseudorandomness of F with 7, ~ 7.

Given an oracle function F () which is either a pseudoran-
dom function chosen from F or a truly random function, the
adversary A, randomly selects a group (G, g, ¢) and chooses
a,b < Z, and invokes A on input (pky, pk,) = (g%, g
and the group description. A, maintains a table 7', which is
initially empty. On input a signing query M, if there is a tuple
(M,o)in T, Aj; returns o. Otherwise, it submits M to func-
tion F and obtains an answer o. It returns o to A and stores
(M, o) in T. Oninput a verification query (M, o), if (M, o)
isin table T, A, returns 1; otherwise, it submits M to F and
obtains o’. It stores (M, ¢’) in T and returns 1 if 6’ = o and
0 otherwise. Since the pseudorandom function is determinis-
tic, there is only one signature on each message. Hence, the
simulation of oracle Osjgn is perfect. Finally, A outputs a
forgery (M*, o*) where M* is distinct from all messages it
has ever submitted to A;. A, submits M* to F and obtains
o'*. If ’* = o*, it outputs 1, indicating that its oracle func-
tion is a pseudorandom function from F; otherwise, it outputs
0, indicating that its oracle is a truly random function. If F
is chosen from F, A, perfectly simulated Game Gy; if F is
truly random, A; perfectly simulated Game Go. Therefore,
we obtain Eq. (3).

Note that in Game G, the signature on a message is a ran-
dom string from {0, 1}¢; therefore, after issuing qsign signing
queries, gsim simulation queries and gyer verification que-
ries, the probability that the forgery output by the adversary
is valid in Game Gy is upper bounded by

PriX»] < 2° — qSign — 4Sim — CIVer)_1
< (gsign + gsim + qver)2~".)
Combining Egs. (1)-(4), we get that

€ = Pr[Xy]
< [Pr[Xo] — Pr[X1]| + [Pr[X:] — Pr[X2]] 4+ Pr[X3]
< €ddh + €prf + (f]Sign + gsim + ‘IVer)z_e-

This completes the proof. O
Theorem 2 SDVS, is perfectly non-transferable.

Proof To simulate the signer’s signature on M, the desig-
nated verifier does the following:

set K < pk;® and return 0 <— PRFx (M).

Since both the signer and the verifier can compute the same
key K = g™, they can generate the same signature on any
message M, i.e. 0 = PRFg (M) for each message M. O

Theorem 3 Suppose that there is an adversary D that
(¢, gsign qver, €)-breaks the PSI of SDVS;. Then, there ex-
ists an adversary A that (t1, €4qn)-breaks DDH assumption
and an adversary Aj that (12, €pit)-breaks the pseudoran-
domness of F witht1,to X t and €1 + €3 > €/2.

Proof Let D be the distinguisher against privacy of signer’s
identity. We consider the following games and denote by
X, the event that the adversary outputs the correct bit in
Game G;.

Go: This is the original game. C chooses ag, a;,c¢ €
Z4 at random and invokes the adversary D on input
(Pkyy» PKy,» Pky) = (g%, g9, g°). It simulates oracles
for D using ag, ay, c. Let Ko = g% and K| = g%'¢. The
real keys used in the simulation of oracles are Ko and K1,
and K, is used in the generation of the challenge signature
o* for arandom b € {0, 1}. By definition, we have

1
Pr[Xo] =€ + 3 5

G : This game differs from Game Gy in that now the key
Ky is chosen at random from G. The difference between
D's success probabilities in Game G and Game G is
then bounded by the intractability of DDH problem, and
we have

[Pr[X] — Pr[Xo]| < €ddn- (6)

To see the equation above, we use D to build another algo-
rithm Dj to (¢1, €4qn)-break the DDH assumption with #; =~ t.

Given a random instance of DDH problem, i.e. (G, g, g,
g%, g°, Z) where ap, c are random elements of Z, unknown

@ Springer

380

Q. Huang et al.

to it, D randomly chooses a; € Z, and invokes D on input
(Pkyy, PKy,» PKy) = (g%, g%, g°) and the group descrip-
tion. It also sets Ko := Z and K| = (g)“!.

Given a signing query (d, M), D; computes and returns
o < PRFg,(M). Given a verification query (d, M, o), it

computes and returns o 2 PRFg,(M). When D submits
its challenge message M*, D; chooses a random bit b and
returns 0 * <= PRF, (M*). The successive queries issued by
D are handled as above. Finally, D outputs a bit &’. Then, D
outputs 1if 5’ = b, indicating that Z = g9 and 0 otherwise,
indicating that Z is a random element of G.

