
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2014

Cross-domain password-based authenticated key exchange Cross-domain password-based authenticated key exchange

revisited revisited

Liqun CHEN

Hoon Wei LIM

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Digital Communications and Networking Commons, and the Information Security

Commons

Citation Citation
CHEN, Liqun; LIM, Hoon Wei; and YANG, Guomin. Cross-domain password-based authenticated key
exchange revisited. (2014). ACM Transactions on Information and System Security. 16, (4),.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7346

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

�

�

�

�

�

�

�

�

15

Cross-Domain Password-Based Authenticated Key
Exchange Revisited

LIQUN CHEN, HP Labs, UK
HOON WEI LIM, Nanyang Technological University, Singapore
GUOMIN YANG, University of Wollongong, Australia

We revisit the problem of secure cross-domain communication between two users belonging to different se-
curity domains within an open and distributed environment. Existing approaches presuppose that either
the users are in possession of public key certificates issued by a trusted certificate authority (CA), or the
associated domain authentication servers share a long-term secret key. In this article, we propose a generic
framework for designing four-party password-based authenticated key exchange (4PAKE) protocols. Our
framework takes a different approach from previous work. The users are not required to have public key
certificates, but they simply reuse their login passwords, which they share with their respective domain
authentication servers. On the other hand, the authentication servers, assumed to be part of a standard
PKI, act as ephemeral CAs that certify some key materials that the users can subsequently use to exchange
and agree on as a session key. Moreover, we adopt a compositional approach. That is, by treating any secure
two-party password-based key exchange (2PAKE) protocol and two-party asymmetric-key/symmetric-key-
based key exchange (2A/SAKE) protocol as black boxes, we combine them to obtain generic and provably
secure 4PAKE protocols.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Security, Performance

Additional Key Words and Phrases: Password-based protocol, key exchange, cross-domain, client-to-client

ACM Reference Format:
Chen, L., Lim, H. W., and Yang, G. 2014. Cross-domain password-based authenticated key exchange revis-
ited. ACM Trans. Inf. Syst. Secur. 16, 4, Article 15 (April 2014), 32 pages.
DOI:http://dx.doi.org/10.1145/2584681

1. INTRODUCTION

There are many cross-domain communication scenarios, such as email communica-
tion, mobile phone communication, and instant messaging, where the information be-
ing communicated may need to be protected against both passive and active attackers.
In these scenarios, a user is typically registered to some kind of domain server, such
as email exchange server or home location register (in the cases of email and mobile
phone communications, respectively). Moreover, two communicating parties from dif-
ferent domains very often neither share a password nor possess a public key certifi-
cate. Hence, although two-party and three-party authenticated key exchange protocols
have been extensively studied and widely deployed in the real world, see for example
Neuman and T’so [1994], Jablon [1996], Bellare et al. [2000a], Boyko et al. [2000], and

An extended abstract of this article has appeared in the Proceedings of the 32nd IEEE International Confer-
ence on Computer Communications (INFOCOM).
Author’s address: H. W. Lim; email: hoonwei@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 1094-9224/2014/04-ART15 $15.00
DOI:http://dx.doi.org/10.1145/2584681

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:2 L. Chen et al.

Abdalla et al. [2005], it is not clear how they can be directly applied to establish a
secure cross-domain communication channel.

In this work, we consider the use of an authenticated key exchange protocol to es-
tablish a session key such that two users can securely transmit information from one
domain to another. We assume that each security or administrative domain1 has (at
least) a trusted domain server acting as an authentication server governing a group
of users. Each user within the domain shares only a password with the server and
the user does not necessarily own a public key certificate. Further, we assume that a
domain server makes available its public key to other domain servers in the form of
a public key certificate, that is, the server is connected to a public key infrastructure
(PKI). In such a setting, we focus on enabling a user from one domain to establish
a secure communication channel with another user from a different domain through
their respective domain servers. Our approach makes use of both password-based and
public-key cryptographic techniques for authentication and key exchange. We call this
work four-party password-based authenticated key exchange (4PAKE) instead of client-
to-client password-based authenticated key exchange (C2C-PAKE), as suggested in the
literature [Byun et al. 2002; Yin and Bao 2006], because we thought that the latter
might be confused with 3-party C2C-PAKE (in which both communicating parties are
registered to the same domain server). We believe that our aforementioned communi-
cation model is more realistic, user-friendly, and scalable than that of related previous
work, for example, public key Kerberos [Hur et al. 2001; Zhu and Tung 2006] and
C2C-PAKE [Byun et al. 2007; Yin and Bao 2006]. The later protocols either require a
user to obtain a public key certificate, or assume that the domain servers correspond-
ing to the communicating users share a long-term secret key. We elaborate more on
previous work in Section 2 and their limitations in Section 4.

The primary contribution of this article is a new generic framework for designing
4PAKE protocols that address the aforementioned requirements and limitations of
Kerberos and C2C-PAKE. Our framework is based on a compositional approach and
can be regarded as a form of compiler combining and transforming two building
blocks—(1) a secure two-party password-based authenticated key exchange (2PAKE)
protocol, and (2) a secure two-party asymmetric-key or symmetric-key authenticated
key exchange (2A/SAKE) protocol—into a secure four-party password-based authen-
ticated key exchange protocol. We describe the cryptographic primitives and building
blocks used in this work in Section 3 and give an overview of our approach in Section 4.
The details of our new framework and some concrete instantiations of generic 4PAKE
protocols are presented in Section 5.

Moreover, we define a security model for our generic 4PAKE protocols based on the
Real-Or-Random (ROR) security model [Abdalla et al. 2005] and show that our pro-
tocols are secure in the model. Our security definitions and analyses are shown in
Sections 6 and 7, respectively. Our security proofs rely solely on the security proper-
ties of the cryptographic primitives on which our protocols are based, and do not make
use of the Random Oracle model [Bellare and Rogaway 1993a]. We also implement our
protocols and provide some empirical performance evaluation in Section 8. Our experi-
mental results show that all of the 4PAKE protocols have only slightly higher (between
1.05× and 1.1×) client-side computational overhead than that of public key Kerberos.
However, in return, our protocols are approximately 1.1× to 1.2× faster than public
key Kerberos from the server’s perspective, and thus, can scale better. Further, our ap-
proach is more usable in the sense that the user only needs to remember a password,
and flexible in terms of reuse of existing two-party key exchange protocols.

1Here a domain is a logical network that defines a group of system users, computers, and/or servers, such
that it is easy for a system administrator to enforce security policies and to protect these entities.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:3

2. PREVIOUS WORK

The design and analysis of authentication and key exchange protocols are fundamen-
tal research problems in information security and have been extensively studied over
the last three decades (see for example Diffie and Hellman [1976], Lampson et al.
[1992], Bellare and Rogaway [1993b], Wobber et al. [1994], Law et al. [2003], and many
others). In this article, we focus on authenticated key exchange protocols for protect-
ing cross-domain communication between two users belonging to different security
domains.

2.1. Kerberos

Initially developed by an MIT research team led by Miller and Neuman, Kerberos2

[Neuman and Ts’o 1994; Neuman et al. 2005] is now a widely deployed network au-
thentication protocol. The most current version, Kerberos 5, is supported by all major
operating systems, including Solaris, Linux, MacOS, and Microsoft Windows.

In Kerberos, each domain (also known as realm) is governed by a Key Distribution
Center (KDC), which in turn, provides user authentication and ticket-granting ser-
vices. Each user shares a password with its KDC, while local application servers that
are accessible to the user share (long-term) symmetric keys with the KDC. Kerberos
then allows single sign-on that authenticates clients to multiple networked services,
such as remote hosts, file servers, and print spoolers. This can be summarised in three
rounds of communication between the client (typically acting on behalf of a user), and
different principals as follows:

(1) the client first performs a password-based login to its local KDC, i.e., authentica-
tion server, and obtains a ticket-granting ticket (TGT);

(2) the TGT is then forwarded to a ticket-granting server in order to obtain a service
ticket;

(3) the client finally presents the service ticket to the application servers to get access
to networked services.

This standard Kerberos protocol makes use of highly efficient symmetric key tech-
niques. However, one security weakness is that a password-derived symmetric key is
used in the first round of the protocol between the client and the KDC. This opens
up the possibility of allowing a passive attacker to eavesdrop the protocol messages
(transmitted in the first round) and perform an off-line password guessing attack. In
other words, the strength of the user authentication may be only as strong as the user’s
ability to choose and remember a strong password.

Public key cryptography for initial authentication in Kerberos (PKINIT) has thus
been proposed by Zhu and Tung [2006] to add flexibility, security, and administrative
convenience by replacing the password-based authentication with signature-based au-
thentication between the client and the KDC. (The symmetric key operations in the
second and third rounds of the protocol are retained.) The client and the KDC do not
share a secret now. Each of them is assigned a public-private key pair instead, and
they must then generate their respective signatures over the messages communicated
in the first round. While the PKINIT extension offers stronger user authentication, it
adds complexity to the protocol since we now require a public key infrastructure (PKI)
and each user needs to manage her public-private key pair.

Moreover, Kerberos can be used to achieve cross-realm authentication (PKCROSS)
by using public key techniques. This is useful when a client from a domain wishes to
access networked services offered by another domain (that is governed by a remote

2http://web.mit.edu/kerberos/

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

http://web.mit.edu/kerberos/

�

�

�

�

�

�

�

�

15:4 L. Chen et al.

KDC). Here, the two corresponding KDCs exchange messages following closely the
PKINIT specification [Zhu and Tung 2006]. This avoids the unnecessary administra-
tive burden of maintaining cross-realm, shared symmetric keys. The (simplified) basic
PKCROSS protocol is as follows [Hur et al. 2001].

(1) The client submits a request to its local KDC for credentials associated with the
remote realm.3

(2) The local KDC submits a request (using the standard PKINIT) to the remote KDC
to obtain a cross-realm TGT.

(3) The remote KDC responds as with PKINIT, and the local KDC passes the cross-
realm TGT to the client.

(4) The client then submits a request directly to the remote KDC and proceeds with
the second and third rounds of the standard Kerberos protocol using symmetric
key techniques.

Our work is closely related to PKCROSS, in the sense that we also deal with cross-
domain authentication and secure communication. However, our proposal of 4PAKE is
based on rather different design principles. We will elaborate on this in Section 4.

2.2. Client-to-Client Key Exchange

The idea of extending password-based key exchange between two users from the same
domain to the cross-domain setting was also studied by Byun et al. [2002], and Yin and
Bao [2006]. It was often known as client-to-client password-based authenticated key
exchange (or key agreement), thus the acronym C2C-PAKE (or C2C-PAKA). The key
concept of C2C-PAKE is based on the cross-realm Kerberos protocol [Neuman and Ts’o
1994], in which each realm (or domain) has a KDC, and two users from two distinct
realms establish a common secret key through their respective KDCs. We note that,
however, existing proposals for C2C-PAKE make use of a symmetric key approach.
Both KDCs that are involved in a C2C-PAKE protocol run are assumed to be sharing a
long-term symmetric key. This leads to a similar limitation in symmetric key manage-
ment that PKCROSS aims to address. More recent work on C2C-PAKE with improved
efficiency and/or security can be found in Byun et al. [2007], Feng and Xu [2009], and
Wu and Zhu [2009].

3. PRELIMINARIES

3.1. Cryptographic Primitives

We first describe some cryptographic primitives required for our protocols. In our
description, we let κ denote a security parameter.

Message Authentication Codes. A message authentication code (MAC) scheme is a
tuple of polynomial-time algorithms (GEN, MAC, VER) such that:

— GEN(1κ), the key generation algorithm, takes as input the security parameter 1κ

and outputs a key K;
— MAC(K; m), the MAC tag generation algorithm, takes as input a key K and a mes-

sage m ∈ {0, 1}∗, and outputs a tag μ;
— VER(K; m; μ), the verification algorithm, takes as input a key K, a message m and

a tag μ; it outputs 1 if μ is a valid tag for message m under key K, or 0 otherwise.

