
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-2014 

On the security of auditing mechanisms for secure cloud storage On the security of auditing mechanisms for secure cloud storage 

Yong YU 

Lei NIU 

Guomin YANG 
Singapore Management University, gmyang@smu.edu.sg 

Yi MU 

Willy SUSILO 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Data Storage Systems Commons, and the Information Security Commons 

Citation Citation 
YU, Yong; NIU, Lei; YANG, Guomin; MU, Yi; and SUSILO, Willy. On the security of auditing mechanisms for 
secure cloud storage. (2014). Future Generation Computer Systems. 30, (1), 127-132. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7348 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Future Generation Computer Systems 30 (2014) 127–132

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the security of auditing mechanisms for secure cloud storage
Yong Yu a,b,∗, Lei Niu a, Guomin Yang b, Yi Mu b, Willy Susilo b

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
b Centre for Computer and Information Security Research, School of Computer Science and Software Engineering, University of Wollongong, Wollongong,
NSW 2522, Australia

h i g h l i g h t s

• Identify a new kind of attack on secure cloud auditing protocols.
• Show two identity privacy-preserving auditing mechanisms called Oruta and Knox are insecure against this new attack.
• Discuss the security of a distributed storage integrity auditing mechanism in our attack.

a r t i c l e i n f o

Article history:
Received 31 December 2012
Received in revised form
3 April 2013
Accepted 17 May 2013
Available online 27 May 2013

Keywords:
Cloud storage
Privacy-preserving
Auditing
Cryptanalysis

a b s t r a c t

Cloud computing is a novel computing model that enables convenient and on-demand access to a shared
pool of configurable computing resources. Auditing services are highly essential to make sure that the
data is correctly hosted in the cloud. In this paper, we investigate the active adversary attacks in three
auditing mechanisms for shared data in the cloud, including two identity privacy-preserving auditing
mechanisms calledOruta andKnox, and a distributed storage integrity auditingmechanism.We show that
these schemes become insecure when active adversaries are involved in the cloud storage. Specifically,
an active adversary can arbitrarily alter the cloud data without being detected by the auditor in the
verification phase. We also propose a solution to remedy the weakness without sacrificing any desirable
features of these mechanisms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cloud storage, an important service of cloud computing, allows
users to move data from their local storage systems to the cloud
and enjoy the on-demandhigh quality cloud services. It offers great
convenience to users since they do not have to care about the com-
plexities of direct hardware and software managements. Besides,
with cloud storage, data sharing is realized efficiently among a
large number of users in a group and it becomes a standard fea-
ture inmost cloud storage offerings, including Dropbox andGoogle
Docs.

Although cloud storage provides many appealing benefits for
users, it also prompts a number of security issues towards the
outsourced data [1,2]. The data stored on the cloud is easily be
corrupted, modified or deleted due to hardware failure or human
errors, thus, protecting the correctness and integrity of the data in

∗ Corresponding author at: Centre for Computer and Information Security
Research, School of Computer Science and Software Engineering, University of
Wollongong, Wollongong, NSW 2522, Australia. Tel.: +61 242214043.

E-mail address: yyucd2012@gmail.com (Y. Yu).

the cloud is highly essential. To achieve this goal, two novel ap-
proaches called provable data possession (PDP) [3] and proofs of
retrievability (POR) [4] were proposed. In 2007, Ateniese et al. [3]
proposed, for the first time, the notion of PDP to check the in-
tegrity of the data stored at untrusted servers, and presented a
public auditing scheme using RSA-based homomorphic linear au-
thenticators. They also described a publicly verifiable scheme,
which allows any third party to challenge the server for data pos-
session. To support dynamic data operations, Ateniese et al. pro-
posed a scalable PDP [5] based on hash function and symmetric
key encryption. However, in this scheme, the numbers of update
and challenge are limited and need to be prefixed and block in-
sertion is not allowed. Subsequently, Erway et al. developed two
dynamic PDP protocols [6] based on hash trees. Juels et al. [4] pro-
posed a PORmodel to ensure both data possession and retrievabil-
ity. Unfortunately, this mechanism prevents efficient extension for
updating data. ShachamandWaters [7] described two solutions for
ensuring the integrity of remote data. The first scheme makes use
of pseudorandom functions and supports private auditing, while
the second one allows public auditing and is based on BLS short
signature [8]. Based on the BLS short signature, Wang et al. [9] pre-
sented data integrity checking approaches to achieve public au-
ditability, storage correctness, privacy-preserving, batch auditing,

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.05.005

http://dx.doi.org/10.1016/j.future.2013.05.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.05.005&domain=pdf
mailto:yyucd2012@gmail.com
http://dx.doi.org/10.1016/j.future.2013.05.005


128 Y. Yu et al. / Future Generation Computer Systems 30 (2014) 127–132

(a) System model 1. (b) System model 2.

