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Cryptographic identification schemes allow a remote user to prove his/her identity to a
verifier who holds some public information of the user, such as the user public key or
identity. Most of the existing cryptographic identification schemes are based on number-
theoretic hard problems such as Discrete Log and Factorization. This paper focuses on
the design and analysis of identity based identification (IBI) schemes based on algebraic
coding theory. We first revisit an existing code-based IBI scheme which is derived by
combining the Courtois–Finiasz–Sendrier signature scheme and the Stern zero-knowledge
identification scheme. Previous results have shown that this IBI scheme is secure under
passive attacks. In this paper, we prove that the scheme in fact can resist active attacks.
However, whether the scheme can be proven secure under concurrent attacks (the most
powerful attacks against identification schemes) remains open. In addition, we show that
it is difficult to apply the conventional OR-proof approach to this particular IBI scheme in
order to obtain concurrent security. We then construct a special OR-proof variant of this
scheme and prove that the resulting IBI scheme is secure under concurrent attacks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Remote user identification is one of the fundamental research topics in cryptography, and is very useful in practice.
We can separate public key user identification schemes into two categories: standard identification (SI), and identity based
identification (IBI). In a standard identification scheme, the verifier has the public key of the prover and uses this public key
to verify the genuineness of the remote user, while in an identity based identification scheme, the verifier can perform the
verification just based on the prover’s identity.

Most of the existing identification schemes follow a three-move (or Σ-type) structure: the prover P initiates an iden-
tification protocol by sending a commitment Cmt, then the verifier V replies with a challenge Ch, and finally P generates
a response Rsp and sends it to V who makes a final decision which is either ‘accept’ or ‘reject’. In [1], Bellare et al. called
identification schemes following such a structure canonical identification schemes. Many canonical SI and IBI schemes have
been proposed in the literature (e.g. [1,11,5,10,14,19,21,20]). The security of these schemes are based on the intractability
of several number-theoretic problems such as factorization, discrete log, and RSA. One important application of canonical
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identification schemes is that we can derive a standard signature (SS) (or identity based signature (IBS), resp.) scheme from
an SI (or IBI, resp.) scheme via the Fiat–Shamir transformation [11].

From SI/SS to IBI. In [1], Bellare, Namprempre and Neven presented a generic framework to transform any SI scheme satis-
fying certain conditions into an IBI scheme. The derived IBI scheme will inherit the security of the underlying SI scheme.
Independent to Bellare et al.’s work, in [15], Kurosawa and Heng proposed another generic framework that transforms
any standard signature scheme, which is existentially unforgeable under adaptive chosen message attacks [13], into an IBI
scheme secure against passive adversaries. In [24], Yang et al. further showed that in order to achieve passive security,
a standard signature scheme secure under known message attacks suffices.

Code-based Cryptography. The first code-based public key cryptosystem was proposed by McEliece [17] in 1978. A variant
of the McEliece cryptosystem was later proposed by Niederreiter in [18]. In Asiacrypt 2001, Courtois, Finiasz and Sendrier [8]
proposed the first practical code-based digital signature scheme by applying the Full Domain Hash [2,3] to the Niederreiter
cryptosystem. The advantage of using algebraic coding theory to construct cryptographic schemes is that these schemes may
remain secure even in the post-quantum age.

SI/IBI Based on Algebraic Coding Theory. In [23], Stern proposed a standard identification scheme based on the syndrome
decoding problem from algebraic coding theory. However, the Stern identification scheme is not canonical. It requires 3r
communications rounds between the prover and the verifier where r is a system parameter. Several variants of the scheme
are also introduced in [23], including an identity based one. However, no formal security proof was provided for this IBI
scheme. In [7,6], Cayrel et al. proposed a new IBI scheme which can be regarded as the combination of a modified version
of the Courtois–Finiasz–Sendrier (CFS) digital signature scheme [9] and the Stern identification scheme [23]. In this paper,
we refer to this IBI scheme as mCFS-Stern-IBI. In [6], Cayrel et al. proved that mCFS-Stern-IBI is secure under passive attacks.

Our contributions. In this paper, we revisit several existing identification schemes based on algebraic coding theory, in-
cluding the Stern identification scheme and the mCFS-Stern-IBI scheme. We also provide a new security analysis for the
mCFS-Stern-IBI scheme by showing that it can in fact achieve active security. However, we show that it is difficult to extend
the proof to obtain the concurrent security (i.e. the highest level of security) of the scheme.

One widely used approach to transform a passive secure IBI scheme into a concurrent secure one is to use the OR-proof
technique. However, due to the special design of the mCFS-Stern-IBI scheme, the conventional OR-proof transformation does
not work. We then design a new OR-proof system for this particular IBI and obtain a new scheme which is proven secure
under concurrent attacks.

2. Preliminaries

In this section, we review the definition and security model for identity based identification schemes. We follow the IBI
definition and security model in [1].

2.1. IBI definition

Definition 1. An identity based identification (IBI) scheme consists of four probabilistic polynomial-time (PPT) algorithms
(MKGen,UKGen,P,V).