3Note that the local KDC can authenticate the client using a password-based approach or PKINIT. However,
as explained, the latter is usually a preferred choice since it is more secure than the former.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:5

We consider security against strong existential unforgeability under a chosen-
message attack (SUF-CMA). The adversary attacking a MAC scheme should not be
able to create a new valid message-tag pair with non-negligible probability, even after
seeing many such valid pairs [Bellare et al. 2000a]. Let SUCCMAC denote the event in
which the adversary, A, is able to output a message m along with a tag μ such that:
(1) VER(K; m; μ) = 1, and (2) A had not previously requested a tag μ on the message m.
(Clearly, we assume that A has no knowledge of the key, K.) The advantage of A in vio-
lating the strong existential unforgeability of the MAC scheme under chosen-message
attacks [Bellare et al. 2000a] is defined as Advsuf-cma

MAC (A) = Pr[SUCCMAC]. The asso-
ciated advantage function, Advsuf-cma

MAC (t, qmac, qver), is then defined as the maximum
value of Advsuf-cma

MAC (A) over all A with time-complexity at most t, and asking at most
qmac and qver queries to the tag generation and verification oracles, respectively.

Digital Signatures. A signature scheme is a tuple of polynomial-time algorithms
(GEN, SIG, VER) satisfying the following.

— GEN(1κ), the key generation algorithm, takes as input the security parameter 1κ

and outputs a pair of public/private keys (pk, sk);
— SIG(sk; m), the signing algorithm, takes as input a private key sk and a message

m ∈ {0, 1}∗, and outputs a signature σ ;
— VER(pk; m; σ), the verification algorithm, takes as input a public key pk, a message

m, and a signature σ ; it outputs 1 if σ is a valid signature for message m under key
sk, or 0 otherwise.

A signature scheme is considered secure against existential unforgeability under an
adaptive chosen-message attack (EUF-CMA), if the adversary attacking the scheme
could not create a new valid message-signature pair with non-negligible probability
without knowing the corresponding signing key. This is so even if the adversary is
allowed to ask for signing of multiple messages chosen adaptively [Goldwasser et al.
1988]. Let SUCCSig denote the event in which adversary A is able to output a forged sig-
nature σ for a message m such that: (1) VER(pk; m; σ) = 1, and (2) A had not previously
requested a signature on the message m from the signing oracle. The advantage of A in
violating the existential unforgeability of the signature scheme under adaptive chosen-
message attacks [Goldwasser et al. 1988] is defined as Adveuf-cma

Sig (A) = Pr[SUCCSig].

The associated advantage function, Adveuf-cma
Sig (t, qsig, qver), is then defined as the max-

imum value of Adveuf-cma
Sig (A) over all A with time-complexity at most t, and asking

at most qsig queries to the signing oracle and at most qver queries to the verification
oracle.

Authenticated Encryption. An authenticated encryption (AE) scheme (a symmetric-
key encryption scheme that provides both privacy and authenticity/integrity) is a tuple
of polynomial-time algorithms (GEN, ENC, DEC) satisfying the following.

— GEN(1κ), the key generation algorithm, takes as input the security parameter 1κ

and outputs a symmetric key sk;
— ENC(sk; m), the encryption algorithm, takes as input a secret key sk and a message

m ∈ {0, 1}∗, and outputs a ciphertext c;
— DEC(sk; c), the decryption algorithm, takes as input a secret key sk and a ciphertext

c; it outputs m if c is authenticated, or 0 otherwise indicating an invalid ciphertext.

In authenticated encryption, we consider both privacy and authenticity/integrity
[Bellare and Namprempre 2000]. In terms of privacy, we consider the conventional

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:6 L. Chen et al.

notion of indistinguishability under a chosen-plaintext attack (IND-CPA). Let b ←
{0, 1} denote a random bit. An adversary is allowed access to a left-or-right (LR) oracle,
which returns ENC(K; Mb) upon receiving a pair of messages (M0, M1) from the adver-
sary. However, the adversary has no knowledge of the key K and its goal is to guess
the value of b. The advantage function, Advind-cpa

AE (t, qlr), is defined as the maximum

value of Advind-cpa
AE (A) over all A with time-complexity at most t, and asking at most

qlr queries to the LR oracle.
To define authenticity, we consider an adversary who has access to an encryption

oracle ENC, which returns the encryption of any message m chosen by the adversary;
and a decryption oracle DEC, which tells if the decryption of a ciphertext c is success-
ful or not. The goal of the adversary is to forge a ciphertext c∗ such that: (1) c∗ can be
successfully decrypted; and (2) c∗ is not the output of the encryption oracle. The asso-
ciated advantage function, Adveuf-cma

AE (t, qenc, qdec), is defined as the maximum value of
Adveuf-cma

AE (A) over all A with time-complexity at most t, and asking at most qenc and
qdec queries to the encryption and verification oracles, respectively.

Key Derivation Function. A Key derivation function KD : {0, 1}κ × {0, 1}� → {0, 1}n

takes a key K ∈ {0, 1}κ and a string x ∈ {0, 1}� as input and outputs another string
y ∈ {0, 1}n. In this article, we consider that a key derivation function KD is secure
if it satisfies the security requirement of a pseudo-random function. Namely, for any
randomly selected key K, KD(K; ·) should behave like a truly random function RF(·).
We define the advantage of an adversary D against a key derivation function as

AdvKD(D) = |Pr[DKD(K,·)(κ, �, n) = 1] − Pr[DRF(·)(κ, �, n) = 1)]|,
where t denotes the maximum running time of D and qkd is the maximum number of
oracle queries D is allowed to make. The associated advantage function, AdvKD(t, qkd),
is then defined as the maximum value of AdvKD(D) over all D with time-complexity at
most t, and asking at most qkd oracle queries.

Noninteractive Key Derivation. A noninteractive key derivation scheme consists of
two polynomial-time algorithms (GEN, NKD) satisfying the following.

— GEN(1κ), the key generation algorithm, takes as input the security parameter 1κ

and outputs a pair of public/private keys (pk, sk);
— NKD(pkA, skB), the noninteractive key derivation function, takes as input a public

key pkA and a private key skB, and outputs a symmetric key KAB ∈ {0, 1}n.

There are two security requirements involved in a noninteractive key derivation
scheme:

— completeness, NKD(skA, pkB) = NKD(skB, pkA);
— key privacy, {pkA, pkB, NKD(skA, pkB)} is computationally indistinguishable from

{pkA, pkB, Un}, where Un denotes a string selected uniformly at random from {0, 1}n.

We define the advantage of an adversary D against a noninteractive key derivation
scheme as

AdvNKD(D) = |Pr[D(pkA, pkB, NKD(skA, pkB)) = 1] − Pr[D(pkA, pkB, Un) = 1)]|.
The associated advantage function, AdvNKD(t), is then defined as the maximum value
of AdvNKD(D) over all D with time-complexity at most t.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:7

3.2. Two-Party Authenticated Key Exchange

A two-party authenticated key exchange (2AKE) protocol consists of two probabilistic
polynomial time algorithms.

— GEN(1κ), the key generation algorithm, takes as input the security parameter 1κ

and outputs a long-term key KU for entity U;
— P(KA, KB), a protocol execution algorithm that can be executed by two distinct par-

ties holding KA and KB, respectively.

Depending on the type of long-term key, one can divide 2AKE protocols into three
major categories: (1) two-party password-based authenticated key exchange (2PAKE),
(2) two-party asymmetric-key authenticated key exchange (2AAKE), and (3) two-party
symmetric-key authenticated key exchange (2SAKE).

Many 2AKE protocols are extensions of the classic Diffie-Hellman key exchange
[Diffie and Hellman 1976] by incorporating an authentication component into the pro-
tocol. Here authentication can be achieved by using passwords (2PAKE), asymmetric-
keys (2AAKE), or symmetric-keys (2SAKE). Take for example, the 2PAKE protocol
presented in Bellare et al. [2000a], which uses a password-derived key to encrypt the
Diffie-Hellman key exchange message flows so that only the two users sharing the
same password can decrypt the messages and compute the Diffie-Hellman key.

In what follows, we present the security model for each type of 2AKE protocol. We
first give an overview of the Real-Or-Random (ROR) model for 2PAKE [Abdalla et al.
2005]. We then define a security model in the Find-Then-Guess (FTG) sense for 2AAKE
and 2SAKE.

3.2.1. Password-Based. Let us first recall two existing security models related to
password-based authenticated key exchange protocols: the Find-Then-Guess (FTG)
and the Real-Or-Random (ROR) models.

The FTG model (sometimes also known as the BPR2000 model) was proposed by
Bellare et al. [2000a] to measure the indistinguishability of a session key from a ran-
dom key. In the FTG model, an adversary is allowed to pose multiple queries to a reveal
oracle (in addition to other oracles, for example execute and send oracles). The reveal
oracle is used to model the misuse of session keys by a user. However, the adversary is
restricted to ask only a single query to the test oracle.

Abdalla et al. [2005] then proposed the ROR model, which is very similar to the
FTG model, except that the former does not make use of a reveal oracle. This means
that the adversary no longer has access to the reveal oracle to learn session keys of
user instances. However, the adversary is allowed to pose as many test queries as it
wishes to different instances. Note that in the ROR model, the test oracle (instead of
the reveal oracle) is used to model the misuse of keys by a user.

We remark that the recently proposed ROR model is strictly stronger than the FTG
model in the password-based setting.4 Hence, we adopt the ROR model for password-
based protocols in this article.

In the 2PAKE setting, we assume that each protocol participant is either a client
C ∈ C or a server S ∈ S. The set of all users or participants U is the union C ∪ S. We
also assume that each client C ∈ C holds a password pwdC, while each server S ∈ S
holds a vector pwdS = 〈pwdC〉C∈C with an entry for each client [Bellare et al. 2000a].
Here, pwdC and pwdS are regarded as the long-lived keys of client C and server S.

4A protocol proved secure in the ROR model is also secure in the FTG model. The reverse, however, is
not necessarily true. See Abdalla et al. [2005] for further details about the relation between the ROR and
FTG models.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:8 L. Chen et al.

As with a typical security model, an adversary A interacts with protocol partici-
pants only via oracle queries. Such queries model the adversary’s capabilities in a real
attack. During a protocol execution, there may be many concurrent running instances
of a participant. We denote an instance i of a protocol participant U ∈ U by Ui. A pro-
tocol session between a client instance and a server instance is labeled by a unique
session identifier. As pointed out by Bellare et al. [2000b], a session identifier can be
constructed based on the partial protocol messages exchanged between the client and
the server instances before the acceptance. Two instances, Ui

1 and Ui
2, are said to be

partners if the following conditions are met [Bellare et al. 2000a]:

(1) both Ui
1 and Ui

2 accept;5

(2) both Ui
1 and Ui

2 share the same session identifiers;
(3) the partner identifier for Ui

1 is Ui
2, and vice versa;

(4) no instance other than Ui
1 and Ui

2 accepts with a session identifier equal to that of
Ui

1 or Ui
2.

The oracle queries in the ROR security model for 2PAKE are then classified as follows
[Abdalla et al. 2005].

— EXECUTE(Ci, Sj). This query models a passive attack, in which the adversary eaves-
drops on an honest execution of the protocol between a client instance Ci and
a server instance Sj. The output of the query comprises messages that were ex-
changed during the honest execution of the protocol.

— SEND(Ui, m). This query models an active attack, in which the adversary may in-
tercept a message and then either modify it, create a new one, or simply forward
it to the intended participant. The output of the query is the message that the
participant instance Ui would generate upon receipt of message m.

— TEST(Ui). This query models the misuse of a session key by a user. Let b be a bit
chosen uniformly at random at the beginning of an experiment defining indistin-
guishability in the ROR model. The output of the query is then the session key for
participant instance Ui if b = 1 or a random key from the same domain if b = 0.
However, if no session key is defined for instance Ui, then return the undefined
symbol ⊥.

We note that the adversary is allowed to ask multiple queries to the TEST oracle in the
ROR model (this is in contrast with the FTG model, which allows only a single query
to the TEST oracle). All TEST queries must be made on fresh instances (which have
not revealed their session keys) and they should be answered using the same value
for the hidden bit b (chosen at the beginning of the experiment). This implies that the
keys returned by the TEST oracle are either all real or all random. Moreover, in the
case where the returned key is random, the same random value should be returned
for TEST queries that are asked to two instances, which are partnered [Abdalla et al.
2005]. The goal of the adversary is to guess the value of the hidden bit b used to answer
TEST queries. The adversary is considered successful if it guesses b correctly. Let SUCC
denote the event in which an adversary is successful. The advantage of an adversary
A in violating the indistinguishability of the 2PAKE protocol in the ROR sense is

Advror
2PAKE,D(A) = 2 · Pr[SUCC] − 1,

5An instance Ui goes into an accept mode after it has received the last expected protocol message.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:9

when passwords are drawn from a dictionary D. The associated advantage function
is then

Advror
2PAKE,D(t, qe, qs, qt) = max

A
{Advror

2PAKE,D(A)},
where the maximum is over all A, with time-complexity at most t, and making at most
qe execute queries, qs send queries, and qt test queries.