Fig. 1. The system model of auditing mechanisms for secure cloud storage.

lightweight, dynamic data support and error location and recov-
ery. Since then, several other auditingmechanisms such as [10–14]
have been proposed for protecting the integrity of the outsourced
data.

Most of the existing solutions only focus on auditing the in-
tegrity of the remote data. However, privacy preserving is highly
essential during the auditing process. Wang et al. [15] proposed a
privacy-preserving public auditing mechanism, in which the con-
tent of users’ data is not disclosed to the auditor. Recently, Wang
et al. observed that preserving identity privacy from the auditor
during the auditing process is also essential since the identities of
users may indicate that a particular user in the group or a spe-
cial block in the shared data is a more valuable target than oth-
ers. They also proposed two identity privacy-preserving auditing
mechanisms, calledOruta [16] andKnox [17], for secure cloud stor-
age. In Oruta, ring signatures [18] based homomorphic authentica-
tors are employed such that the auditor can verify the integrity of
the shared data for a group of users without retrieving the entire
data, while the identity of the user on each block on the shared
data is kept confidential from the auditor. A drawback of Oruta is
that the size of the signatures and auditing proofs are linearly in-
creasing with the number of the users in a group. Moreover, when
a new user is added to the group, all the signatures have to be
re-generated. Knox leveraged group signature [19] based homo-
morphic authenticators to solve the problem, and also shortened
the size of authenticators and the auditing proofs while preserving
the properties of identity privacy-preserving, public auditing and
batch auditing.

In this paper, we revisit three auditing mechanisms for secure
cloud storage, including two identity privacy-preserving mecha-
nisms [16,17] and a distributed storage integrity auditing mech-
anism [9]. We show that the property of correctness cannot be
achieved when active adversaries are involved in these auditing
systems. More specifically, an active adversary can arbitrarily tam-
per the clouddata andproduce a valid auditing response to pass the
auditor’s verification. As a consequence, the adversary can fool the
auditor to believe that the data in the cloud are well-maintained
while in fact the data have been corrupted. We also propose a so-
lution to resolve the weakness in these schemes.

2. Preliminaries

In this section, we review some basic knowledge, including the
bilinear map and the system models.

2.1. Bilinear maps

LetG1,G2 andGT be threemultiplicative cyclic groups of prime
order p, g1 and g2 be the generators ofG1 andG2.ψ is a computable

isomorphism from G2 to G1, with ψ(g2) = g1. The map e : G1 ×

G2 → GT is said to be an admissible bilinear pairing if the follow-
ing conditions hold true [20].
(1) e is bilinear, i.e. e(g1a, g2b) = e(g1, g2)ab for all a, b ∈ Zp.
(2) e is non-degenerate, i.e. e(g1, g2) ≠ 1GT .
(3) e is efficiently computable.

2.2. Review of the system model

Three participants, namely the cloud server, the third party au-
ditor and users are involved in a cloud auditing system [16,17]. The
cloud server has ample storage space andprovides data storage and
sharing services for users. The auditor has expertise and capabili-
ties to provide data auditing service based on requests from users,
without downloading the entire file. In a general cloud storage sys-
tem model, we only consider a client, an auditor and an untrusted
cloud server as shown in Fig. 1(a). While in an identity privacy-
preserving auditingmechanisms for secure cloud storage, there are
two types of users in a group as shown in Fig. 1(b): an original user
who is the creator of the shared data, and a number of group users
who can access and modify the data. When a user wishes to check
the integrity of the outsourced data, she sends an auditing request
to the auditor. Upon receiving the request, the auditor generates an
auditing message to the cloud server, and gets an auditing proof
of the data from the server. After verifying the correctness of the
proof, the auditor forwards an auditing report to inform the user
the integrity of the outsourced data.

3. On the security two identity privacy-preserving auditing
mechanisms

In this section, we briefly review two identity privacy-
preserving auditing mechanisms called Oruta and Knox, and
present the security analysis of these auditing mechanism in the
presence of active adversaries.