It is readily seen that if Z = g€, the game simulated by
D is identical to Game G, and D outputs the correct answer
with probability Pr[X¢]; on the other hand, if Z is a random
element of G, the game is identical to Game Gy, and D out-
puts the correct bit with probability Pr[X]. Let the bit output
by D; be §. We have that

[Pr[8 = 1|Z = g*°] — Pr[§ = 1|Z <5 G]|
= |Pr[Xo] — Pr[X1]].
Therefore, we obtain the Eq. (6).

Gy: Now, we replace K| with a random element of G as
well. Note that in this game, both K and K are randomly
chosen from G. Similar to Game G, we have that

[Pr[X2] — Pr[X1]] < €gan. @)

Gs3: We modify the game so that the function PRFg, is
now replaced with a truly random function. That is, for
each message M, the signer Sy’s signature is now cho-
sen at random from {0, 1}¢ instead of being computed as
PRF g, (M). We have

[Pr[X3] — Pr[Xs]| < €prf. ®)

To prove the equation above, we construct an algorithm D,
to (#2, €prf)-break the pseudorandomness of F with 1, ~ ¢.

Given an oracle function F(-), D, randomly chooses a
group (G, g,q) and selects ap,aj,c € Z4 and K; €
G uniformly. It invokes D on input (pky,, PKy,, pk,) =
(g%, g1, g%). D, maintains a table T containing entries of
the form (d, M, o), which is initially empty.

Given a signing query (d, M), if there is a tuple (d, M, o)
intable T, D, returns o . Otherwise, if d = 0, D, forwards M
to F and obtains o;if d = 1, D, computes o <— PRFk, (M).
In either case, D, stores (d, M, o) in T and returns o to D.
Given a verification query (d, M, o), if it is contained in
T, D, returns 1. Otherwise, if d = 0, it submits M to F,
obtains ¢’ and returns ¢’ — o;if d = 1, it computes and

returns o 2z PRFg, (M). In either case, D5 stores (d, M, o”)
inT.

@ Springer

When D submits its challenge message M™*, D, tosses a
coin b. If the output is 0, it sends M* to F and obtains o *;
if the outputs is 1, it computes 0* <— PRFg, (M*). D5 then
returns o* to the adversary. All the successive queries are
handled as above. Finally, D outputs b'. If b’ = b, D, out-
puts 1 indicating that F' is a pseudorandom function chosen
from F; otherwise, it outputs O indicating that F' is a truly
random function.

Clearly, if F is chosen from F, D, perfectly simulated
Game G and D outputs the correct bit with probability
Pr[X»]; if it is a truly random function, D, perfectly simu-
lated Game G and D outputs the correct bit with probability
Pr[X3]. Therefore, we obtain the Eq. (8).

Gy: In this game, the function PRFg, (+) is also replaced
with a truly random function. That is, the signer S’s sig-
natures are now chosen at random from {0, 1}¢ as well.
Similarly, we have that

[Pr[X4] — Pr[X3]| < €pr- ©))

Note that in Game G4 both of the signers’ signatures are
randomly chosen from {0, 1}¢, including the challenge signa-
ture. Thus, the answers to all the queries issued by D provide
no help toit. That is, D does not obtain any information about
the bit b at all from its queries and the challenge signature.
Hence, we have that

1
PriXs] = 3. (10)

Combining Egs. (5)-(10), we obtain that

4
Pr{Xol < D [Pr[X;] — Pr[X;]| + Pr[X4]
i=1

1
< 2€ddn + 2€pt + 3
This completes the proof. O

Naor-Reingold PRF [23] Let / G (1%) be an efficient algo-
rithm that outputs (p, ¢, g) where p is a k-bit prime, ¢ is a
prime such that p = 2¢g + 1 and g is an element of order ¢ in
Z;. Let Hy be a family of pairwise independent hash func-
tions from {0, 1}¥ to {0, 1}\%/2), Define the function ensemble
F = {Fi}en. For every k, a key K of a function in Fy con-
sists of an output (p, g, g) of 1 G(lk), a random sequence
a = (ao,ai,...,ar) of k + 1 elements of Z, and a hash
function & from Hj. For any k-bit input x = x1x2, ..., Xy,
the function fK is defined by:

fx S (8QOH§:‘”'& mod p) :