We say that a 2PAKE protocol is secure in the ROR model if the advantage
Advror

2PAKE,D(t, qe, qs, qt) is only negligibly larger than cn/|D|, where c is a constant,
n is the number of active sessions,6 and |D| is the size of the dictionary D.

3.2.2. Asymmetric-Key. A two-party asymmetric-key based authenticated key ex-
change (2AAKE) protocol has a similar objective as with a 2PAKE protocol, that is,
to agree on a session key between a pair of communication parties. The long-lived
keys of each protocol participant U ∈ U are now, however, a public key pkU and the
corresponding private key skU , instead of a password.

Generally speaking, an adversary in the Find-Then-Guess model is allowed to sub-
mit EXECUTE, SEND, REVEAL, CORRUPT, and TEST queries. The first two types of
queries (EXECUTE and SEND) are similar to those for 2PAKE in the ROR model. The
others are defined as follows [Bellare and Rogaway 1995].

— REVEAL(Ui). This query models leakage of information on specific session keys.
If a session key is not defined for instance Ui or if a TEST query was asked to
either Ui or its partner, then return ⊥. Otherwise, return the session key held by
the instance, a passive attack, in which the adversary eavesdrops on an honest
execution of the protocol between a client instance Ui.

— CORRUPT(U). This query models the capability of an adversary being able to learn
the long-term secrets of clients. The output of the query is the long-lived private
key skU of participant U.

— TEST(Ui). Let b be a bit chosen uniformly at random at the beginning of an ex-
periment defining indistinguishability in the FTG model. Denote Vj the partner
(if it exists) of Ui. If no session key for instance Ui is defined, or if a REVEAL
query was asked to either Ui or Vj, or if the adversary has made a CORRUPT(U)
or CORRUPT(V) query, then return ⊥. Otherwise, the output of the query is the
session key, for instance Ui if b = 1 or a random key from the same domain if b = 0.

As explained before, the adversary can query only once to the TEST oracle. However,
the goal of the adversary is till the same, that is, to guess the value of the hidden bit
b used to answer the TEST query. Let SUCC denote the event in which an adversary
guesses b correctly. The advantage of an adversary A in violating the indistinguisha-
bility of the 2AAKE protocol in the FTG sense, Advftg

2AAKE(A), and the associated ad-

vantage function Advftg
2AAKE(t, qe, qs, qr, qc) are then defined as in the password-based

setting where qr and qc denote the maximum number of reveal and corrupt queries,
respectively.

We say that a 2AAKE protocol is secure in the FTG model if the advantage
Advftg

2AAKE(t, qe, qs, qr, qc) is negligible (in the associated security parameter).

3.2.3. Symmetric-Key. The security definition of two-party symmetric-key based au-
thenticated key exchange (2SAKE) is almost identical to that of 2AAKE. The only

6A session is said to be active if it involves SEND queries by the adversary.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:10 L. Chen et al.

difference is that in a 2SAKE protocol, each protocol participant A ∈ U shares with
another participant B ∈ U\{A}, a symmetric long-lived secret key KAB (= KBA).

4. OUR MOTIVATIONS AND APPROACH

Our concern here is with secure communication between two users from different ad-
ministrative or security domains. While this is not a new security problem per se, we
observe that current approaches fall short of being able to offer a satisfactory solution.

A main design goal of Kerberos was to allow single sign-on such that a user is able
to access multiple networked services without the need to repeatedly enter her login
password. Hence, the emphasis is on authenticating a user once and allowing secure
access to multiple services within a given time period. On the other hand, our work
focuses on authenticated key agreement between two users of separate domains. This
fundamental difference leads to other differences in terms of the protocol message
flows and the security architecture. For example, in Kerberos, we assume that a user
shares a password, while each application server shares a long-term symmetric key
with their KDC; while in our case, we have a more symmetric situation, where each
user shares a password with her respective domain authentication server.

Furthermore, Kerberos seems to be more suited to a rather closed distributed en-
vironment, where it is feasible to establish, distribute, and maintain long-term secret
keys between a KDC and a group of application servers, and between the KDC and
other remote KDCs. Although this is compensated with the PKINIT and PKCROSS
extensions, PKIs are known to be difficult to deploy for various practical reasons, such
as cost, registration process, trust establishment, key revocation, and management of
user private keys [Ellison and Schneier 2000; Price 2005]. We believe that what is
needed here is a PKI that is more user-friendly, that is, which hides the complexity of
public key management from a user’s view point.

Existing work on C2C-PAKE does provide some useful insights on how to construct
an efficient authenticated key agreement protocol between local and a remote user.
Unfortunately, however, these protocols rely on long-term symmetric keys shared be-
tween KDCs. This may not be a practical and scalable approach, particularly in an
open distributed environment, because establishment and management of shared keys
between KDCs can be a complicated and costly process.7

From a security perspective, the complexity of a cross-domain authenticated key ex-
change often complicates its security analysis. As shown in Butler et al. [2006] and
Backes et al. [2011], the security analysis of Kerberos, with or without PKINIT, is
rather complex and involved. This sometimes may hinder a security flaw in the proto-
col from being detected early. For example, the IETF Internet Draft for PKINIT was
first circulated in 1996, but it was only after almost a decade later when Cervesato
et al. [2008] reported a man-in-the-middle attack in PKINIT. Similarly, designing a
secure C2C-PAKE protocol seems to be a non-trivial task. Most of the C2C-PAKE
protocols found in the literature have security flaws. These include offline password
guessing attacks [Phan and Goi 2005; Wang et al. 2004], undetectable online password
guessing and unknown key-share attacks [Phan and Goi 2006], insider attacks (by
malicious clients and servers) [Chen 2003; Phan and Goi 2005, 2006], and password-
compromise impersonation attacks [Cao et al. 2009]. Recent proposals [Feng and Xu
2009; Wu and Zhu 2009] attempt to address these security problems.

7Administrators must maintain separate keys for every domain which wishes to exchange authentication
information with another domain, implying n(n − 1) keys for n domains, or they must utilise a hierarchical
arrangement of domains, which may increase network traffic and complicate the trust model by requiring
evaluation of transited domains [Hur et al. 2001].

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:11

Table I. Notation

X ∈ {A, B, SA, SB} Entities involved in our 4PAKE protocol
idX Unique identifier of X
tsX Timestamp created by X

pkX Public key of X
skX Secret key of X

epkX Ephemeral public key of X
eskX Ephemeral secret key of X

pwdX1, X2
Password shared between X1 and X2

sskX1, X2
Session key shared between X1 and X2

sid Session identifier

Taking all of these observations into consideration, we propose a generic 4PAKE
framework and give a set of example protocols that we believe are suitable for se-
cure cross-domain communication between two users. In our framework, intuitively,
each domain server possesses a public key certificate that is publicly available to other
domain servers (as with the case of Web servers used for many e-commerce or online
applications). In a protocol run, the servers corresponding to two communicating users
certify some key materials that are associated with the users so that the latter can sub-
sequently exchange the key materials and agree on a session key. Clearly, we assume
that the user trusts the remote server to only certify key materials submitted by an
authenticated user. We achieve this through a 2PAKE protocol between the user and
her domain server. Hence, the user needs to remember only a password and does have
to deal with public key management. Once both the users have received the certified
key materials (in the form of a signature) from their respective servers, they exchange
the key materials following a two-party AKE protocol.

Inspired by the work of Abdalla et al. [2005] on a compositional approach to three-
party password-based authenticated key exchange, we adopt a similar approach to our
4PAKE protocol, which comprises 2PAKE and 2A/SAKE as the building blocks. This is
to simplify the security analysis of our protocol. By making use of secure 2PAKE and
2A/SAKE, we treat them as black-boxes and our analysis then focuses only on the input
and output parameters of these two-party protocols. Moreover, using a compositional
approach, we have the flexibility to choose any secure 2PAKE and 2A/SAKE protocols,
implying that one can simply build a 4PAKE protocol based on existing deployed 2PAKE
and 2A/SAKE protocols. In fact, each domain may deploy a different 2PAKE protocol,
yet a user from one domain can securely establish a secret key with another user of
a different domain. Further, if a serious security flaw is found on one of the building
blocks, we simply replace it with another secure two-party protocol without changing
the entire four-party protocol.

5. GENERIC FOUR-PARTY KEY EXCHANGE PROTOCOLS

In this section, we first present our generic framework for 4PAKE. Using our
framework, we then give three concrete instantiations denoted by 4PAKEv1, 4PAKEv2,
and 4PAKEv3. Succinctly, 4PAKEv1 is a generic protocol constructed from 2PAKE and
2AAKE, while 4PAKEv2 is a variant of 4PAKEv1 that considers key reuse. In 4PAKEv3,
we consider the case where 2SAKE (instead of 2AAKE) is used in order to derive a more
efficient protocol than 4PAKEv1.

5.1. Notation

The notation used in our 4PAKE protocols is described in Table I. We assume that
(pkX , skX) and (epkX , eskX) are both asymmetric key pairs. We write sskX1,X2 ←
2PAKE(pwdX1,X2) to denote the execution of a 2PAKE protocol, where the protocol is

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:12 L. Chen et al.

run between X1 and X2, and which takes pwdX1,X2 as input and establishes sskX1,X2 . We
then use sskX1,X2 ← 2AAKE((eskX1 , epkX1 , σX1), (eskX2 , epkX2 , σX2)) to denote the execu-
tion of a signature-based 2AAKE protocol, where the protocol is run between X1 and X2.
It takes as input an asymmetric key pair (eskX , epkX) and a signature σX (ensuring the
authenticity of the public key epkX) of each entity, and establishes sskX1,X2 . Moreover,
we use sskX1,X2 ← 2SAKE(skX1,X2) to denote the execution of a MAC-based 2SAKE pro-
tocol between X1 and X2. It takes as input, a shared symmetric key skX1,X2 and outputs
a session key sskX1,X2 . Also, we define a session identifier sid as (idA, epkA, idB, epkB)
in all the 4PAKE protocols shown in this article. (A similar definition of sid is used in
[Bellare and Rogaway 1993b].)

We label a protocol message flow by Mx, where x indicates the x-th message flow.
We use subscripts to differentiate protocol messages that are created and transmitted
in parallel, for example MxA and MxB. We assume that the execution of any of our
4PAKE protocols involves a pair of clients, denoted by A, B ∈ C, and their respective
servers, denoted by SA, SB ∈ S. Here C and S are sets of possible clients and servers,
respectively.

5.2. Generic Framework

We begin by describing a generic framework for constructing 4PAKE protocols. Our
framework consists of the following two phases.

(1) SETUP. In the initial phase, each server S generates its long-term public-private
key pair (pkS, skS), and each client C chooses a password pwdC that is shared with
its domain server.

(2) 4PAKE EXECUTION. The second phase is divided into the following steps, as illus-
trated in Figure 1.
— Initialisation (M1, M2). Should two clients A and B wish to securely communicate

with each other, they first exchange their identity information, idA, idB, and
their ephemeral public keys, epkA, epkB. If A and B already have knowledge of
each other’s identity information prior to the start of the protocol (e.g., they may
obtain such information from a higher application layer), then this step can
be skipped.

— Local authentication and key exchange (M3). A and B each runs a 2PAKE protocol
with their own domain (authentication) server to establish a temporary session
key for their communication in the next step.

— Token acquirement (M4, M5). Subsequently, A and B each obtain an authentica-
tion token issued by their respective domain servers via the temporary session
key established in the previous step.

— Two-party authentication and key exchange (M6). Last, A and B use their respec-
tive authentication tokens and ephemeral public/private keys to execute the
2A/S/PAKE protocol in order to establish a session key.

