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Abstract

We revisit the problem of secure cross-domain communication between two users belonging to different
security domains within an open and distributed environment. Existing approaches presuppose that
either the users are in possession of public key certificates issued by a trusted certificate authority
(CA), or the associated domain authentication servers share a long-term secret key. In this paper, we
propose a generic framework for designing four-party password-based authenticated key exchange (4PAKE)
protocols. Our framework takes a different approach from previous work. The users are not required to
have public key certificates, but they simply reuse their login passwords they share with their respective
domain authentication servers. On the other hand, the authentication servers, assumed to be part of a
standard PKI, act as ephemeral CAs that “certify” some key materials that the users can subsequently
use to exchange and agree on a session key. Moreover, we adopt a compositional approach. That
is, by treating any secure two-party password-based key exchange (2PAKE) protocol and two-party
asymmetric-key/symmetric-key based key exchange (2A/SAKE) protocol as black boxes, we combine
them to obtain generic and provably secure 4PAKE protocols.

Keywords: Password-based protocol, key exchange, cross-domain, client-to-client.

1 Introduction

There are many cross-domain communication scenarios, such as email communication, mobile phone com-
munication, and instant messaging, where the information being communicated may need to be protected
against both passive and active attackers. In these scenarios, a user is typically registered to some kind of
domain server, such as email exchange server or home location register (in the cases of email and mobile
phone communications, respectively). Moreover, two communicating parties from different domains very
often neither share a password nor possess a public key certificate. Hence, although two-party and three-
party authenticated key exchange protocols have been extensively studied and widely deployed in the real
world, see for example [1, 6, 11, 26, 32], it is not clear how they can be directly applied to establish a secure
cross-domain communication channel.

In this work, we consider the use of an authenticated key exchange protocol to establish a session key
such that two users can securely transmit information from one domain to another. We assume that each

∗An extended abstract of this paper has appeared in the Proceedings of the 32nd IEEE International Conference on Computer
Communications (INFOCOM), 2013.
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security or administrative domain1 has (at least) a trusted domain server acting as an authentication server
governing a group of users. Each user within the domain shares only a password with the server and the
user does not necessarily own a public key certificate. Further, we assume that a domain server makes
available its public key to other domain servers in the form of a public key certificate, i.e., the server
is connected to a public key infrastructure (PKI). In such a setting, we focus on enabling a user from one
domain to establish a secure communication channel with another user from a different domain through their
respective domain servers. Our approach makes use of both password-based and public-key cryptographic
techniques for authentication and key exchange. We call this work four-party password-based authenticated
key exchange (4PAKE) instead of client-to-client password-based authenticated key exchange (C2C-PAKE),
as suggested in the literature [13, 45], because we thought that the latter may be confused with 3-party
C2C-PAKE (in which both communicating parties are registered to the same domain server).

We believe that our aforementioned communication model is more realistic, user-friendly and scalable
than that of related previous work, for example, public key Kerberos [25, 46] and C2C-PAKE [14, 45].
The latter either requires a user to obtain a public key certificate, or assumes that the domain servers
corresponding to the communicating users share a long-term secret key. We elaborate more on previous
work in Section 2.

The primary contribution of this paper is a new generic framework for designing 4PAKE protocols that
meet the requirements discussed above. Our framework is based on a compositional approach and can be
regarded as a form of compiler combining and transforming two building blocks — (i) a secure two-party
password-based authenticated key exchange (2PAKE) protocol, and (ii) a secure two-party asymmetric-key or
symmetric-key authenticated key exchange (2A/SAKE) protocol — into a secure four-party password-based
authenticated key exchange protocol. We describe the cryptographic primitives and building blocks used in
this work in Section 3 and give an overview of our approach in Section 4. The details of our new framework
and some concrete instantiations of generic 4PAKE protocols are presented in Section 5.

Moreover, we define a security model for our generic 4PAKE protocols based on the Real-Or-Random
(ROR) security model [1] and show that our protocols are secure in the model. Our security definitions
and analyses are shown in Sections 6 and 7, respectively. Our security proofs rely solely on the security
properties of the cryptographic primitives on which our protocols are based, and do not make use of the
Random Oracle model [7].

In an extended abstract of this work [19], we presented a 4PAKE protocol that uses 2PAKE and 2AAKE
as building blocks and showed that it is provably secure in our security model; however, no implementation
results were given. This paper presents the full version of our results where we further propose two new
4PAKE protocols: a 4PAKE variant that optimises our earlier protocol shown in [19] by allowing key reuse;
and a 4PAKE protocol that builds on 2PAKE and 2SAKE (instead of 2PAKE and 2AAKE). We also implement
our protocols and provide some empirical performance evaluation in Section 8. Our experimental results show
that all of the 4PAKE protocols have only slightly higher (between 1.05× and 1.1×) client-side computational
overhead than that of public key Kerberos. However, in return, our protocols are approximately 1.1× to
1.2× faster than public key Kerberos from the server’s perspective, and thus, can scale better. Further, our
approach is more usable in the sense that the user only needs to remember a password, and flexible in terms
of reuse of existing two-party key exchange protocols.

We give some concluding remarks in Section 10.

2 Previous Work

The design and analysis of authentication and key exchange protocols are fundamental research problems in
information security and have been extensively studied over the last three decades (see for example [8, 21,
29, 30, 41] and many others). In this paper, we focus on designing authenticated key exchange protocols for
protecting cross-domain communication between two users belonging to different security domains.

1Here a domain is analogous to a Kerberos realm. It is a logical network that defines a group of system users, computers
and/or servers, such that it is easy for a system administrator to enforce security policies and to protect these entities.
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2.1 Kerberos

Initially developed by an MIT research team led by Miller and Neuman, Kerberos2 [32, 33] is now a widely
deployed network authentication protocol. The most current version, Kerberos 5, is supported by all major
operating systems, including Solaris, Linux, MacOS, and Microsoft Windows.

In Kerberos, each domain (also known as realm) is governed by a Key Distribution Center (KDC), which
in turn, provides user authentication and ticket-granting services. Each user shares a password with its
KDC, while local application servers that are accessible to the user share (long-term) symmetric keys with
the KDC. Kerberos then allows single sign-on that authenticates clients to multiple networked services, such
as remote hosts, file servers and print spoolers. This can be summarised in three rounds of communication
between the client (typically acting on behalf of a user) and different principals as follows:

1. the client first performs a password-based login to its local KDC, i.e., authentication server, and obtains
a ticket-granting ticket (TGT);

2. the TGT is then forwarded to a ticket-granting server in order to obtain a service ticket;

3. the client finally presents the service ticket to the application servers to get access to networked services.

The above standard Kerberos protocol makes use of highly efficient symmetric key techniques. However,
one security weakness is that a password-derived symmetric key is used in the first round of the protocol
between the client and the KDC. This opens up the possibility of allowing a passive attacker to eavesdrop
the protocol messages (transmitted in the first round) and perform an off-line password guessing attack. In
other words, the strength of the user authentication may be only as strong as the user’s ability to choose
and remember a strong password.

Public key cryptography for initial authentication in Kerberos (PKINIT) has thus been proposed by Zhu
and Tung [46] to add flexibility, security and administrative convenience by replacing the password-based
authentication with signature-based authentication between the client and the KDC. (The symmetric key
operations in the second and third rounds of the protocol are retained.) The client and the KDC do not
share a secret now. Each of them is assigned a public-private key pair instead, and they must now generate
their respective signatures over the messages communicated in the first round. While the PKINIT extension
offers stronger user authentication, it adds complexity to the protocol since we now require a public key
infrastructure (PKI) and each user needs to manage her public-private key pair.

Moreover, Kerberos can be used to achieve cross-realm authentication (PKCROSS) by using public key
techniques. This is useful when a client from a domain wishes to access networked services offered by another
domain (that is governed by a remote KDC). Here, the two corresponding KDCs exchange messages following
closely the PKINIT specification [46]. This avoids unnecessary administrative burden of maintaining cross-
realm, shared symmetric keys. The (simplified) basic PKCROSS protocol is as follows [25]:

1. The client submits a request to its local KDC for credentials associated with the remote realm.3

2. The local KDC submits a request (using the standard PKINIT) to the remote KDC to obtain a
cross-realm TGT.

3. The remote KDC responds as with PKINIT, and the local KDC passes the cross-realm TGT to the
client.

4. The client then submits a request directly to the remote KDC and proceeds with the second and third
rounds of the standard Kerberos protocol using symmetric key techniques.

Our work is closely related to PKCROSS, in the sense that we also deal with cross-domain authentication
and secure communication. However, our proposal of 4PAKE is based on rather different design principles.
We will elaborate on this in Section 4.

2http://web.mit.edu/kerberos/
3Note that the local KDC can authenticate the client using a password-based approach or PKINIT. However, as explained,

the latter is usually a preferred choice since it is more secure than the former.
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2.2 Client-to-Client Key Exchange

The idea of extending password-based key exchange between two users from the same domain to the cross-
domain setting was also studied by Byun et al. [13], and Yin and Bao [45]. It was often known as client-to-
client password-based authenticated key exchange (or key agreement) and thus the acronym C2C-PAKE (or
C2C-PAKA). The key concept of C2C-PAKE is based on the cross-realm Kerberos protocol [32], in which
each realm (or domain) has a KDC and that two users from two distinct realms establish a common secret
key through their respective KDCs. We note that, however, existing proposals for C2C-PAKE make use of
a symmetric key approach. Both KDCs that are involved in a C2C-PAKE protocol run are assumed to be
sharing a long-term symmetric key. This leads to a similar limitation in symmetric key management that
PKCROSS aims to address. More recent work on C2C-PAKE with improved efficiency and/or security can
be found in [14, 23, 43].

2.3 Others

Our work shares similar spirit with proposals on inter-domain password-based key exchange in the public
key setting by Yeh and Sun [44], and Wong and Lim [42]. Briefly, these proposals make use of the domain
servers’ public keys to protect protocol messages between clients. However, no rigorous and formal security
analyses of the proposed protocols have been provided.

3 Preliminaries

3.1 Cryptographic Primitives

We first describe some cryptographic primitives required for our protocols. In our description, we let κ
denote a security parameter.

Message Authentication Codes A message authentication code (MAC) scheme is a tuple of polynomial-
time algorithms (Gen, Mac, Ver) such that:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs a key
K;

– Mac(K;m), the MAC tag generation algorithm, takes as input a key K and a message m ∈ {0, 1}∗,
and outputs a tag µ;

– Ver(K;m;µ), the verification algorithm, takes as input a key K, a message m and a tag µ; it outputs
1 if µ is a valid tag for message m under key K, or 0 otherwise.