3.1. Review and analysis of Oruta

The shared dataM is divided into n blocks, and each blockmj is
further split into k sectors, which are elements in Zp. Thus,M can be
denoted asM = {mj,l}j∈[1,n],l∈[1,k]. Three secure hash functions H1 :

{0, 1}∗ → G1,H2 : {0, 1}∗ → Zp and h : G1 → Zp are employed.
The global parameters are (e, ψ, p,G1,G2,GT , g1, g2,H1,H2, h).
Let U denote the user group that has d users.
KenGen: a user ui ∈ U randomly picks xi ∈ Zp as his secret key
and computes the corresponding public key wi = gxi

2 . The orig-
inal user also randomly generates a public aggregate key pak =
(η1, . . . , ηk), where ηl for l ∈ [1, k] are random elements in G1.



Y. Yu et al. / Future Generation Computer Systems 30 (2014) 127–132 129

SigGen: given d group members’ public keys (w1, . . . , wd), a block
mj = (mj,1, . . . ,mj,k), the identifier ids and a private key sks for
some user us. us computes a ring signature based homomorphic
authenticator of blockmj as follows:

(1) compute the aggregation of blockmj as

βj = H1(idj) ·

k
l=1

η
mj,l
l ∈ G1.

(2) for i ≠ s, randomly pick aj,i ∈ Zp and set σj,i = g
aj,i
1 . Then

compute σj,s = (
βj

ψ(


i≠s w
aj,i
i )
)1/xs ∈ G1. The ring signature based

homomorphic authenticator of blockmj is σj = (σj,1, . . . , σj,d).
Modify: this algorithm performs the insert, delete, update opera-
tions for a user in the group to modify the j-th block in the shared
data. We refer readers to [16] for the details of these operations.
ProofGen: the auditor first picks a random c-element subset J of
[1, n]. For each j ∈ J, the auditor picks a random yj ∈ Zp and sends
an auditing message {(j, yj)}j∈J to the cloud server.

Upon receiving an auditingmessage {(j, yj)}j∈J , the cloud server
generates a responding proof for the selected blocks as follows.

(1) Choose a random element rl ∈ Zq, and compute λl = η
rl
l ∈ G1,

for l ∈ [1, k].
(2) Compute µl =


j∈J yjmj,l + rlh(λl) ∈ Zp, for l ∈ [1, k].

(3) Aggregate the signatures as φi =


j∈J σ
yj
j,i , for i ∈ [1, d].

The cloud server sends an auditing proof {λ,µ, φ, {idj}j∈J} to the
auditor, where λ = (λ1, . . . , λk), µ = (µ1, . . . , µk) and φ = (φ1,
. . . , φd).
ProofVerify: with the auditing proof {λ,µ, φ, {idj}j∈J}, the auditing
message {(j, yj)}j∈J , the public aggregate key pak and all the
groupmembers’ public keys (pk1, . . . , pkd), the auditor verifies the
validity of the proof by checking the following equation:

e


j∈J

H1(idj)
yj ·

k
l=1

η
µl
l , g2


?
=


d

i=1

e(φi, wi)



· e


k

l=1

λ
h(λl)
l , g2


.

If the equation holds, the auditor outputs 1; Otherwise, outputs 0.
And then, the auditor forwards the auditing results to the user.
Security analysis of Oruta: As the first identity privacy-preserving
public auditing mechanism for shared data in the cloud, Oruta
enjoys many desirable properties of a cloud auditing system in-
cluding correctness, unforgeability, identity privacy and data pri-
vacy, and it can also be extended to support batch auditing.
Informally, correctness means that the auditor is able to correctly
detectwhether there is any corrupted block in shared data [16]. Re-
garding the correctness of the outsourced data, two kinds of threats
were considered in Oruta. First, an adversary may try to corrupt
the integrity of the shared data and prevent users from using data
correctly. Second, the cloud server may inadvertently corrupt or
even remove data in its storage due to hardware failures and hu-
man errors. However, below we show that when an active adver-
sary, such as a bug planted in the software running on the cloud
server by a malicious programmer or a hacker, is involved in the
auditing process, Oruta would fail to achieve the property of cor-
rectness. Specifically, the adversary can arbitrarily modify or tam-
per the outsourced data and fool the auditor to believe the data are
well preserved in the cloud. All the information the adversary has
to know is how the data are modified. The details of this analysis
are presented below.

