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Abstract Designated verifier signature (DVS) allows a
signer to convince a designated verifier that a signature is
generated by the signer without letting the verifier transfer
the conviction to others, while the public can still tell that
the signature must be generated by one of them. Strong DVS
(SDVS) strengthens the latter part by restricting the public
from telling whether the signature is generated by one of them
or by someone else. In this paper, we propose two new SDVS
schemes. Compared with existing SDVS schemes, the first
new scheme has almost the same signature size and mean-
while, is proven secure in the standard model, while the exist-
ing ones are secure in the random oracle model. It has tight
security reduction to the DDH assumption and the security
of the underlying pseudorandom functions. Our second new
scheme is the first SDVS supporting non-delegatability, the
notion of which was introduced by Lipmaa, Wang and Bao in
the context of DVS in ICALP 2005. The scheme is efficient
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and is provably secure in the random oracle model based on
the discrete logarithm assumption and Gap Diffie–Hellman
assumption.
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1 Introduction

In undeniable signature [9], given a signature from Alice (the
signer), Bob (the verifier) cannot check the validity of it by
himself. Instead, Alice proves the validity (or invalidity) of
the signature to Bob interactively. Alice can decide when to
prove, but not whom to prove to. In Eurocrypt 1996, Jakobs-
son et al. [16] introduced the notion of designated verifier
proofs (DVP), which allows Alice to designate a verifier, say
Bob and proves the validity of a statement only to Bob. Bob
cannot transfer this conviction to anyone else. This is called
non-transferability and is usually achieved by proving either
the validity of the statement or the knowledge of Bob’s secret
key, so that Bob is also able to produce the ‘same’ proof
transcript. Designated verifier signature (DVS) is the non-
interactive version of DVP. A DVS is publicly verifiable and
a valid DVS means that it is generated either by Alice or
by Bob. Applications of DVS include voting [16], undeni-
able signature [12], deniable authentication [32] and several
other cryptographic schemes where it is required that only
certain parties can be convinced on something.

Also first pointed out in [16], in some applications, it is
desirable if other than Alice and Bob, a third party cannot tell
if a designated signature for Bob is indeed from Alice or from
someone else. This motivates a variant of DVS called Strong
Designated Verifier Signature (SDVS) [16]. An SDVS
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374 Q. Huang et al.

requires that no third party can tell in a computationally indis-
tinguishable way on which signer is the one who generated
a given SDVS. SDVS was not formalized until 2004 [19]
where Laguillaumie and Vergnaud defined a property called
‘privacy of signer’s identity’ which captures the ‘strongness’
of SDVS.

Jakobsson et al. [16] suggested a generic approach for
constructing SDVS. Each user in the system holds two key
pairs, one for DVS and the other for public key encryption.
To sign a message M , Alice uses her signing key to generate a
DVS signature on M for Bob and encrypts the signature under
Bob’s encryption key. The ciphertext is set as an SDVS. Upon
receiving the SDVS, Bob decrypts it and checks the signa-
ture’s validity using the DVS verification keys of both Alice
and Bob. This approach is conceptually simple; however, it
requires the full encryption of a DVS signature, which usually
makes the scheme less efficient and the resulting signature
bigger in size.

(Non-delegatability). In quite a number of DVS schemes
such as [19,26,28,29], Alice can delegate her signing capa-
bility to a third party say Teddy, by giving Teddy a piece
of information derived from her secret key without giv-
ing away her secret key. Teddy can then generate signa-
tures on behalf of Alice. This property may be useful in
some applications, e.g. proxy signature. However, there are
applications in which this is not desirable, e.g. e-voting and
online e-library subscription [22]. Suppose that Alice sub-
scribes to an electronic library service provided by Bob. To
access the service, Alice sends her DVS to Bob, so that
Bob cannot show to others the access history of Alice. If
the DVS scheme is delegatable, Alice can give the delega-
tion information to Teddy so that Teddy can also access the
service while Bob cannot tell whether the user is Alice or
Teddy.

In ICALP 2005, Lipmaa et al. [22] introduced the notion
called non-delegatability in the context of DVS. A DVS is
non-delegatable if someone can generate a valid DVS sig-
nature on behalf of Alice for the designated verifier Bob,
then it must ‘know’ the secret key of either Alice or Bob. In
other words, there exists an extractor such that given oracle
access to the forger algorithm (and the message), it outputs
the secret key of either the signer or the verifier. In [21,22],
many DVS schemes were shown to be delegatable.

1.1 Our work

In the line of research on (S)DVS, there are some problems
which remain unsolved since their introduction, for example:

1. constructing an SDVS without random oracles and with
better efficiency than the generic construction [16];

2. constructing a non-delegatable SDVS; and

3. constructing a non-delegatable DVS in the standard
model.

In this work, we give affirmative answers to the first two
open problems. We propose a new SDVS scheme provably
secure without random oracles. It is simple and more efficient
than the aforementioned generic construction. Conceptually,
our idea is to make signer S share a common key K with des-
ignated verifier V . To sign a message M for V, S uses K as
the key to select a pseudorandom function PRF. The SDVS is
simply the output of the PRF on input M . The security of the
scheme, i.e. unforgeability and privacy of signer’s identity, is
tightly reduced to the pseudorandomness of the PRF and the
intractability of Decisional Diffie–Hellman (DDH) problem.
The scheme also enjoys perfect non-transferability, as S and
V can produce the same signature on any message.

This new scheme is delegatable, because the key for the
pseudorandom function is derived from the common key
shared between S and V , and anyone with this key can sign
messages on behalf of S. We then propose another efficient
construction of SDVS, which to the best of our knowledge, is
the first non-delegatable SDVS scheme. Our scheme makes
use of the standard Fiat–Shamir heuristic to convert a proof
of knowledge proof into a non-interactive one. The non-del-
egatability stems from the fact that the signature is a (non-
interactive) proof of knowledge of the secret key of either
S or V . The price we pay is that the security of the second
scheme can only be proven in the random oracle model [4].
Unforgeability of the scheme is based on discrete logarithm
(DL) assumption, while the privacy of signer’s identity relies
on the intractability of Gap Diffie–Hellman (GDH) problem.

1.2 Related work

DVS has attracted a lot of attention since its introduction,
and many variants have been proposed. They include ring
signature [25,27], in which the validity of a signature shows
that the signature is from a group of signers but tells nothing
about the actual identity of the real signer, universal desig-
nated verifier signature (UDVS) [14,18,28,31,33], in which
someone who holds the signer’s standard signature can des-
ignate any party as the verifier and transform the signature
to a DVS signature for that party, multi-designated verifiers
signature (MDVS) [16,20], in which the signer can desig-
nate multiple parties as verifiers for checking the validity of
a signature and identity-based designated verifier signature
(IBDVS) [5,11,15,30], which is a DVS in the identity-based
setting. In the study of SDVS, Huang et al. [15] and Bhaskar
et al. [5] independently proposed an efficient construction,
which has short signatures. A signature in their scheme is
simply the hash of a message and a common key shared
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Efficient strong designated verifier signature schemes 375

between S and V . The security of their scheme is analyzed
in the random oracle model.