Remark 1. In scenarios where clients A and B may already have knowledge of each
other’s identity information prior to the start of a 4PAKE protocol, we can remove the
first two message flows (M1, M2). Hence the signature σ created by each domain server
does not include the remote domain client’s ephemeral public key (but its local domain
client’s). We note that, however, the ephemeral public key epk chosen by a client can be
seen as a challenge to the other communicating client. Thus, the removal of M1 & M2
opens up the possibility of a replay attack. For example, an adversary who somehow
managed to learn A’s ephemeral secret key eskA can reuse σSA to establish a session
key with B; or even if A has been revoked by SA after obtaining σSA , A can still reuse

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:13

A SA SB B

M1
[idA, epkA]−−→

M2
[idB, epkB]←−−

M3
sskA,SA

← 2PAKE(pwdA,SA
)⇐=========================⇒ sskB,SB

← 2PAKE(pwdB,SB
)⇐=========================⇒

M4
idA, idB, epkA, [epkB] , μA−−−−−−−−−−−−−−−−−−−−−−−−−−→ idB, idA, epkB, [epkA] , μB←−−−−−−−−−−−−−−−−−−−−−−−−−−

M5
tokenSA←−−−−−−−−−−−−−−−−−−−−−−−−−−

tokenSB−−−−−−−−−−−−−−−−−−−−−−−−−−→
M6

sskA,B ← 2A/S/PAKE((eskA, epkA, tokenSA
), (eskB, epkB, tokenSB

))⇐===⇒

where
[· · ·]: optional component μA = MAC(sskA,SA

; idA, idB, epkA, [epkB] , [tsSA
])

tokenX : token issued by X μB = MAC(sskB,SB
; idB, idA, epkB, [epkA] , [tsSB

])

Fig. 1. A generic framework for 4PAKE.

the signature to continue to establish secure channels with B without B knowing it.
Hence, it is essential to include a timestamp ts in the signature, such that σSA is now
being tied to a specific time, allowing B to check the freshness of the signature.

Remark 2. We assume that each domain server has access to the authenticated
credentials (e.g., public key certificates) of other domain servers. Moreover, each client
possesses a copy of its server’s credential in order to verify the authentication token
issued by the server in M5. This is not necessarily required to be done in advance. In
practice, the servers can distribute their credentials to their clients during the execu-
tion of 2PAKE in M3, or alternatively in M5, by using a MAC algorithm in the same
way as M4. In that case, secure and authenticated key exchange can be achieved if nei-
ther the client nor the server is corrupted. However, to prevent a stronger password-
compromise impersonation attack,8 the clients must obtain their respective servers’
credentials through out-of-band mechanisms.

Remark 3. Furthermore, we stress that there is no interaction between servers SA
and SB during a protocol run. This seems to be a very attractive property since we can
avoid overloading the servers with high communication cost in an open, distributed
environment should they need to exchange messages in the protocol. The savings in
terms of communication bandwidth is significant compared to PKCROSS, for example.
(See Section 8 for further details of our performance evaluation.)

5.3. 4PAKEv1 (from 2PAKE and 2AAKE)

Our first instantiation of 4PAKE protocol, denoted by 4PAKEv1, entails piggybacking
2PAKE (password-based) and 2AAKE (asymmetric-key based) protocols. This is illus-
trated in Figure 2.

In M1 & M2, as described before, clients A and B exchange information
about their identities (idA, idB),9 and ephemeral public keys (epkA, epkB), such as

8In such an attack, a client’s password is assumed to be known to the adversary, which in turn, attempts to
impersonate the target server by distributing a fake credential.
9We can assume, in practice, that the identity information contains information about its associated domain.
For example, if idA is an IP address, then it also gives information about the domain to which idA belongs.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:14 L. Chen et al.

A SA SB B

M1
idA, epkA−−−→

M2
idB, epkB←−−−

M3A
sskA,SA

← 2PAKE(pwdA,SA
)⇐========================⇒ M3B

sskB,SB
← 2PAKE(pwdB,SB

)⇐========================⇒
M4A

idA, idB, epkA, epkB, μA−−−−−−−−−−−−−−−−−−−−−−−−−−→ M4B
idB, idA, epkB, epkA, μB←−−−−−−−−−−−−−−−−−−−−−−−−−

M5A
pkSB

, σSA←−−−−−−−−−−−−−−−−−−−−−−−−−− M5B
pkSA

, σSB−−−−−−−−−−−−−−−−−−−−−−−−−→
M6

sskA,B ← 2AAKE((eskA, epkA, σSA
), (eskB, epkB, σSB

))⇐===⇒

where
μA = MAC(sskA,SA

; idA, idB, epkA, epkB) σSA
= SIG(skSA

; idA, idB, epkA, epkB, pkSB
)

μB = MAC(sskB,SB
; idB, idA, epkB, epkA) σSB

= SIG(skSB
; idB, idA, epkB, epkA, pkSA

)

Fig. 2. The 4PAKEv1 protocol.

Diffie-Hellman components. A and B then, using their passwords, perform authen-
ticated key agreement with their domain servers SA and SB in M3A and M3B, respec-
tively. At the end of 2PAKE, each client establishes a shared key with its server. In M4,
clients A and B request for an authentication token by submitting their identities and
ephemeral public keys to their servers. The information is protected using MAC tags
generated using the shared keys from M3. In M5, servers SA and SB each respond by
generating and returning a token in the form of a signature over the information re-
ceived from the client. Each server also provides its client the public key of the server
corresponding to the intended remote client. Finally, A and B perform asymmetric-key
based authenticated key exchange in M6 in order to agree on a session key.

One may instantiate a 2PAKE protocol using Jablon’s [1996] SPEKE protocol, or that
proposed by Bellare et al. [2000a], or Boyko et al. [2000], for example. On the other
hand, a simple, classic instantiation of 2AAKE is the typical two-pass Diffie-Hellman
key exchange protocol, involving exchanges of σSA and σSB between clients A and B.
The output session key is then sskA,B = KD(geskAeskB , sid), for example. Indeed, we
can use any signature-based message transmission (MT) authenticator proposed by
Bellare et al. [1998] and Canetti and Krawczyk [2001] in M6. See Shoup [1999] and
Krawczyk [2003] for other concrete examples of the signature-based Diffie-Hellman
key exchange. As explained in our motivations, signature-based 2AAKE is adopted in
M6 so that the servers can avoid sharing a long-term symmetric key that may lead to
a key distribution problem. Otherwise, for scenarios where sharing of symmetric keys
between all servers does not pose any serious concern, one can replace 2AAKE with
MAC-based key exchange, for example the MAC-based MT authenticator in Bellare
et al. [1998] and Canetti and Krawczyk [2001], to reduce computational overhead. (We
give an example protocol that makes use of MAC-based key exchange in Section 5.5.)

5.4. 4PAKEv2 (Key Reuse)

In our second example protocol, denoted by 4PAKEv2, we consider a scenario where
key reuse is tolerated. Our goal is to simplify 4PAKEv1 such that some of the steps
can be skipped should a client wish to reconnect to the same remote client within a
predefined period of time. To achieve this, we now require the client to generate two

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:15

A SA SB B

M1
idA, epk0

A−−−→

M2
idB, epk0

B←−−−
M3A

sskA,SA
← 2PAKE(pwdA,SA

)⇐========================⇒ M3B
sskB,SB

← 2PAKE(pwdB,SB
)⇐========================⇒

M4A
idA, idB, epk0

A, epk0
B, μA−−−−−−−−−−−−−−−−−−−−−−−−−−→ M4B

idB, idA, epk0
B, epk0

A, μB←−−−−−−−−−−−−−−−−−−−−−−−−−
M5A

pkSB
, σSA←−−−−−−−−−−−−−−−−−−−−−−−−−− M5B

pkSA
, σSB−−−−−−−−−−−−−−−−−−−−−−−−−→

M6 sskA,B ← 2AAKE(((esk0
A, esk1

A), (epk0
A, epk1

A), σSA
),

((esk0
B, esk1

B), (epk0
B, epk1

B), σSB
))⇐===⇒

where
μA = MAC(sskA,SA

; idA, idB, epk0
A, epk0

B) σSA
= SIG(skSA

; idA, idB, epk0
A, epk0

B, pkSB
, tsSA

)

μB = MAC(sskB,SB
; idB, idA, epk0

B, epk0
A) σSB

= SIG(skSB
; idB, idA, epk0

B, epk0
A, pkSA

, tsSB
)

Fig. 3. The 4PAKEv2 protocol.

ephemeral key pairs: one can be reused over multiple sessions, while the other can be
used just for a session and regenerated for each new session.

Let (epk0, esk0) and (epk1, esk1) be the two key pairs generated by the client, and let
skCA be the secret key of a CA. We also let [sk
 pk] denote a certificate signed using
secret key sk over public key pk; and [sk
 pk] → [sk′
 pk′] denote a certificate chain
rooted at sk. Our protocol is then illustrated in Figure 3.

Here, we treat σSA as a public key certificate with respect to epk0
A, which is issued

by the domain server SA and has a validity period of more than just a session, for ex-
ample, a day, week, or month. The client then creates another new pair of ephemeral
keys (esk1

A, epk1
A) that are taken as input for the signature-based 2AAKE protocol. Par-

ticularly, a certificate-chain of the form

[skCA
 pkSA] → [skSA
 epk0
A] → [esk0

A
 epk1
A]

is created in this setting. This way, the authenticity of ephemeral public key epk1
A is

assured by a signature under esk0
A, which can be verified by B using pkSA and epk0

A,
during the execution of 2AAKE.

Should A want to establish a session key with B again within the validity period
(tsSA) of epk0

A, A simply generates a new (epk1
A, esk1

A) key pair and runs the 2AAKE pro-
tocol with B directly without going through M1 to M5. Henceforth, we use 4PAKEv2∗
to denote a 4PAKEv2 protocol that executes only the last message flow M6. We show,
in our performance evaluation in Section 8, that 4PAKEv2∗ is roughly 2× faster than
PKCROSS and our other 4PAKE protocols.

Notice that in fact, more generally, we can use the domain information of B instead of
idB in μA and σSA , such that A can reuse the (epk0

A, esk0
A) key pair and σSA to establish

a secure communicate session with any client from the same domain as B.

5.5. 4PAKEv3 (from 2PAKE and 2SAKE)

We now give an example that relies on 2PAKE and 2SAKE to improve the computa-
tional efficiency of 4PAKEv1.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:16 L. Chen et al.

A SA SB B

M1
idA, epkA−−−→

M2
idB, epkB←−−−

M3A
sskA,SA

← 2PAKE(pwdA,SA
)⇐========================⇒ M3B

sskB,SB
← 2PAKE(pwdB,SB

)⇐========================⇒
M4A

idA, idB, epkA, epkB, μA−−−−−−−−−−−−−−−−−−−−−−−−−−→ M4B
idB, idA, epkB, epkA, μB←−−−−−−−−−−−−−−−−−−−−−−−−−

M5A
cSA←−−−−−−−−−−−−−−−−−−−−−−−−−− M5B

cSB−−−−−−−−−−−−−−−−−−−−−−−−−→
M6

sskA,B ← 2SAKE((eskA, epkA, μ′
A), (eskB, epkB, μ′

B))⇐===⇒

where
lskSA,SB

= NKD(skSA
, pkSB

) = NKD(skSB
, pkSA

)

sskSA,SB
= KD(lskSA,SB

; idA, epkA, idB, epkB)

sskSB ,SA
= KD(lskSA,SB

; idA, epkA, idB, epkB)

ssk0
A,SA

= KD(sskA,SA
; 0) μA = MAC(ssk0

A,SA
; idA, idB, epkA, epkB)

ssk1
A,SA

= KD(sskA,SA
; 1) μB = MAC(ssk0

B,SB
; idB, idA, epkB, epkA)

ssk0
B,SB

= KD(sskB,SB
; 0) μ′

A = MAC(sskSA,SB
; idA, idB, epkA, epkB)

ssk1
B,SB

= KD(sskB,SB
; 1) μ′

B = MAC(sskSB ,SA
; idB, idA, epkB, epkA)

cSA
= ENC(ssk1

A,SA
; sskSA,SB

) cSB
= ENC(ssk1

B,SB
; sskSB ,SA

)

Fig. 4. The 4PAKEv3 protocol.

Intuitively, we assume that each local domain server is able to derive a shared sym-
metric key with a remote server via a noninteractive key derivation scheme. This can
be achieved if, for example, the server’s long-term public key is of the form of a Diffie-
Hellman component gsk, where sk is the corresponding secret key. This is so since we
can simply compute a common secret key, which is a Diffie-Hellman key, based on the
local server’s secret key and the remote server’s public key. In the case of SA and SB,
the Diffie-Hellman key will be of the form gskSA

skSB . The secret key shared between the
two servers will then be used to derive a presession key for the clients, such that the
latter can use the presession key to further exchange and establish a session key using
a 2SAKE. Our protocol is illustrated in Figure 4.

The domain servers SA and SB first use a noninteractive key derivation scheme to
generate a long-term shared key lskSA,SB . This key is then used to generate a short-
term presession key sskSA,SB based on the session-specific data (idA, epkA, idB, epkB).