Assume that the adversary modifies each sector mj,l to m∗j,l =
mj,l+dj,l for j ∈ [1, n], l ∈ [1, k] and records the values dj,l, i.e., how
the shared data are modified. In the auditing process, the auditor
sends the auditingmessage {(j, yj)}j∈J to the cloud server. Upon re-
ceiving {(j, yj)}j∈J , the cloud server honestly executes the auditing
mechanism to compute {λ,µ∗, φ}, where λ = (λ1, . . . , λk), µ∗ =
(µ∗1, . . . , µ

∗

k) and φ = (φ1, . . . , φd) in the following way.
For l ∈ [1, k], the cloud server firstly chooses a random rl ∈ Zq,

and then computes λl = η
rl
l and

µ∗l =

j∈J

yjm∗j,l + rlh(λl)

=


j∈J

yj(mj,l + dj,l)+ rlh(λl)

=


j∈J

yjmj,l + rlh(λl)+

j∈J

yjdj,l

= µl +

j∈J

yjdj,l.

The cloud server aggregates the signatures as φi =


j∈J σ
yj
j,i , for

i ∈ [1, d], and sends the auditing proof {λ,µ∗, φ, {idj}j∈J} to the
auditor.

The adversary intercepts the auditing proof {λ,µ∗, φ, {idj}j∈J}

from the cloud server to the auditor, and modifies each µ∗l to

µl = µ
∗

l −

j∈J

yjdj,l

for l ∈ [1, k]. By performing such a modification, the adversary
derives a correct proof with respect to the original data blocks mj
for {(j, yj)}j∈J , and sends it to the auditor. As a result, in ProofVer-
ify phase, the modified auditing proof can make the equation hold
and, thus the auditor believes that the blocks in shared data are all
well-maintained, while the data have been polluted by the adver-
sary. In this way, the adversary can make Oruta lose correctness.

3.2. Knox and its security analysis

In this section, we briefly review Knox [17], another identity
privacy-preserving auditing mechanism for secure cloud storage
based on homomorphic authenticable group signature (HAGS)
[17]. We show that it also fails to meet the correctness property in
the presence of an active adversary and readers are referred to [17]
for the full description of the scheme.
Brief review of Knox: let M = {mj,l}j∈[1,n],l∈[1,k] denote the out-
sourced data and d the number of users in the group. H1 : {0, 1}∗
→ Zp andH2 : {0, 1}∗ → G1 are two cryptographic hash functions.
Knox also employs a pseudorandom generator PRG: Kprg → Zk

p
and a pseudorandom function PRF:Kprf×I→ Zp, whereKprg and
Kprf are the key spaces of the PRG and the PRF respectively, andI is
the set of all data block identifiers in the index hash table ofM . The
global parameters of Knox are (e, ψ, p,G1,G2,GT , g1, g2,H1,H2,
PRG, PRF).
KeyGen: the original user randomly picks a secret key pair skp =
(skprg, skprf) ∈ Kprg ×Kprf which will be shared with the auditor.
The group public key gpk = (g1, g2, h, w, v,w, ρ, η) and the orig-
inal user’s master key gmsk = (ξ1, ξ2, γ ) are defined as in HAGS
[17].
Join: the private key of user i is gsk[i] = (Ai, xi, π, skp), generated
as in HAGS. The original user forwards gsk[i] to user i in a secure
manner and logs the user into the group user list.
Sign: given a group public key gpk, a private key gsk[i], a blockmj ∈

Zk
p and this block’s identifier idj ∈ I, user i computes the signature
σj as follows.



130 Y. Yu et al. / Future Generation Computer Systems 30 (2014) 127–132

(1) Select αj, βj, rj,α, rj,β , rj,x, rj,γ1 , rj,γ2 and compute Tj,1, Tj,2, Tj,3,
γj,1, γj,2, Rj,1, Rj,2, Rj,3, Rj,4, Rj,5 as in HAGS.

(2) Compute δ = (δ1, . . . , δk) ← PRG(skprg) ∈ Zk
p and bj ←

PRF(skprf, idj) ∈ Zp, then calculate the homomorphic MAC of
blockmj = (mj,1, . . . ,mj,k) as:

tj =
k

l=1

δl ·mj,l + bj ∈ Zp.

(3) Compute a challenge cj formj as:

cj = ηtj · H1(Tj,1, . . . , Rj,5) ∈ Zp.

(4) Compute sj,α, sj,β , sj,x, sj,γ1 , sj,γ2 as in HAGS.
(5) Compute a tag θj as θj = [H2(idj)g

tj
1 ]
π
∈ G1.

(6) Output a signature σj of this blockmj as σj = (Tj,1, Tj,2, Tj,3, θj,
Rj,3, cj, sj,α, sj,β , sj,x, sj,γ1 , sj,γ2).