Naor and Reingold [23] proved that if DDH problem is hard,
the function ensemble above is a pseudorandom function

Efficient strong designated verifier signature schemes

381

ensemble. They also showed how to build a pseudorandom
generator (PRG) from DDH assumption. Their PRG works
as follows:

PRG . q.0.00(0) = (g".6™).

where g is of prime order g and a, b € Z,. The PRG dou-
bles the length of the input. If we instantiate the pseudoran-
dom function in SDVS; with Naor—Reingold PRF, we should
include the description of a pseudorandom generator in the
system parameter, which expands the Diffie—-Hellman key of
S and V to the randomness used for selecting a function in
Fy. To do this, the signer (resp. verifier) applies a universal
one-way hash function to g*s*», which maps to an element of
Z4, and then applies Naor-Reingold PRG to the hash value.
It then repeats the process above to the right half of the PRG’s
output, until it obtains enough (pseudo)random numbers for
invoking the I G algorithm and for picking the random vec-
tor a for the PRF. The complexity of this process is O (k).
Therefore, we obtain the following corollary.

Corollary 1 [f DDH assumption holds, SDVS; is a secure
strong designated verifier signature scheme in the standard
model.

5 SDVS with non-delegatability
5.1 The scheme

The SDVS; scheme above is delegatable: signer S or ver-
ifier V can simply release K = g** to any third party so
that it can sign messages on behalf of S for V. As explained
in [22], this capability may not be desirable in some appli-
cations. In this section, we propose another SDVS construc-
tion, called SDVS,, which is non-delegatable but at the price
of provable security in the random oracle model only. The
definition of non-delegatability (Definition 5) requires that
the signature is a non-interactive proof of knowledge of the
secret key of either S or V. Therefore, it is natural to use
the Fiat—Shamir heuristic to convert an interactive proof of
knowledge of the secret key of either S or V into a signa-
ture of knowledge. To make the scheme a strong DVS, we
choose to include the common key shared between S and
V,ie. K = pky' = pki’ = g%, into the message to be
signed. Thus, the signature of knowledge becomes

o= SPK{x :pks, = ¢g* Vpk, = gx} (M| K).

Let G be a multiplicative cyclic group of large prime order
q, and g be its generator. Let H : {0, 1}* x G* — Zg4 be a
collision-resistant hash function, which will be modeled as a
random oracle in the security proofs. Our scheme SDVS; is
described in Fig. 2.

5.2 Security analysis

A signature in our scheme is a proof of knowledge of the se-
cret key, which is the discrete logarithm of the corresponding
public key. Using the Forking lemma [24], we can show that
the unforgeability of SDVS; could be based on the discrete
logarithm assumption. Regarding the PSI property, as the key
K = g**visincluded in the input to the hash function, which
is the CDH solution to the public keys of § and V, we are
able to show that the intractability of GDH problem tightly
reduces to the PSI of SDVS,. The non-delegatability stems
from the fact that the signature is a (non-interactive) proof
of knowledge of the secret key. The role of W in the input to
the hash function is to prevent the verifier from releasing K
to a third party so that it can verify signatures designated to
the verifier. Formally, we have the following theorems.

Theorem 4 If DL assumption (tq), €q1)-holds in G, SDVS,

is (tuf» Gs> 4Sign» 4Sim» qVer» €uf)-strongly unforgeable in the
random oracle model, where tys = tq and €ys < /32qué€q.

Proof Again, as shown in Theorem 5, SDVS; is perfectly
non-transferable, we do not need to handle the adversary’s
queries to oracle Ogjm. It is sufficient for us to consider how
to deal with signing queries, verification queries and hash
queries in the proof.

Let F be a forger against the unforgeability of SDVS,,
which runs in time at most #,f, makes at most gy hash que-
ries, gsign signing queries, gsjm simulation queries and gver
verification queries and wins the unforgeability game with
probability at least €,r. We use it as a subroutine to build
another algorithm A for solving the DL problem.

Given a random instance of DL problem, i.e. (G, g, g, y),
where y = g* for some unknown x € Z,, A randomly
chooses x € Z, and tosses a coin. If the outcome is head, it
sets pk, := g* and pk, := y; otherwise, it sets pk, :=
and pk, = g*. For simplicity, we assume that the outcome
is head. The rest simulation in the other case can be done
similarly. A4 then invokes F on input (pky, pk,) and then
simulates oracles for it. It maintains a hash table H T, which
is initially empty.