After the establishment of a local session key sskA,SA in M3, the client A and the
domain server SA use a key derivation function to generate two sub-keys ssk0

A,SA
and

ssk1
A,SA

. The former sub-key is used as a MAC key in M4 to let A deliver the session-
specific data to SA, while the latter is used as an encryption key in M5 to let SA securely
deliver the pre-session key sskSA,SB to A. The same procedures are also performed
between B and SB. This way, A and B will both obtain the pre-session key sskSA,SB at
the end of step M5. Finally, in M6, A and B use the shared pre-session key to execute
a MAC-based 2SAKE protocol. A good example of a MAC-based 2SAKE is the REKEY
protocol of Canetti and Krawczyk [2001].

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:17

Alternative. Here we briefly sketch another example of 4PAKE that aims to optimise
the implementation cost of the 4PAKEv3 protocol. The core idea is that we now con-
struct a 4PAKE protocol from 2PAKE as the only building block. That is, 2PAKE is used
not only between the client and the domain server, but also between the two clients.
Our motivation for doing this is that implementing a single protocol is much cheaper
than implementing two separate protocols (2PAKE and 2SAKE/2AAKE) in terms of
memory space or circuit size, particularly if the protocol runs within a constrained
hardware device, for example, smart card and mobile phone. Such a protocol is very
similar to 4PAKEv3. The only difference between the two protocols is that we replace
M6 in Figure 4 with sskA,B ← 2PAKE(sskSA,SB), where sskSA,SB is regarded as the
password shared between clients A and B.

6. SECURITY MODEL

We now define an ROR security model for 4PAKE by extending the work of Abdalla
et al. [2005] for the three-party case. In the 4PAKE setting, we assume that each pro-
tocol participant is a client U ∈ U or a trusted server S ∈ S.10 A protocol execution
involves two client-server pairs from two distinct security domains. Each client shares
a password with its domain server. (As with the two-party case, each client U ∈ U holds
a password pwdU , while each server S ∈ S holds a vector pwdS = 〈pwdU〉U∈U with an
entry for each client.) We also assume that a server has access to public information
about other servers, such as their identities, public keys, and so forth.

6.1. Indistinguishability of Session Keys

In order to model insider attacks, the set of clients U comprises two disjoint sets: C, the
set of honest clients, and E , the set of malicious clients. We assume that all passwords
of clients from the set E are known by the adversary [Abdalla et al. 2005].

The notion of partnering (between two clients) in the four-party setting is similar to
that for the two-party setting (between client and server), and thus will not be further
discussed here.

The oracle queries in the ROR security model for 4PAKE are defined as follows.

— EXECUTE(Ui1
1 , Sj1

1 , Ui2
2 , Sj2

2). This query models a passive attack in which the ad-
versary eavesdrops on an honest execution of the protocol between client instances,
Ui1

1 and Ui2
2 , and trusted server instances, Sj1

1 and Sj2
2 . The output of the query com-

prises messages that were exchanged during the honest execution of the protocol.
— SENDCLIENT(Ui, m). This query models an active attack in which the adversary

may intercept a message and then either modify it, create a new one, or simply
forward it to the intended participant. The output of the query is the message that
the client instance Ui would generate upon receipt of message m.

— SENDSERVER(Sj, m). This query models an active attack against a server. The out-
put of the query is the message that the server instance Sj would generate upon
receipt of message m.

— TEST(Ui). This query models the misuse of a session key by a user. Let b be a bit
chosen uniformly at random at the beginning of an experiment defining indistin-
guishability in the ROR model. The output of the query is then the session key for
participant instance Ui if b = 1 or a random key from the same domain if b = 0.

10Note that in Section 3.2, the set U includes both clients and servers. In the four-party case, however, the
set U is restricted to only clients, since the goal of a 4PAKE protocol is to establish secure channels between
two clients (rather than between a client and a server).

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:18 L. Chen et al.

However, if no session key is defined for the client instance Ui, then return the
undefined symbol ⊥.

The advantage of an adversary A in violating the indistinguishability of the 4PAKE
protocol in the ROR sense, Advror

4PAKE,D(A), and the associated advantage function
Advror

4PAKE,D(t, qe, qs, qt) are then defined as in the two-party setting.
Note that for simplicity of presentation, we will not consider the notion of perfect for-

ward secrecy [Bellare et al. 2000a] in this article. Defining such a notion is a straight-
forward exercise.

6.2. Key Privacy With Respect to Servers

We stress that the servers involved in a 4PAKE protocol run in our ROR security model
are trusted and assumed to be honest-but-curious. Since the servers have access to all
the passwords within their respective security domains, it seems impossible to prevent
any of them from impersonating a client from the same domain to another client of
a different domain. However, in the security model, we allow the servers to launch
passive attacks against any clients by intercepting their protocol messages.

We adopt the definition of key privacy from Abdalla et al. [2005], which says that the
session key shared between two instances should be known to only these two instances
and no one else (including the trusted servers). Moreover, the adversary is allowed ac-
cess to all passwords of the clients in the set U , and the EXECUTE and SENDCLIENT
oracles, but not the SENDSERVER oracle (which can be easily simulated by the adver-
sary using the passwords). In order to capture the adversary’s ability to distinguish
a real session key from a random key, the adversary is allowed access to a TESTPAIR
oracle defined as follows [Abdalla et al. 2005].

— TESTPAIR(Ui
1, Uj

2). Let b be a bit chosen uniformly at random at the beginning of
the experiment defining the notion of key privacy. If b = 1, the output of the query
is the actual key shared between client instances Ui

1 and Uj
2 for a session in which

the adversary performed only passive attacks. Else if b = 0, a random key from the
same domain is output. However, if client instances Ui

1 and Uj
2 do not share the

same key, then return the undefined symbol ⊥.

Let A be an adversary that is given the passwords of all users and is allowed to ask
multiple queries to the EXECUTE, SENDCLIENT, and TESTPAIR oracles in an experi-
ment defining the key privacy of the 4PAKE protocol. The advantage of the adversary A
in violating the key privacy of the protocol, Advkp

4PAKE(A), and the associated advantage

function Advkp
4PAKE(t, R), are defined as before.

7. SECURITY ANALYSIS

Before presenting our security proofs, we first give a high level description of the proof
idea with regards to the generic framework illustrated in Figure 1.

We adopt a game-hopping approach, which starts with the original game, or Game
G0, defined in our 4PAKE model (as described in the last section), and ends with Game
G5. These games proceed in the following manner.

— In Game G1, we replace the key sskA,SA with a random key. The difference between
G1 and G0 will be negligible to the adversary if the 2PAKE protocol is secure.

— Game G2 proceeds in a similar way as Game G1, except that we make the same
modification to sskB,SB , that is, replacing it with a random key.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:19

— In Game G3, we further change Game G2 by rejecting all the MACs forged by the
adversary in M4. Due to the unforgeability of the MAC, the difference between G3
and G2 is also negligible.

— In Game G4, we do a similar modification by rejecting all the authentication to-
kens forged by the adversary in M5. The difference between G4 and G3 is again
negligible if the token is unforgeable.

— In Game G5, we replace the key sskA,B with a random key. The adversary will not
notice such a change if the 2A/S/PAKE protocol is secure.

— Finally, in Game G5, it is obvious that the adversary has no advantage since a
random session key will be returned in each TEST query regardless of the value
of b.

7.1. 4PAKEv1

We first give a security proof for 4PAKEv1 from which we can also relate and derive
the security proofs for 4PAKEv2 and 4PAKEv3.

7.1.1. Indistinguishability of Session Keys. As the following theorem states, our 4PAKEv1
protocol shown in Figure 2 is secure in the ROR model (as defined in Section 6), pro-
vided that the underlying primitives it uses are secure.

THEOREM 1. Let 4PAKEv1 be the four-party password-based authenticated key ex-
change protocol. Let qexe be the number of queries to the EXECUTE oracle of the 4PAKEv1
protocol and qtest be the number of TEST queries. Let also qMx

send denote the number of
SENDCLIENT or SENDSERVER queries related to message Mx of the 4PAKEv1 protocol
for x ∈ {1, 2, 3A, 3B, 4, 5, 6}. Then

Advror
4PAKEv1(t, qexe, qMx

send, qtest) ≤
2 · Advror

2PAKE,D(t, qexe, qM3A
send, qexe + qM3A

send) + 2 · Advror
2PAKE,D(t, qexe, qM3B

send , qexe + qM3B
send)

+ 2 · qM4
send · Advsuf-cma

MAC (t, 2, 0) + 4 · Adveuf-cma
Sig (t, qM5

send, 0)

+ 2 · qtest · Advftg
2AAKE(t, qexe, qM1,M2,M6

send , qtest, 0)

assuming the 2PAKE and 2AAKE protocols, and the MAC and signature schemes used
in the protocol are secure.

PROOF OF THEOREM 1. Let A be an adversary against the indistinguishability of
4PAKEv1 in the ROR sense. Our security proof is a sequence of security games simu-
lated using techniques from Abdalla et al. [2005].

As described earlier, we start with the real security game against the 4PAKEv1 pro-
tocol, and end with a game in which the adversary’s advantage is zero, and for which
we can bound the difference in the adversary’s advantage between any two consecu-
tive games. For each game Gn, we define SUCCn to be the event in which the adversary
correctly guesses the hidden bit b used in the TEST queries (as defined in Section 6).

Game G0. This is the original attack game with respect to a given polynomial-time
adversary A. By definition, we have

Advror
4PAKEv1(A) = 2 · Pr[SUCC0] − 1.

Game G1. In this game, we model the adversary almost exactly the same as in game
G0. The only difference between these two games is that here, we replace the session
key sskA,SA output by 2PAKE by a random key ssk′

A,SA
in all of the sessions involving

honest users. We show that the difference in success probability of the adversary A

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:20 L. Chen et al.

between games G0 and G1 is at most the probability of breaking the security of the
underlying 2PAKE protocol between A and SA.

LEMMA 2. |Pr[SUCC1] − Pr[SUCC0]| ≤ Advror
2PAKE,D(t, qexe, qM3A

send, qexe + qM3A
send).

PROOF OF LEMMA 2. In order to prove this lemma, we simulate an adversary
A2PAKE against the indistinguishability of the 2PAKE protocol using a distinguisher,
A1, between games G0 and G1. Adversary A2PAKE first selects a bit b uniformly at ran-
dom. It also chooses a password for each client in the system except A (according to the
distribution D) and generates an asymmetric-key pair for each server participating in
the protocol. It then starts answering oracles queries from A1 as follows.

— SENDCLIENT queries. If A1 makes a query on an instance of the 2PAKE protocol
run between A and SA, then A2PAKE responds by sending the corresponding query
to its SEND oracle (as defined in the 2PAKE security model). If the query forces the
given instance A or SA to accept, then we also ask a TEST query to that instance,
unless such a query had already been made to its partner. The output of the TEST
query is subsequently used as the session key shared between A and SA.
On the other hand, if A1 issues a SENDCLIENT query targeting an instance of the
2PAKE protocol run between B and SB, A2PAKE responds using the password of
client B that it has chosen at the beginning of the simulation.
All remaining SENDCLIENT queries by A1 can be answered either using the session
key shared between A and SA or the session keys generated during the execution
of the 2PAKE protocol between B and SB.

— SENDSERVER queries. A2PAKE can respond to these queries using the generated
asymmetric-key pairs for servers by acting as the required signing oracles.

— EXECUTE queries. A2PAKE can easily answer these queries using its own EXECUTE
oracle and the output of the relevant TEST queries, just as how SENDCLIENT and
SENDSERVER queries are responded.

— TEST queries. A2PAKE uses the bit b it has previously selected and the session keys
that it has computed to answer these queries.

Let b′ be the output of A1. If b′ = b, then A2PAKE outputs 1. Otherwise, it outputs 0.
Let b∗ denote the random bit in the 2PAKE experiment for A2PAKE. Then we have

Advror
2PAKE,D(A2PAKE)

= 2(Pr[b′ = b|b∗ = 1] Pr[b∗ = 1] + Pr[b′ �= b|b∗ = 0] Pr[b∗ = 0]) − 1
= Pr[b′ = b|b∗ = 1] + Pr[b′ �= b|b∗ = 0] −1
= Pr[b′ = b|b∗ = 1] − Pr[b′ = b|b∗ = 0]
= Pr[SUCC0] − Pr[SUCC1] .