ProofGen: the auditor firstly picks a random c-element subset J of
set [1, n]. For j ∈ J, the auditor picks a random yj ∈ Zp and sends
an auditing message {(j, yj)}j∈J to the cloud server. Upon receiv-
ing {(j, yj)}j∈J , the cloud server generates a proof for the selected
blocks as follows.
(1) Compute µl =


j∈J yjmj,l ∈ Zp, for l ∈ [1, k], and aggregate

the selected tags asΘ =


j∈J θ
yj
j ∈ G1.

(2) Output Φ and φj = (Tj,1, Tj,2, Tj,3, Rj,3, cj, sj,α, sj,β , sj,x, sj,γ1 ,
sj,γ2) based on σj, where j ∈ J andΦ is the set of all φj.

(3) Generate an auditing proof {µ,Θ,Φ, {idj}j∈J}, and send it to
the auditor, where µ = (µ1, . . . , µk).

ProofVerify: given an auditing proof {µ,Θ,Φ, {idj}j∈J}, an auditing
message {(j, yj)}j∈J , a group public key gpk, a secret key pair skp,
the auditor verifies the correctness of this proof as follows.
(1) Generate δ = (δ1, . . . , δk) ← PRG(skprg) ∈ Zk

p and bj ←
PRF(skprf , idj) ∈ Zp, where j ∈ J.

(2) Re-compute Rj,1, Rj,2, Rj,4, Rj,5 as in HAGS.
(3) Compute λ =

k
l=1 δlµl +


j∈J yjbj ∈ Zp.

(4) Check the following equations:
j∈J

R
yj
j,3

?
= e


j∈J

(T
sj,x
j,3 · h

−sj,γ1−sj,γ2 · g
−cj
1 )yj , g2



· e


j∈J

(h−sj,α−sj,β · T
cj
j,3)

yj , w


.


j∈J

c
yj
j

?
= ηλ ·


j∈J

H1(Tj,1, . . . , Rj,5)
yj .

e(Θ, g2)
?
= e


j∈J

H2(idj)
yj · gλ1 , ρ


.

If all the equations hold, the auditor outputs 1; Otherwise,
outputs 0. The auditor then forwards the auditing result to the
user.

Open: given a block mj and a signature σ , the original user can re-
veal the identity of the signer on this block using his private key
gmsk as in HAGS.
Security analysis of Knox: Similar to the analysis for Oruta, we show
that Knox is also vulnerable to the pollution attacks from active
adversaries, who can tamper the outsourced data without being
detected by the auditor. Assume that the adversary modifies each
elementmj,l tom∗j,l = mj,l+dj,l for j ∈ [1, n], l ∈ [1, k] and records
the modifications dj,l. In the auditing process, after receiving the
auditing message {(j, yj)}j∈J from the auditor, the cloud server
firstly computes µ∗l for l ∈ [1, k] as follows,

µ∗l =

j∈J

yj(mj,l + dj,l) = µl +

j∈J

yjdj,l,

and Θ =


j∈J θ
yj
j . Then it sends the auditing proof {µ∗,Θ,Φ,

{idj}j∈J} back to the auditor, in whichµ∗ = (µ∗1, . . . , µ
∗

k) andΦ is
the set of all φj = (Tj,1, Tj,2, Tj,3, Rj,3, cj, sj,α, sj,β , sj,x, sj,γ1 , sj,γ2), for
j ∈ J.

The adversary intercepts the auditing proof {µ∗,Θ,Φ, {idj}j∈J}

and modifies each µ∗l to µl = µ∗l −


j∈J yjdj,l, for l ∈ [1, k]. By
performing such a modification, the adversary derives a correct
proof with respect to the original data mj,l for j ∈ J and l ∈ [1, k].
As a consequence, the proof can pass the auditing verification,
whichmakes the auditor believe that the outsourced data arewell-
maintained by the server, while in fact the data have been cor-
rupted.

3.3. A solution to the security issue

We provide a solution to address the security issue in Oruta
and Knox by applying a secure digital signature scheme. Specifi-
cally, in Oruta, the KeyGen algorithm outputs an additional key pair
(skS, pkS) for the cloud server. In the auditing process, before re-
sponding the auditing proof {λ,µ, φ, {idj}j∈J} to the auditor, the
server uses its secret key skS to compute a signatureΣ for the proof
and sends {λ,µ, φ, {idj}j∈J,Σ} as the response to the challenge.
Upon receiving the response, the auditor first verifies whether the
signature Σ is valid or not. If it is valid, the auditor performs the
ProofVerify protocol; Otherwise, the auditor discards the response.
The same solution can be applied to Knox. In the improved versions
of Oruta and Knox, it is hard for an adversary tomodify the auditing
proof anymore in the auditing process because of the employment
of the digital signatures. Therefore, if the shared data have been
modified, the auditor must be able to detect it. Moreover, since
only a digital signature is introduced in the auditing process, all
the merits of Oruta and Knox are still preserved.