Security. We consider security against strong existential unforgeability under a chosen-message attack
(SUF-CMA). The adversary attacking a MAC scheme should not be able to create a new valid message-
tag pair with non-negligible probability, even after seeing many such valid pairs [4]. Let SuccMAC denote
the event in which the adversary A is able to output a message m along with a tag µ such that: (i)
Ver(K;m;µ) = 1, and (ii) A had not previously requested a tag µ on the message m. (Clearly, we assume
that A has no knowledge of the key K.) The advantage of A in violating the strong existential unforgeability
of the MAC scheme under chosen-message attacks [4] is defined as Advsuf-cma

MAC (A) = Pr[SuccMAC]. The asso-
ciated advantage function, Advsuf-cma

MAC (t, qmac, qver), is then defined as the maximum value of Advsuf-cma
MAC (A)

over all A with time-complexity at most t, and asking at most qmac and qver queries to the tag generation
and verification oracles, respectively.
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Digital Signatures A signature scheme is a tuple of polynomial-time algorithms (Gen, Sig, Ver) satis-
fying the following:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs a pair
of public/private keys (pk, sk);

– Sig(sk;m), the signing algorithm, takes as input a private key sk and a message m ∈ {0, 1}∗, and
outputs a signature σ;

– Ver(pk;m;σ), the verification algorithm, takes as input a public key pk, a message m and a signature
σ; it outputs 1 if σ is a valid signature for message m under key sk, or 0 otherwise.

Security. A signature scheme is considered secure against existential unforgeability under an adaptive
chosen-message attack (EUF-CMA), if the adversary attacking the scheme could not create a new valid
message-signature pair with non-negligible probability without knowing the corresponding signing key. This
is so even if the adversary is allowed to ask for signing of multiple messages chosen adaptively [24]. Let
SuccSig denote the event in which the adversary A is able to output a forged signature σ for a message m
such that: (i) Ver(pk;m;σ) = 1, and (ii) A had not previously requested a signature on the message m from
the signing oracle. The advantage of A in violating the existential unforgeability of the signature scheme
under adaptive chosen-message attacks [24] is defined as Adveuf-cma

Sig (A) = Pr[SuccSig]. The associated

advantage function, Adveuf-cma
Sig (t, qsig, qver), is then defined as the maximum value of Adveuf-cma

Sig (A) over
all A with time-complexity at most t, and asking at most qsig queries to the signing oracle and at most qver
queries to the verification oracle.

Authenticated Encryption An authenticated encryption (AE) scheme (a symmetric-key encryption
scheme that provides both privacy and authenticity/integrity) is a tuple of polynomial-time algorithms
(Gen, Enc, Dec) satisfying the following:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs a sym-
metric key sk;

– Enc(sk;m), the encryption algorithm, takes as input a secret key sk and a message m ∈ {0, 1}∗, and
outputs a ciphertext c;

– Dec(sk; c), the decryption algorithm, takes as input a secret key sk and a ciphertext c; it outputs m
if c is authenticated, or 0 otherwise indicating an invalid ciphertext.

Security. For an authenticated encryption (AE) scheme, we consider both privacy and authentic-
ity/integrity [5]. In terms of privacy, we consider the conventional notion of indistinguishability under a
chosen-plaintext attack (IND-CPA). Let b ← {0, 1} denote a random bit. An adversary is allowed access
to a left-or-right (LR) oracle, which returns Enc(K;Mb) upon receiving a pair of messages (M0,M1) from
the adversary. However, the adversary has no knowledge of the key K and its goal is to guess the value of
b. The advantage function, Advind-cpa

AE (t, qlr), is defined as the maximum value of Advind-cpa
AE (A) over all A

with time-complexity at most t, and asking at most qlr queries to the LR oracle.
To define authenticity, we consider an adversary who has access to an encryption oracle Enc, which

returns the encryption of any message m chosen by the adversary; and a decryption oracle Dec, which tells
if the decryption of a ciphertext c is successful or not. The goal of the adversary is to forge a ciphertext c∗

such that: (i) c∗ can be successfully decrypted; and (ii) c∗ is not the output of the encryption oracle. The
associated advantage function, Adveuf-cma

AE (t, qenc, qdec), is defined as the maximum value of Adveuf-cma
AE (A)

over all A with time-complexity at most t, and asking at most qenc and qdec queries to the encryption and
verification oracles, respectively.
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Key Derivation Function A Key derivation function KD : {0, 1}κ × {0, 1}` → {0, 1}n takes a key
K ∈ {0, 1}κ and a string x ∈ {0, 1}` as input and outputs another string y ∈ {0, 1}n. In this paper, we
consider a key derivation function KD is secure if it satisfies the security requirement of a pseudo-random
function. Namely, for any randomly selected key K, KD(K; ·) should behave like a truly random function
RF(·). We define the advantage of an adversary D against a key derivation function as

AdvKD(D) = |Pr[DKD(K,·)(κ, `, n) = 1]− Pr[DRF(·)(κ, `, n) = 1)]|

where t denotes the maximum running time of D and qkd is the maximum number of oracle queries D is
allowed to make. The associated advantage function, AdvKD(t, qkd), is then defined as the maximum value
of AdvKD(D) over all D with time-complexity at most t, and asking at most qkd oracle queries.

Non-interactive Key Derivation Scheme A non-interactive key derivation scheme consists of two
polynomial-time algorithms (Gen, NKD) satisfying the following:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs a pair
of public/private keys (pk, sk);

– NKD(pkA, skB), the non-interactive key derivation function, takes as input a public key pkA and a
private key skB , and outputs a symmetric key KAB ∈ {0, 1}n.

There are two security requirements involved for a Non-interactive Key Derivation Scheme:

– completeness: NKD(skA, pkB) = NKD(skB , pkA);

– key privacy: {pkA, pkB ,NKD(skA, pkB)} is computationally indistinguishable from {pkA, pkB ,Un}
where Un denotes a string selected uniformly at random from {0, 1}n. We define the advantage of
an adversary D against a non-interactive key derivation scheme as

AdvNKD(D) = |Pr[D(pkA, pkB ,NKD(skA, pkB)) = 1]− Pr[D(pkA, pkB ,Un) = 1)]|.

The associated advantage function, AdvNKD(t), is then defined as the maximum value of AdvNKD(D) over
all D with time-complexity at most t.

3.2 Two-Party Authenticated Key Exchange

A two-party authenticated key exchange (2AKE) protocol consists of two probabilistic polynomial time
algorithms:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs a long-
term key KU for entity U .

– P(KA,KB), a protocol execution algorithm that can be executed by two distinct parties holding KA

and KB , respectively.

Depending on the type of the long-term key, one can divide 2AKE protocols into three major categories:
(i) two-party password-based authenticated key exchange (2PAKE), (ii) two-party asymmetric-key authenti-
cated key exchange (2AAKE), and (iii) two-party symmetric-key authenticated key exchange (2SAKE).

Many 2AKE protocols are extensions of the classic Diffie-Hellman key exchange [21] by incorporating an
authentication component into the protocol. Here authentication can be achieved by using passwords (i.e.,
2PAKE), asymmetric-keys (i.e., 2AAKE), or symmetric-keys (i.e., 2SAKE). Take for example, the 2PAKE
protocol presented in [6] uses a password-derived key to encrypt the Diffie-Hellman key exchange message
flows so that only the two users sharing the same password can decrypt the messages and compute the
Diffie-Hellman key.

In what follows, we present the security model for each type of 2AKE protocol. We first give an overview
of the Real-Or-Random (ROR) model for 2PAKE [1]. We then define a security model in the Find-Then-Guess
(FTG) sense for 2AAKE and 2SAKE.
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3.2.1 Password-based

Let us first recall two existing security models related to password-based authenticated key exchange proto-
cols: the Find-Then-Guess (FTG) and the Real-Or-Random (ROR) models.

The FTG model (sometimes also known as the BPR2000 model) was proposed by Bellare et al. to measure
the indistinguishability of a session key from a random key [6]. In the FTG model, an adversary is allowed to
pose multiple queries to a reveal oracle (in addition to other oracles, for example execute and send oracles).
The reveal oracle is used to model the misuse of session keys by a user. However, the adversary is restricted
to ask only a single query to the test oracle.

Abdalla et al. [1] then proposed the ROR model that is very similar to the FTG model, except that the
former does not make use of a reveal oracle. This means that the adversary no longer has access to the reveal
oracle to learn session keys of user instances. However, the adversary is allowed to pose as many test queries
as it wishes to different instances. Note that in the ROR model, the test oracle (instead of the reveal oracle)
is used to model the misuse of keys by a user.

We remark that the recently proposed ROR model is strictly stronger than the FTG model in the
password-based setting.4 Hence, we adopt the ROR model for password-based protocols in this paper.

In the 2PAKE setting, we assume that each protocol participant is either a client C ∈ C or a server S ∈ S.
The set of all users or participants U is the union C ∪ S. We also assume that each client C ∈ C holds a
password pwdC , while each server S ∈ S holds a vector pwdS = 〈pwdC〉C∈C with an entry for each client [6].
Here, pwdC and pwdS are regarded as the long-lived keys of client C and server S.

As with a typical security model, an adversary A interacts with protocol participants only via oracle
queries. Such queries model the adversary’s capabilities in a real attack. During a protocol execution, there
may be many concurrent running instances of a participant. We denote an instance i of a protocol participant
U ∈ U by U i. A protocol session between a client instance and a server instance is labeled by a unique
session identifier. As remarked by Bellare et al. [6], a session identifier can be constructed based on the
partial protocol messages exchanged between the client and the server instances before the acceptance. Two
instances U i1 and U i2 are said to be partners if the following conditions are met [6]:

(i) Both U i1 and U i2 accept;5

(ii) Both U i1 and U i2 share the same session identifiers;

(iii) The partner identifier for U i1 is U i2, and vice versa;

(iv) No instance other than U i1 and U i2 accepts with a session identifier equal to that of U i1 or U i2.

The oracle queries in the ROR security model for 2PAKE are then classified as follows [1]:

– Execute(Ci, Sj): This query models a passive attack in which the adversary eavesdrops on an honest
execution of the protocol between a client instance Ci and a server instance Sj . The output of the
query comprises messages that were exchanged during the honest execution of the protocol.

– Send(U i,m): This query models an active attack in which the adversary may intercept a message and
then either modify it, create a new one, or simply forward it to the intended participant. The output
of the query is the message that the participant instance U i would generate upon receipt of message
m.

– Test(U i): This query models the misuse of a session key by a user. Let b be a bit chosen uniformly at
random at the beginning of an experiment defining indistinguishability in the ROR model. The output
of the query is then the session key for participant instance U i if b = 1 or a random key from the
same domain if b = 0. However, if no session key is defined for instance U i, then return the undefined
symbol ⊥.

4A protocol proved secure in the ROR model is also secure in the FTG model. The reverse, however, is not necessarily true.
See [1] for further details about the relation between the ROR and FTG models.