Since the introduction of non-delegatability [22] in the
context of DVS, many schemes have been shown to be del-
egatable, e.g. [19,26,28,29]. In Lipmaa et al. [22], also pro-
posed the first non-delegatable DVS with security based on
DDH assumption in the random oracle model. Huang et al.
[13] constructed a UDVS scheme with non-delegatability
from Boneh–Lynn–Shacham signature [8]. Very recently,
Huang et al. [11] proposed the first non-delegatable IBDVS
scheme, which is based on Gentry and Silverberg’s hierar-
chical identity-based encryption scheme [10].

1.3 Outline

In the next section, we give the formal definition of SDVS,
as well as its security model. We then review in Sect. 3 the
definition of PRFs and the assumptions used in our schemes.
The two new SDVS schemes, one without random oracles
and the other one with non-delegatability property, are pre-
sented in Sects. 4 and 5, respectively. We compare these two
new schemes with some existing (S)DVS schemes in Sect. 6
and conclude the paper in Sect. 7.

2 Strong designated verifier signature

Definition 1 (SDVS) A Strong designated verifier signature
(SDVS) scheme consists of the following (probabilistic) poly-
nomial time (PPT) algorithms.

– Kg: takes as input 1k where k is a security parameter and
outputs a public/secret key pair, i.e. (pk,sk)← Kg(1k).

– Sign: takes as input the secret key of signer S, pub-
lic keys of S and V (the designated verifier) and
message M , and outputs a signature σ , i.e. σ ←
Sign(sks,pks,pkv, M).

– Ver: takes as input the secret key of V , public keys
of S and V , message M and an alleged signature σ ,
and outputs a bit b, which is 1 for acceptance of σ

as a valid signature, and 0 for rejection, i.e. b ←
Ver(skv,pks,pkv, M, σ ).

The correctness of SDVS requires that for any

(pks,sks)← Kg(1k), (pkv,skv)← Kg(1k)

and any message M ∈ {0, 1}∗, we have

Pr[Ver(skv,pks,pkv, M,

Sign(sks,pks,pkv, M)) = 1] = 1.

A secure SDVS should be unforgeable, non-transferable
and satisfying the privacy of signer’s identity. If an SDVS

is said to be non-delegatable, it should also support non-
delegatability.
Unforgeability It requires that no one other than the signer
S and the designated verifier V can produce a valid signature.
We consider the following game played between a challenger
C and a PPT adversary A.

1. C prepares the key pairs for S and V , i.e. (pks,sks)

and (pkv,skv), and gives (pks,pkv) to A.
2. A issues queries to the following oracles.

– OSign: Given a message M , it uses sks to generate
a signature σ on M , which is valid w.r.t. pks and
pkv , and returns it to A.

– OSim: Given a message M , it uses skv to generate
a simulated signature σ on M , which is valid w.r.t.
pks and pkv , and returns it to A.

– OVer: Given a query of the form (M, σ ), the oracle
returns a bit b which is 1 if σ is a valid signature on
M w.r.t. pks and pkv , and 0 otherwise.

3. A outputs a forgery, (M∗, σ ∗) and wins if

(a) Ver(skv,pks,pkv, M∗, σ ∗) = 1, and
(b) it did not query OSign and OSim on input M∗.

Definition 2 (Unforgeability) An SDVS scheme is (t, qSign,

qSim, qVer, ε)-unforgeable if no adversary A which runs in
time at most t , issues at most qSign queries to OSign, qSim
queries to OSim and qVer queries to OVer, can win the game
with probability at least ε.

Non-transferability Given a message/signature pair (M, σ ),
it should be infeasible for any PPT distinguisher to tell
whether σ was generated by the signer or simulated by the
designated verifier. Formally, we consider the following def-
inition.

Definition 3 (Non-transferability) An SDVS is non-trans-
ferable if there exists a PPT simulation algorithm Sim which
takes as input skv,pks,pkv and a message M and out-
puts a simulated signature that is indistinguishable from real
signatures generated by the signer on the same message.
That is, for any PPT distinguisher D, any (pks,sks) ←
Kg(1k), (pkv,skv) ← Kg(1k) and any message M ∈
{0, 1}∗, it holds that

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

σ0 ← Sign(sks,pks,pkv, M),

σ1 ← Sim(skv,pks,pkv, M),

b←$ {0, 1},
b′ ← D(pks,sks,pkv,skv, σb)

: b′ = b

⎤

⎥
⎥
⎦
− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

< ε(k),
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where ε(k) is a negligible function1 in the security parameter
k, and the probability is taken over the randomness used in
Kg, Sign and Sim, and the random coins consumed by D. If
the probability is equal to 1/2, we say that the SDVS scheme
is perfectly non-transferable (or source hiding).

Privacy of Signer’s Identity (PSI) First defined by
Laguillaumie and Vergnaud [19], it formalizes the motiva-
tion of SDVS, i.e. no one can tell signatures generated by
signer S0 for V apart from signatures by S1 for V , if it does
not know the secret key of V . Below is the formal definition
of PSI, modeled by a game played between the challenger C
and a distinguisher D.

1. C generates key pairs for signers S0, S1 and verifier V ,
i.e. (pks0 ,sks0), (pks1 ,sks1) and (pkv,skv), and in-
vokes D on input (pks0 ,pks1 ,pkv).

2. D issues queries adaptively as in the unforgeability
game, except that now all the oracles take an additional
input d ∈ {0, 1} indicating which signer responds to the
query. That is, the oracles generate and verify signatures
w.r.t. pksd and pkv .

3. D submits a message M∗. C tosses a coin b ∈ {0, 1},
computes the challenge signature σ ∗ ←
Sign(sksb ,pksb ,pkv, M∗) and returns σ ∗ to D.

4. D continues to issue queries as in Step 2. Finally it out-
puts a bit b′ and wins the game if

(a) b′ = b; and
(b) it did not query OVer on input (d, M∗, σ ∗) for any

d ∈ {0, 1}.

Definition 4 (Privacy of Signer’s Identity) An SDVS
scheme is (t, qSign, qSim, qVer, ε)-PSI-secure if no adversary
D which runs in time at most t , issues at most qSign queries
to OSign, qSim queries to OSim and qVer queries to OVer, can
win the game above with probability that deviates from 1/2
by more than ε.