4. Security discussions on a distributed storage auditingmech-
anism

In this section, we review the distributed storage integrity
auditing mechanism in [9], and discuss its security in the context
of active adversaries. Some notions are as follows.

• F: the data file to be stored. F can be denoted as a matrix of m
equal-sized data vectors, each consisting of l blocks.
• A: the dispersal matrix used for Reed–Solomon coding.
• G: the encoded file matrix, which includes a set of n = m + k

vectors, each consisting of l blocks.
• fkey(·): the pseudorandom function (PRF), which is defined as

f : {0, 1}∗ × key→ GF(2p).
• φkey(·): the pseudorandompermutation (PRP), which is defined

as φ : {0, 1}log2(l) × key→ {0, 1}log2(l).
• ver: a version number bound with the index for individual

blocks, which records the times the block has been modified.
• sverij : the seed for PRF, which depends on the file name, block

index i, the server position j aswell as the optional block version
number ver.

4.1. Review of the scheme

The main scheme in [9] is composed of the following three
algorithms.

File distribution preparation: Let F = (F1, F2, . . . , Fm) and Fi =
(f1i, f2i, . . . , fli)T , (i ∈ 1, . . . ,m). T denotes that each Fi is repre-
sented as a column vector, and l denotes data vector size in blocks.



Y. Yu et al. / Future Generation Computer Systems 30 (2014) 127–132 131

The information dispersal matrix A, derived from an m× (m + k)
Vandermonde matrix:

1 1 · · · 1 1 · · · 1
β1 β2 · · · βm βm+1 · · · βn
...

...
. . .

...
...

. . .
...

βm−1
1 βm−1

2 · · · βm−1
m βm−1

m+1 · · · βm−1
n


where βj(j ∈ 1, . . . , n) are the distinct elements randomly picked
from GF(2w).

After a sequence of elementary row transformations, the
desired matrix A can be written as follows:

A = (I|P) =


1 0 · · · 0 p11 · · · p1k
0 1 · · · 0 p21 · · · p2k
...

...
. . .

...
...

. . .
...

0 0 · · · 1 pm1 · · · pmk

 .
By multiplying F by A, the user obtains the encoded file:

G = F · A
= (G(1),G(2), . . . ,G(m),G(m+1), . . . ,G(n))
= (F1, F2, . . . , Fm,G(m+1), . . . ,G(n))

where G(j) = (g(j)1 , g
(j)
2 , . . . , g

(j)
l )

T (j ∈ 1, . . . , n).
Token precomputation: suppose the user wants to challenge the
server t times, he has to precompute t verification tokens for each
G(j)(j ∈ 1, . . . , n), using a PRF fkey(·), a PRP φkey(·), a challenge key
kchal and a master permutation key KPRP.

For server j, the user generates the ith token as follows:

(1) Derive a random challenge value αi of GF(2p) by αi = fkchal(i)
and a permutation key k(i)prp based on KPRP.

(2) Compute the set of r randomly-chosen indices {Iq ∈ [1, . . . ,
l]|1 ≤ q ≤ r}, where Iq = φk(i)prp

(q).

(3) Calculate the token as v(j)i =
r

q=1 α
q
i ∗G

(j)
[Iq], whereG(j)[Iq] =

g(j)Iq .

Correctness verification: the ith challenge-response for checking
over the n servers acts as follows:

(1) the user reveals the αi as well as the ith permutation key k(i)prp
to each server.

(2) the server storing vector G(j)(j ∈ 1, . . . , n) aggregates those r
rows specified by index k(i)prp into a linear combination

R(j)i =
r

q=1

α
q
i ∗ G

(j)
[φk(i)prp

(q)]

and sends back R(j)i (j ∈ 1, . . . , n).
(3) upon receiving R(j)i from all the servers, the user takes away

blind values in R(j)i (j ∈ m + 1, . . . , n) by R(j)i ← R(j)i −
r

q=1

fkj(sIq,j) · α
q
i , where Iq = φk(i)prp

(q).
(4) the user verifies whether the received values remain a valid

codeword determined by the secret matrix P:

(R(1)i , . . . , R
(m)
i ) · P = (R(m+1)i , . . . , R(n)i ).

If the above equation holds, the challenge is passed. Otherwise,
it shows that among those specified rows, there exist file block
corruptions.