Hash Queries Given a query (M, K, R, R,), if there is a
tuple (M, K, R;, R,),c) in HT, A returns c; otherwise, it
randomly selects a fresh ¢ € Zg, stores (M, K, Ry, Ry), ¢)
in HT and returns c.

Signing Queries On input a message M, A computes the
answer by calling the Sign algorithm using its knowledge of
x. That is, A randomly selects r, 7y, ¢y, W € Z4 and com-
putes Ry < g5, R, < gopk, ", W <« g¥ and U <«
pk?. It sets ¢ < H(M,pk’, Ry, Ry, U) and ¢; < ¢ —
Cy, Zs < rs + csx. The signature o := (cy, 2, Cy, 2, W) 18
then returned to.F.

@ Springer

382

Q. Huang et al.

Kg(1F):
choose z —g Z,
return (pk, sk) := (g%, x)

Ver(sky, pk,, pk,, M,0):
parse o as (cs,zs,cv,zv7 W)7 sky as Ty
set Rs < g®spk; s, Ry < g*vpk, v

return cs -+ ¢, — H(M,pkZv, Rs, Ry, Wov)
Fig. 2 Our non-delegatable SDVS scheme, SDVS,

Verification Queries Given a message M and an alleged
signature o := (cs, Zs, Cy» Zv, W), A computes Ry <«
g=pky “ and R, < g pk, < and checks whether ¢, +¢, =
H(M, pkjf, Rs, Ry). If so, A returns 1; otherwise, it returns
0.

Finally, F outputs its forgery, i.e. (M*, o*) where ¢* =
(c§,z¥, ¢k, 2). If o™ is not a valid signature of S on M* for
V, A aborts. Otherwise, A computes

R} « ¢5pk, © and R} <« g% pky .

Let ¢* be the hash value of (M*, pky', RY, R¥). A then
rewinds F to the status of asking for the hash value of
(M*, pky', RY, RY) and feeds F with ¢* # c*. The sub-
sequent queries issued by F are answered as above. Again,
we assume that F outputs another valid forgery on the same
message, i.e. (M*, 0*) where 6* = (¢}, z§, ¢}, Z};) such that
ct=cCF4c #EE+ = but gZ?ka_C;k = R¥ and
giipk, = R*. (Otherwise A aborts.) If ¢* # &, A out-
puts the discrete logof y asx = log, y = (25 —2{) /(¢ —c5).
Otherwise, it aborts.

Probability Analysis The oracles are simulated by .4 per-
fectly using its knowledge of x (which is the secret key of
either pk, or pk,, depending on the outcome of the coin toss
at the onset of the simulation). Therefore, F outputs its first
valid forgery with probability at least €,¢. Then, by an anal-
ysis similar to that in [7,24], we have that with probability at
least eﬁf /16guF outputs its valid forgery in the second run
again which satisfies the aforementioned conditions. Since
setting y as the public key of S or V (at the onset of the
simulation by A) is completely random and the whole sim-
ulation is perfect, we then have that with probability at least
one-half it holds that ¢; # ¢}. Thus, from the two valid forg-
eries, A can successfully compute the discrete log of y with
probability at least

2 2
€a > Cuf . l — Cuf
This completes the proof. O

Theorem 5 SDVS,; is perfectly non-transferable.

To simulate the signer’s signature on message M, the des-
ignated verifier first selects at random ry, 2y, ¢5 <—g Z, and
computes R, < g, Ry < g%pk; . It then sets ¢ <

@ Springer

Sign(sks, pky, pk,, M):
parse sks as g
select at random 75, 2y, ¢y, W g Zq
set Rs « g"s, Ry < g*vpk;
set W« g¥, U « pk}/
set ¢ «— H(M, pk®s, Rs, Ry, U)
set cs «— c—cy, 2s — s + CsTs
return o := (cs, 25, Cy, 20, W)

H(M, pk;y', Ry, Ry) and ¢, < ¢ — c5, 2y < Iy + CypXy. It
outputs o := (cy, Zs, Cy, Zy) as the simulated signature on M.
Then, the theorem follows from the fact that both S and V
can produce identically distributed proofs using their respec-
tive secret key, since they can compute the same key K and
(the interactive version of) the proof of knowledge is perfect
special honest verifier zero-knowledge.