5An instance U i goes into an accept mode after it has received the last expected protocol message.
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We note that the adversary is allowed to ask multiple queries to the Test oracle in the ROR model (this
is in contrast with the FTG model which allows only a single query to the Test oracle). All Test queries
must be made on fresh instances (which have not revealed their session keys) and they should be answered
using the same value for the hidden bit b (chosen at the beginning of the experiment). This implies that the
keys returned by the Test oracle are either all real or all random. Moreover, in the case where the returned
key is random, the same random value should be returned for Test queries that are asked to two instances
which are partnered [1]. The goal of the adversary is to guess the value of the hidden bit b used to answer
Test queries. The adversary is considered successful if it guesses b correctly. Let Succ denote the event in
which an adversary is successful. The advantage of an adversary A in violating the indistinguishability of
the 2PAKE protocol in the ROR sense is

Advror
2PAKE,D(A) = 2 · Pr[Succ]− 1

when passwords are drawn from a dictionary D. The associated advantage function is then

Advror
2PAKE,D(t, qe, qs, qt) = max

A
{Advror

2PAKE,D(A)}

where the maximum is over all A with time-complexity at most t and making at most qe execute queries, qs
send queries, and qt test queries.

We say that a 2PAKE protocol is secure in the ROR model if the advantage Advror
2PAKE,D(t, qe, qs, qt) is

only negligibly larger than cn/|D|, where c is a constant, n is the number of active sessions6 and |D| is the
size of the dictionary D.

3.2.2 Asymmetric-key

A two-party asymmetric-key based authenticated key exchange (2AAKE) protocol has a similar objective
as with a 2PAKE protocol, i.e., to agree on a session key between a pair of communication parties. The
long-lived keys of each protocol participant U ∈ U is now, however, a public key pkU and the corresponding
private key skU , instead of a password.

Generally speaking, an adversary in the Find-Then-Guess model is allowed to submit Execute, Send,
Reveal, Corrupt and Test queries. The first two types of queries (Execute and Send) are similar to
those for 2PAKE in the ROR model. The others are defined as follows [9]:

– Reveal(U i): This query models leakage of information on specific session keys. If a session key is
not defined for instance U i or if a Test query was asked to either U i or its partner, then return
⊥. Otherwise, return the session key held by the instance a passive attack in which the adversary
eavesdrops on an honest execution of the protocol between a client instance U i.

– Corrupt(U): This query models the capability of an adversary being able to learn the long-term
secrets of clients. The output of the query is the long-lived private key skU of the participant U .

– Test(U i): Let b be a bit chosen uniformly at random at the beginning of an experiment defining
indistinguishability in the FTG model. Denote V j the partner (if it exists) of U i. If no session key
for instance U i is defined, or if a Reveal query was asked to either U i or V j , or if the adversary has
made a Corrupt(U) or Corrupt(V ) query, then return ⊥. Otherwise, the output of the query is
the session key for instance U i if b = 1 or a random key from the same domain if b = 0.

As explained before, the adversary can query only once to the Test oracle. However, the goal of the
adversary is till the same, i.e., to guess the value of the hidden bit b used to answer the Test query. Let Succ
denote the event in which an adversary guesses b correctly. The advantage of an adversary A in violating the
indistinguishability of the 2AAKE protocol in the FTG sense, Advftg

2AAKE(A), and the associated advantage

function Advftg
2AAKE(t, qe, qs, qr, qc) are then defined as in the password-based setting where qr and qc denote

the maximum number of reveal and corrupt queries, respectively.
We say that a 2AAKE protocol is secure in the FTG model if the advantage Advftg

2AAKE(t, qe, qs, qr, qc) is
negligible (in the associated security parameter).

6A session is said to be active if it involves Send queries by the adversary.
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3.2.3 Symmetric-key

The security definition of two-party symmetric-key based authenticated key exchange (2SAKE) is almost
identical to that of 2AAKE. The only difference is that in a 2SAKE protocol, each protocol participant A ∈ U
shares with another participant B ∈ U\{A} a symmetric long-lived secret key KAB (= KBA).

4 Our Motivations and Approach

Our concern here is on secure communication between two users from different administrative or security
domains. While this is not a new security problem per se, we observe that current approaches fall short of
being able to offer a satisfactory solution.

A main design goal of Kerberos was to allow single sign-on such that a user is able to access multiple
networked services without the need to repeatedly enter her login password. Hence, the emphasis is on
authenticating a user once and allowing secure access to multiple services within a time period. On the
other hand, our work focuses on authenticated key agreement between two users of separate domains. This
fundamental difference leads to other differences in terms of the protocol message flows and the security
architecture. For example, in Kerberos, we assume that a user shares a password, while each application
server shares a long-term symmetric key with their KDC; while in our case, we have a more “symmetric”
situation where both users each shares a password with her respective domain authentication server.

Furthermore, Kerberos seems to be more suited to a rather “closed” distributed environment, where
it is feasible to establish, distribute and maintain long-term secret keys between a KDC and a group of
application servers, and between the KDC and other remote KDCs. Although this is compensated with the
PKINIT and PKCROSS extensions, PKIs are known to be difficult to deploy for various practical reasons
related to, such as cost, registration process, trust establishment, key revocation, and management of user
private keys [22, 36]. We believe that what is needed here is a PKI that is more “user-friendly”, i.e., which
hides the complexity of public key management from a user’s view point.

Existing work on C2C-PAKE does provide some useful insights on how to construct an efficient authen-
ticated key agreement protocol between a local and a remote users. Unfortunately, however, these protocols
rely on long-term symmetric keys shared between KDCs. This may not be a practical and scalable ap-
proach, particularly in an open distributed environment, because establishment and management of shared
keys between KDCs can be a complicated and costly process.7

From a security perspective, the complexity of a cross-domain authenticated key exchange often compli-
cates its security analysis. As shown in [12, 2], the security analysis of Kerberos, with or without PKINIT, is
rather complex and involved. This sometimes may hinder a security flaw in the protocol from being detected
early. For example, the IETF Internet Draft for PKINIT was first circulated in 1996, but it was only after
almost a decade later when Cervesato et al. reported a man-in-the-middle attack in PKINIT [17]. Similarly,
designing a secure C2C-PAKE protocol seems to be a non-trivial task at all. Most of the C2C-PAKE protocols
found in the literature have security flaws. These include off-line password guessing attacks [34, 40], unde-
tectable on-line password guessing and unknown key-share attacks [35], insider attacks (by malicious clients
and servers) [18, 34, 35], and password-compromise impersonation attacks [16]. Recent proposals [43, 23]
attempt to address these security problems.

Taking all the above observation into consideration, we propose a generic 4PAKE framework and give a
set of example protocols that we believe are suitable for secure cross-domain communication between two
users. In our framework, intuitively, each domain server possesses a public key certificate that is publicly
available to other domain servers (as with the case of web servers used for many e-commerce or online
applications). In a protocol run, the servers corresponding to two communicating users “certify” some key
materials that are associated with the users so that the latter can subsequently exchange the key materials
and agree on a session key. Clearly, we assume that the user trusts the remote server to only certify key

7Administrators must maintain separate keys for every domain which wishes to exchange authentication information with
another domain, implying n(n− 1) keys for n domains, or they must utilise a hierarchical arrangement of domains, which may
increase network traffic and complicate the trust model by requiring evaluation of transited domains [25].
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materials submitted by an authenticated user. We achieve this through a 2PAKE protocol between the user
and her domain server. Hence, the user needs to remember only a password and does not require to deal
with public key management. Once both the users have received the certified key materials (in the form
of a signature) from their respective servers, they exchange the key materials following a two-party AKE
protocol.

Inspired by the work of Abdalla et al. on a compositional approach to three-party password-based au-
thenticated key exchange [1], we adopt a similar approach to our 4PAKE protocol, which comprises 2PAKE
and 2A/SAKE as the building blocks. This is to simplify the security analysis of our protocol. By making
use of secure 2PAKE and 2A/SAKE, we treat them as “black-boxes” and our analysis then focuses only on
the input and output parameters of these two-party protocols. Moreover, using a compositional approach,
we have the flexibility to choose any secure 2PAKE and 2A/SAKE protocols, implying that one can simply
build a 4PAKE protocol based on existing deployed 2PAKE and 2A/SAKE protocols. In fact, each domain
may deploy a different 2PAKE protocol, but yet a user from one domain can securely establish a secret key
with another user of a different domain. Further, if a serious security flaw is found on one of the building
blocks, we simply replace it with another secure two-party protocol without changing the entire four-party
protocol.

5 Generic Four-Party Key Exchange Protocols

In this section, we first present our generic framework for 4PAKE. Using our framework, we then give three
concrete instantiations denoted by 4PAKEv1, 4PAKEv2, and 4PAKEv3. Succinctly, 4PAKEv1 is a generic
protocol constructed from 2PAKE and 2AAKE; while 4PAKEv2 is a variant of 4PAKEv1 that considers key
reuse. In 4PAKEv3, we consider the case where 2SAKE (instead of 2AAKE) is used in order to derive a more
efficient protocol than 4PAKEv1.

5.1 Notation

Table 1: Notation.

X ∈ {A,B, SA, SB} Entities involved in our 4PAKE protocol
idX Unique identifier of X
tsX Timestamp created by X
pkX Public key of X
skX Secret key of X
epkX Ephemeral public key of X
eskX Ephemeral secret key of X

pwdX1,X2 Password shared between X1 and X2

sskX1,X2 Session key shared between X1 and X2

sid Session identifier

The notation used in our 4PAKE protocols is described in Table 1. We assume that (pkX , skX) and (epkX ,
eskX) are both asymmetric key pairs. We write sskX1,X2 ← 2PAKE(pwdX1,X2) to denote the execution of
a 2PAKE protocol, where the protocol is run between X1 and X2, and which takes pwdX1,X2 as input and
establishes sskX1,X2

. We then use sskX1,X2
← 2AAKE((eskX1

, epkX1
, σX1

), (eskX2
, epkX2

, σX2
)) to denote

the execution of a signature-based 2AAKE protocol, where the protocol is run between X1 and X2. It takes
as input an asymmetric key pair (eskX , epkX) and a signature σX (ensuring the authenticity of the public
key epkX) of each entity, and establishes sskX1,X2 . Moreover, we use sskX1,X2 ← 2SAKE(skX1,X2) to denote
the execution of a MAC-based 2SAKE protocol between X1 and X2. It takes as input a shared symmetric key
skX1,X2

and outputs a session key sskX1,X2
. Also, we define a session identifier sid as (idA, epkA, idB , epkB)

in all the 4PAKE protocols shown in this paper. (A similar definition of sid is used in [8].)
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We label a protocol message flow by Mx, where x indicates the x-th message flow. We use subscripts
to differentiate protocol messages that are created and transmitted in parallel, for example MxA and MxB .
We assume that the execution of any of our 4PAKE protocols involve a pair of clients, denoted by A,B ∈ C,
and their respective servers, denoted by SA, SB ∈ S. Here C and S are sets of possible clients and servers,
respectively.

5.2 Generic Framework

We begin by describing a generic framework for constructing 4PAKE protocols. Our framework consists of
the following two phases:

1. Setup. In the initial phase, each server S generates its long-term public-private key pair (pkS , skS),
and each client C chooses a password pwdC that is shared with its domain server.