1. MKGen: On input 1k , where k ∈ N is a security parameter, it generates a master public/secret key pair (mpk,msk).
2. UKGen: On input msk and some identity I ∈ {0,1}∗ , it outputs a user secret key usk[I].
3. (P,V) – User Identification Protocol: The prover with identity I runs algorithm P with initial state usk[I], and the verifier

runs V with initial state (mpk, I). The first and last messages of the protocol belong to the prover. The protocol ends
when V outputs either ‘accept’ or ‘reject’.

Completeness: For all k ∈ N, I ∈ {0,1}∗ , (mpk,msk) ← MKGen(1k), and usk[I] ← UKGen(msk, I), an honest V who is initialized
with (mpk, I) always outputs ‘accept’ at the end of the identification protocol after communicating with P who is honest
and initialized with usk[I].
2.2. IBI security model

There are three security notions for IBI schemes: impersonation under passive (id-imp-pa), active (id-imp-aa) and concur-
rent (id-imp-ca) attacks.

Definition 2 (id-imp-pa). For an IBI scheme (MKGen,UKGen,P,V), consider the following game between a simulator S and
an adversary A.

1. S generates a master key pair (mpk,msk) ← MKGen(1k) and gives mpk to A. S also maintains two user sets: HU and
CU, which stand for Honest Users and Corrupted Users, respectively. Initially, both HU and CU are empty.
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2. A can make queries to the following oracles:
(a) INIT(I) – create a user with identity I: If I ∈ HU ∪ C U , ⊥ is returned indicating that I has already been created.

Otherwise, usk[I] ← UKGen(msk, I) is executed and I is added into HU. A symbol ‘1’ is returned to the adversary
indicating that the creation is successful.

(b) CORR(I) – corrupt a user with identity I: If I /∈ HU , ⊥ is returned, otherwise, I is deleted from HU and added into
CU, and usk[I] is returned to A.

(c) CONV(I) – get a conversation between user I (the prover) and a verifier: If I /∈ HU , ⊥ is returned, otherwise,
a conversation between I (with initial state usk[I]) and a verifier (with initial state (mpk, I)) is returned to A.

3. A can adaptively query INIT, CORR and CONV, and then outputs an identity Ib ∈ HU , which corresponds to the user
that A wants to impersonate. After receiving Ib, the simulator removes Ib from HU and adds it into CU.

4. A runs the user identification protocol with a verifier V (initialized with (mpk, Ib)). A can continue to make INIT, CORR
and CONV queries. The simulator halts when V outputs ‘accept’ or ‘reject’.

The advantage of the adversary A is defined as

Advid-imp-pa
A (k) = Pr

[
V outputs ‘accept’

]
.

An IBI scheme (MKGen,UKGen,P,V) is said to be id-imp-pa secure if Advid-imp-pa
A (k) is negligible3 for any probabilistic

polynomial time (PPT) adversary A.

The id-imp-aa and id-imp-ca security. The id-imp-aa security is defined via a similar game, except that the conversation
oracle CONV is replaced by a proving oracle PROV. When querying this oracle, A provides an identity I ∈ HU to the simulator
and then acts as a (malicious) verifier to communicate with the prover P(usk[I]) simulated by S . The difference between
active (id-imp-aa) and concurrent (id-imp-ca) attack is that in the former adversarial model, A can only have one ongoing
session with one proving oracle at a time, but in the concurrent model, A can have parallel and concurrent sessions with
one proving oracle.

3. Public key cryptosystems based on algebraic coding theory

Let F2 denote the finite field with two elements {0,1}. In this paper, we use C to denote a binary linear code of length
n and dimension k, which is a subspace of dimension k of the vector space F

n
2. We call elements of F n

2 words, and elements
of C codewords. A code is usually given in the form of a generating matrix G , lines of which form a basis of the code. The
parity check matrix H is a dual form of this generating matrix: it is the (n − k) × n matrix which is a generator matrix of
the dual code of C . When we multiply a word by the parity check matrix we obtain what is called a syndrome which has
the length of n − k bits. The security of code-based cryptosystems are based on the intractability of the following problems.

Syndrome decoding problem. Given a random r × n binary matrix H̄ , an integer ω > 0, and a binary vector s ∈ F
r
2, is there

a word x ∈ F
n
2 of weight at most ω such that H̄xT = s?

The variant of the syndrome decoding problem in which we ask for an x with exactly ω 1’s is NP-complete [4]. It is
conjectured that the syndrome decoding problem is also NP-complete.

Bounded decoding problem. Given an integer d, a random r × n binary matrix H̄ such that every d − 1 columns of H̄ are
linearly independent, a binary vector s ∈ F

r
2, and an integer ω � (d − 1)/2, is there a word x ∈ F

n
2 of weight at most ω such

that H̄xT = s?

Goppa code distinguishing problem. Given an r × n binary matrix H̄ , decide whether H̄ is a random binary matrix or H̄ is
a random parity check matrix for a Goppa code.