Remark 1 If the signing/simulation algorithm of an SDVS
scheme is deterministic, D in the game above should also
be restricted from asking OSign and OSim for a (simulated)
signature on M∗ for any d ∈ {0, 1}. Otherwise, D breaks the
PSI trivially.

Non-delegatability Intuitively, it requires that if one pro-
duces a valid signature on a message, it must ‘know’ the
secret key of either S or V . So a signature itself is a proof of
knowledge of the secret key of either S or V . Formally, we
consider the following definition.

1 A function f : N → N is negligible in the security parameter k if
for every polynomial q(·), there exists some k0 ∈ N such that for every
k > k0, f (k) < 1/q(k).

Definition 5 (Non-delegatability) Let κ ∈ [0, 1] be the
knowledge error and F a forger algorithm. Let FM be F
with M as its input, and oracle calls to FM be counted as
one step. An SDVS scheme is non-delegatable with knowl-
edge error κ if there exists a positive polynomial poly(·) and
a probabilistic oracle machine K such that for every PPT
algorithm F , machine K satisfies the following condition:

– Denote by ε the probability that F on input M pro-
duces a valid signature on M . For every (pks,sks) ←
Kg(1k), (pkv,skv)← Kg(1k), and every message M ∈
{0, 1}∗, if ε > κ , then on input M and on (black box)
oracle access to FM ,K produces either sks or skv

in expected polynomial time with probability at least
(ε − κ)/poly(k).

Remark 2 Our definition of non-delegatability is different
from the original one given in [22]. The definition in [22]
emphasizes that K can output sks or skv in time polynomi-
ally proportional to the inverse of ε− κ , while our definition
requires that K outputs a secret key in polynomial time with
probability polynomially related to ε−κ . However, similar to
the equivalence between the definitions of proofs of knowl-
edge [2], it can be shown that Definition 5 is equivalent to
that in [22].

Also notice that the non-delegatability defined above and
that in [22] is for signature generation. Another interesting
and related property is non-delegatability for signature ver-
ification. This property requires that in order to verify a des-
ignated signature, the verifier must ‘know’ the designated
verifier’s secret key. One can formally define non-delegat-
ability for verification analogously to Definition 5. However,
our scheme proposed in Sect. 5 can be only shown to be
non-delegatable for signing but not for verification. The diffi-
culty we encounter is that using forking lemma in the random
oracle model (as we do in the proof of non-delegatability
for signing of our second scheme) does not seem to help us
extract the entire secret key from the verifier’s one-bit output,
because given a signature the output of the hash function has
already been determined during the process of signature gen-
eration. If we rewind the verifier and assign a new hash value,
this would make the verification equation no longer hold. We
leave designing an SDVS scheme satisfying the non-deleg-
atability for verification as an open problem.

3 Tools and assumptions

In this section, we introduce the underlying tools and assump-
tions used in our SDVS schemes.

Pseudorandom Function Ensemble (PRF) Intuitively, the
output distribution of a pseudorandom function should be
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Efficient strong designated verifier signature schemes 377

indistinguishable from that of a truly random function, if the
seed for the function is random.

Definition 6 (PRF [23]) Let {Ak, Bk}k∈N be a sequence of
domains and F = {PRFk}k∈N a function ensemble such that
the random variable PRFk assumes values in the set of Ak →
Bk functions. F is called an efficiently computable pseudo-
random function ensemble if

1. (efficient computation) There exist PPT algorithms I
and V , and a mapping from strings to functions, φ, such
that φ(I(1k)) and PRFk are identically distributed and
V(i, x) = (φ(i))(x).

2. ((t, ε)-pseudorandomness) For every PPT oracle ma-
chine D which runs in time at most t ,

∣
∣
∣Pr

[

DPRFk (1k) = 1
]

− Pr
[

DRFk (1k) = 1
]∣
∣
∣ < ε,

where R = {RFk}k∈N is the uniform function ensem-
ble (i.e. ∀k, RFk is uniformly distributed over the set of
Ak → Bk functions).

Assumptions Let p, q be two large primes such that q|p−1.
Let G be a multiplicative cyclic group of order q and g be its
generator.

Definition 7 (DL Assumption) The discrete logarithm (DL)
assumption (t, ε)-holds in G if there is no algorithm A which
runs in time at most t , and

Pr[x ←$ Zq; x ′ ← A(g, gx ) : x ′ = x] ≥ ε,

where the probability is taken over the random choice of x
and the random coins used by A.

Definition 8 (DDH Assumption) The Decisional Diffie–
Hellman (DDH) assumption (t, ε) holds in G if there is no
algorithm A which runs in time at most t , and

Pr[a, b, c←$ Zq; Z0 ← gab; Z1 ← gc; d ←$ {0, 1};
d ′ ← A(g, ga, gb, Zd) : d ′ = d] ≥ ε,

where the probability is taken over the random choices of
a, b, c ∈ Zq , d ∈ {0, 1} and random coins used by A.

Definition 9 (GDH Assumption) The Gap Diffie–Hellman
(GDH) assumption (t, ε) holds in G if there is no algorithm
A that given access to a DDH oracle Oddh which on input
(g1, g2, h1, h2) ∈ G

4 tells if logg1
h1 = logg2

h2, runs in
time at most t , and

Pr[a, b←$ Zq; Z ← AOddh(g, ga, gb) : Z = gab] ≥ ε,

where the probability is taken over the random choices of
a, b ∈ Zq and the random coins used by A.

4 SDVS without random oracle

4.1 The scheme

We now propose an SDVS scheme which is secure without
random oracles. It is conceptually simple. A signature is the
output of a pseudorandom function on a message under a key
derived from the public key of the signer or the verifier and
the secret key of the other.

Let G be a cyclic multiplicative group of large prime order

q and g be its generator. Let λ
def= λ(·), � def= �(·) and γ

def=
γ (·) be positive polynomials in the security parameter k. Let
F = {PRFK }K∈{0,1}γ be a family of pseudorandom func-
tions PRFK : {0, 1}λ → {0, 1}� with key space {0, 1}γ . We
assume that the message space is {0, 1}λ. This assumption
can be removed if we use a collision-resistant hash function
to map arbitrarily long messages to {0, 1}λ. We also assume
that elements of G can be encoded to γ -bit strings. This new
SDVS scheme is described in Fig. 1, where for simplicity, we
omit the usage of the encoding, and simply use the shared key
(i.e. K = gxs xv ) as the key for the pseudorandom function.