The lemma follows by noticing that A2PAKE has at most time-complexity t and makes
at most qexe queries to its EXECUTE oracle, at most qM3A

send queries to its SEND oracle,

and at most qexe + qM3A
send queries to its TEST oracle.

Game G2. We modify the previous game by replacing the session key sskB,SB output
by 2PAKE by a random key ssk′

B,SB
in all of the sessions involving honest users. Using

similar arguments for proving the lemma in the previous game, we can prove the fol-
lowing lemma.

LEMMA 3. |Pr[SUCC2] − Pr[SUCC1]| ≤ Advror
2PAKE,D(t, qexe, qM3B

send, qexe + qM3B
send).

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:21

Game G3. We now further modify the previous game as follows. Game G3 is exactly
the same as game G2, except that in G3, we modify the way the oracle instances re-
spond to SENDCLIENT queries on M4 of our 4PAKEv1 protocol. If the adversary makes
a SENDCLIENT query containing a new MAC message-tag pair (forgery) not previously
generated by an oracle, then we consider the MAC tag invalid and force the instance in
question to terminate without accepting. As the following lemma shows, the difference
between the current and previous games should be negligible if we use a secure MAC
scheme.

LEMMA 4. |Pr[SUCC3] − Pr[SUCC2]| ≤ qM4
send · Advsuf-cma

MAC (t, 2, 0).

PROOF OF LEMMA 4. We use a hybrid argument to prove this lemma. We define a
sequence of hybrid experiments Vi, where 0 ≤ i ≤ qM4

send. (Note that we do not need
to take into account EXECUTE queries here, because they are used to simulate only
passive attacks.) In experiment Vi, queries (to the SENDCLIENT oracle) in the first i
sessions involving honest clients A and B are answered as in game G3, and all other
queries in the remaining sessions are answered as in game G2. We remark that the
hybrid experiments at the extremes (when i = 0 and i = Vqs) are equivalent to games
G2 and G3, respectively. Let Pi be the probability of the event SUCC in experiment Vi.
Since P0 = Pr[SUCC2] and Pqs = Pr[SUCC3], it follows that

|Pr[SUCC3] − Pr[SUCC2]| =
qs∑

i=1

|Pi − Pi−1|.

Hence, it suffices to show that |Pi −Pi−1| is at most Advsuf-cma
MAC (t, 2, 0), in order to prove

the lemma. This can be achieved by assuming the existence of a distinguisher Ai
3 for

experiments Vi−1 and Vi, and using it to build an adversary Ai
mac for breaking the

security of the MAC scheme.
The description of the adversary Ai

mac is as follows. For the first i − 1 sessions, the
adversary Ai

mac chooses random values for the MAC key and is therefore can perfectly
simulate the oracles given to Ai

3, while imposing the restriction as defined for game G3.
In the i-th session, Ai

mac makes use of its MAC tag generation and verification oracles
to answer queries from Ai

3. In this session, if adversary Ai
3 asks a SENDCLIENT query

containing a message-tag pair not previously generated by adversary Ai
mac, then Ai

mac
halts and outputs the pair as its forgery. However, if no such pair is generated by Ai

3,
we output a failure indication. For all remaining sessions, Ai

mac simulates all oracles
exactly as in game G2, using actual MAC keys, to answer queries from Ai

3.
Let F1 be the event in which a message-tag pair is considered valid in experiment

Vi−1 but invalid in experiment Vi. It is then not difficult to see that Pr[F1] is at most
the probability that adversary Ai

mac can forge a new message-tag pair under a chosen-
message attack. Since Ai

mac has time-complexity t and makes at most two queries to
its MAC tag generation oracle (to answer the SENDCLIENT queries from Ai

1 in one
session) and no queries to its verification oracle, we have Pr[F1] ≤ Advsuf-cma

MAC (t, 2, 0).
One also sees that

Pr[SUCCVi−1 ∧ ¬F1] = Pr[SUCCVi ∧ ¬F1]

since experiments Vi−1 and Vi proceed identically until F1 occurs. Therefore, by
Lemma 1 of [Shoup 2002] (also known as the Difference Lemma), we have

|Pr[SUCCVi−1] − Pr[SUCCVi]| ≤ Pr[F1] .

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:22 L. Chen et al.

Our lemma then follows by noticing that there are at most qM4
send experiments, where

M4 = M4A + M4B.

Game G4. In this game, we modify the way the oracle instances respond to
SENDCLIENT queries on M5 of our 4PAKEv1 protocol. This implies that if the adver-
sary makes a SENDCLIENT query containing a new signature not previously generated
by an oracle, then we consider the signature invalid and force the instance in question
to terminate without accepting. The following Lemma shows that the difference be-
tween G3 and G4 is negligible.

LEMMA 5. |Pr[SUCC4] − Pr[SUCC3]| ≤ Adveuf-cma
Sig (t, qM5

send, 0).

PROOF OF LEMMA 5. Let Asig denote an adversary against the digital signature
scheme. Asig receives a public key pk of the digital signature scheme and simulates
the game as follows.
Asig chooses a random client C ∈ {A, B} and guesses that a forge event would hap-

pen on C. Asig assigns pk as the public key of the server SC, and generates the pub-
lic/private key pairs for all the other servers and the passwords for all the clients
honestly. Asig then simulates the game G3 for the adversary A2PAKE. When a signature
of SC is required to respond a SENDSERVER query, Asig makes a query to its signing
oracle to obtain a valid signature and uses it to answer the SENDSERVER query. Let F2
denote the event that the adversary makes a SENDCLIENT query containing a valid
signature with respect to SC and which is not previously returned by Asig. We then
have

|Pr[SUCC4] − Pr[SUCC3]| ≤ Pr[F2] ≤ 2 · Adveuf-cma
Sig (t, qM5

send, 0).

Game G5. This game is identical to the previous game, except that we replace the
session key sskA,B (output by the 4PAKEv1 protocol) by a random key ssk′

A,B in all of the
sessions. As the following lemma shows, the difference in success probability between
the current and previous games is at most the probability of breaking the security of
the underlying signature-based 2AAKE protocol between A and B.

LEMMA 6. |Pr[SUCC5] − Pr[SUCC4]| ≤ qtest · Advftg
2AAKE(t, qexe, qM1,M2,M6

send , qtest, 0).

PROOF OF LEMMA 6. Again, we prove the lemma by a hybrid argument. Let Vi (0 ≤
i ≤ qtest) denote a variant of the game G4 such that for the first i TEST queries, the
real session keys sskA,B are returned to the adversary, while for the remaining TEST
queries, random session keys are returned. Then we have V0 = G5 and Vqtest = G4. If
there exists an adversary A5 that can distinguish G4 and G5 with advantage ε, then
there must exist an index i such that A5 can distinguish Vi and Vi+1 with advantage
at least ε/qtest.

Given such a distinguisher A5, we can construct an adversary A2AAKE against the
indistinguishability of the signature-based 2AAKE protocol. A2AAKE first selects a pass-
word for each client and uses the public keys pkSA and pkSB in the 2AAKE game as
the public keys for SA and SB in the simulated game for A5. A2AAKE then generates
asymmetric-key pairs for the other servers in the system. Next, A2AAKE responds to
queries from A5 as follows.

— SENDCLIENT and SENDSERVER queries. A2AAKE answers the SENDCLIENT and
SENDSERVER queries from A5 by using pwdA and pwdB, together with queries
to its own SEND oracle. Note that since no forgery event with respect to

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:23

μA, μB, σSA , σSB would occur in game G4, A2AAKE can successfully embed the an-
swers from its own SEND oracle into the simulated game for A5.

— EXECUTE queries. A2AAKE can easily answer these queries by using its own
EXECUTE oracle and pwdA, pwdB.

— TEST queries. For the first i TEST queries made by A5, A2AAKE uses its REVEAL
oracle to obtain the real session keys and use them to answer the TEST queries.
For the i + 1-th TEST query made by A5, A2AAKE uses the key obtained from its
own TEST oracle to answer the query. For the rest of the TEST queries made by A5,
A2AAKE responds with random keys.

It is obvious that if A5 can distinguish Vi from Vi+1, then A2PAKE can successfully
guess the value of b in the 2AAKE game.

The lemma follows by noticing that A2AAKE has at most time-complexity t and asks
at most qexe queries to its EXECUTE oracle, at most qM5,M6

send queries to its SEND oracle,
at most qtest queries to its REVEAL oracle, and at most 1 query to its TEST oracle.

Clearly, Pr[SUCC5] = 1
2 . All the above lemmas yield the result in Theorem 1.

7.1.2. Key Privacy against Servers. As explained in Section 6, we assume that the servers
are honest-but-curious. Hence, we should also show that if the 4PAKEv1 protocol is
executed as expected and does not abort, the servers should not gain any knowledge
about the resulting session key.

THEOREM 7. Let 4PAKEv1 be the four-party password-based authenticated key
exchange protocol. Then

Advkp
4PAKEv1(t, qexe, qMx

send, qtest) ≤ 2 · qtest · Advftg
2AAKE(t, qexe, qM1,M2,M6

send , qtest, 0),

where parameters are defined as in Theorem 1, and assuming the 2PAKE and 2AAKE
protocols, and the MAC and signature schemes are secure.

PROOF OF THEOREM 7. We can use arguments similar to those in game G5 in the
proof of Theorem 1. Thus, we do not repeat the details here.

Succinctly, assuming that the 2AAKE protocol used between the clients is secure,
that is, inherits the indistinguishability property, the servers should not be able to dis-
tinguish an accepted session key between users A and B from a random key. This holds
if users A and B were honest users and the servers performed only passive attacks.

7.2. 4PAKEv2

The security proof for the 4PAKEv1 protocol can be easily extended to prove the security
of 4PAKEv2 by following the same sequence of games outlined at the beginning of this
section. The only difference is that we now adopt a signature-based authenticator,
which relies on time-stamps [Tin et al. 2004]. We obtain the same security bounds for
4PAKEv2 as with those for 4PAKEv1.

7.3. 4PAKEv3

We now provide a sketch of the security proof for our 4PAKEv3 protocol, which is based
on 2PAKE and 2SAKE, by using the same techniques (particularly game-hopping and
hybrid argument) we have used in proving the security for 4PAKEv1.

THEOREM 8. Let 4PAKEv3 be the four-party password-based authenticated key ex-
change protocol based on 2SAKE. Let qexe be the number of queries to the EXECUTE

oracle of the 4PAKEv3 protocol and qtest be the number of TEST queries. Let also qMx
send

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:24 L. Chen et al.

denote the number of SENDCLIENT or SENDSERVER queries related to message Mx of
the 4PAKEv3 protocol for x ∈ {1A, 1B, 2, 3, 4}. Then

Advror
4PAKEv3(t, qexe, qMx

send, qtest) ≤
2 · Advror

2PAKE,D(t, qexe, qM3A
send , qexe + qM3A

send) + 2 · Advror
2PAKE,D(t, qexe, qM3B

send , qexe + qM3B
send)

+ 2 · (qM3
send · AdvKD(t, 2) + qM4

send · AdvKD(t, 1)) + 2 · AdvNKD(t)

+ 2 · qM5
send · (Advsuf-cma

AE (t, 1, 0) + Advind-cpa
AE (t, 1))

+ 2 · qtest · Advftg
2SAKE(t, 1, qM1,M2,M6

send , 0, 0)

assuming the 2PAKE and 2SAKE protocols, and the KD and NKD functions, and the
authenticated encryption scheme used in the protocol are secure.

PROOF OF THEOREM 8 (SKETCH). The adversarial games G0, G1, G2 are the same
as in the proof of Theorem 1. However, we define two additional games G2.1 and G2.2
between G2 and G3.

Game G2.1. In this game, we replace the keys ssk0
A,SA

and ssk1
A,SA

with two indepen-
dent and random keys. From the assumption that the key derivation function KD is
secure and by a hybrid argument, we obtain

|Pr[SUCC2.1] − Pr[SUCC2]| ≤ qM3A
send · AdvKD(t, 2).

Game G2.2. Similarly, in this game, we replace ssk0
B,SB

and ssk1
B,SB

with two inde-
pendent and random keys and we have

|Pr[SUCC2.2] − Pr[SUCC2.1]| ≤ qM3B
send · AdvKD(t, 2).

Game G3 is the same as in the proof of Theorem 1. We then define two additional
games G3.1 and G3.2 between Game G3 and G4.