3.1. The Niederreiter cryptosystem

In [18], Niederreiter proposed a public key cryptosystem which is a variant of the first code-based cryptosystem by
McEliece [17]. Let C0 denote a t-error correcting Goppa code, and H0 a parity check matrix of C0. The public key is obtained
by H = V H0 P where V is an (n −k)× (n −k) non-singular matrix and P is an n ×n permutation matrix. The corresponding
secret key is (V , H0, P ).

The encryption c of a message m ∈ F
n
2 (m has Hamming weight at most t) is simply c = HmT ∈ F

n−k
2 . To decrypt a

ciphertext c,

3 A function ε :N →R is negligible if for every constant c � 0, there exists an integer kc such that ε(k) < k−c for all k � kc .
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P(s) V(pk = HsT )

randomly select y ∈ F
n
2, and

permutation σ over {1,2, . . . ,n}
c1 = ĥ(σ , H yT )

c2 = ĥ(σ (y))

c3 = ĥ(σ (y ⊕ s)) c1, c2, c3 �

b
R← {0,1,2}b�

if b = 0, Rsp = (y, σ )

if b = 1, Rsp = (y ⊕ s, σ )

if b = 2, Rsp = (σ (y),σ (s))
Rsp �

If b = 0, verify c1 and c2

If b = 1, verify c1 and c3

If b = 2, verify c2 and c3

repeat the above protocol for r times

(When b = 1, H yT can be derived from H yT = H(y ⊕ s)T ⊕ pk)

Fig. 1. The Stern identification protocol.

1. compute α = V −1c = H0 PmT ;
2. apply the syndrome decoding procedure for C0 to α and obtain β = PmT ;
3. retrieve the message m via mT = P−1β .

3.2. The Courtois–Finiasz–Sendrier signature scheme

In [8], Courtois, Finiasz and Sendrier proposed the first practical code-based signature scheme based on the Niederreiter
cryptosystem presented above. The idea is to apply the Full Domain Hash [2,3] to the Niederreiter cryptosystem.

Let H and (V , H0, P ) denote the user public and private key in the Niederreiter cryptosystem. To generate a signature
for a message m, the signing algorithm works as follows:

– Set an initial counter i = 0;
– Compute s = h(m, i) using a cryptographic hash function h : {0,1}∗ → F

n−k
2 ;

– Use the decryption algorithm to find x such that HxT = s. If no such x is found, set i = i + 1 and go back to step 2.
– Output (x, i) as the signature.

To verify a signature (x, i) for a message m:

– Compute s = HxT and s′ = h(m, i);
– If s = s′ , return true; otherwise, return false.

In [8], it has been shown that if we use t-error correcting Goppa code, then the probability that a random syndrome is
decodable is about 1

t! .

A variant. In [9], Dallot proposed a slight modified version of the CFS scheme where the counter i is randomly selected
from {1,2, . . . ,2n−k}. It has been proven in [9] that the modified CFS (mCFS) scheme is strongly unforgeable under adaptive
chosen message attacks.

Theorem 1. (See [9].) The modified CFS digital signature scheme is strongly unforgeable under adaptive chosen message attacks.

3.3. The Stern identification scheme

In [22,23], Stern introduced a standard identification scheme based on the syndrome decoding problem.
Let H denote a random (n − k) × n matrix over F2. This matrix is public. Each user receives an n-bit secret key s of

weight t . The user public key is pk = HsT . To identify him/herself to a verifier who has pk, the prover runs the identification
protocol as shown in Fig. 1.
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1. Generating y and σ according to the scheme and replacing the unknown secret key s by some arbitrary
vector v of weight t , then computing the various commitments. By doing this, the false prover hopes that
b is 0 or 2. In the first case, he can simply disclose y and σ and in the second case, he returns σ(y) and
σ(v). On the other hand, he is unable to answer when b = 1.

2. A similar strategy can be defined with y ⊕ s in place of y. In this case, the false prover hopes that b is 1
or 2.

3. Having σ and both y and y ⊕ v ready where v is some element such that H v T = pk (there is no requirement
on the weight of v). This strategy expects that b is 0 or 1.

Fig. 2. Impersonation strategies for the Stern identification scheme.

The Stern Identification Protocol

1. The prover chooses randomly a word y ∈ F
n
2 and a permutation σ of {1,2, . . . ,n}, and sends to the verifier c1, c2, c3

such that

c1 = ĥ
(
σ , H yT )

, c2 = ĥ
(
σ(y)

)
, c3 = ĥ

(
σ(y ⊕ s)

)
,

where ĥ denotes a cryptographic hash function.
2. Upon receiving (c1, c2, c3), the verifier randomly selects b ∈ {0,1,2} and sends b to the prover.
3. Based on the value of b, the prover responds as follows

– If b = 0, the prover reveals y and σ ;
– If b = 1, the prover reveals y ⊕ s and σ ;
– If b = 2, the prover reveals σ(y) and σ(s).