Difference from [5,15] The SDVS scheme in [5,15] has
short signature and shares a similar structure to that of ours. In
[5,15], a signature is the output of a hash function on M and a
common key shared between S and V . The security is shown
in the random oracle model based on the Gap Diffie–Hellman
assumption (see Table 1, Sect. 6 for a detailed comparison).
It is also suggested in [15] to replace the hash function with
a symmetric encryption SE for obtaining a scheme secure
in the standard model. However, it is not clear if we can
obtain the provable security of the resulting scheme based
on the security of SE. The indistinguishability under cho-
sen-ciphertext attacks (IND-CCA) does not guarantee that
one cannot compute the encryption of a new message with-
out the knowledge of the secret key. Even if we assume that
SE is an authenticated encryption [3] which has both indis-
tinguishability under chosen-ciphertext attacks and cipher-
text integrity (IND-CTXT), the resulting SDVS scheme may
not satisfy all the security properties. Specifically, the IND-
CCA security does not imply that ciphertexts generated using
two different keys are indistinguishable. An adversary may
be able to learn some information about signers’ keys from
issuing signing queries, which avails it to distinguish the two
signers’ signatures. Hence, the PSI of the SE-based SDVS
scheme may not be guaranteed.

In our construction instead, we find that if the output of the
signing algorithm of an SDVS scheme looks indistinguish-
able from random strings, it also turns out that two different
signers’ signatures would be indistinguishable to each other.
As demonstrated in the proof of Theorem 3 (to be shown
later), the pseudorandomness of the SDVS signatures is a
sufficient condition to guarantee the PSI property. However,
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Fig. 1 Our SDVS scheme in the standard model, SDVS1

Table 1 Comparison with other schemes

[16] [20] [22] [5,15] SDVS1 SDVS2

Type DVS MDVS DVS SDVS SDVS SDVS
PK size 1Zp 1G 2Zp 1Zp 2Zp 1Zp

Signature size 2Zp + 3Zq nr + 1GT 4Zq |H(·)| 	 k
2 
 4Zq

Sign cost 4E 4E 4E 1E O(k)E 4E
Verification cost 6E 1E + 3P 6E 1E O(k)E 5E
PSI × √ × √ √ √
Non-delegatability × × √ × × √
Standard model × × × × √ ×
Assumptions DL CDH + GBDH DDH GDH DDH DL + GDH

it is not known if it is also a necessary condition. We leave
it as our future work to find a new SDVS construction which
uses a primitive weaker than PRF.

4.2 Security analysis

As a pseudorandom function is a (deterministic) message
authentication code with strong unforgeability under chosen
message attacks [3], we have that after obtaining many sig-
natures on messages of its choice, the adversary cannot forge
a new pair. Also, the pseudorandomness of the function tells
that after obtaining many outputs, the output of the function
on a new input still looks random to the distinguisher. Hence,
the adversary against the PSI cannot distinguish which signer
produced the challenge signature. Formally, we have the fol-
lowing theorems, which together show that the security of
SDVS1 is tightly reduced to the pseudorandomness of PRF
and the hardness of DDH problem.

Theorem 1 Suppose that A is an adversary that (t, qSign,

qVer, ε)-breaks the unforgeability of SDVS1. There exists an
algorithm A1 that (t1, εddh)-breaks the DDH assumption and
an algorithm A2 that (t2, εprf)-breaks the pseudorandomness
of F with t1, t2 ≈ t and εddh + εprf > ε − (qSign + qSim +
qVer)2−�.

As we shall see later (Theorem 2), the scheme SDVS1 is
perfectly non-transferable. Hence, it suffices to consider the
case in which the adversary in the games of unforgeability
and privacy of signer’s identity does not make query to OSim,
as the queries can perfectly be handled by OSign.

Proof We prove the theorem by a series of games. Let A be
an adversary against the unforgeability of the SDVS1 above.
Let Gi be the i-th game, and Xi be the event that A outputs a
valid forgery in Game Gi without violating the constraints.

G0: This is the original game. The challenger C chooses
a, b ←$ Zq and invokes A on input (pks,pkv) =
(ga, gb). Let K := pkb

s = pka
v = gab. For each sign-

ing query M and each verification (M, σ ), C simulates the
corresponding answer using gab as the key for the pseudo-
random function. The adversary finally outputs (M∗, σ ∗)
and wins the game if M∗ is new and σ ∗ = PRFgab (M∗).
By definition, we have that

Pr[X0] = ε. (1)

G1: This game differs from Game G0 in that when han-
dling the adversary’s queries, the key for the pseudoran-
dom function is chosen at random from G, i.e. K ←$ G.
Besides, the validity of the adversary’s forgery is checked
w.r.t. this random key. If the success probabilities of the
adversaries in games G1 and G0 differ non-negligibly, it
leads to an algorithm for breaking the DDH assumption.
Therefore, we have that

|Pr[X1] − Pr[X0]| ≤ εddh (2)

for some algorithm A1 that (t1, εddh)-breaks the DDH
assumption with t1 ≈ t . A1 works as below.

Given a DDH problem instance, i.e. G, g, q, ga, gb, Z
where Z is either equal to gab or a random element of G,A1

sets pks := ga and pkv := gb and invokes A on input
(pks,pkv) and the group description G, g, q. To answer
a signing query on message M,A1 computes and returns
σ ← PRFZ (M); to answer a verification query (M, σ ), it

computes and returns σ
?= PRFZ (M). Finally, A outputs

its forgery, (M∗, σ ∗). The adversary A1 then tests whether
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σ ∗ = PRFZ (M∗). If so, it outputs 1, meaning that Z = gab;
otherwise, it outputs 0, meaning that Z is randomly chosen
from G. If Z = gab, the game simulated by A1 is Game G0,
and A outputs a valid forgery with probability Pr[X0]. If Z is
a random element in G, the game simulated by A1 is Game
G1, and A outputs a valid forgery with probability Pr[X1].
Let b be the bit output by A1. Then, we have

|Pr[b = 1|Z = gab] − Pr[b = 1|Z ←$ G]|
= |Pr[X0] − Pr[X1]|.

By the DDH assumption, we then have Eq. (2).

G2: In Game G1, the key for the pseudorandom function is
independent from the two public keys, and the adversary
can obtain information about the function only via issuing
queries. We now modify the game so that the pseudoran-
dom function is replaced with a truly random function.
That is, the signature on a message is now randomly cho-
sen from {0, 1}�. We have

|Pr[X2] − Pr[X1]| ≤ εprf . (3)

To see the equation above, we construct an algorithm A2

to (t2, εprf)-break the pseudorandomness of F with t2 ≈ t .