Game G3.1. In this game, we replace the values of NKD(skSA , pkSB) and
NKD(skSB , pkSA) with a random key. Then from the security of the noninteractive key
derivation scheme, we have

|Pr[SUCC3.1] − Pr[SUCC3]| ≤ AdvNKD(t).

Game G3.2. Here, we further replace the values of sskSA,SB and sskSB,SA in each
session with a random key. Once again, since KD is a secure key derivation function,
the difference between game G3.1 and game G3.2 can be bounded by

|Pr[SUCC3.2] − Pr[SUCC3.1]| ≤ qM4
send · AdvKD(t, 1).

In game G4, we modify the way the oracle instances respond to SENDCLIENT queries
on M5: if the adversary makes a SENDCLIENT query containing a new ciphertext not
previously generated by an oracle, then we consider the ciphertext invalid and force
the instance in question to terminate without accepting. By following a proof similar
to that of Lemma 5, we have

|Pr[SUCC4] − Pr[SUCC3]| ≤ qM5
send · Adveuf-cma

AE (t, 1, 0).

We then define an additional game G4.1 between game G4 and game G5.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:25

Game G4.1. In this game, we replace the key sskSA,SB(= sskSB,SA) used in the
2SAKE protocol with a random key rsk that is independent of cSA and cSB . Since AE is
IND-CPA secure, by a hybrid argument, we have

|Pr[SUCC4.1] − Pr[SUCC4]| ≤ qM5
send · Advind-cpa

AE (t, 1).

Finally, in game G5, we replace the session keys sskA,B in all the sessions with ran-
dom keys. By following a hybrid argument similar to that of Lemma 6, we have

|Pr[SUCC5] − Pr[SUCC4.1]| ≤ qtest · Advftg
2SAKE(t, 1, qM1,M2,M6

send , 0, 0).

Notice that the number of queries in the bound is different from that in Lemma 6, this
is because in 4PAKEv3 the 2SAKE protocol will use a different presession key sskSA,SB
in each session, while in 4PAKEv1 the 2AAKE protocol will use the same public keys
pkA and pkB in all the sessions.

It is obvious that Pr[SUCC5] = 1
2 . Combining all together yields the result in

Theorem 8.

We can also use an almost identical approach to prove the security of a variant of our
4PAKEv3 protocol that makes use of only 2PAKE (as described at the end of Section 5.5)
to obtain similar bounds as above except the following.

|Pr[SUCC5] − Pr[SUCC4.1]| ≤ qtest · Advror

2PAKE,2
|sskSA,SB

|(t, 1, qM6
send, 1),

where |sskSA,SB | denotes the length of sskSA,SB .

8. EFFICIENCY ANALYSIS

In this section, we evaluate and compare the communication and computational costs
of our 4PAKE protocols against PKCROSS [Hur et al. 2001]. For this purpose, we in-
stantiate concrete 2PAKE, 2AAKE, and 2SAKE based on SPEKE [Jablon 1996],11 the
signature-based authenticator of Canetti and Krawczyk [2001], and the MAC-based
authenticator of Abdalla et al. [2005], respectively.

Notation. We use PENC/PDEC, SIG/VER, and GEXP to denote public key encryption/
decryption, public key signing/verifying, and group exponentiation, respectively. As
before, we let ENC denote symmetric-key (authenticated) encryption, and MAC denote
MAC tag generation. We then use |X | to denote the length of the output of an algorithm
or a function X , for example, |ENC| denotes the output size of the ENC algorithm.
Moreover, we let C ↔ C denote the interaction between two clients in 4PAKE (or a
client and a service/application server in PKCROSS); let S ↔ S denote the interaction
between two servers in 4PAKE (or two KDCs in PKCROSS); and let C ↔ S represent
the interaction between a client and a server (or KDC).

8.1. Communication Overhead

Our generic protocols may understandably be less efficient than one that is based on a
standard, noncompositional approach; although in return, we achieve protocol interop-
erability by reusing existing two-party protocols and our protocol is easier to analyse.
However, Table II shows that our generic protocols are still better than PKCROSS in
terms of the total numbers of message flows exchanged between C ↔ S, C ↔ C, and

11We assume that in real world implementation, the last message of the SPEKE protocol (between a client
and a server) can be combined with M4.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:26 L. Chen et al.

Table II. Message Flows in PKCROSS and our Protocols

Protocol C ↔ S C ↔ C S ↔ S Total
PKCROSS 6 2 2 10
4PAKEv1/v2/v3 4 4 0 8
4PAKEv2∗ 0 2 0 2

Table III. Communication Complexity of PKCROSS and our Protocols

Protocol C ↔ S C ↔ C S ↔ S
PKCROSS 1|PENC| + 4|SIG| + 5|ENC| 3|ENC| 1|PENC| + 4|SIG|
4PAKEv1 4|SIG| + 8|GEXP| + 2|MAC| 2|SIG| + 4|GEXP| 0
4PAKEv2 4|SIG| + 4|GEXP| + 2|MAC| 4|SIG| + 2|GEXP| 0
4PAKEv2∗ 0 4|SIG| + 2|GEXP| 0
4PAKEv3 4|GEXP| + 2|ENC| + 2|MAC| 2|GEXP| + 2|MAC| 0

Table IV. Cryptographic Operation Counts in PKCROSS and our Protocols

Protocol Operation count
PKCROSS – Client 1 PENC + 1 SIG + 2 VER

– Service/App server 0
– Local server 1 PENC + 2 SIG + 4 VER

– Remote server 1 PENC + 1 PDEC + 1 SIG + 2 VER

4PAKEv1 – Client 1 VER + 4 GEXP

– Server 1 SIG + 2 GEXP

4PAKEv2 – Client 1 SIG + 2 VER + 4 GEXP

– Server 1 SIG + 2 GEXP

4PAKEv2∗ – Client 1 SIG + 1 VER + 2 GEXP

– Server 0
4PAKEv3 – Client 4 GEXP

– Server 3 GEXP

S ↔ S. This is not suprising given that all of our protocols do not require interac-
tion between the local and the remote servers; while Kerberos is designed such that
a client must obtain a ticket-granting ticket and a service ticket through a remote
server (KDC) before it can access a target service. Also, clearly, our 4PAKEv2∗ requires
the smallest number of message flows since authentication tokens are reused multiple
times within a predefined validity period.

Delving into the bandwidth requirement, Table III compares the communication
complexity of PKCROSS and our protocols.

In summary, the communication complexity for C ↔ S in our protocols are compara-
ble to that of PKCROSS (except that our 4PAKEv2∗ has zero communication cost).
However, all of our protocols have higher bandwidth requirement for C ↔ C. On
the contrary, no communication overhead is incurred by our protocols with respect
to S ↔ S.

8.2. Computational Overhead

First, we evaluate the computational complexity of our protocols by counting the com-
putationally expensive operations (PENC/PDEC, SIG/VER, and GEXP) in a protocol
run, and comparing them with those for PKCROSS. This is summarised in Table IV.
From the table, we see that the client-side computational overhead in our protocols is
expected to be slightly higher, while the server-side overhead is expected to be slightly
lower, than that of PKCROSS.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:27

Table V. Raw Cryptographic Computation Times in
Milliseconds (ms)

Operation Time Operation Time
RSA-1024 Enc 0.0389 DH-1024 Exp 0.2093
RSA-1024 Dec 0.2274 AES/CBC-128 Enc 0.0030
RSA-1024 Sig 0.2568 AES/CBC-128 Dec 0.0041
RSA-1024 Ver 0.0170 SHA-1 0.0018
DH-1024 Gen 0.0798 HMAC (SHA-1) 0.0029

Fig. 5. The average computation time for a protocol run (on the left), and the maximum throughput for the
server in terms of protocol sessions per second (on the right).

We then verify the efficiency differences between PKCROSS and our protocols
through concrete experiments. Our experimental results are based on implementation
of PKCROSS and our protocols using C++ and the OpenSSL 1.0.1 crypto library.12 Par-
ticularly, we access and make use of the libcrypto library through the EVP (envelope)
functions provided by OpenSSL. The experiments run on a machine equipped with
an Inter 3.30GHz quad-core i3-2120 CPU, 8GB of RAM, and Ubuntu Linux 12.04.2
LTS. Table V presents the base time for our chosen cryptographic algorithms for the
protocols.

Protocol Execution Time. We measure the computation time for each protocol. The
protocol is run and an average execution time is calculated over 1000 iterations. (Here
both the client and the server are simulated on the same machine, thus we do not con-
sider network latency. However, we will come back to this issue in Section 9.1 when we
discuss an application of 4PAKE to secure communications over the Internet.) Figure 5
shows the results of our experiments. We also give a breakdown of the protocol exe-
cution time, that is, the client-side and the server-side13 overhead. The computational
overhead includes cryptographic operations and a number of management functions
for initialising and clearing data structures.

From the graph on the left of Figure 5, it is clear that the protocol execution times
for 4PAKEv1 and 4PAKEv3 are very close to that of PKCROSS. Although 4PAKEv2 is
less efficient than PKCROSS, it is run only once within a predefined period of time;

12http://www.openssl.org/
13In PKCROSS, unlike our protocols, the local server has different computational overhead than the remote
server (by only roughly 0.1ms). For simplicity of exposition, our results are based on the computational cost
of only the local server.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:28 L. Chen et al.

each subsequent execution of 4PAKEv2∗ is approximately 2× faster than PKCROSS.
As expected, the client-side computational cost in all of our protocols is slightly higher
(approximately between 1.05× and 1.1×) than that of PKCROSS. This is because the
clients in our protocols may have to perform not only public key signing/verifying, but
also group exponentiation (during Diffie-Hellman key agreement). This is a trade-off
between performance and usability (since the clients in our protocol avoid public key
management and depend only on passwords). We also stress that our protocols, when
relying on the Diffie-Hellman key exchange technique, additionally provide forward
secrecy—a property not achievable by PKCROSS. In fact, if we do not make use of
the Diffie-Hellman key exchange, our protocols are expected to be more efficient than
PKCROSS from the client’s perspective. For example, in 4PAKEv3, we can use the
REKEY protocol of Canetti and Krawczyk [2001] as the 2SAKE protocol to avoid per-
forming group exponentiation, and hence having a more lightweight client.

On the other hand, we also confirm that the server-side computational cost in our
protocols (except 4PAKEv2∗ with no overhead) is slightly lower (approximately between
0.8× and 0.9×) in comparison with that of PKCROSS. The higher cost in PKCROSS is
due to the extra interaction between the local and the remote servers.

Scalability of Server. We simulate the server for each protocol and see how well
it scales with the addition of more computational resources in the form of CPU
cores. In these experiments, we artificially restrict computation (through a tool called
cpulimit14) to a subset of the possible cores from one to four of the cores supported by
our machine. We then measure the number of protocol sessions that can be executed
by the server in a second.

The graph on the right of Figure 5 shows the throughput scaling of our four-core
machine. For all protocols, the addition of a CPU core increases approximately between
1.4× and 2.3× the number of executed protocol sessions per second; while the use of all
four cores increases the throughput by roughly 5× in comparison with just one core.
More importantly, our experiments show that all our protocols are more scalable than
PKCROSS. For example, the server running our 4PAKEv3 protocol with a quad-core
CPU can handle up to almost 2000 sessions per second. This is about 25% more than
the number supported by PKCROSS, which is upper bounded at approximately 1600
with a similar amount of computational resources. Using a similar empirical analysis,
we deduce that 4PAKEv1 and 4PAKEv2 are approximately 14% more scalable than
PKCROSS.

9. APPLICATIONS

Our approach of 4PAKE is applicable to many cross-domain authenticated key ex-
change scenarios.

9.1. Client-to-Client TLS

One of the most common password-based user authentication mechanisms is the use
of username/passwords through the TLS (also known as SSL) protocol [Dierks and
Rescorla 2008]. This method has been widely used in online applications, such as Web-
based emails, online booking, and Internet banking, for mutual authentication and
key establishment between a user and a server. However, this approach is restricted
to only the two-party client-server setting. Using our compositional approach, we

14http://cpulimit.sourceforge.net/

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

http://cpulimit.sourceforge.net/

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:29

envisage that a client-to-client TLS (C2C-TLS) protocol in the four-party setting can
be constructed in a natural way by using the following building blocks:

— hybTLS, the hybrid server-authenticated TLS handshake and username/password
approach (between a client and a server)15;

— dhTLS, the Diffie-Hellman authenticated key exchange TLS handshake protocol
(between two clients) [Dierks and Rescorla 2008].