4. Upon receiving the response,
– If b = 0, the verifier verifies c1 and c2;
– If b = 1, the verifier verifies c1 and c3;
– If b = 2, the verifier verifies c2 and c3.

5. Repeat the above steps for r times.

During the fourth step, when b = 1, it can be noticed that H yT can be derived from H(y ⊕ s)T by

H yT = H(y ⊕ s)T ⊕ HsT = H(y ⊕ s)T ⊕ pk.

It has been shown in [23] that the above identification scheme is a zero-knowledge Proof-of-Knowledge (PoK) with
knowledge error (2/3)r . In particular, three strategies (Fig. 2) have been presented in [23] for an adversary to impersonate
a given identity without knowing the secret key. Each impersonation strategy has a success probability of 2/3.

3.4. Identity based variants of the Stern identification scheme

In [23], Stern also introduced an identity based variant of his identification scheme. But no formal security analysis has
been provided in [23] for the IBI scheme. In [7,6], Cayrel et al. combined the modified CFS signature scheme [9] and the
Stern identification scheme to construct a new IBI scheme (i.e. mCFS-Stern-IBI).

The mCFS-Stern-IBI scheme

– MKGen: run the key generation algorithm of the modified CFS signature scheme to generate a signing and verification
key pair (sk, vk). Set mpk = vk, and msk = sk.

– UKGen: run the signing algorithm of the modified CFS signature scheme to generate a signature (x, i) on a user iden-
tity I . Set usk[I] = (x, i).

– P,V: run the Stern identification protocol where P is initialized with x and V is initialized with h(I, i) (i is sent to the
verifier in the first message of the protocol).

We can see that h(I, i) in fact serves as the “public key” of the user in the Stern identification scheme. Cayrel et al. [6]
proved that the above IBI scheme is id-imp-pa secure.
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4. A new security proof for the mCFS-Stern-IBI scheme

We provide a new security proof for the mCFS-Stern-IBI scheme [7,6] reviewed in the previous section. We show that
the scheme is in fact id-imp-aa secure.

Theorem 2. The mCFS-Stern-IBI is secure under active attacks.

Proof. The proof is by contradiction. Given an adversary A against the mCFS-Stern-IBI in id-imp-aa game, we construct
a forger F against the mCFS signature scheme. F is given the public key vkmCFS of the mCFS signature scheme. F sets
mpk = vkmCFS and passes mpk to A. F then simulates the id-imp-aa game as follows.

Suppose A issues at most qinti INTI queries. F randomly selects an index � in {1,2, . . . ,qinti}. For the j-th INTI query
made by A where j 
= �, F queries the signing oracle to generate a signature (x j, i j) for ID j . For the �-th INTI query,
F randomly selects i� ∈ {1,2, . . . ,2n−k}. Notice that according to the analysis given in [8],

Pr
[
h(ID�, i�) is decodable

] = 1

t! .
When A issues a corruption query to any ID j such that ID j 
= ID� , F returns (x j, i j) to A. If A issues a corruption query

to ID� (denote this event by Abort1), F aborts the game without any output. Then we have

Pr[Abort1]� 1

qinti
.

To simulate the PROV oracle for user ID� , F works as follows. At the beginning of each round, F chooses at random
one of the three cheating strategies described in Section 3.3 and prepares the initial commitments c1, c2, c3 according to
the chosen strategy. Now, each strategy allows to successfully answer two of the three challenges issued by A. In case A
asks a challenge which F cannot answer, F resets A for the current round. The reset will continue until F can successfully
answer A’s challenge, or number of reset reaches a limit λ (to be determined shortly). In the latter case, F aborts the game
without any output. Denote the event that F aborts the game when simulating a PROV oracle for ID� by Abort2. Then by
the union bound we have

Pr[Abort2]� qprovr

(
1

3

)λ

where qprov denotes the number of PROV queries A would ask. In order to make Pr[Abort2] � 1/3, we can set λ =
log3qprovr + 1.

Under the condition that F does not abort the game in the simulation, and h(ID�, i�) is decodable (which happens with
probability 1

t! ), then the simulation is perfect.
Now suppose the adversary A can impersonate the user ID� with a non-negligible probability, the following lemma

by Stern shows that there exists a polynomial-time algorithm which can extract the user secret key x� of ID� also with a
non-negligible probability.

Lemma 1. (See Lemma 1 of [23].) Assume there exists a PPT adversary which can impersonate an uncorrupted user with probability
(2/3)r + ε , then there exists a polynomial-time algorithm which can extract the user secret key with probability at least ε3/10.

After obtaining the valid user secret key x� for ID� , F outputs (x�, i�) as the forgery for the message ID� . �
On the concurrent security. The above proof for active security cannot be easily extended to prove the concurrent security
of the scheme. When we simulate the PROV oracle in the concurrent security game, recursive rewinding may occur. We leave
the id-imp-ca security of the mCFS-Stern-IBI scheme as an open problem.