Theorem 6 If there is an algorithm F which for some mes-
sage M can produce valid signatures in polynomial time and
with probability € after issuing at most qu queries to the
random oracle, then SDVS; is non-delegatable with knowl-
edge error 1/q in the random oracle model.

Proof Assumethate >k =1/q, where 1/q is the probability
that the adversary guesses the value of H(M, g**, Ry, R))
without asking the random oracle.

Let Fjs be a forger with input message M. Consider two
runs of Fj; by K on the same random tape. In both runs,
K executes Fj; step-by-step, except that /C returns different
random values (c versus ¢) as the answer to the hash query
H(M, K, R, R,) where K = g*™*. Since (K, Ry, R,) are
in the hash input, their values must be unchanged in the two
runs. Let Ry = g'* and R, = g™ for some ry, 1y, € Zy.
Suppose that both signatures are valid, it must be that

¢s + ¢y = H(M, K, g7 pk;®, g7k, "), and
G + Gy = H(M, K, g%pk; . gk, ™).

Then we have

Zs = I's + XCs, an
Zy = Fy + Xy, (12)
Zs = rg + X4Cs, (13)
Zy = Iy + XyCy. (14

If ¢ # cg, then from Eqgs. (11) and (13) we have that x; =
(zg — Z5)/(cs — C5). Similarly, if ¢, # ¢y, from Egs. (12)
and (14), we have that x, = (zy — Zy)/(cy — Cy). Since
¢s + ¢y # Cs + Cy, it must be that either ¢y # ¢5 or ¢y # Cy.
Then, we can extract the secret key of either S or V as above.

Note that in the analysis above, the value of K = g™
is unknown to the extractor K. Since the forger Fj; may
make many hash queries of the form (M, -, Ry, R,), in order
to rewind F); to the proper status, i.e. the status that Fy,
made the hash query (M, g**, Ry, Ry), K needs to guess

Efficient strong designated verifier signature schemes

383

at random the hash query in which the second element is
the correct value of K (and the last two elements are Ry
and R,). This brings a factor 1/gy to the success probabil-
ity of the extractor. Conditioned on that the random guess is
correct, by a similar analysis to that in [7,24], we have that
with probability at least (e —1/gq)/16, Fus produces another
valid signature o’ on the same message M in the second
run, which together with the valid signature in the first run,
enables K to extract either sk or sk,. Hence, the probabil-
ity that /C succeeds in extracting either sk or sk, is at least
(e —1/q)/16gx. o

Theorem 7 If GDH assumption (lgdn, €gdn)-holds in G,
SDVS,; is then (t, qsign, 4Sim» qVer. €)-PSI-secure in the
random oracle model, where t X toqy and € < €gqn +2/q.

Proof Assume that D is an adversary against the privacy of
signer’s identity, which runs in time 7, issues at most qSign
signing queries, ggjm simulation queries and gye Vverifica-
tion queries and wins with probability 1/2 + €. Using D as
a subroutine, we build an algorithm £ for solving the GDH
problem.

Given a random instance of GDH problem, say, (G, g, g,
g",g") and a DDH oracle, £ randomly selects u” € Z; and
sets pky, = g“, pk,, = g“g”/ and pk, = g". It invokes
D on input (pky,, Pk, , Pk,) and then simulates oracles for
it. £ maintains two tables, HT and ST, which are initially
empty. For simplicity, we assume that D does not duplicate
queries, and we do not consider queries to Ogjn, in the proof.

Hash Queries Given an input (M, K, Ry, Ry), if there is a
tuple (M, K, Rg, Ry,), c) in table HT, £ returns c. Other-
wise, it submits (g, pky,, pky, K) and (g, pky,, pk,, K) to
the DDH oracle and obtains two bits, bg and b. If by =1, £
outputs K and halts; if b; = 1, it outputs K / (gw)“/ and halts;
otherwise (bg = by = 0), it selects atrandom a fresh ¢ € Z,,
stores (M, K, Ry, Ry), ¢) in HT and returns c.

Signing Queries Given a bit d and a message M, £ ran-
domly chooses ¢, ¢y, 25,20 € Zg and computes Ry =
g%pky, s Ry = g%pk,” and ¢ = ¢ + ¢p. If ¢ was
ever used, £ repeats the process above. It then stores
(M, L, Ry, Ry),c)in HT and returns o := (cy, Zs, Cys Zv)-
Meanwhile, it stores (d, M, o) into signature table S7. Note
that though & does not know g*«*?, the simulated signature
is still identically distributed as real ones.