2. 4PAKE Execution. The second phase is divided into the following steps, as illustrated in Figure 1:

– Initialisation (M1,M2): Should two clients A and B wish to securely communicate with each
other, they first exchange their identity information, idA, idB , and their ephemeral public keys,
epkA, epkB . If A and B already have knowledge of each other’s identity information prior to the
start of the protocol (e.g., they may obtain such information from a higher application layer),
then this step can be skipped.

– Local authentication and key exchange (M3): A and B then each runs a 2PAKE protocol with
their own domain (authentication) server to establish a temporary session key for their following
communication in the next step.

– Token acquirement (M4,M5): Subsequently, A and B each obtains an authentication token issued
by their respective domain servers via the temporary session key established in the previous step.

– Two-party authentication and key exchange (M6): Lastly, A and B use their respective authenti-
cation tokens and ephemeral public/private keys to execute the 2A/S/PAKE protocol in order to
establish a session key.

A SA SB B

M1
[idA, epkA]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M2
[idB , epkB ]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

M3
sskA,SA

← 2PAKE(pwdA,SA
)

⇐=======================⇒
sskB,SB

← 2PAKE(pwdB,SB
)

⇐=======================⇒

M4
idA, idB , epkA, [epkB ], µA−−−−−−−−−−−−−−−−−−−−−−−−→

idB , idA, epkB , [epkA], µB←−−−−−−−−−−−−−−−−−−−−−−−−

M5
tokenSA←−−−−−−−−−−−−−−−−−−−−−−−−

tokenSB−−−−−−−−−−−−−−−−−−−−−−−−→

M6
sskA,B ← 2A/S/PAKE((eskA, epkA, tokenSA

), (eskB , epkB , tokenSB
))

⇐========================================================⇒

where
[· · · ]: optional component
tokenX : authentication token issued by X
µA = Mac(sskA,SA

; idA, idB , epkA, [epkB ], [tsSA
])

µB = Mac(sskB,SB
; idB , idA, epkB , [epkA], [tsSB

])

Figure 1: A generic framework for 4PAKE.

11



Remark 1. In scenarios where clients A and B may already have knowledge of each other’s identity
information prior to the start of a 4PAKE protocol, we can remove the first two message flows (M1,M2).
Hence the signature σ created by each domain server does not include the remote domain client’s ephemeral
public key (but its local domain client’s). We note that, however, the ephemeral public key epk chosen by
a client can be seen as a challenge to the other communicating client. Thus, the removal of M1 & M2
opens up the possibility of a replay attack. For example, an adversary who somehow managed to learn A’s
ephemeral secret key eskA can reuse σSA

to establish a session key with B; or even if A has been revoked
by SA after obtaining σSA

, A can still reuse the signature to continue to establish secure channels with B
without B knowing it. Hence, it is essential to include a timestamp ts in the signature, such that σSA

is now
being tied to a specific time, allowing B to check the freshness of the signature.

Remark 2. We assume that each domain server has access to the authenticated credentials (e.g., public
key certificates) of other domain servers. Moreover, each client possesses a copy of its server’s credential
in order to verify the authentication token issued by the server in M5. This is not necessarily required
to be done in advance. In practice, the servers can distribute their credentials to their clients during the
execution of 2PAKE in M3, or alternatively in M5 by using a MAC algorithm in the same way as M4.
However, note that in order to prevent password-compromise impersonation attacks, the clients must obtain
their respective servers’ credentials through other out-of-band mechanisms. This is because once a client’s
password is known to an adversary, it is trivial for the adversary to impersonate the relevant server by
distributing a fake credential.

Remark 3. Furthermore, we stress that there is no interaction between servers SA and SB during a
protocol run. This seems to be a very attractive property since we can avoid overloading the servers with
high communication cost in an open, distributed environment should they need to exchange messages in
the protocol. The savings in terms of communication bandwidth is significant compared to PKCROSS, for
example. (See Section 8 for further details of our performance evaluation.)

In what follows, we provide example protocols derived from the above framework. Through these instan-
tiations, we demonstrate that a 4PAKE protocol can be constructed from various different basic two-party
key exchange protocols and cryptographic primitives in a compositional way.

5.3 4PAKEv1 (from 2PAKE and 2AAKE)

Our first instantiation of 4PAKE protocol, denoted by 4PAKEv1, entails “piggybacking” 2PAKE (password-
based) and 2AAKE (asymmetric-key based) protocols. This is illustrated in Figure 2.

In M1 & M2, as described before, clients A and B exchange information about their identities (idA,
idB),8 and ephemeral public keys (epkA, epkB), such as Diffie-Hellman components. A and B then, using
their passwords, perform authenticated key agreement with their domain servers SA and SB in M3A and
M3B , respectively. At the end of 2PAKE, each client establishes a shared key with its server. In M4, clients
A and B request for an authentication token by submitting their identities and ephemeral public keys to
their servers. The information is protected using MAC tags generated using the shared keys from M3. In
M5, servers SA and SB then each responds by generating and returning a token in the form of a signature
over the information received from the client. Each server also provides its client the public key of the server
corresponding to the intended remote client. Finally, A and B perform asymmetric-key based authenticated
key exchange in M6 in order to agree on a session key.

One may instantiate a 2PAKE protocol using Jablon’s SPEKE protocol [26], or that proposed by Bellare
et al. [6], or Boyko et al. [11], for example. On the other hand, a simple, classic instantiation of 2AAKE
is the typical two-pass Diffie-Hellman key exchange protocol, involving exchanges of σSA

and σSB
between

clients A and B. The output session key is then sskA,B = KD(geskAeskB , sid), for example. Indeed, we can

8We can assume, in practice, that the identity information contains information about its associated domain. For example,
if idA is an IP address, then it also tells information about the domain to which idA belongs.
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A SA SB B

M1
idA, epkA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M2
idB , epkB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

M3A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M3B
sskB,SB

← 2PAKE(pwdB,SB
)

⇐=====================⇒

M4A
idA, idB , epkA, epkB , µA−−−−−−−−−−−−−−−−−−−−−−−→ M4B

idB , idA, epkB , epkA, µB←−−−−−−−−−−−−−−−−−−−−−−−

M5A
pkSB

, σSA←−−−−−−−−−−−−−−−−−−−−−−− M5B
pkSA

, σSB−−−−−−−−−−−−−−−−−−−−−−−→

M6
sskA,B ← 2AAKE((eskA, epkA, σSA

), (eskB , epkB , σSB
))

⇐===========================================================⇒

where
µA = Mac(sskA,SA

; idA, idB , epkA, epkB)
µB = Mac(sskB,SB

; idB , idA, epkB , epkA)
σSA

= Sig(skSA
; idA, idB , epkA, epkB , pkSB

)
σSB

= Sig(skSB
; idB , idA, epkB , epkA, pkSA

)

Figure 2: The 4PAKEv1 protocol.

use any signature-based message transmission (MT) authenticator proposed by Bellare et al. [3, 15] in M6.
(See [37, 28] for other concrete examples of signature-based Diffie-Hellman key exchange.) As explained in
our motivations, signature-based 2AAKE is adopted in M6 so that the servers can avoid sharing a long-
term symmetric key that may lead to a key distribution problem. Otherwise, for scenarios where sharing of
symmetric keys between all servers does not pose any serious concern, one can replace 2AAKE with MAC-
based key exchange, for example the MAC-based MT authenticator in [3, 15], to reduce computational
overhead. (We give a example protocol that makes use of MAC-based key exchange in Section 5.5.)

5.4 4PAKEv2 (Key Reuse)

In our second example protocol, denoted by 4PAKEv2, we consider a scenario where key reuse is tolerated.
Our goal is to simplify 4PAKEv1 such that some of the steps can be skipped should a client wishes to
reconnect to the same remote client within a predefined period of time. To achieve this, we now require the
client to generate two ephemeral key pairs: one can be reused over multiple sessions, while the other can be
used just for a session and regenerated for each new session.

Let (epk0, esk0) and (epk1, esk1) be the two key pairs generated by the client, and let skCA be the secret
key of a CA. We also let [sk � pk] denote a certificate signed using secret key sk over public key pk; and
[sk � pk]→ [sk′ � pk′] denote a certificate chain rooted at sk. Our protocol is then illustrated in Figure 3.

Here, we treat σSA
as a public key certificate with respect to epk0A, which is issued by the domain server

SA and has a validity period of more than just a session, for example, a day, week, or month. The client
then creates another new pair of ephemeral keys (esk1A, epk

1
A) that are taken as input for the signature-based

2AAKE protocol. Particularly, a certificate-chain of the form:

[skCA � pkSA
]→ [skSA

� epk0A]→ [esk0A � epk1A]

is created in this setting. This way, the authenticity of ephemeral public key epk1A is assured by a signature
under esk0A, which can be verified by B using pkSA

and epk0A, during the execution of 2AAKE.
Should A want to establish a session key with B again within the validity period (i.e., tsSA

) of epk0A, A
simply generates a new (epk1A, esk

1
A) key pair and runs the 2AAKE protocol with B directly without going

through M1 to M5. Henceforth, we use 4PAKEv2∗ to denote a 4PAKEv2 protocol that executes only the
last message flow M6. We show, in our performance evaluation in Section 8, that 4PAKEv2∗ is roughly 2×
faster than PKCROSS and our other 4PAKE protocols.
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A SA SB B

M1
idA, epk

0
A−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M2
idB , epk

0
B←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

M3A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M3B
sskB,SB

← 2PAKE(pwdB,SB
)

⇐=====================⇒

M4A
idA, idB , epk

0
A, epk

0
B , µA−−−−−−−−−−−−−−−−−−−−−−−→ M4B

idB , idA, epk
0
B , epk

0
A, µB←−−−−−−−−−−−−−−−−−−−−−−−

M5A
pkSB

, σSA←−−−−−−−−−−−−−−−−−−−−−−− M5B
pkSA

, σSB−−−−−−−−−−−−−−−−−−−−−−−→
M6 sskA,B ← 2AAKE(((esk0A, esk

1
A), (epk0A, epk

1
A), σSA

),

((esk0B , esk
1
B), (epk0B , epk

1
B), σSB

))
⇐===========================================================⇒

where
µA = Mac(sskA,SA

; idA, idB , epk
0
A, epk

0
B)

µB = Mac(sskB,SB
; idB , idA, epk

0
B , epk

0
A)

σSA
= Sig(skSA

; idA, idB , epk
0
A, epk

0
B , pkSB

, tsSA
)

σSB
= Sig(skSB

; idB , idA, epk
0
B , epk

0
A, pkSA

, tsSB
)

Figure 3: The 4PAKEv2 protocol.

Notice that in fact, more generally, we can use the domain information of B instead of idB in µA and
σSA

, such that A can reuse the (epk0A, esk
0
A) key pair and σSA

to establish a secure communicate session
with any client from the same domain as B.