5. A new code-based IBI scheme secure under concurrent attacks

Given that we are unable to directly prove the id-imp-ca security of the mCFS-Stern-IBI scheme, a natural question is if
we can construct an id-imp-ca secure variant of it. A popular way to transform an id-imp-pa secure identification scheme into
an id-imp-ca secure one is to use the OR-proof technique [16,12]. So we start with an OR-proof variant of the mCFS-Stern-IBI
scheme.

5.1. The first OR-proof variant

To apply the OR-proof technique as shown in [16,12], we modify Cayrel et al.’s IBI [7,6] scheme in the following way:
we first generate two valid signatures (x0, i0) and (x1, i1) for a user identity I , and then toss a coin 
 and set usk[I] =
(
, x
 , i0, i1). During the identification phase, the user proves that he knows at least one valid secret key with respect to
h(I, i0) or h(I, i1). The detailed scheme is presented below.
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The OR-proof protocol

1. The prover first randomly chooses b1−
 ∈ {0,1,2}. Based on the values of b1−
 and h(I, i1−
 ), randomly select an
impersonation strategy given in Fig. 2 (e.g. if b1−
 = 0, choose either strategy 1 or strategy 3) and prepare the commit-
ment (c1−


1 , c1−

2 , c1−


3 ). Based on h(I, i
 ) and x
 , prepare (c

1 , c


2 , c

3 ) according to the original Stern identification

protocol. Send (i0, c0
1, c0

2, c0
3, i1, c1

1, c1
2, c1

3) to the verifier.
2. Upon receiving (i0, c0

1, c0
2, c0

3, i1, c1
1, c1

2, c1
3), the verifier randomly selects b ∈ {0,1,2} and sends b to the prover.

3. The prover computes the response for b1−
 w.r.t. h(I, i1−
 ) based on the impersonation strategy chosen in the first
step. The prover then computes b
 = b − b1−
 mod 3, and computes the response for b
 w.r.t. h(I, i
 ) according to
the original Stern identification protocol.

4. Upon receiving the response, the verifier checks that b0 + b1 = b mod 3 and the response Rsp0 for h(I, i0) w.r.t. b0, and
the response Rsp1 for h(I, i1) w.r.t. b1, are both correct.

5. Repeat the above steps for r times.

Security analysis. The above OR-proof approach has been widely applied in the design of id-imp-ca secure IBI schemes
[16,24,12]. However, when we apply this approach to the mCFS-Stern-IBI scheme, we found that the derived IBI scheme
is insecure at all. An adversary can impersonate the prover by selecting one impersonation strategy (Fig. 2) for h(I, i0),
and another one for h(I, i1). Take as an example, the adversary chooses strategy 1 for h(I, i0), and strategy 2 for h(I, i1).
That means the attacker can pass the verification if b0 ∈ {0,2} and b1 ∈ {1,2}. The problem is that for any b ∈ {0,1,2}, the
adversary can simply find a pair of b0 ∈ {0,2} and b1 ∈ {1,2} such that b0 +b1 = b mod 3. It is easy to verify that the attack
works no matter which two impersonation strategies the adversary chooses.

5.2. A new OR-proof variant

Difficulties in obtaining a three-move protocol. The problem of the first OR-proof scheme is that the adversary has too
much “freedom” in answering the challenge sent by the verifier. To solve the problem, we need a way to restrict the
adversary’s freedom while at the same time preserve completeness (i.e. the real prover can always complete the protocol
successfully). If we revisit the attack against the first OR-proof protocol, we observe that when the adversary chooses two
impersonation strategies for h(I, i0) and h(I, i1), for example b0 ∈ {0,2} and b1 ∈ {1,2}, then b0 + b1 ∈ {1,2,0,1}. If we
require the adversary to provide responses for two different b0 and b′

0, and also responses for two different b1 and b′
1, such

that b0 + b1 = b and b′
0 + b′

1 = b, then the probability that the adversary can cheat is 1/3 (in the example, the adversary
can provide the responses only when b = 1). On the other hand, a real prover who has one valid secret key can provide
responses for any challenge b ∈ {0,1,2}.

The above observation shows that by requiring the prover to provide two responses for one challenge, we can enhance
the “soundness” of the protocol. However, this approach is insecure either, since it will allow the verifier to easily obtain
the user secret key (i.e., the protocol is not “witness hiding”). It is easy to see that if the prover provides the responses
for both b0 and b′

0 (or b1 and b′
1), then the verifier is able to derive the secret key w.r.t. h(I, i0) (or h(I, i1)). In the Stern

identification scheme, the responses have the form (y, σ ), (y⊕s, σ ), and (σ (y),σ (s)). If the prover sends any two responses
to the verifier, then the verifier can derive the value of the secret key s easily.