Verification Queries Given a bit d, a message M and an
alleged signature o = (cy, 25, Cy, Zv), if there is a tuple
(d, M, o) in table ST, £ returns 1; otherwise, it returns 0.
The intuition behind the simulation of verification oracle
is that if a signature was ever returned by & to the adversary, it
must be valid. Otherwise, if the signature is invalid, certainly
the oracle should return 0; if it is valid, then the adversary
forged a valid signature. In this case, with probability at least

1 — 1/q it holds that D made a hash query (M, K, Rs, Ry),
where K = pki’, Ry = g%pks,’ and R, = g¥pk, .
According to the simulation of the hash oracle, £ obtained
g"" and halted. Thus, the only case left is that the signature
is valid but the adversary did not ask the random oracle for
the hash of (M, K, R, R,). Therefore, the simulation of the
verification oracle would cause at most 1/¢ difference to the
the adversary’s success probability.

When it is ready, D submits a challenge message M*.
& then flips a coin b, randomly chooses ¢, ¢}, z¥, 2 €
Z, and computes R¥ = g% pks_bc: , Ry = gzipk,j°'3 and
c* = ¢§ + ¢}. Again, if ¢* was used, £ repeats the pro-
cess above. It then returns o* := (c}, 2§, ¢}, zJ) and stores
((M*, L, R}, R}),c*) in HT and (b, M*,0*) in ST, and
& continues to simulate oracles for D and monitor the hash
queries as above. Finally, D outputs a bit b’. If until now &
has not halted, it aborts and fails to find g“b .

Probability Analysis From above, we see that all the que-
ries are perfectly handled, except there is a 1/¢g difference
in the simulation of verification oracle. Notice that in or-
der to win the PSI game, D has to make hash queries with
(M, K, R, Ry) where K = g™o*™ or K = g*1*, Other-
wise, since the outputs of oracle H are completely random, D
would have no information about ¢* at all if it did not make
a hash query on (M*, K, R¥, R}), except that it guesses the
hash value at random, which is correct with probability at
most 1/q. Therefore, we have that

(1) ())
()1 -2

This completes the proof. O

Remark 3 The security reduction for unforgeability is not
tight, since we need to rewind the adversary in order to extract
the discrete logarithm from the signatures. We could also try
to apply Katz—Wang technique [17] to obtain a tight reduc-
tion. However, the unforgeability would then rely on DDH
assumption, which is stronger than the one we are currently
using. Besides, the proof of PSI may still need the GDH
assumption. In a consequence, the security of the new scheme
relies on two mutually conflictive assumptions, e.g. DDH and
GDH.

Remark 4 From the proof above, we can see that the underly-
ing assumption of PSI can be further weakened to Strong Dif-
fie—Hellman (Strong DH) assumption [1]2, since each query

2 The Strong DH assumption states that it is intractable to compute
g given g, g%, g” for unknown a, b € Zp and access to a DDH oracle
which takes as input (X, Z) outputs 1if Z = X“ and O otherwise. Notice
that this is different from the one introduced by Boneh and Boyen [6]
in constructing identity-based encryption schemes.

@ Springer

384

Q. Huang et al.

to the DDH oracle is of the form (x, g%, K) where the g¥ is
fixed in all the queries. The same holds for the short SDVS
scheme in [5,15] as well.

6 Comparison

In Table 1, we compare our two SDVS schemes with some
existing (S)DVS schemes. The third and the fourth rows of
the table consider the size of a public key and that of a signa-
ture, respectively. The fifth and sixth rows count the numbers
of exponentiations and pairings in signature generation and
verification, respectively. The seventh row considers whether
the scheme supports PSI. The eighth row considers whether
the scheme has non-delegatability. The ninth row considers
whether the security could be proved without random ora-
cles. The last row shows the underlying number-theoretic
assumptions for the security.

In terms of signature size, SDVS| that is secure in the
standard model outperforms schemes in [16,20,22], which
are secure in the random oracle model, and is comparable
with [5,15] which by far is the most efficient SDVS in the
random oracle model. SDVS; also has comparable compu-
tational complexity as [5,15]. On the other side, to the best
of our knowledge, SDVS; is the first non-delegatable SDVS
scheme, which compared with Lipmaa et al.’s DVS scheme
[22], and has the same signature size and shorter public key,
but looser reduction for unforgeability.