In our C2C-TLS protocol, a client first authenticates to its domain server using the
hybTLS protocol and obtains its credential (or authenticated data) in the form of a
signature. Using the credential, the client then performs the dhTLS protocol with the
intended remote client. To instantiate the C2C-TLS protocol from our generic 4PAKE
framework of Figure 1, we simply replace the 2PAKE protocol by the certTLS protocol,
and the 2AAKE protocol by the dhTLS protocol, such that (epkA, eskA) and (epkB, eskB)
are now ephemeral Diffie-Hellman keys. Hence, tokenSA and tokenSB are of the form of
signed Diffie-Hellman keys created by SA and SB, respectively.

We build a prototype of our C2C-TLS protocol in order to evaluate its feasibility in
real world applications. The prototype is based on the OpenSSL API and the BIO (ab-
straction) library, and written in C++. We choose the DES-CBC3-SHA (168 bits) and the
DHE-RSA-AES256-SHA (256 bits) TLSv1/SSLv3 cipher suites for hybTLS and dhTLS, re-
spectively. We then conduct experiments to quantify how much time is required for
a client to set up a secure communication channel with a remote client using our
C2C-TLS protocol.

In our experiments, we simulate a local client using our machine (with the same
specification described in Section 8.2), which is connected to the Internet at 100
Mbits/s. We also simulate a local domain server using the Webmail server of Nanyang
Technological University (NTU), Singapore. The local client performs hybTLS with the
NTU Webmail server, which in turn, artificially generates and returns an authentica-
tion token. (The token is in fact locally generated using the same machine on which
the client runs.) The local client then runs dhTLS with a target remote client. For
our purposes, we use four geographically distributed SSL-supported Web servers of
educational institutions: Singapore Management University – SG, the University of
Melbourne – AU, the University of Bristol – UK, and New York University – US, as
the artificial remote clients. Each of these Web servers already possesses signed Diffie-
Hellman keys, required to perform dhTLS. Hence, we treat the Web server as a remote
client without considering the corresponding domain server in the context of 4PAKE.
This will not have any noticeable impact on our results, since our goal is to determine
the network latency experienced by the local client. It suffices to run hybTLS between
the local client and the NTU Webmail server, and dhTLS between the local client and
one of the distributed Web servers.

Our experimental results were obtained hourly for a period of 15 hours from 09:00
to 23:00 (GMT+8), on August 20, 2013. These are shown in Figure 6. We have network
latency ranging from approximately 0.14s, when communicating with another client
within SG, to approximately 1.7s, when connecting to a remote client in the UK. This
is only slightly higher than a standard server-authenticated HTTPS connection be-
tween a client and a Web server for online applications, that is, conventional two-party
key exchange. For example, establishing an HTTPS connection (using the AES256-SHA

15Typically, a user first establishes a secure TLS channel with a server by performing the server-
authenticated TLS handshake (using the server’s public key certificate). Note that at this point, the user
is still not authenticated by the server. The user then transmits her authentication information, such as a
username and a password, to the server (in plaintext) through the TLS channel, so that the server can verify
the authenticity of the user.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:30 L. Chen et al.

Fig. 6. The latency requirement for a client running the C2C-TLS protocol.

cipher suite) with the Web server of the University of Bristol requires approxi-
mately 1.5s.

9.2. Mobile Phone Communication

4PAKE can also be used to secure communications between mobile clients that
subscribe to different mobile service providers. In mobile networks, such as the 2G and
3G telecommunication networks,16 each mobile client subscribes to a Home Location
Register (HLR). The mobile client also shares a secret key (stored in the SIM card)
with the HLR, and uses this key to authenticate itself to the HLR when the mobile
device is turned on. Meanwhile, different HLRs are connected via wired networks.

Our 4PAKE protocols fit nicely into the mobile network structure. That is, two mobile
clients that subscribe to different HLRs can establish a secure communication channel
by executing the protocol. Further, our protocols provide key privacy with respect to
servers, that is, HLRs. The latter is a desirable feature that is not supported by current
mobile communication systems.

9.3. Instant Messaging

Yet another example application of 4PAKE is to secure instant messaging (IM) between
two users. Exchanging messages and monitoring availability of a list of users in real
time through IM services have been very popular for a relatively long time. There are
many free public domain IM services, such as AOL Instant Messenger (AIM), ICQ,
MSN Messenger (Windows Messenger in XP), and Yahoo! Instant Messenger (YIM).
Mannan and van Oorschot [2006] proposed the use of a three-party password-based
authenticated key exchange for securing public IM, assuming that two communication
parties are using the same IM service. However, it is not uncommon that two users,
wishing to communicate with each other, subscribe to two different IM services. Our
four-party key exchange approach is just what is needed to secure communication in
such a scenario.

REFERENCES

Abdalla, M., Fouque, P., and Pointcheval, D. 2005. Password-based authenticated key exchange in the three-
party setting. In Proceedings of the PKC Conference. 65–84.

Backes, M., Cervesato, I., Jaggard, A. D., Scedrov, A., and Tsay, J. 2011. Cryptographically sound security
proofs for basic and public-key Kerberos. Int. J. Inf. Security 10, 2, 107–134.

16http://www.3gpp.org/

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

Cross-Domain Password-Based Authenticated Key Exchange Revisited 15:31

Bellare, M. and Namprempre, C. 2000. Authenticated Encryption: Relations among notions and analysis of
the generic composition paradigm. In Proceedings of ASIACRYPT. 531–545.

Bellare, M. and Rogaway, P. 1993a. Random oracles are practical: A paradigm for designing efficient proto-
cols. In Proceedings of CCS. 62–73.

Bellare, M. and Rogaway, P. 1993b. Entity authentication and key distribution. In Proceedings of CRYPTO.
232–249.

Bellare, M. and Rogaway, P. 1995. Provably secure session key distribution—The three party case. In Pro-
ceedings of STOC. 57–66.

Bellare, M., Canetti, R., and Rogaway, P. 1998. A modular approach to the design and analysis of authenti-
cation and key exchange protocols (extended abstract). In Proceedings of STOC. 419–428.

Bellare, M., Kilian, J., and Rogaway, P. 2000a. The security of the cipher block chaining message authenti-
cation code. J. Comput. Syst. Sci. 61, 3, 362–399.

Bellare, M., Pointcheval, D., and Rogaway, P. 2000b. Authenticated key exchange secure against dictionary
attacks. In Proceedings of EUROCRYPT. 139–155.

Bellovin, S. M. and Merritt, M. 1992. Encrypted key exchange: Password-based protocols secure against
dictionary attacks. In Proceedings of the IEEE Symposium on Research in Security and Privacy. 72–84.

Boyko, V., MacKenzie, P., and Patel, S. 2000. Provably secure password authenticated key exchange using
Diffie-Hellman. In Proceedings of EUROCRYPT. 156–171

Butler, F., Cervesato, I., Jaggard, A. D., Scedrov, A., and Walstad, C. 2006. Formal analysis of Kerberos 5.
Theoret. Comput. Sci. 367, 12, 57–87.

Byun, J. W., Jeong, I. R., Lee, D. H., and Park, C. S. 2002. Password-authenticated key exchange between
clients with different passwords. In Proceedings of ICICS. 134–146.

Byun, J. W., Lee, D. H., and Lim, J. I. 2007. EC2C-PAKA: An efficient client-to-client password-authenticated
key agreement. Inf. Sci. 177, 19, 3995–4013.

Canetti, R. and Krawczyk, H. 2001. Analysis of key-exchange protocols and their use for building secure
channels. In Proceedings of EUROCRYPT. 453–474.

Cao, T., Quan, T., and Zhang, B. 2009. Cryptanalysis of some client-to-client password-authenticated key
exchange protocols. J. Netw. 4, 4, 263–270.

Cervesato, I., Jaggard, A. D., Scedrov, A., Tsay, J., and Walstad, C. 2008. Breaking and fixing public-key
Kerberos. Inf. Comput. 206, 2–4, 402–424.

Chen, L. 2003. A weakness of the password-authenticated key agreement between clients with different
passwords scheme. ISO/IEC JTC1/SC27 N3716. Circulated at The 27th SC27/WG2 Meeting in Paris,
France.

Dierks, T. and Rescorla, E. 2008. The TLS protocol version 1.2. The Internet Engineering Task Force (IETF),
RFC 5246.

Diffie, W. and Hellman, M. 1976. New directions in cryptography. IEEE Trans. Inf. Theory 22, 6, 644–654.
Ellison, C. and Schneier, B. 2000. Ten risks of PKI: What youre not being told about public key infrastructure.

Comput. Secur. J. 16, 1, 1–7.
Feng, D. and Xu, J. 2009. A new client-to-client password-authenticated key agreement protocol. In Proceed-

ings of IWCC. 63–76.
Goldwasser, S., Micali, S., and Rivest, R. 1988. A digital signature scheme secure against adaptive chosen-

message attacks. SIAM J. Comput. 17, 2, 281–308.
Hur, M., Tung, B., Ryutov, T., Neuman, C., Medvinsky, A., Tsudik, G., and Sommerfeld, B. 2001. Public key

cryptography for cross-realm authentication in Kerberos. The Internet Engineering Task Force (IETF),
Internet Draft (expires May 2002).

Jablon, D. P. 1996. Strong password-only authenticated key exchange. ACM SIGCOMM Comput. Commun.
Rev. 26, 5, 5–26.

Kohl, J. and Neuman, C. 1993. The Kerberos Network Authentication Service (V5). IETF, RFC 1510.
Krawczyk, H. 2003. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in

the IKE-protocols. In Proceedings of CRYPTO. 400–425.
Lampson, B., Abadi, M., Burrows, M., and Wobber, E. 1992. Authentication in distributed systems: Theory

and practice. ACM Trans. Comput. Syst. 10, 4, 265–310.
Law, L., Menezes, A., Qu, M., Solinas, J. A., and Vanstone, S. A. 2003. An efficient protocol for authenticated

key agreement. Des. Codes Crypt. 28, 2, 119–134.
Mannan, M., and van Oorschot, P. C. 2006. A protocol for secure public instant messaging. In Proceedings of

FC. 20–35.

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

�

�

�

�

�

�

�

�

15:32 L. Chen et al.

Neuman, B. C. and Ts’o, T. 1994. Kerberos: An authentication service for computer networks. IEEE
Commun. 32, 9, 33–38.

Neuman, C., Yu, T., Hartman, S., and Raeburn, K. 2005. The Kerberos network authentication service (V5).
The Internet Engineering Task Force (IETF), RFC 4120.

Phan, R. C.-W. and Goi, B.-M. 2005. Cryptanalysis of an improved client-to-client password-authenticated
key exchange (C2C-PAKE) scheme. In Proceedings of ACNS. 33–39.

Phan, R. C.-W. and Goi, B.-M. 2006. Cryptanalysis of two provably secure cross-realm C2C-PAKE protocols.
In Proceedings of INDOCRYPT. 104–117.

Price, G. 2005. PKI challenges: An industry analysis. In Proceedings of IWAP. 3–16.
Shoup, V. 1999. On formal models for secure key exchange. IBM Research Report, RZ 3120.
Shoup, V. 2002. OAEP reconsidered. J. Crypt. 15, 4, 223–249.
Tin, Y.S. T., Vasanta, H., Boyd, C., and Nieto, J. M. G. 2004. Protocols with security proofs for mobile appli-

cations. In Proceedings of ACISP. 358–369.
Wang, S., Wang, J., and Xu, M. 2004. Weaknesses of a password-authenticated key exchange protocol be-

tween clients with different passwords. In Proceedings of ACNS. 414–425.
Wobber, E., Abadi, M., Burrows, M., and Lampson, B. 1994. Authentication in the Taos operating system.

ACM Trans. Comput. Syst. 12, 1, 3–32.
Wu, S. and Zhu, Y. 2009. Client-to-client password-based authenticated key establishment in a cross-realm

setting. J. Netw. 4, 7, 649–656.
Yin, Y. and Bao, L. 2006. Secure cross-realm C2C-PAKE protocol. In Proceedings of ACISP. 395–406.
Zhu, L. and Tung, B. 2006. Public key cryptography for initial authentication in Kerberos (PKINIT). The

Internet Engineering Task Force (IETF), RFC 4556.

Received February 2013; revised August 2013, November 2013; accepted January 2014

ACM Transactions on Information and System Security, Vol. 16, No. 4, Article 15, Publication date: April 2014.

	Cross-domain password-based authenticated key exchange revisited
	Citation

	TIS00252.dvi