Given an oracle function F(·) which is either a pseudoran-
dom function chosen from F or a truly random function, the
adversary A2 randomly selects a group (G, g, q) and chooses
a, b ← Zq and invokes A on input (pks,pkv) = (ga, gb)

and the group description. A2 maintains a table T , which is
initially empty. On input a signing query M , if there is a tuple
(M, σ ) in T,A2 returns σ . Otherwise, it submits M to func-
tion F and obtains an answer σ . It returns σ to A and stores
(M, σ ) in T . On input a verification query (M, σ ), if (M, σ )

is in table T,A2 returns 1; otherwise, it submits M to F and
obtains σ ′. It stores (M, σ ′) in T and returns 1 if σ ′ = σ and
0 otherwise. Since the pseudorandom function is determinis-
tic, there is only one signature on each message. Hence, the
simulation of oracle OSign is perfect. Finally, A outputs a
forgery (M∗, σ ∗) where M∗ is distinct from all messages it
has ever submitted to A2. A2 submits M∗ to F and obtains
σ ′∗. If σ ′∗ = σ ∗, it outputs 1, indicating that its oracle func-
tion is a pseudorandom function from F; otherwise, it outputs
0, indicating that its oracle is a truly random function. If F
is chosen from F,A2 perfectly simulated Game G1; if F is
truly random, A2 perfectly simulated Game G2. Therefore,
we obtain Eq. (3).

Note that in Game G2, the signature on a message is a ran-
dom string from {0, 1}�; therefore, after issuing qSign signing
queries, qSim simulation queries and qVer verification que-
ries, the probability that the forgery output by the adversary
is valid in Game G2 is upper bounded by

Pr[X2] ≤ (2� − qSign − qSim − qVer)
−1

< (qSign + qSim + qVer)2
−�. (4)

Combining Eqs. (1)–(4), we get that

ε = Pr[X0]
≤ |Pr[X0] − Pr[X1]| + |Pr[X1] − Pr[X2]| + Pr[X2]
< εddh + εprf + (qSign + qSim + qVer)2

−�.

This completes the proof. ��
Theorem 2 SDVS1 is perfectly non-transferable.

Proof To simulate the signer’s signature on M , the desig-
nated verifier does the following:

set K ← pkxv
s and return σ ← PRFK (M).

Since both the signer and the verifier can compute the same
key K = gxs xv , they can generate the same signature on any
message M , i.e. σ = PRFK (M) for each message M . ��
Theorem 3 Suppose that there is an adversary D that
(t, qSign, qVer, ε)-breaks the PSI of SDVS1. Then, there ex-
ists an adversary A1 that (t1, εddh)-breaks DDH assumption
and an adversary A2 that (t2, εprf)-breaks the pseudoran-
domness of F with t1, t2 ≈ t and ε1 + ε2 ≥ ε/2.

Proof Let D be the distinguisher against privacy of signer’s
identity. We consider the following games and denote by
Xi the event that the adversary outputs the correct bit in
Game Gi .

G0: This is the original game. C chooses a0, a1, c ∈
Zq at random and invokes the adversary D on input
(pks0 ,pks1 ,pkv) = (ga0 , ga1, gc). It simulates oracles
for D using a0, a1, c. Let K0 = ga0c and K1 = ga1c. The
real keys used in the simulation of oracles are K0 and K1,
and Kb is used in the generation of the challenge signature
σ ∗ for a random b ∈ {0, 1}. By definition, we have

Pr[X0] = ε + 1

2
. (5)

G1: This game differs from Game G0 in that now the key
K0 is chosen at random from G. The difference between
D′s success probabilities in Game G0 and Game G1 is
then bounded by the intractability of DDH problem, and
we have

|Pr[X1] − Pr[X0]| ≤ εddh. (6)

To see the equation above, we use D to build another algo-
rithm D1 to (t1, εddh)-break the DDH assumption with t1 ≈ t .

Given a random instance of DDH problem, i.e. (G, g, q,

ga0 , gc, Z) where a0, c are random elements of Zq unknown

123



380 Q. Huang et al.

to it, D1 randomly chooses a1 ∈ Zq and invokes D on input
(pks0 ,pks1 ,pkv) = (ga0 , ga1, gc) and the group descrip-
tion. It also sets K0 := Z and K1 = (gc)a1 .

Given a signing query (d, M),D1 computes and returns
σ ← PRFKd (M). Given a verification query (d, M, σ ), it

computes and returns σ
?= PRFKd (M). When D submits

its challenge message M∗,D1 chooses a random bit b and
returns σ ∗ ← PRFKb (M∗). The successive queries issued by
D are handled as above. Finally, D outputs a bit b′. Then, D1

outputs 1 if b′ = b, indicating that Z = ga0c and 0 otherwise,
indicating that Z is a random element of G.

It is readily seen that if Z = ga0c, the game simulated by
D is identical to Game G0, and D outputs the correct answer
with probability Pr[X0]; on the other hand, if Z is a random
element of G, the game is identical to Game G1, and D out-
puts the correct bit with probability Pr[X1]. Let the bit output
by D1 be δ. We have that

|Pr[δ = 1|Z = ga0c] − Pr[δ = 1|Z ←$ G]|
= |Pr[X0] − Pr[X1]|.

Therefore, we obtain the Eq. (6).

G2: Now, we replace K1 with a random element of G as
well. Note that in this game, both K0 and K1 are randomly
chosen from G. Similar to Game G1, we have that

|Pr[X2] − Pr[X1]| ≤ εddh. (7)

G3: We modify the game so that the function PRFK0 is
now replaced with a truly random function. That is, for
each message M , the signer S0

′s signature is now cho-
sen at random from {0, 1}� instead of being computed as
PRFK0(M). We have

|Pr[X3] − Pr[X2]| ≤ εprf . (8)

To prove the equation above, we construct an algorithm D2

to (t2, εprf)-break the pseudorandomness of F with t2 ≈ t .
Given an oracle function F(·),D2 randomly chooses a

group (G, g, q) and selects a0, a1, c ∈ Zq and K1 ∈
G uniformly. It invokes D on input (pks0 ,pks1 ,pkv) =
(ga0 , ga1, gc). D2 maintains a table T containing entries of
the form (d, M, σ ), which is initially empty.

Given a signing query (d, M), if there is a tuple (d, M, σ )

in table T,D2 returns σ . Otherwise, if d = 0,D2 forwards M
to F and obtains σ ; if d = 1,D2 computes σ ← PRFK1(M).
In either case, D2 stores (d, M, σ ) in T and returns σ to D.
Given a verification query (d, M, σ ), if it is contained in
T,D2 returns 1. Otherwise, if d = 0, it submits M to F ,

obtains σ ′ and returns σ ′ ?= σ ; if d = 1, it computes and

returns σ
?= PRFK1(M). In either case, D2 stores (d, M, σ ′)

in T .

When D submits its challenge message M∗,D2 tosses a
coin b. If the output is 0, it sends M∗ to F and obtains σ ∗;
if the outputs is 1, it computes σ ∗ ← PRFK1(M∗). D2 then
returns σ ∗ to the adversary. All the successive queries are
handled as above. Finally, D outputs b′. If b′ = b,D2 out-
puts 1 indicating that F is a pseudorandom function chosen
from F; otherwise, it outputs 0 indicating that F is a truly
random function.