7 Conclusion and future work

In this paper, we proposed an efficient SDVS scheme based
on pseudorandom functions. It has short signatures and is
provably secure in the standard model. We then proposed
another scheme, which is the first SDVS scheme with non-
delegatability. The price we need to pay is the provable secu-
rity in the random oracle model. Many problems about DVS
are still open, for example, the construction of non-deleg-
atable (S)DVS without random oracles. We leave it as our
future work.

Acknowledgments We would like to thank the anonymous reviewers
for their invaluable comments. Q. Huang and D.S. Wong were supported
by a grant from CityU (Project No. 7002711). W. Susilo was supported
by the Australian Research Council Future Fellowship FT0991397.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In: CT-RSA, vol. 2020 of
Lecture Notes in Computer Science, pp. 143—158. Springer (2001)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In:

Proceedings of Advances in Cryptology—CRYPTO 1992, vol. 740
of Lecture Notes in Computer Science, pp. 390-420. Springer
(1992)

. Bellare, M., Namprempre, C.: Authenticated encryption: relations

among notions and analysis of the generic composition paradigm.
In: Proceedings of Advances in Cryptology—ASIACRYPT 2000,
vol. 1976 of Lecture Notes in Computer Science, pp. 531-545.
Springer (2000)

. Bellare, M., Rogaway, P.: Random oracles are practical: a para-

digm for designing efficient protocols. In: ACM Conference on
Computer and Communications Security, pp. 62-73. ACM (1993)

. Bhaskar, R., Herranz, J., Laguillaumie, F.: Aggregate designated

verifier signatures and application to secure routing. Int. J. Secur.
Netw. 2(3/4), 192-201 (2007)

. Boneh, D., Boyen, X.: Short signatures without random oracles.

In: Proceedings of Advances in Cryptology—EUROCRYPT 2004,
vol. 3027 of Lecture Notes in Computer Science, pp. 56-73.
Springer (2004a)

. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In:

Proceedings of Advances in Cryptology—CRYPTO 2004, vol.
3152 of Lecture Notes in Computer Science, pp. 41-55. Springer
(2004b)

. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil

pairing. J. Cryptol. 17(4), 297-319 (2004) A preliminary version
appeared in Asiacrypt (2001)

. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Pro-

ceedings of Advances in Cryptology—CRYPTO 1989, vol. 435 of
Lecture Notes in Computer Science, pp. 212-216. Springer (1989)
Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In:
Proceedings of Advances in Cryptology—ASIACRYPT 2002, vol.
2501 of Lecture Notes in Computer Science, pp. 548-566. Springer
(2002)

Huang, Q., Susilo, W., Wong, D.S. (2009) Non-delegatable iden-
tity-based designated verifier signature. Cryptology ePrint Archive,
Report 2009/367

Huang, X., Mu, Y., Susilo, W., Wu, W.: Provably secure pairing-
based convertible undeniable signature with short signature length.
In: Proceedings of 1st International Conference on Pairing-Based
Cryptography, Pairing 2007, vol. 4575 of Lecture Notes in Com-
puter Science, pp. 367-391. Springer (2007)

Huang, X., Susilo, W., Mu, Y., Wu, W.: Universal designated veri-
fier signature without delegatability. In: Proceedings of 8th Interna-
tional Conference on Information and Communications Security,
ICICS 2006, vol. 4307 of Lecture Notes in Computer Science, pp.
479-498. Springer (2006)

Huang, X., Susilo, W., Mu, Y., Wu, W.: Secure universal des-
ignated verifier signature without random oracles. Int. J. Inf.
Secur. 7(3), 171-183 (2007)

Huang, X., Susilo, W., Mu, Y., Zhang, F.: Short designated veri-
fier signature scheme and its identity-based variant. Int. J. Netw.
Secur. 6(1), 82-93 (2008)

Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier
proofs and their applications. In: Proceedings of Advances in Cryp-
tology—EUROCRYPT 1996, vol. 1070 of Lecture Notes in Com-
puter Science, pp. 143 — 154. Springer (1996)

Katz, J., Wang, N.: Efficiency improvements for signature schemes
with tight security reductions. In: ACM Conference on Computer
and Communications Security, pp. 155-164. ACM (2003)
Laguillaumie, F., Libert, B., Quisquater, J.-J.: Universal desig-
nated verifier signatures without random oracles or non-black box
assumptions. In: Proceedings of 5th International Conference on
Security and Cryptography for Networks, SCN 2006, vol. 4116 of
Lecture Notes in Computer Science, pp. 63—77. Springer (2006)
Laguillaumie, F., Vergnaud, D.: Designated verifier signatures:
anonymity and efficient construction from any bilinear map.