5.5 4PAKEv3 (from 2PAKE and 2SAKE)

We now give an example that relies on 2PAKE and 2SAKE to improve the computational efficiency of
4PAKEv1.

Intuitively, we assume that each local domain server is able to derive a shared symmetric key with a
remote server via a non-interactive key derivation scheme. This can be achieved if, for example, the server’s
long-term public key is of the form of a Diffie-Hellman component gsk, where sk is the corresponding secret
key. This is so since we can simply compute a common secret key, which is a Diffie-Hellman key, based on
the local server’s secret key and the remote server’s public key. In the case of SA and SB , the Diffie-Hellman
key will be of the form gskSA

skSB . The secret key shared between the two servers will then be used to derive
a pre-session key for the clients, such that the latter can use the pre-session key to further exchange and
establish a session key using a 2SAKE. Our protocol is illustrated in Figure 4.

The domain servers SA and SB first use a non-interactive key derivation scheme to generate a long-term
shared key lskSA,SB

. This key is then used to generate a short-term pre-session key sskSA,SB
based on the

session specific data (idA, epkA, idB , epkB).
After the establishment of a local session key sskA,SA

in M3, the client A and the domain server SA use
a key derivation function to generate two sub-keys ssk0A,SA

and ssk1A,SA
. The former sub-key is used as a

MAC key in M4 to let A deliver the session specific data to SA, while the latter is used as an encryption key
in M5 to let SA securely deliver the pre-session key sskSA,SB

to A. The same procedures are also performed
between B and SB . This way, A and B will both obtain the pre-session key sskSA,SB

at the end of step M5.
Finally, in M6, A and B use the shared pre-session key to execute a MAC-based 2SAKE protocol. A good
example of a MAC-based 2SAKE is the REKEY protocol of [15].

Alternative. Here we briefly sketch another example of 4PAKE that aims to optimise the implementation
cost of the above 4PAKEv3 protocol. The core idea is that we now construct a 4PAKE protocol from 2PAKE
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A SA SB B

M1
idA, epkA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M2
idB , epkB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

M3A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M3B
sskB,SB

← 2PAKE(pwdB,SB
)

⇐=====================⇒

M4A
idA, idB , epkA, epkB , µA−−−−−−−−−−−−−−−−−−−−−−−→ M4B

idB , idA, epkB , epkA, µB←−−−−−−−−−−−−−−−−−−−−−−−
M5A

cSA←−−−−−−−−−−−−−−−−−−−−−−− M5B
cSB−−−−−−−−−−−−−−−−−−−−−−−→

M6
sskA,B ← 2SAKE((eskA, epkA, µ

′
A), (eskB , epkB , µ

′
B))

⇐===========================================================⇒

where
lskSA,SB

= NKD(skSA
, pkSB

) = NKD(skSB
, pkSA

)
sskSA,SB

= KD(lskSA,SB
; idA, epkA, idB , epkB)

sskSB ,SA
= KD(lskSA,SB

; idA, epkA, idB , epkB)
ssk0A,SA

= KD(sskA,SA
; 0)

ssk1A,SA
= KD(sskA,SA

; 1)

ssk0B,SB
= KD(sskB,SB

; 0)

ssk1B,SB
= KD(sskB,SB

; 1)

µA = Mac(ssk0A,SA
; idA, idB , epkA, epkB)

µB = Mac(ssk0B,SB
; idB , idA, epkB , epkA)

cSA
= Enc(ssk1A,SA

; sskSA,SB
)

cSB
= Enc(ssk1B,SB

; sskSB ,SA
)

µ′A = Mac(sskSA,SB
; idA, idB , epkA, epkB)

µ′B = Mac(sskSB ,SA
; idB , idA, epkB , epkA)

Figure 4: The 4PAKEv3 protocol.

as the only building block. That is, 2PAKE is used not only between the client and the domain server, but
also between the two clients. Our motivation for doing this is that implementing a single protocol is much
cheaper than implementing two separate protocols (2PAKE and 2SAKE/2AAKE) in terms of memory space
or circuit size, particularly if the protocol runs within a constrained hardware device, for example, smart
card and mobile phone. Such a protocol is very similar to 4PAKEv3. The only difference between the two
protocols is that we replace M6 in Figure 4 with sskA,B ← 2PAKE(sskSA,SB

), where sskSA,SB
is regarded

as the “password” shared between clients A and B.

6 Security Model

We now define an ROR security model for 4PAKE by extending the work of Abdalla et al. for the three-party
case [1]. In the 4PAKE setting, we assume that each protocol participant is a client U ∈ U or a trusted server
S ∈ S.9 A protocol execution involves two client-server pairs from two distinct security domains. Each client
shares a password with its domain server. (As with the two-party case, each client U ∈ U holds a password
pwdU , while each server S ∈ S holds a vector pwdS = 〈pwdU 〉U∈U with an entry for each client.) We also
assume that a server has access to public information about other servers, such as their identities, public
keys and so forth.

9Note that in Section 3.2, the set U includes both clients and servers. In the four-party case, however, the set U is restricted
to only clients, since the goal of a 4PAKE protocol is to establish secure channels between two clients (rather than between a
client and a server).
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6.1 Indistinguishability of session keys

In order to model insider attacks, the set of clients U comprises two disjoint sets: C, the set of honest clients,
and E , the set of malicious clients. We assume that all passwords of clients from the set E are known by the
adversary [1].

The notion of partnering (between two clients) in the four-party setting is similar to that for the two-party
setting (between client and server), and thus will not be further discussed here.

The oracle queries in the ROR security model for 4PAKE are defined as follows:

– Execute(U i11 , S
j1
1 , U

i2
2 , S

j2
2 ): This query models a passive attack in which the adversary eavesdrops

on an honest execution of the protocol between client instances, U i11 and U i22 , and trusted server

instances, Sj11 and Sj22 . The output of the query comprises messages that were exchanged during the
honest execution of the protocol.

– SendClient(U i,m): This query models an active attack in which the adversary may intercept a
message and then either modify it, create a new one, or simply forward it to the intended participant.
The output of the query is the message that the client instance U i would generate upon receipt of
message m.

– SendServer(Sj ,m): This query models an active attack against a server. The output of the query is
the message that the server instance Sj would generate upon receipt of message m.

– Test(U i): This query models the misuse of a session key by a user. Let b be a bit chosen uniformly
at random at the beginning of an experiment defining indistinguishability in the ROR model. The
output of the query is then the session key for participant instance U i if b = 1 or a random key from
the same domain if b = 0. However, if no session key is defined for the client instance U i, then return
the undefined symbol ⊥.

The advantage of an adversary A in violating the indistinguishability of the 4PAKE protocol in the ROR
sense, Advror

4PAKE,D(A), and the associated advantage function Advror
4PAKE,D(t, qe, qs, qt) are then defined as

in the two-party setting.
Note that for simplicity of presentation, we will not consider the notion of perfect forward secrecy [6] in

this paper. Defining such a notion is a straightforward exercise.

6.2 Key privacy with respect to servers

We stress that the servers involved in a 4PAKE protocol run in our ROR security model are trusted and
assumed to be honest-but-curious. Since the servers have access to all the passwords within their respective
security domains, it seems impossible to prevent any of them from impersonating a client from the same
domain to another client of a different domain. However, in the security model, we allow the servers to
launch passive attacks against any clients by intercepting their protocol messages.

We adopt the definition of key privacy from [1] which says that the session key shared between two
instances should be known to only these two instance and no one else (including the trusted servers).
Moreover, the adversary is allowed access to all passwords of the clients in the set U , and the Execute and
SendClient oracles, but not the SendServer oracle (which can be easily simulated by the adversary using
the passwords). In order to capture the adversary’s ability to tell apart a real session key from a random
key, the adversary is allowed access to a TestPair oracle defined as follows [1]:

– TestPair(U i1, U
j
2 ): Let b be a bit chosen uniformly at random at the beginning of the experiment

defining the notion of key privacy. If b = 1, the output of the query is the actual key shared between
client instances U i1 and U j2 for a session in which the adversary performed only passive attacks. Else if

b = 0, a random key from the same domain is output. However, if client instances U i1 and U j2 do not
share the same key, then return the undefined symbol ⊥.
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Let A be an adversary which is given the passwords of all users and is allowed to ask multiple queries to
the Execute, SendClient and TestPair oracles in an experiment defining the key privacy of the 4PAKE
protocol. The advantage of the adversary A in violating the key privacy of the protocol, Advkp

4PAKE(A), and

the associated advantage function Advkp
4PAKE(t, R) are defined as before.

7 Security Analysis

Before presenting our security proofs, we first give a high level description of the proof idea with regards to
the generic framework illustrated in Figure 1.

We adopt a game-hopping approach which starts with the original game, or Game G0, defined in our
4PAKE model (as described in the last section), and ends with Game G5. These games proceed in the
following manner:

– In Game G1, we replace the key sskA,SA
with a random key. The difference between G1 and G0 will

be negligible to the adversary if the 2PAKE protocol is secure.

– Game G2 proceeds in a similar way as Game G1, except that we make the same modification to
sskB,SB

, that is, replacing it with a random key.

– In Game G3, we further change Game G2 by rejecting all the MACs forged by the adversary in M4.
Due to the unforgeability of the MAC, the difference between G3 and G2 is also negligible.

– In Game G4, we do a similar modification by rejecting all the authentication tokens forged by the
adversary in M5. The difference between G4 and G3 is again negligible if the token is unforgeable.

– In Game G5, we replace the key sskA,B with a random key. The adversary will not notice such a
change if the 2A/S/PAKE protocol is secure.

– Finally, in Game G5, it is obvious that the adversary has no advantage since a random session key
will be returned in each Test query regardless of the value of b.

7.1 4PAKEv1

Here we give a security proof for 4PAKEv1 from which we can also relate and derive the security proofs for
4PAKEv2 and 4PAKEv3.

7.1.1 Indistinguishability of Session Keys

As the following theorem states, our 4PAKEv1 protocol shown in Figure 2 is secure in the ROR model (as
defined in Section 6), provided that the underlying primitives it uses are secure.

Theorem 1. Let 4PAKEv1 be the four-party password-based authenticated key exchange protocol. Let qexe
be the number of queries to the Execute oracle of the 4PAKEv1 protocol and qtest be the number of Test
queries. Let also qMx

send denote the number of SendClient or SendServer queries related to message Mx
of the 4PAKEv1 protocol for x ∈ {1, 2, 3A, 3B, 4, 5, 6}. Then

Advror
4PAKEv1(t, qexe, q

Mx
send, qtest) ≤

2 ·Advror
2PAKE,D(t, qexe, q

M3A
send , qexe + qM3A

send )

+ 2 ·Advror
2PAKE,D(t, qexe, q

M3B
send , qexe + qM3B

send )

+ 2 · qM4
send ·Advsuf-cma

MAC (t, 2, 0)

+ 4 ·Adveuf-cma
Sig (t, qM5

send, 0)

+ 2 · qtest ·Advftg
2AAKE(t, qexe, q

M1,M2,M6
send , qtest, 0)
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assuming the 2PAKE and 2AAKE protocols, and the MAC and signature schemes used in the protocol are
secure.