Clearly, if F is chosen from F,D2 perfectly simulated
Game G2 and D outputs the correct bit with probability
Pr[X2]; if it is a truly random function, D2 perfectly simu-
lated Game G3 and D outputs the correct bit with probability
Pr[X3]. Therefore, we obtain the Eq. (8).

G4: In this game, the function PRFK1(·) is also replaced
with a truly random function. That is, the signer S1

′s sig-
natures are now chosen at random from {0, 1}� as well.
Similarly, we have that

|Pr[X4] − Pr[X3]| ≤ εprf . (9)

Note that in Game G4 both of the signers’ signatures are
randomly chosen from {0, 1}�, including the challenge signa-
ture. Thus, the answers to all the queries issued by D provide
no help to it. That is, D does not obtain any information about
the bit b at all from its queries and the challenge signature.
Hence, we have that

Pr[X4] = 1

2
. (10)

Combining Eqs. (5)–(10), we obtain that

Pr[X0] ≤
4

∑

i=1

|Pr[Xi ] − Pr[Xi−1]| + Pr[X4]

≤ 2εddh + 2εprf + 1

2
.

This completes the proof. ��
Naor–Reingold PRF [23] Let I G(1k) be an efficient algo-
rithm that outputs (p, q, g) where p is a k-bit prime, q is a
prime such that p = 2q+1 and g is an element of order q in
Z
∗
p. Let Hk be a family of pairwise independent hash func-

tions from {0, 1}k to {0, 1}	k/2
. Define the function ensemble
F̃ = {F̃k}k∈N. For every k, a key K of a function in F̃k con-
sists of an output (p, q, g) of I G(1k), a random sequence
a = (a0, a1, . . . , ak) of k + 1 elements of Zq and a hash
function h from Hk . For any k-bit input x = x1x2, . . . , xn ,
the function f̃K is defined by:

f̃K
def= h

(

ga0
∏k

i=1 a
xi
i mod p

)

.

Naor and Reingold [23] proved that if DDH problem is hard,
the function ensemble above is a pseudorandom function
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ensemble. They also showed how to build a pseudorandom
generator (PRG) from DDH assumption. Their PRG works
as follows:

PRGp,q,g,ga (b) =
(

gb, gab
)

,

where g is of prime order q and a, b ∈ Zq . The PRG dou-
bles the length of the input. If we instantiate the pseudoran-
dom function in SDVS1 with Naor–Reingold PRF, we should
include the description of a pseudorandom generator in the
system parameter, which expands the Diffie–Hellman key of
S and V to the randomness used for selecting a function in
F̃k . To do this, the signer (resp. verifier) applies a universal
one-way hash function to gxs xv , which maps to an element of
Zq , and then applies Naor–Reingold PRG to the hash value.
It then repeats the process above to the right half of the PRG’s
output, until it obtains enough (pseudo)random numbers for
invoking the I G algorithm and for picking the random vec-
tor a for the PRF. The complexity of this process is O(k).
Therefore, we obtain the following corollary.

Corollary 1 If DDH assumption holds, SDVS1 is a secure
strong designated verifier signature scheme in the standard
model.

5 SDVS with non-delegatability

5.1 The scheme

The SDVS1 scheme above is delegatable: signer S or ver-
ifier V can simply release K = gxs xv to any third party so
that it can sign messages on behalf of S for V . As explained
in [22], this capability may not be desirable in some appli-
cations. In this section, we propose another SDVS construc-
tion, called SDVS2, which is non-delegatable but at the price
of provable security in the random oracle model only. The
definition of non-delegatability (Definition 5) requires that
the signature is a non-interactive proof of knowledge of the
secret key of either S or V . Therefore, it is natural to use
the Fiat–Shamir heuristic to convert an interactive proof of
knowledge of the secret key of either S or V into a signa-
ture of knowledge. To make the scheme a strong DVS, we
choose to include the common key shared between S and
V , i.e. K = pkxs

v = pkxv
s = gxs xv , into the message to be

signed. Thus, the signature of knowledge becomes

σ = SPK
{

x : pks = gx ∨ pkv = gx} (M‖K ).

Let G be a multiplicative cyclic group of large prime order
q, and g be its generator. Let H : {0, 1}∗ × G

4 → Zq be a
collision-resistant hash function, which will be modeled as a
random oracle in the security proofs. Our scheme SDVS2 is
described in Fig. 2.

5.2 Security analysis

A signature in our scheme is a proof of knowledge of the se-
cret key, which is the discrete logarithm of the corresponding
public key. Using the Forking lemma [24], we can show that
the unforgeability of SDVS2 could be based on the discrete
logarithm assumption. Regarding the PSI property, as the key
K = gxs xv is included in the input to the hash function, which
is the CDH solution to the public keys of S and V , we are
able to show that the intractability of GDH problem tightly
reduces to the PSI of SDVS2. The non-delegatability stems
from the fact that the signature is a (non-interactive) proof
of knowledge of the secret key. The role of W in the input to
the hash function is to prevent the verifier from releasing K
to a third party so that it can verify signatures designated to
the verifier. Formally, we have the following theorems.

Theorem 4 If DL assumption (tdl, εdl)-holds in G, SDVS2

is (tuf , qH, qSign, qSim, qVer, εuf)-strongly unforgeable in the
random oracle model, where tuf ≈ tdl and εuf ≤ √32qHεdl.

Proof Again, as shown in Theorem 5, SDVS2 is perfectly
non-transferable, we do not need to handle the adversary’s
queries to oracle OSim. It is sufficient for us to consider how
to deal with signing queries, verification queries and hash
queries in the proof.

Let F be a forger against the unforgeability of SDVS2,
which runs in time at most tuf , makes at most qH hash que-
ries, qSign signing queries, qSim simulation queries and qVer
verification queries and wins the unforgeability game with
probability at least εuf . We use it as a subroutine to build
another algorithm A for solving the DL problem.

Given a random instance of DL problem, i.e. (G, g, q, y),
where y = gx for some unknown x ∈ Zq ,A randomly
chooses x̄ ∈ Zq and tosses a coin. If the outcome is head, it
sets pks := gx̄ and pkv := y; otherwise, it sets pks := y
and pkv = gx̄ . For simplicity, we assume that the outcome
is head. The rest simulation in the other case can be done
similarly. A then invokes F on input (pks,pkv) and then
simulates oracles for it. It maintains a hash table H T , which
is initially empty.

Hash Queries Given a query (M, K , Rs, Rv), if there is a
tuple ((M, K , Rs, Rv), c) in H T,A returns c; otherwise, it
randomly selects a fresh c ∈ Zq , stores ((M, K , Rs, Rv), c)
in H T and returns c.