Efficient strong designated verifier signature schemes

385

20.

21.

22.

23.

24.

25.

26.

In: Proceedings of 4th International Conference on Security in
Communication Networks, SCN 2004, vol. 3352 of Lecture Notes
in Computer Science, pp. 105-119. Springer (2004a)
Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signa-
tures. In: Proceedings of 6th International Conference on Infor-
mation and Communications Security, ICICS 2004, vol. 3269 of
Lecture Notes in Computer Science, pp. 495-507. Springer (2004b)
Li, Y., Lipmaa, H., Pei, D.: On delegatability of four designated
verifier signatures. In: Proceedings of 7th International Conference
on Information and Communications Security, ICICS 2005, vol.e
3783 of Lecture Notes in Computer Science, pp. 61-71. Springer
(2005)

Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature
schemes: Attacks, new security notions and a new construction.
In: Proceedings of 32th International Colloquium on Automata,
Languages and Programming, ICALP 2005, vol. 3580 of Lecture
Notes in Computer Science, pp. 459-471. Springer (2005)

Naor, M., Reingold, O.: Number-theoretic constructions of effi-
cient pseudo-random functions. J. ACM 51(2), 231-262 (2004)
Pointcheval, D., Stern, J.: Security arguments for digital signatures
and blind signatures. J. Cryptol. 13(3), 361-396 (2000)

Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd
C. (ed.) Proceedings of Advances in Cryptology—ASIACRYPT
2001, vol. 2248 of Lecture Notes in Computer Science, pp. 552—
565. Springer (2001)

Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong des-
ignated verifier signature scheme. In: Proceedings of 6th Interna-
tional Conference on Information Security and Cryptology, ICISC
2003, vol. 2971 of Lecture Notes in Computer Science, pp. 40-54.
Springer (2003)

217.

28.

29.

30.

31.

32.

33.

Shacham, H., Waters, B.: Efficient ring signatures without random
oracles. In: Okamoto, T., Wang, X. (eds.) Proceedings of Public
Key Cryptography 2007, vol. 4450 of Lecture Notes in Computer
Science, pp. 166—180. Springer (2007)

Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal desig-
nated-verifier signatures. In: Proceedings of Advances in Cryptol-
0gy—ASIACRYPT 2003 vol. 2894 of Lecture Notes in Computer
Science, pp. 523-542. Springer (2003)

Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard
Schnorr/RSA signatures into universal designated-verifier signa-
tures. In: Proceedings of Public Key Cryptography 2004, vol. 2947
of Lecture Notes in Computer Science, pp. 86—100. Springer (2004)
Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated ver-
ifier signature schemes. In: Proceedings of 9th Australasian Con-
ference on Information Security and Privacy, ACISP 2004, vol.
3108 of Lecture Notes in Computer Science, pp. 313-324. Springer
(2004)

Vergnaud, D.: New extensions of pairing-based signatures into uni-
versal designated verifier signatures. In: Proceedings of 33th Inter-
national Colloquium on Automata, Languages and Programming,
ICALP 2006, vol. 4052 of Lecture Notes in Computer Science, pp.
58-69. Springer (2006)

Wang, B., Song, Z.: A non-interactive deniable authentication
scheme based on designated verifier proofs. Inf. Sci. 179(6), 858—
865 (2009)

Zhang, R., Furukawa, J., Imai, H.: Short signature and universal
designated verifier signature without random oracles. In: Proceed-
ings of 3rd International Conference on Applied Cryptography and
Network Security, ACNS 2005, vol. 3531 of Lecture Notes in Com-
puter Science, pp. 483-498. Springer (2005)

@ Springer

	Efficient strong designated verifier signature schemes without random oracle or with non-delegatability
	Citation

	Efficient strong designated verifier signature schemes without random oracle or with non-delegatability
	Abstract
	1 Introduction
	1.1 Our work
	1.2 Related work
	1.3 Outline

	2 Strong designated verifier signature
	3 Tools and assumptions
	4 SDVS without random oracle
	4.1 The scheme
	4.2 Security analysis

	5 SDVS with non-delegatability
	5.1 The scheme
	5.2 Security analysis

	6 Comparison
	7 Conclusion and future work
	Acknowledgments
	References