Proof Theorem 1. Let A be an adversary against the indistinguishability of 4PAKEv1 in the ROR sense. Our
security proof is a sequence of security games simulated using techniques from Abdalla et al. [1].

As described earlier, we start with the real security game against the 4PAKEv1 protocol, and end with a
game with the adversary’s advantage is zero, and for which we can bound the difference in the adversary’s
advantage between any two consecutive games. For each game Gn, we define Succn to be the event in
which the adversary correctly guesses the hidden bit b used in the Test queries (as defined in Section 6).

Game G0: This is the original attack game with respect to a given polynomial-time adversary A. By
definition, we have

Advror
4PAKEv1(A) = 2 · Pr[Succ0]− 1

Game G1: In this game, we model the adversary almost exactly the same as in game G0. The only difference
between these two games is that here, we replace the session key sskA,SA

output by 2PAKE by a random key
ssk′A,SA

in all of the sessions involving honest users. We show that the difference in success probability of the
adversary A between games G0 and G1 is at most the probability of breaking the security of the underlying
2PAKE protocol between A and SA.

Lemma 2. |Pr[Succ1]− Pr[Succ0]| ≤ Advror
2PAKE,D(t, qexe, q

M3A
send , qexe + qM3A

send ).

Proof of Lemma 2. In order to prove this lemma, we simulate an adversary A2PAKE against the indistin-
guishability of the 2PAKE protocol using a distinguisher, A1, between games G0 and G1. Adversary A2PAKE

first selects a bit b uniformly at random. It also chooses a password for each client in the system except A
(according to the distribution D) and generates an asymmetric-key pair for each server participating in the
protocol. It then starts answering oracles queries from A1 as follows:

– SendClient queries: If A1 makes a query on an instance of the 2PAKE protocol run between A and
SA, then A2PAKE responds by sending the corresponding query to its Send oracle (as defined in the
2PAKE security model). If the query forces the given instance A or SA to accept, then we also ask a
Test query to that instance, unless such a query had already been made to its partner. The output
of the Test query is subsequently used as the session key shared between A and SA.

On the other hand, if A1 issues a SendClient query targeting an instance of the 2PAKE protocol run
between B and SB , A2PAKE responds using the password of client B that it has chosen at the beginning
of the simulation.

All remaining SendClient queries by A1 can be answered either using the session key shared between
A and SA or the session keys generated during the execution of the 2PAKE protocol between B and
SB .

– SendServer queries: A2PAKE can respond to these queries using the generated asymmetric-key pairs
for servers by acting as the required signing oracles.

– Execute queries: A2PAKE can easily answer these queries using its own Execute oracle and the output
of the relevant Test queries, just as how SendClient and SendServer queries are responded.

– Test queries: A2PAKE uses the bit b it has previously selected and the session keys that it has computed
to answer these queries.

Let b′ be the output of A1. If b′ = b, then A2PAKE outputs 1. Otherwise, it outputs 0.
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Let b∗ denote the random bit in the 2PAKE experiment for A2PAKE. Then we have

Advror
2PAKE,D(A2PAKE)

= 2(Pr[b′ = b|b∗ = 1] Pr[b∗ = 1] + Pr[b′ 6= b|b∗ = 0] Pr[b∗ = 0])− 1

= Pr[b′ = b|b∗ = 1] + Pr[b′ 6= b|b∗ = 0]− 1

= Pr[b′ = b|b∗ = 1]− Pr[b′ = b|b∗ = 0]

= Pr[Succ0]− Pr[Succ1]

The lemma follows by noticing that A2PAKE has at most time-complexity t and makes at most qexe queries
to its Execute oracle, at most qM3A

send queries to its Send oracle, and at most qexe +qM3A
send queries to its Test

oracle.

Game G2: We modify the previous game by replacing the session key sskB,SB
output by 2PAKE by a

random key ssk′B,SB
in all of the sessions involving honest users. Using similar arguments for proving the

lemma in the previous game, we can prove the following lemma.

Lemma 3. |Pr[Succ2]− Pr[Succ1]| ≤ Advror
2PAKE,D(t, qexe, q

M3B
send , qexe + qM3B

send ).

Game G3: We now further modify the previous game as follows. Game G3 is exactly the same as game
G2, except that in G3, we modify the way the oracle instances respond to SendClient queries on M4 of
our 4PAKEv1 protocol. If the adversary makes a SendClient query containing a new MAC message-tag
pair (forgery) not previously generated by an oracle, then we consider the MAC tag invalid and force the
instance in question to terminate without accepting. As the following lemma shows, the difference between
the current and previous games should be negligible if we use a secure MAC scheme.

Lemma 4. |Pr[Succ3]− Pr[Succ2]| ≤ qM4
send ·Advsuf-cma

MAC (t, 2, 0).

Proof of Lemma 4. We use a hybrid argument to proof this lemma. We define a sequence of hybrid exper-
iments Vi, where 0 ≤ i ≤ qM4

send. (Note that we do not need to take into account Execute queries here,
because they are used to simulate only passive attacks.) In experiment Vi, queries (to the SendClient
oracle) in the first i sessions involving honest clients A and B are answered as in game G3, and all other
queries in the remaining sessions are answered as in game G2. We remark that the hybrid experiments at
the extremes (when i = 0 and i = Vqs) are equivalent to games G2 and G3, respectively. Let Pi be the
probability of the event Succ in experiment Vi. Since P0 = Pr[Succ2] and Pqs = Pr[Succ3], it follows that

|Pr[Succ3]− Pr[Succ2]| =
qs∑
i=1

|Pi − Pi−1|.

Hence, it suffices to show that |Pi − Pi−1| is at most Advsuf-cma
MAC (t, 2, 0), in order to prove the lemma. This

can be achieved by assuming the existence of a distinguisher Ai3 for experiments Vi−1 and Vi, and using it
to build an adversary Aimac for breaking the security of the MAC scheme.

The description of the adversary Aimac is as follows. For the first i − 1 sessions, the adversary Aimac

chooses random values for the MAC key and is therefore can perfectly simulate the oracles given to Ai3,
while imposing the restriction as defined for game G3. In the i-th session, Aimac makes use of its MAC
tag generation and verification oracles to answer queries from Ai3. In this session, if adversary Ai3 asks a
SendClient query containing a message-tag pair not previously generated by adversary Aimac, then Aimac

halts and outputs the pair as its forgery. However, if no such pair is generated by Ai3, we output a failure
indication. For all remaining sessions, Aimac simulates all oracles exactly as in game G2, using actual MAC
keys, to answer queries from Ai3.

Let F1 be the event in which a message-tag pair is considered valid in experiment Vi−1 but invalid in
experiment Vi. It is then not difficult to see that Pr[F1] is at most the probability that adversary Aimac can
forge a new message-tag pair under a chosen-message attack. Since Aimac has time-complexity t and makes
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at most two queries to its MAC tag generation oracle (to answer the SendClient queries from Ai1 in one
session) and no queries to its verification oracle, we have Pr[F1] ≤ Advsuf-cma

MAC (t, 2, 0). One also sees that

Pr[SuccVi−1
∧ ¬F1] = Pr[SuccVi

∧ ¬F1]

since experiments Vi−1 and Vi proceed identically until F1 occurs. Therefore, by Lemma 1 of [38] (also
known as the Difference Lemma), we have

|Pr[SuccVi−1
]− Pr[SuccVi

]| ≤ Pr[F1].

Our lemma then follows by noticing that there are at most qM4
send experiments, where M4 = M4A+M4B .

Game G4: In this game, we modify the way the oracle instances respond to SendClient queries on M5
of our 4PAKEv1 protocol. This implies that if the adversary makes a SendClient query containing a new
signature not previously generated by an oracle, then we consider the signature invalid and force the instance
in question to terminate without accepting. The following Lemma shows the difference between G3 and G4

is negligible.

Lemma 5. |Pr[Succ4]− Pr[Succ3]| ≤ Adveuf-cma
Sig (t, qM5

send, 0).

Proof of Lemma 5. Let Asig denote an adversary against the digital signature scheme. Asig receives a public
key pk of the digital signature scheme and simulates the game as follows.
Asig chooses a random client C ∈ {A,B} and guesses that a forge event would happen on C. Asig assigns

pk as the public key of the server SC , and generates the public/private key pairs for all the other servers and
the passwords for all the clients honestly. Asig then simulates the game G3 for the adversary A2PAKE. When
a signature of SC is required to respond a SendServer query, Asig makes a query to its signing oracle to
obtain a valid signature and uses it to answer the SendServer query. Let F2 denote the event that the
adversary makes a SendClient query containing a valid signature with respect to SC and which is not
previously returned by Asig. We then have

|Pr[Succ4]− Pr[Succ3]| ≤ Pr[F2] ≤ 2 ·Adveuf-cma
Sig (t, qM5

send, 0).

Game G5: This game is identical to the previous game, except that we replace the session key sskA,B
(output by the 4PAKEv1 protocol) by a random key ssk′A,B in all of the sessions. As the following lemma
shows, the difference in success probability between the current and previous games is at most the probability
of breaking the security of the underlying signature-based 2AAKE protocol between A and B.

Lemma 6. |Pr[Succ5]− Pr[Succ4]| ≤ qtest ·Advftg
2AAKE(t, qexe, q

M1,M2,M6
send , qtest, 0).

Proof of Lemma 6. Again, we prove the lemma by a hybrid argument. Let Vi (0 ≤ i ≤ qtest) denote a
variant of the game G4 such that for the first i Test queries, the real session keys sskA,B is returned to the
adversary, while for the remaining Test queries, random session keys are returned. Then we have V0 = G5

and Vqtest = G4. If there exists an adversary A5 that can distinguish G4 and G5 with advantage ε, then
there must exists an index i such that A5 can distinguish Vi and Vi+1 with advantage at least ε/qtest.

Given such a distinguisher A5, we can construct an adversary A2AAKE against the indistinguishability of
the signature-based 2AAKE protocol. A2AAKE first selects a password for each client and uses the public keys
pkSA

and pkSB
in the 2AAKE game as the public keys for SA and SB in the simulated game for A5. A2AAKE

then generates asymmetric-key pairs for the other servers in the system. Next, A2AAKE responds to queries
from A5 as follows:

– SendClient and SendServer queries: A2AAKE answers the SendClient and SendServer queries
from A5 by using pwdA and pwdB , together with queries to its own Send oracle. Note that since no
forgery event with respect to µA, µB , σSA

, σSB
would occur in game G4, A2AAKE can successfully embed

the answers from its own Send oracle into the simulated game for A5.
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– Execute queries: A2AAKE can easily answer these queries by using its own Execute oracle and
pwdA, pwdB .