In summary, to provide the soundness property, we must use two response pairs in the protocol. However, if the prover
sends both response pairs in one move, then the protocol will lose the witness hiding property. It seems difficult to reconcile
the conflict in a three-move protocol. To resolve the problem, we should let the prover only send either the response pair
for b0 and b1 or the response pair for b′

0 and b′
1, but at the same time demonstrate that he/she can produce valid response

pairs for both cases. This can be done by applying an additional challenge-response phase, that is, the verifier will select
another random challenge bit ρ ∈ {0,1}, and based on the value of ρ , the prover reveals one of the two response pairs to
the verifier. The details are given below.

Code-IBI: A new variant of mCFS-Stern-IBI

– MKGen: run the key generation algorithm of the modified CFS signature scheme to generate a signing and verification
key pair (sk, vk). Set mpk = vk, and msk = sk.

– UKGen: run the signing algorithm of the modified CFS signature scheme twice to generate two different signatures
(x0, i0) and (x1, i1) (i0 
= i1) for a user identity I , and then toss a coin 
 and set usk[I] = (
, x
 , i0, i1).

– (P,V): initialize P with usk[I], and V with I . Then run the following identification protocol.
1. The prover first randomly chooses two different b1−
 ,b′

1−
 ∈ {0,1,2}. Based on the values of b1−
 ,b′
1−
 , select

for h(I, i1−
 ) the impersonation strategy given in Fig. 2 (e.g. if b1−
 = 0 and b′
1−
 = 1, choose strategy 3) and

prepare the commitment (c1−

1 , c1−


2 , c1−

3 ). Based on h(I, i
 ) and x
 , prepare (c


1 , c

2 , c


3 ) according to the
original Stern identification protocol. Send (i0, c0

1, c0
2, c0

3, i1, c1
1, c1

2, c1
3) to the verifier.

2. Upon receiving (i0, c0
1, c0

2, c0
3, i1, c1

1, c1
2, c1

3), the verifier randomly selects b ∈ {0,1,2} and sends b to the prover.
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P(
, x
 , i0, i1) V(I D)

Randomly choose different b1−
 ,b′
1−
 ∈ {0,1,2}.

This determines an impersonate strategy

for h(I D, i1−
 ) given in Fig. 2.

Compute c1−

1 , c1−


2 , c1−

3

based on the chosen impersonation strategy.

Randomly select y ∈ F
n
2

Randomly select permutation σ over {1,2, . . . ,n}
c


1 = ĥ(σ , H yT )

c

2 = ĥ(σ (y))

c

3 = ĥ(σ (y ⊕ x
 )) i0, c0

1, c0
2, c0

3, i1, c1
1, c1

2, c1
3 �

b
R← {0,1,2}

b�b
 = b − b1−
 mod 3

b′

 = b − b′

1−
 mod 3

Compute Rsp1−
 ,Rsp′
1−


for b1−
 and b′
1−
 based on

chosen impersonation strategy.

Compute Rsp
 (and Rsp′

 resp.)

for b
 (and b′

 resp.) as follows

if b
 (b′

 ) = 0, Rsp
 (Rsp′


 ) = (y, σ )

if b
 (b′

 ) = 1, Rsp
 (Rsp′


 ) = (y ⊕ x
 ,σ )

if b
 (b′

 ) = 2, Rsp
 (Rsp′


 ) = (σ (y),σ (x
 ))

b0,b1,b′
0,b′

1 �
Check b0 
= b′

0, b1 
= b′
1

b0 + b1 = b mod 3

b′
0 + b′

1 = b mod 3

ρ
R← {0,1}ρ�if ρ = 0, Rsp = Rsp0, Rsp∗ = Rsp1

if ρ = 1, Rsp = Rsp′
0, Rsp∗ = Rsp′

1 Rsp,Rsp∗
� If ρ = 0

If b0(b1) = 0, check c0
1 (c1

1) and c0
2 (c1

2)

If b0(b1) = 1, check c0
1 (c1

1) and c0
3 (c1

3)

If b0(b1) = 2, check c0
2 (c1

2) and c0
3 (c1

3)

If ρ = 1

If b′
0(b′

1) = 0, check c0
1 (c1

1) and c0
2 (c1

2)

If b′
0(b′

1) = 1, check c0
1 (c1

1) and c0
3 (c1

3)

If b′
0(b′

1) = 2, check c0
2 (c1

2) and c0
3 (c1

3)

repeat the above protocol for r times

Fig. 3. Code-IBI: A variant of mCFS-Stern-IBI with concurrent security.

3. The prover computes the responses Rsp1−
 and Rsp′
1−
 for h(I, i1−
 ) w.r.t. b1−
 and b′

1−
 based on the imper-
sonation strategy chosen in the first step. The prover then computes b
 = b − b1−
 mod 3 and b′


 = b − b′
1−


mod 3, and computes the responses Rsp
 and Rsp′

 for h(I, i
 ) w.r.t. b
 and b′


 according to the original Stern
identification protocol.