4.2. A security discussion on the scheme

Similar to the analysis forOruta andKnox, an active adversaryA
can arbitrarily modify the data blocks without knowing the actual

data blocks, but at the same time fool the user to believe that
the data are well maintained by the cloud server. The details are
described as follows.
(1) A chooses an l × n matrix Y, whose elements are y(i)q ∈

GF(2p), (1 ≤ q ≤ l, 1 ≤ j ≤ n).
(2) A modifies the data blocks G(j)[φk(i)prp

(q)] to G(j)[φk(i)prp
(q)] + y(i)q

for 1 ≤ q ≤ r .
(3) In the audit phase, the user and the servers execute the proto-

col honestly, that is, the user reveals the αi as well as the ith
permutation key k(i)prp to each server and the server computes
the response R(j)

′

i (j ∈ 1, . . . , n) and sends it back to the user,
where

R(j)
′

i =

r
q=1

α
q
i ∗ (G

(j)
[φk(i)prp

(q)] + y(i)q )

=

r
q=1

α
q
i ∗ (G

(j)
[φk(i)prp

(q)])+
r

q=1

(α
q
i ∗ y

(i)
q )

= R(j)i +
r

q=1

(α
q
i ∗ y

(i)
q ).

(4) A intercepts the response R(j)
′

i from the cloud server to the au-
ditor, and modifies R(j)

′

i to R(j)i = R(j)
′

i −
r

q=1(α
q
i ∗ y

(i)
q ) and

forwards R(j)i to the user.

It is easy to check that the verification will be successful. Fortu-
nately, authentication is presumed in [9]. The point-to-point com-
munication channels between each cloud server and the user is
assumed to be authenticated and reliable. We argue that this
is highly essential. Otherwise, the mechanism may be insecure
against an active attack as described above. During the implemen-
tation in reality, the server can employ a secure digital signature to
achieve the goal, as suggested in the previous section.

5. Conclusion

In this paper, we revisited three auditing mechanisms for
shared data in the cloud, including two identity privacy-preserving
auditing mechanisms and a distributed storage integrity auditing
mechanism. We demonstrate that if the cloud server does not
authenticate its response, an active adversary can launch an attack
to violate the storage correctness. Specifically, the adversary can
arbitrarily alter the cloud data without being detected by the
auditor in the verification phase. It seems that this kind of attack
was not considered in the previous proposals, and fortunately, the
authors of [9] mentioned that reliable channels between cloud
server and users are required but with no concrete deployment.
We suggested using a secure digital signature scheme to fix the
problem without sacrificing any desirable feature of the original
mechanisms.

Acknowledgements

The authors would like to thank the editors and anonymous re-
viewers for their valuable comments of the manuscript. The first
author is supported by the University of Wollongong Vice Chan-
cellor Fellowship and the fifth author is supported by Australian
Research Council Future Fellowship FT0991397. This work was
supported by the National Natural Science Foundation of China
under Grants 61003232, 61103207, U1233108, 61272436, the
National Research Foundation for the Doctoral Program of Higher
Education of China under Grants 20100185120012, the National
Natural Science Foundation of China for International Young Sci-
entists under Grant 61250110543, and the Fundamental Research
Funds for the Central Universities under Grant ZYGX2010J066.



132 Y. Yu et al. / Future Generation Computer Systems 30 (2014) 127–132

References

[1] M.T. Khorshed, A.B.M. Ali, S.A. Wasimi, A survey on gaps, threat remediation
challenges and some thoughts for proactive attack detection in cloud
computing, Future Gener. Comput. Syst. 28 (6) (2012) 833–851.

[2] Kui Ren, CongWang, QianWang, Security challenges for the public cloud, IEEE
Internet Comput. 16 (1) (2012) 69–73.

[3] G. Ateniese, R.C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.N.J. Peterson, D.X.
Song, Provable data possession at untrusted stores, in: ACM Conference on
Computer and Communications Security 2007, pp. 598–609.

[4] A. Juels, J. Burton, S. Kaliski, PORs: Proofs of retrievability for large files, in:
Proc. of CCS 07, pp. 584–597.

[5] G. Ateniese, R.D. Pietro, L.V. Mancini, G. Tsudik, Scalable and efficient provable
data possession, in: Proc. of SecureComm 2008, pp. 1–10.

[6] C.C. Erway, A. Kupcu, C. Papamanthou, R. Tamassia, Dynamic provable data
possession, Proc. of CCS 2009, pp. 213–222.

[7] H. Shacham, B. Waters, Compact proofs of retrievability, in: Proc. of Asiacrypt
2008, pp. 90–107.

[8] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, J.
Cryptology 17 (4) (2004) 297–319.