Signing Queries On input a message M,A computes the
answer by calling the Sign algorithm using its knowledge of
x̄ . That is, A randomly selects rs, zv, cv, w ∈ Zq and com-
putes Rs ← grs , Rv ← gzvpk−cv

v , W ← gw and U ←
pkw

v . It sets c ← H(M,pkx̄
v , Rs, Rv, U ) and cs ← c −

cv, zs ← rs + cs x̄ . The signature σ := (cs, zs, cv, zv, W ) is
then returned toF .

123



382 Q. Huang et al.

Fig. 2 Our non-delegatable SDVS scheme, SDVS2

Verification Queries Given a message M and an alleged
signature σ := (cs, zs, cv, zv, W ),A computes Rs ←
gzspk−cs

s and Rv ← gzvpk−cv
v and checks whether cs+cv =

H(M,pkx̄
v, Rs, Rv). If so, A returns 1; otherwise, it returns

0.
Finally, F outputs its forgery, i.e. (M∗, σ ∗) where σ ∗ =

(c∗s , z∗s , c∗v, z∗v). If σ ∗ is not a valid signature of S on M∗ for
V,A aborts. Otherwise, A computes

R∗s ← gz∗s pk
−c∗s
s and R∗v ← gz∗vpk

−c∗v
v .

Let c∗ be the hash value of (M∗,pkxs
v , R∗s , R∗v ). A then

rewinds F to the status of asking for the hash value of
(M∗,pkxs

v , R∗s , R∗v ) and feeds F with c̄∗ �= c∗. The sub-
sequent queries issued by F are answered as above. Again,
we assume that F outputs another valid forgery on the same
message, i.e. (M∗, σ̄ ∗) where σ̄ ∗ = (c̄∗s , z̄∗s , c̄∗v, z̄∗v) such that

c̄∗ = c̄∗s + c̄∗v �= c∗s + c∗v = c∗ but gz̄∗s pk
−c̄∗s
s = R∗s and

gz̄∗vpk
−c̄∗v
v = R∗v . (Otherwise A aborts.) If c∗v �= c̄∗v,A out-

puts the discrete log of y as x = logg y = (z∗s− z̄∗s )/(c∗s−c̄∗s ).
Otherwise, it aborts.

Probability Analysis The oracles are simulated by A per-
fectly using its knowledge of x̄ (which is the secret key of
either pks or pkv , depending on the outcome of the coin toss
at the onset of the simulation). Therefore, F outputs its first
valid forgery with probability at least εuf . Then, by an anal-
ysis similar to that in [7,24], we have that with probability at
least ε2

uf/16qHF outputs its valid forgery in the second run
again which satisfies the aforementioned conditions. Since
setting y as the public key of S or V (at the onset of the
simulation by A) is completely random and the whole sim-
ulation is perfect, we then have that with probability at least
one-half it holds that c∗v �= c̄∗v . Thus, from the two valid forg-
eries, A can successfully compute the discrete log of y with
probability at least

εdl ≥ ε2
uf

16qH
· 1

2
= ε2

uf

32qH
.

This completes the proof. ��
Theorem 5 SDVS2 is perfectly non-transferable.

To simulate the signer’s signature on message M , the des-
ignated verifier first selects at random rv, zs, cs ←$ Zq and
computes Rv ← grv , Rs ← gzspk−cs

s . It then sets c ←

H(M,pkxv
s , Rs, Rv) and cv ← c − cs, zv ← rv + cvxv . It

outputs σ := (cs, zs, cv, zv) as the simulated signature on M .
Then, the theorem follows from the fact that both S and V
can produce identically distributed proofs using their respec-
tive secret key, since they can compute the same key K and
(the interactive version of) the proof of knowledge is perfect
special honest verifier zero-knowledge.

Theorem 6 If there is an algorithm F which for some mes-
sage M can produce valid signatures in polynomial time and
with probability ε after issuing at most qH queries to the
random oracle, then SDVS2 is non-delegatable with knowl-
edge error 1/q in the random oracle model.

Proof Assume that ε > κ = 1/q , where 1/q is the probability
that the adversary guesses the value of H(M, gxs xv , Rs, Rv)

without asking the random oracle.
Let FM be a forger with input message M . Consider two

runs of FM by K on the same random tape. In both runs,
K executes FM step-by-step, except that K returns different
random values (c versus c̄) as the answer to the hash query
H(M, K , Rs, Rv) where K = gxs xv . Since (K , Rs, Rv) are
in the hash input, their values must be unchanged in the two
runs. Let Rs = grs and Rv = grv for some rs, rv ∈ Zq .
Suppose that both signatures are valid, it must be that

cs + cv = H(M, K , gzspk−cs
s , gzvpk−cv

v ), and

c̄s + c̄v = H(M, K , gz̄spk−c̄s
s , gz̄vpk−c̄v

v ).

Then we have

zs = rs + xscs, (11)

zv = rv + xvcv, (12)

z̄s = rs + xs c̄s, (13)

z̄v = rv + xv c̄v. (14)

If cs �= c̄s , then from Eqs. (11) and (13) we have that xs =
(zs − z̄s)/(cs − c̄s). Similarly, if cv �= c̄v , from Eqs. (12)
and (14), we have that xv = (zv − z̄v)/(cv − c̄v). Since
cs + cv �= c̄s + c̄v , it must be that either cs �= c̄s or cv �= c̄v .
Then, we can extract the secret key of either S or V as above.

Note that in the analysis above, the value of K = gxs xv

is unknown to the extractor K. Since the forger FM may
make many hash queries of the form (M, ·, Rs, Rv), in order
to rewind FM to the proper status, i.e. the status that FM

made the hash query (M, gxs xv , Rs, Rv),K needs to guess
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at random the hash query in which the second element is
the correct value of K (and the last two elements are Rs

and Rv). This brings a factor 1/qH to the success probabil-
ity of the extractor. Conditioned on that the random guess is
correct, by a similar analysis to that in [7,24], we have that
with probability at least (ε−1/q)/16,FM produces another
valid signature σ ′ on the same message M in the second
run, which together with the valid signature in the first run,
enables K to extract either sks or skv . Hence, the probabil-
ity that K succeeds in extracting either sks or skv is at least
(ε − 1/q)/16qH. ��
Theorem 7 If GDH assumption (tgdh, εgdh)-holds in G,

SDVS2 is then (t, qSign, qSim, qVer, ε)-PSI-secure in the
random oracle model, where t ≈ tgdh and ε ≤ εgdh + 2/q.