4. The prover sends (b0,b1) and (b′
0,b′

1) to the verifier.
5. The verifier checks that b0 
= b′

0, b1 
= b′
1, b0 + b1 = b mod 3, b′

0 + b′
1 = b mod 3. Then the verifier randomly chooses

a bit ρ ∈ {0,1} and sends it to the prover.
6. If ρ = 0, the prover sends Rsp0 and Rsp1 to the verifier; otherwise, if ρ = 1, the prover sends Rsp′

0 and Rsp′
1 to the

verifier.
7. Upon receiving the response, the verifier checks that Rsp0 and Rsp1 w.r.t. b0 and b1 (if ρ = 0), or Rsp′

0 and Rsp′
1

w.r.t. b′
0 and b′

1 (if ρ = 1), are correct.
8. Repeat the above steps for r times.

Now let’s revisit the impersonation attack against the first OR-proof given in Section 5.1. Assume the adversary chooses
impersonation strategy 1 (Fig. 2) for h(I, i0), and strategy 2 for h(I, i1). That means the attacker can pass the verification
if b0,b′

0 ∈ {0,2} and b1,b′
1 ∈ {1,2}. So if the challenge b = 1, then the adversary can successfully pass the verification by

setting b0 = 0,b′
0 = 2 and b1 = 1,b′

1 = 2. However, if b = 0 or b = 2, then the adversary only has probability 1/2 to pass the
verification. That means the probability that the adversary can impersonate an uncorrupted user in one round is bounded
by 1

3 · 1 + 2
3 · 1

2 = 2
3 . The result shown in the following theorem coincides with this informal analysis.

Theorem 3. The new identification protocol (P,V) is a proof of knowledge system with knowledge error (2/3)r .
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Proof. In the proposed Code-IBI scheme (Fig. 3), the challenge space becomes (b,ρ) ∈ {(0,0), (0,1), (1,0), (1,1), (2,0),

(2,1)}. Consider the tree T (ω) of all 6r executions corresponding to all possible questions of the verifier when the adver-
sary has a fixed random tape ω. Now a vertex with at least 5 children corresponds to a situation where a commitment
(i0, c0

1, c0
2, c0

3, i1, c1
1, c1

2, c1
3) has been made and the adversary can provide answers to at least 5 possible challenges of the

verifier.

Lemma 2. If there exists an adversary A which can impersonate an uncorrupted user with probability (2/3)r + ε , then there exists a
polynomial-time algorithm which can find a vertex with five children with probability at least ε3/10.

Proof. The proof follows the same technique as used in [23]. The difference is that now we are dealing with a 6-ary tree
instead of a 3-ary tree. Suppose there exists an adversary A that can impersonate an uncorrupted user with probability
(2/3)r + ε , we construct a polynomial-time algorithm to find a vertex with at least five children as follows:

1. Randomly select a random tape ω for the adversary A. This defines an execution tree T (ω).
2. Randomly select a sequence for the verifier’s queries. This defines a branch B of T (ω).
3. Visit all the vertices along the selected branch B . If a vertex with at least five children is found at level i, return

(ω, B, i); else, return ⊥.

Analysis. Consider the set X defined by

X =
{
ω

∣∣∣ T (ω) has at least 4r + ε

2
6r branches

}
.

Then the probability that a random ω falls in X is at least ε/2. Otherwise, we can bound the overall successful probability
of A by

Pr[A is successful] = Pr[A is successful ∧ ω ∈ X] + Pr[A is successful ∧ ω /∈ X]
� Pr[ω ∈ X] + Pr[A is successful | ω /∈ X]
<

ε

2
+

(
4

6

)r

+ ε

2

=
(

2

3

)r

+ ε.

So by contradiction, the probability that a random ω falls in X is at least ε/2. Now, since T (ω) has at least 4r + ε/2 · 6r

branches, the probability that the branch B we selected in step 2 of our algorithm corresponds to a successful execution is
at least (4/6)r + ε/2.

For any level i, 0 � i � r, we let ni denote the number of vertices at level i, and for 0 � i < r, we define αi = ni+1/ni .
Then we have

r−1∏
i=0

αi � 4r + ε

2
6r .

Taking logarithms, this yields

r−1∑
i=0

log4(αi) � log4

(
4r + ε

2
6r

)
� log4

((
1 − ε

2

)
4r + ε

2
6r

)
�

(
1 − ε

2

)
r + ε

2
r log4 6

where the last inequality is based on the convexity inequality. Hence, one of the log4(αi)’s must exceed

1 − ε

2
+ ε

2
log4 6 = 1 + log 3 − 1

4
ε

which implies

αi � 41+ log 3−1
4 ε = 22+ log 3−1

2 ε = 4 · 2
log 3−1

2 ε = 4 · eln 2 log 3−1
2 ε .

From the inequality ex � 1 + x for all x � 0 we have

αi � 4 ·
(

1 + ln 2
log 3 − 1

2
ε

)
.

This indicates
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ni+1 − 4ni �
(
2 ln 2(log 3 − 1)ε

)
ni .

Since each vertex at level i has at most 6 children, we have

Pr[a randomly selected vertex at level i has more than 4 child]� ln 2(log 3 − 1)ε.