– Test queries: For the first i Test queries made by A5, A2AAKE uses its Reveal oracle to obtain the
real session keys and use them to answer the Test queries. For the i+ 1-th Test query made by A5,
A2AAKE uses the key obtained from its own Test oracle to answer the query. For the rest of the Test
queries made by A5, A2AAKE responds with random keys.

It is obvious that if A5 can distinguish Vi from Vi+1, then A2PAKE can successfully guess the value of b in
the 2AAKE game.

The lemma follows by noticing that A2AAKE has at most time-complexity t and asks at most qexe queries
to its Execute oracle, at most qM5,M6

send queries to its Send oracle, at most qtest queries to its Reveal oracle,
and at most 1 query to its Test oracle.

Clearly, Pr[Succ5] = 1
2 . All the above lemmas yield the result in Theorem 1.

7.1.2 Key Privacy against Servers

As explained in Section 6, we assume that the servers are honest-but-curious. Hence, we should also show
that if the 4PAKEv1 protocol is executed as expected and does not abort, the servers should not gain any
knowledge about the resulting session key.

Theorem 7. Let 4PAKEv1 be the four-party password-based authenticated key exchange protocol. Then

Advkp
4PAKEv1(t, qexe, q

Mx
send, qtest) ≤ 2 · qtest ·Advftg

2AAKE(t, qexe, q
M1,M2,M6
send , qtest, 0)

where parameters are defined as in Theorem 1, and assuming the 2PAKE and 2AAKE protocols, and the MAC
and signature schemes are secure.

Proof of Theorem 7. We can use arguments similar to those in game G5 in the proof of Theorem 1. Thus,
we do not repeat the details here.

Succinctly, assuming that the 2AAKE protocol used between the clients is secure, i.e., inherits the indis-
tinguishability property, the servers should not be able to distinguish an accepted session key between users
A and B from a random key. This holds if users A and B were honest users and the servers performed only
passive attacks.

7.2 4PAKEv2

The security proof for the 4PAKEv1 protocol can be easily extended to prove the security of 4PAKEv2 by
following the same sequence of games outlined at the beginning of this section. The only difference is that we
now adopt a signature-based authenticator, which relies on time-stamps [39]. We obtain the same security
bounds for 4PAKEv2 as with those for 4PAKEv1.

7.3 4PAKEv3

We now provide a sketch of the security proof for our 4PAKEv3 protocol, which is based on 2PAKE and
2SAKE, by using the same techniques (particularly game-hopping and hybrid argument) we have used in
proving the security for 4PAKEv1.

Theorem 8. Let 4PAKEv3 be the four-party password-based authenticated key exchange protocol based on
2SAKE. Let qexe be the number of queries to the Execute oracle of the 4PAKEv3 protocol and qtest be the
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number of Test queries. Let also qMx
send denote the number of SendClient or SendServer queries related

to message Mx of the 4PAKEv3 protocol for x ∈ {1A, 1B , 2, 3, 4}. Then

Advror
4PAKEv3(t, qexe, q

Mx
send, qtest) ≤

2 ·Advror
2PAKE,D(t, qexe, q

M3A
send , qexe + qM3A

send )

+ 2 ·Advror
2PAKE,D(t, qexe, q

M3B
send , qexe + qM3B

send )

+ 2 · (qM3
send ·AdvKD(t, 2) + qM4

send ·AdvKD(t, 1))

+ 2 ·AdvNKD(t)

+ 2 · qM5
send · (Advsuf-cma

AE (t, 1, 0) + Advind-cpa
AE (t, 1))

+ 2 · qtest ·Advftg
2SAKE(t, 1, qM1,M2,M6

send , 0, 0)

assuming the 2PAKE and 2SAKE protocols, and the KD and NKD functions, and the authenticated encryption
scheme used in the protocol are secure.

Proof of Theorem 8 (Sketch). The adversarial games G0,G1,G2 are the same as in the proof of Theorem 1.
However, we define two additional games G2.1 and G2.2 between G2 and G3.
Game G2.1: In this game, we replace the keys ssk0A,SA

and ssk1A,SA
with two independent and random keys.

From the assumption that the key derivation function KD is secure and by a hybrid argument, we obtain

|Pr[Succ2.1]− Pr[Succ2]| ≤ qM3A
send ·AdvKD(t, 2).

Game G2.2: Similarly, in this game, we replace ssk0B,SB
and ssk1B,SB

with two independent and random
keys and we have

|Pr[Succ2.2]− Pr[Succ2.1]| ≤ qM3B
send ·AdvKD(t, 2).

Game G3 is the same as in the proof of Theorem 1. We then define two additional games G3.1 and G3.2

between Game G3 and G4.
Game G3.1: In this game, we replace the values of NKD(skSA

, pkSB
) and NKD(skSB

, pkSA
) with a random

key. Then from the security of the non-interactive key derivation scheme, we have

|Pr[Succ3.1]− Pr[Succ3]| ≤ AdvNKD(t).

Game G3.2: Here, we further replace the values of sskSA,SB
and sskSB ,SA

in each session with a random
key. Once again, since KD is a secure key derivation function, the difference between game G3.1 and game
G3.2 can be bounded by

|Pr[Succ3.2]− Pr[Succ3.1]| ≤ qM4
send ·AdvKD(t, 1).

In game G4, we modify the way the oracle instances respond to SendClient queries on M5: if the
adversary makes a SendClient query containing a new ciphertext not previously generated by an oracle,
then we consider the ciphertext invalid and force the instance in question to terminate without accepting.
By following a proof similar to that of Lemma 5, we have

|Pr[Succ4]− Pr[Succ3]| ≤ qM5
send ·Adveuf-cma

AE (t, 1, 0).

We then define an additional game G4.1 between game G4 and game G5.
Game G4.1: In this game, we replace the key sskSA,SB

(= sskSB ,SA
) used in the 2SAKE protocol with a

random key rsk that is independent of cSA
and cSB

. Since AE is IND-CPA secure, by a hybrid argument,
we have

|Pr[Succ4.1]− Pr[Succ4]| ≤ qM5
send ·Advind-cpa

AE (t, 1).

Finally, in game G5, we replace the session keys sskA,B in all the sessions with random keys. By following
a hybrid argument similar to that of Lemma 6, we have

|Pr[Succ5]− Pr[Succ4.1]| ≤ qtest ·Advftg
2SAKE(t, 1, qM1,M2,M6

send , 0, 0).
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Notice that the number of queries in the bound is different from that in Lemma 6, this is because in 4PAKEv3
the 2SAKE protocol will use a different pre-session key sskSA,SB

in each session, while in 4PAKEv1 the 2AAKE
protocol will use the same public keys pkA and pkB in all the sessions.

It is obvious that Pr[Succ5] = 1
2 . Combining all together yields the result in Theorem 8.

We can also use an almost identical approach to prove the security of a variant of our 4PAKEv3 protocol
that makes use of only 2PAKE (as described at the end of Section 5.5) to obtain similar bounds as above
except the following:

|Pr[Succ5]− Pr[Succ4.1]| ≤ qtest ·Advror

2PAKE,2
|sskSA,SB

|(t, 1, q
M6
send, 1)

where |sskSA,SB
| denotes the length of sskSA,SB

.

8 Efficiency Analysis

In this section, we evaluate and compare the communication and computational costs of our 4PAKE proto-
cols against PKCROSS [25]. For this purpose, we instantiate concrete 2PAKE, 2AAKE, and 2SAKE based on
SPEKE [26]10, the signature-based authenticator of [15], and the MAC-based authenticator of [1], respec-
tively.

Notation. We use PEnc/PDec, Sig/Ver, and GExp to denote public key encryption/decryption, public
key signing/verifying, and group exponentiation, respectively. As before, we let Enc denote symmetric-key
(authenticated) encryption, and Mac denote MAC tag generation. We then use |X | to denote the length
of the output of an algorithm or a function X , for example, |Enc| denotes the output size of the Enc
algorithm. Moreover, we let C ↔ C denote the interaction between two clients in 4PAKE (or a client and a
service/application server in PKCROSS); let S ↔ S denote the interaction between two servers in 4PAKE
(or two KDCs in PKCROSS); and let C ↔ S represent the interaction between a client and a server (or
KDC).

8.1 Communication Overhead

Our generic protocols may understandably be less efficient than one that is based on a standard, non-
compositional approach; although in return, we achieve protocol inter-operability by reusing existing two-
party protocols and our protocol is easier to analyse. However, Table 2 shows that our generic protocols are
still better than PKCROSS in terms of the total numbers of message flows exchanged between C ↔ S, C
↔ C, and S ↔ S. This is not suprising given that all of our protocols do not require interaction between
the local and the remote servers; while Kerberos is designed such that a client must obtain a ticket-granting
ticket and a service ticket through a remote server (KDC) before it can access a target service. Also, clearly,
our 4PAKEv2∗ requires the smallest number of message flows since authentication tokens are reused multiple
times within a predefined validity period.

Table 2: Numbers of message flows in PKCROSS and our protocols.

Protocol C ↔ S C ↔ C S ↔ S Total

PKCROSS 6 2 2 10
4PAKEv1/v2/v3 4 4 0 8
4PAKEv2∗ 0 2 0 2

10We assume that in real world implementation, the last message of the SPEKE protocol (between a client and a server) can
be combined with M4.
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Delving into the bandwidth requirement, Table 3 compares the communication complexity of PKCROSS
and our protocols.

Table 3: Communication complexity of PKCROSS and our protocols.

Protocol C ↔ S C ↔ C S ↔ S

PKCROSS 1|PEnc|+ 4|Sig|+ 5|Enc| 3|Enc| 1|PEnc|+ 4|Sig|
4PAKEv1 4|Sig|+ 8|GExp|+ 2|Mac| 2|Sig|+ 4|GExp| 0
4PAKEv2 4|Sig|+ 4|GExp|+ 2|Mac| 4|Sig|+ 2|GExp| 0
4PAKEv2∗ 0 4|Sig|+ 2|GExp| 0
4PAKEv3 4|GExp|+ 2|Enc|+ 2|Mac| 2|GExp|+ 2|Mac| 0

In summary, the communication complexity for C ↔ S in our protocols are comparable to that of
PKCROSS (except that our 4PAKEv2∗ has zero communication cost). However, all of our protocols have
higher bandwidth requirement for C ↔ C. On the contrary, no communication overhead is incurred by our
protocols with respect to S ↔ S.

8.2 Computational Overhead

First, we evaluate the computational complexity of our protocols by counting the computationally expensive
operations (i.e., PEnc/PDec, Sig/Ver, and GExp) in a protocol run, and comparing them with those
for PKCROSS. This is summarised in Table 4. From the table, we see that the client-side computational
overhead in our protocols is expected to be slightly higher, while the server-side overhead is expected to be
slightly lower, than that of PKCROSS.

Table 4: Cryptographic operation counts in PKCROSS and our protocols.