Proof Assume that D is an adversary against the privacy of
signer’s identity, which runs in time t , issues at most qSign
signing queries, qSim simulation queries and qVer verifica-
tion queries and wins with probability 1/2 + ε. Using D as
a subroutine, we build an algorithm E for solving the GDH
problem.

Given a random instance of GDH problem, say, (G, g, q,

gu, gw) and a DDH oracle, E randomly selects u′ ∈ Zq and
sets pks0 = gu,pks1 = gu gu′ and pkv = gw. It invokes
D on input (pks0 ,pks1 ,pkv) and then simulates oracles for
it. E maintains two tables, H T and ST , which are initially
empty. For simplicity, we assume that D does not duplicate
queries, and we do not consider queries to OSim in the proof.

Hash Queries Given an input (M, K , Rs, Rv), if there is a
tuple ((M, K , Rs, Rv), c) in table H T, E returns c. Other-
wise, it submits (g,pks0 ,pkv, K ) and (g,pks1 ,pkv, K ) to
the DDH oracle and obtains two bits, b0 and b1. If b0 = 1, E
outputs K and halts; if b1 = 1, it outputs K/(gw)u′ and halts;
otherwise (b0 = b1 = 0), it selects at random a fresh c ∈ Zq ,
stores ((M, K , Rs, Rv), c) in H T and returns c.

Signing Queries Given a bit d and a message M, E ran-
domly chooses cs, cv, zs, zv ∈ Zq and computes Rs =
gzspk−cs

sd , Rv = gzvpk−cv
v and c = cs + cv . If c was

ever used, E repeats the process above. It then stores
((M,⊥, Rs, Rv), c) in H T and returns σ := (cs, zs, cv, zv).
Meanwhile, it stores (d, M, σ ) into signature table ST . Note
that though E does not know gxsd xv , the simulated signature
is still identically distributed as real ones.

Verification Queries Given a bit d, a message M and an
alleged signature σ = (cs, zs, cv, zv), if there is a tuple
(d, M, σ ) in table ST, E returns 1; otherwise, it returns 0.

The intuition behind the simulation of verification oracle
is that if a signature was ever returned by E to the adversary, it
must be valid. Otherwise, if the signature is invalid, certainly
the oracle should return 0; if it is valid, then the adversary
forged a valid signature. In this case, with probability at least

1− 1/q it holds that D made a hash query (M, K , Rs, Rv),
where K = pkxv

sd , Rs = gzspk−cs
sd and Rv = gzvpk−cv

v .
According to the simulation of the hash oracle, E obtained
guw and halted. Thus, the only case left is that the signature
is valid but the adversary did not ask the random oracle for
the hash of (M, K , Rs, Rv). Therefore, the simulation of the
verification oracle would cause at most 1/q difference to the
the adversary’s success probability.

When it is ready, D submits a challenge message M∗.
E then flips a coin b, randomly chooses c∗s , c∗v, z∗s , z∗v ∈
Zq and computes R∗s = gz∗s pk

−c∗s
sb , R∗v = gz∗vpk

−c∗v
v and

c∗ = c∗s + c∗v . Again, if c∗ was used, E repeats the pro-
cess above. It then returns σ ∗ := (c∗s , z∗s , c∗v, z∗v) and stores
((M∗,⊥, R∗s , R∗v ), c∗) in H T and (b, M∗, σ ∗) in ST , and
E continues to simulate oracles for D and monitor the hash
queries as above. Finally, D outputs a bit b′. If until now E
has not halted, it aborts and fails to find gab.

Probability Analysis From above, we see that all the que-
ries are perfectly handled, except there is a 1/q difference
in the simulation of verification oracle. Notice that in or-
der to win the PSI game, D has to make hash queries with
(M, K , Rs, Rv) where K = gxs0 xv or K = gxs1 xv . Other-
wise, since the outputs of oracle H are completely random, D
would have no information about c∗ at all if it did not make
a hash query on (M∗, K , R∗s , R∗v ), except that it guesses the
hash value at random, which is correct with probability at
most 1/q. Therefore, we have that

εgdh ≥
(

1− 1

q

) ((
1

2
+ ε

)

−
(

1

2
+ 1

q

))

=
(

1− 1

q

) (

ε − 1

q

)

> ε − 2

q
.

This completes the proof. ��
Remark 3 The security reduction for unforgeability is not
tight, since we need to rewind the adversary in order to extract
the discrete logarithm from the signatures. We could also try
to apply Katz–Wang technique [17] to obtain a tight reduc-
tion. However, the unforgeability would then rely on DDH
assumption, which is stronger than the one we are currently
using. Besides, the proof of PSI may still need the GDH
assumption. In a consequence, the security of the new scheme
relies on two mutually conflictive assumptions, e.g. DDH and
GDH.

Remark 4 From the proof above, we can see that the underly-
ing assumption of PSI can be further weakened to Strong Dif-
fie–Hellman (Strong DH) assumption [1]2, since each query

2 The Strong DH assumption states that it is intractable to compute
gab given g, ga, gb for unknown a, b ∈ Zp and access to a DDH oracle
which takes as input (X, Z) outputs 1 if Z = Xa and 0 otherwise. Notice
that this is different from the one introduced by Boneh and Boyen [6]
in constructing identity-based encryption schemes.
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to the DDH oracle is of the form (∗, gw, K ) where the gw is
fixed in all the queries. The same holds for the short SDVS
scheme in [5,15] as well.

6 Comparison

In Table 1, we compare our two SDVS schemes with some
existing (S)DVS schemes. The third and the fourth rows of
the table consider the size of a public key and that of a signa-
ture, respectively. The fifth and sixth rows count the numbers
of exponentiations and pairings in signature generation and
verification, respectively. The seventh row considers whether
the scheme supports PSI. The eighth row considers whether
the scheme has non-delegatability. The ninth row considers
whether the security could be proved without random ora-
cles. The last row shows the underlying number-theoretic
assumptions for the security.

In terms of signature size, SDVS1 that is secure in the
standard model outperforms schemes in [16,20,22], which
are secure in the random oracle model, and is comparable
with [5,15] which by far is the most efficient SDVS in the
random oracle model. SDVS1 also has comparable compu-
tational complexity as [5,15]. On the other side, to the best
of our knowledge, SDVS2 is the first non-delegatable SDVS
scheme, which compared with Lipmaa et al.’s DVS scheme
[22], and has the same signature size and shorter public key,
but looser reduction for unforgeability.

7 Conclusion and future work

In this paper, we proposed an efficient SDVS scheme based
on pseudorandom functions. It has short signatures and is
provably secure in the standard model. We then proposed
another scheme, which is the first SDVS scheme with non-
delegatability. The price we need to pay is the provable secu-
rity in the random oracle model. Many problems about DVS
are still open, for example, the construction of non-deleg-
atable (S)DVS without random oracles. We leave it as our
future work.
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