Hence, the probability that we find a vertex with at least 5 children in step 3 of our algorithm is at least ln 2(log 3 − 1)ε .
Combining all together, the overall probability of our algorithm to find a vertex with at least 5 children is at least

ε/2 · ((4/6)r + ε/2
) · (ln 2(log 3 − 1)ε

)
� ε3/10. �

Lemma 3. For any vertex in the tree T (ω), if the adversary can provide answers for at least 5 possible challenges of the verifier, then the
adversary can provide answers for all possible challenges w.r.t. either h(I, i0) and commitment c0

1, c0
2, c0

3 or h(I, i1) and commitment
c1

1, c1
2, c1

3 in the Stern identification scheme.

Proof. The proof is by contradiction. Suppose the adversary can only provide answers for two different challenges x, x′ ∈
{0,1,2} w.r.t. h(I, i0) and c0

1, c0
2, c0

3 and answers for two different challenges y, y′ ∈ {0,1,2} w.r.t. h(I, i1) and c1
1, c1

2, c1
3. Then

{x + y, x + y′, x′ + y, x′ + y′} (mod 3) will cover the set {0,1,2} and have exactly one number repeated once. Wlog, suppose
(x, x′) = (0,1) and (y, y′) = (1,2), then (x + y, x + y′, x′ + y, x′ + y′) = (1,2,2,0) (mod 3), which means the adversary
is able to answer at most 4 different challenges among the challenge set {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)} defined
by the challenge (b,ρ) sent by the verifier. More specifically, in this case the adversary is able to produces responses for
one of {(0,0), (0,1)}, one of {(1,0), (1,1)}, and both of {(2,0), (2,1)}. A similar analysis can be done for other possible
combinations of (x, x′) and (y, y′). �
Lemma 4. If there exists an adversary A which can provide answers for all possible challenges w.r.t. h(I, i) and commitment c1, c2, c3
in the Stern identification protocol, then we can extract the secret key x for pk = h(I, i).

The proof for Lemma 4 can be found in [23] (Theorem 1). Theorem 3 can be obtained immediately from Lemmas 2–4. �
Now, by combining Theorem 1 with Theorem 3, we can show that the Code-IBI scheme (Fig. 3) is secure under concur-

rent attacks.

Theorem 4. The Code-IBI scheme is secure under concurrent attacks in the random oracle model.

Proof. The proof is very similar to the proof of Theorem 2. Given an adversary A against the Code-IBI scheme in the
id-imp-ca security model, we construction a new adversary F against the mCFS digital signature scheme in the strong
unforgeability model.

Suppose A issues at most qinti INTI queries. F randomly selects an index � in {1,2, . . . ,qinti}. For the j-th INTI query
made by A where j 
= �, F queries the signing oracle to generate two signatures (x j

0, i j
0) and (x j

1, i j
1) where (i j

0 
= i j
1)

for ID j , and then set the secret key of ID j by following the normal procedures described in the UKGen algorithm. For
the �-th INTI query, F first queries the signing oracle to obtain a valid signature (x, i) for ID� . Then F randomly selects
i′ ∈ {1,2, . . . ,2n−k}. Notice that according to the analysis given in [8],

Pr
[
h
(

I D�, i′
)

is decodable
] = 1

t! .
F then tosses a random coin 
 and sets x�


 = x, i�
 = i and i�1−
 = i′ .
When A issues a corruption query to any ID j such that ID j 
= ID� , A returns the secret key of ID j to A. If A issues a

corruption query to ID� (denote this event by Abort1), F aborts the game without any output. Then we have

Pr[Abort1]� 1

qinti
.

To simulate the PROV oracle for user ID� , F follows the protocol honestly since F has a valid secret key of ID� . Under
the condition that h(ID�, i�1−
 ) is decodable, the simulation is perfect.

Now suppose the adversary A can impersonate the user ID� with a non-negligible probability, then according to Theo-
rem 3, F can extract a valid secret key of ID� also with a non-negligible probability. Since it has been shown in [23] that
if we assume the hash function ĥ(·) is a random oracle, then the simulated transcript w.r.t. h(ID�, i�1−
 ) is indistinguish-

able from the transcript generated by using a secret key corresponding to h(ID�, i�1−
 ). Therefore, the Code-IBI scheme is
witness indistinguishable, and with probability 1/2, the user secret key extracted by F from A constitutes a valid signature
(x�

1−
 , i�1−
 ) for ID� . Then F outputs (x�
1−
 , i�1−
 ) as the forgery for the message ID� and wins the strong unforgeability

game. �
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6. Conclusion

In this paper, we revisited the Stern identification scheme and the mCFS-Stern-IBI scheme based on algebraic coding
theory. We provide a new security analysis for the mCFS-Stern-IBI scheme by showing that the scheme can be proven
secure against active adversaries whereas the previous result only proves its passive security. We then further extend this
IBI scheme to obtain concurrent security by using a special OR-proof system. One interesting open problem is: Can we
directly prove the concurrent security of the mCFS-Stern-IBI scheme?
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