Protocol Operation count

PKCROSS – Client 1 PEnc + 1 Sig + 2 Ver
– Service/App server 0
– Local server 1 PEnc + 2 Sig + 4 Ver
– Remote server 1 PEnc + 1 PDec + 1 Sig + 2 Ver

4PAKEv1 – Client 1 Ver + 4 GExp
– Server 1 Sig + 2 GExp

4PAKEv2 – Client 1 Sig + 2 Ver + 4 GExp
– Server 1 Sig + 2 GExp

4PAKEv2∗ – Client 1 Sig + 1 Ver + 2 GExp
– Server 0

4PAKEv3 – Client 4 GExp
– Server 3 GExp

We then verify the efficiency differences between PKCROSS and our protocols through concrete experi-
ments. Our experimental results are based on implementation of PKCROSS and our protocols using C++
and the OpenSSL 1.0.1 crypto library11. Particularly, we access and make use of the libcrypto library
through the EVP (envelope) functions provided by OpenSSL. The experiments run on a machine equipped
with an Inter 3.30GHz quad-core i3-2120 CPU, 8GB of RAM, and Ubuntu Linux 12.04.2 LTS. Table 5
presents the base time for our chosen cryptographic algorithms for the protocols.

11http://www.openssl.org/
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Table 5: Raw cryptographic computation times in milliseconds (ms).

Operation Time Operation Time

RSA-1024 Enc 0.0389 DH-1024 Exp 0.2093
RSA-1024 Dec 0.2274 AES/CBC-128 Enc 0.0030
RSA-1024 Sig 0.2568 AES/CBC-128 Dec 0.0041
RSA-1024 Ver 0.0170 SHA-1 0.0018
DH-1024 Gen 0.0798 HMAC (SHA-1) 0.0029

Figure 5: Comparison in terms of an average computation time for a protocol run.

Protocol execution time. We measure the computation time for each protocol. The protocol is run
and an average execution time is calculated over 1, 000 iterations. (Here both the client and the server
are simulated on the same machine, and thus we do not consider network latency. However, we will come
back to this issue in Section 9.1 when we discuss an application of 4PAKE to secure communications over
the Internet.) Figure 5 shows the results of our experiments. We also give a break down of the protocol
execution time, i.e., the client-side and the server-side12 overhead. The computational overhead includes
cryptographic operations and a number of management functions for initialising and clearing data structures.

From Figure 5, it is clear that the protocol execution times for 4PAKEv1 and 4PAKEv3 are very close to
that of PKCROSS. Although 4PAKEv2 is less efficient than PKCROSS, it is run only once within a prede-
fined period of time; each subsequent execution of 4PAKEv2∗ is approximately 2× faster than PKCROSS.
As expected, the client-side computational cost in all of our protocols is slightly higher (approximately be-
tween 1.05× and 1.1×) than that of PKCROSS. This is because the clients in our protocols may have to
perform not only public key signing/verifying, but also group exponentiation (during Diffie-Hellman key
agreement). This is a trade-off between performance and usability (since the clients in our protocol avoid
public key management and depend on only passwords). We also stress that our protocols, when relying on
the Diffie-Hellman key exchange technique, additionally provide forward secrecy—a property not achievable

12In PKCROSS, unlike our protocols, the local server has different computational overhead than the remote server (by only
roughly 0.1ms). For simplicity of exposition, our results are based on the computational cost of only the local server.
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by PKCROSS. In fact, if we do not make use of Diffie-Hellman key exchange, our protocols are expected to
be more efficient than PKCROSS from the client’s perspective. For example, in 4PAKEv3, we can use the
REKEY protocol of [15] as the 2SAKE protocol to avoid performing group exponentiation, and hence having
a more lightweight client.

On the other hand, we also confirm that the server-side computational cost in our protocols (except
4PAKEv2∗ with no overhead) is slightly lower (approximately between 0.8× and 0.9×) in comparison with
that of PKCROSS. The higher cost in PKCROSS is due to the extra interaction between the local and the
remote servers.

Figure 6: The maximum throughput for the server in terms of protocol sessions per second.

Scalability of server. We simulate the server for each protocol and see how well it scales with the
addition of more computational resources in the form of CPU cores. In these experiments, we artificially
restrict computation (through a tool called cpulimit13) to a subset of the possible cores from one to four
cores supported by our machine. We then measure the number of protocol sessions that can be executed by
the server in a second.

Figure 6 shows the throughput scaling of our four-core machine. For all protocols, the addition of a CPU
core increases approximately between 1.4× and 2.3× the number of executed protocol sessions per second;
while the use of all four cores increases the throughput by roughly 5× in comparison with just one core. More
importantly, our experiments show that all our protocols are more scalable than PKCROSS. For example,
the server running our 4PAKEv3 protocol with a quad-core CPU can handle up to almost 2, 000 sessions
per second. This is about 25% more than the number supported by PKCROSS, which is upper bounded at
approximately 1, 600 with a similar amount computational resources. Using a similar empirical analysis, we
deduce that 4PAKEv1 and 4PAKEv2 are approximately 14% more scalable than PKCROSS.

9 Applications

Our approach of 4PAKE is applicable to many cross-domain authenticated key exchange scenarios.

13http://cpulimit.sourceforge.net/
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9.1 Client-to-Client TLS

One of the most common password-based user authentication mechanisms is the use of username/passwords
through the TLS (or known as SSL) protocol [20]. This method has been widely used in online applications,
such as web-based emails, online booking and Internet banking, for mutual authentication and key establish-
ment between a user and a server. However, this approach is restricted to only the two-party client-server
setting. Using our compositional approach, we envisage that a client-to-client TLS (C2C-TLS) protocol in
the four-party setting can be constructed in a natural way by using the following building blocks:

– hybTLS, the hybrid server-authenticated TLS handshake and username/password approach (between
a client and a server);14

– dhTLS, the Diffie-Hellman authenticated key exchange TLS handshake protocol (between two
clients) [20].

In our C2C-TLS protocol, a client first authenticates to its domain server using the hybTLS protocol and
obtains its credential (or authenticated data) in the form of a signature. Using the credential, the client then
performs the dhTLS protocol with the intended remote client. To instantiate the C2C-TLS protocol from
our generic 4PAKE framework of Figure 1, we simply replace the 2PAKE protocol by the certTLS protocol,
and the 2AAKE protocol by the dhTLS protocol, such that (epkA, eskA) and (epkB , eskB) are now ephemeral
Diffie-Hellman keys. Hence, tokenSA

and tokenSB
are of the form of signed Diffie-Hellman keys created by

SA and SB , respectively.
We build a prototype of our C2C-TLS protocol in order to evaluate its feasibility in real world applications.

The prototype is based on the OpenSSL API and the BIO (abstraction) library, and written in C++. We
choose the DES-CBC3-SHA (168 bits) and the DHE-RSA-AES256-SHA (256 bits) TLSv1/SSLv3 cipher suites for
hybTLS and dhTLS, respectively. We then conduct experiments to quantify how much time is required for a
client to setup a secure communication channel with a remote client using our C2C-TLS protocol.

In our experiments, we simulate a local client using our machine (with the same specification described
in Section 8.2), which is connected to the Internet at 100 Mbits/s. We also simulate a local domain server
using the webmail server of Nanyang Technological University (NTU), Singapore. The local client performs
hybTLS with the NTU webmail server, which in turn, artificially generates and returns an authentication
token. (The token is in fact locally generated using the same machine on which the client runs.) The
local client then runs dhTLS with a target remote client. For our purposes, we use four geographically
distributed SSL supported web servers of educational institutions: Singapore Management University – SG,
the University of Melbourne – AU, the University of Bristol – UK, and New York University – US, as the
artificial remote clients. Each of these web servers already possesses signed Diffie-Hellman keys required to
perform dhTLS. Hence, we treat the web server as a remote client without considering their corresponding
domain server in the context of 4PAKE. This will not have any noticeable impact on our results since our
goal is to determine the network latency experienced by the local client. It suffices to run hybTLS between
the local client and the NTU webmail server, and dhTLS between the local client and one of the distributed
web servers.

Our experimental results are obtained hourly for a period of 15 hours from 09:00 to 23:00 (GMT+8), on
August 20, 2013. These are shown in Figure 7. We have network latency ranging from approximately 0.14s,
when communicating with another client within SG, to approximately 1.7s, when connecting to a remote
client in the UK. This is only slightly higher than a standard server-authenticated HTTPS connection
between a client and a web server for online applications, i.e., conventional two-party key exchange. For
example, establishing an HTTPS connection (using the AES256-SHA cipher suite) with the web server of the
University of Bristol requires approximately 1.5s.

14Typically, a user first establishes a secure TLS channel with a server by performing the server-authenticated TLS handshake
(using the server’s public key certificate). Note that at this point, the user is still not authenticated by the server. The user
then transmits her authentication information, such as a username and a password, to the server (in plaintext) through the
TLS channel, so that the server can verify the authenticity of the user.
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Figure 7: The latency requirement for a client running the C2C-TLS protocol.

9.2 Mobile Phone Communication

4PAKE can also be used to secure communications between mobile clients that subscribe to different mobile
service providers. In mobile networks, such as the 2G and 3G telecommunication networks15, each mobile
client subscribes to a Home Location Register (HLR). The mobile client also shares a secret key (stored in
the SIM card) with the HLR, and uses this key to authenticate itself to the HLR when the mobile device is
turned on. Meanwhile, different HLRs are connected via wired networks.

Our 4PAKE protocols fit nicely into the mobile network structure. That is, two mobile clients that
subscribe to different HLRs can establish a secure communication channel by executing the protocol. Further,
our protocols provide key privacy with respect to servers, i.e., HLRs. The latter is a desirable feature that
is not supported by current mobile communication systems.

9.3 Instant Messaging

Yet another example application of 4PAKE is to secure instant messaging (IM) between two users. Exchanging
messages and monitoring availability of a list of users in real-time through IM services have been very popular
for a relatively long time. There are many free public domain IM services, such as AOL Instant Messenger
(AIM), ICQ, MSN Messenger (Windows Messenger in XP), and Yahoo! Instant Messenger (YIM). In [31],
Mannan and van Oorschot proposed the use of a three-party password-based authenticated key exchange
for securing public IM, assuming that two communication parties are using the same IM service. However,
it is not uncommon that two users, wishing to communicate with each other, subscribe to two different IM
services. Our four-party key exchange approach is just what is needed to secure communication in such a
scenario.

10 Conclusions

The example applications that we have given show that there is a growing need and importance to the use
of a four-party password-based authenticated key exchange protocol for cross-domain communications. In

15http://www.3gpp.org/
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this paper, we proposed a compositional approach to constructing such a protocol, which allows two users,
who do not share a common password and from different security domains, to establish a secret key in an
authenticated and secure manner. We presented three variants of provably secure four-party password-based
authenticated key exchange protocols by using two-party key exchange protocols as building blocks. The
efficiency of our protocols is comparable to that of public key Kerberos. We believe that our approach is
useful for extending a legacy system with two-party protocols to the four-party setting.
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