[9] C. Wang, Q. Wang, K. Ren, N. Cao, W. Lou, Toward secure and dependable
storage services in cloud computing, IEEE Trans. Serv. Comput. 5 (2) (2012)
220–232.

[10] Q. Wang, C. Wang, K. Ren, W. Lou, J. Li, Enabling public auditability and data
dynamics for storage security in cloud computing, IEEE Trans. Parallel Distrib.
Syst. 22 (5) (2011) 847–859.

[11] K. Yang, X. Jia, Data storage auditing service in cloud computing: challenges,
methods and opportunities, World Wide Web 15 (4) (2012) 409–428.

[12] C. Wang, K. Ren, W. Lou, J. Li, Toward publicly auditable secure cloud data
storage services, IEEE Netw. 24 (4) (2010) 19–24.

[13] Y. Zhu, H. Hu, G. Ahn,M. Yu, Cooperative provable data possession for integrity
verification in multi-cloud storage, IEEE Trans. Parallel Distrib. Syst. 23 (12)
(2012) 2231–2244.

[14] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, S.S. Yau, Dynamic audit services
for integrity verification of outsourced storages in clouds, in: SAC 2011,
pp. 1550–1557.

[15] C. Wang, Q. Wang, K. Ren, W. Lou, Privacy-preserving public auditing for data
storage security in cloud computing, in: Proc. of INFOCOM 2010, pp. 525–533.

[16] B. Wang, B. Li, H. Li, Oruta: privacy-preserving public auditing for shared data
in the cloud, in: IEEE International Conference on Cloud Computing, 2012,
pp. 293–302.

[17] B. Wang, B. Li, H. Li, Knox: privacy-preserving auditing for shared data with
large groups in the cloud, in: Proc. of ACNS 2012, pp. 507–525.

[18] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted
signatures from bilinear maps, in: Proc. of Eurocrypto 2003, pp. 416–432.

[19] D. Boneh, B. Lynn, H. Shacham, Short group signatures, in: Proc. of Crypto 2004,
pp. 41–55.

[20] D. Boneh, M.K. Franklin, Identity-based encryption from the weil pairing, in:
Proc. of Crypto 2001, pp. 213–229.

Yong Yu received his Ph.D. degree in cryptography from
Xidian University in 2008. He is currently an associate pro-
fessor of University of Electronic Science and Technology
of China and a research fellow of University ofWollongong
aswell. His research focuses on cryptography and its appli-
cations, especially public encryption, digital signature and
secure cloud storage.

Lei Niu is a master student of the University of Electronic
Science and Technology of China, and his research inter-
ests are digital signature and secure cloud storage.

Guomin Yang received his Ph.D. degree from the Com-
puter Science Department at City University of Hong Kong
in 2009. He is currently a lecturer of the University ofWol-
longong.His research interests are cryptography and cloud
computing security.

YiMu received his Ph.D. from the Australian National Uni-
versity in 1994. He currently is a professor, Head of School
of Computer Science and Software Engineering and the
codirector of Centre for Computer and Information Secu-
rity Research at the University of Wollongong, Australia.
His current research interests include network security,
computer security, and cryptography. Yi Mu is the editor-
in-chief of International Journal of Applied Cryptography
and serves as associate editor for nine other international
journals. He is a senior member of the IEEE and a member
of the IACR.

Willy Susilo received a Ph.D. in Computer Science from
the University of Wollongong, Australia. He is a Professor
at the School of Computer Science and Software Engineer-
ing and the codirector of the Centre for Computer and In-
formation Security Research (CCISR) at the University of
Wollongong. He is currently holding the prestigious ARC
Future Fellow awarded by the Australian Research Council
(ARC). His main research interests include cryptography
and information security. His main contribution is in the
area of digital signature schemes. He has served as a pro-
gram committee member in dozens of international con-

ferences. He has published numerous publications in the area of digital signature
schemes and encryption schemes.

http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref1
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref2
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref8
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref9
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref10
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref11
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref12
http://refhub.elsevier.com/S0167-739X(13)00104-0/sbref13

	On the security of auditing mechanisms for secure cloud storage
	Citation

	On the security of auditing mechanisms for secure cloud storage
	Introduction
	Preliminaries
	Bilinear maps
	Review of the system model

	On the security two identity privacy-preserving auditing mechanisms
	Review and analysis of Oruta
	Knox and its security analysis
	A solution to the security issue

	Security discussions on a distributed storage auditing mechanism=-1
	Review of the scheme
	A security discussion on the scheme

	Conclusion
	Acknowledgements
	References


