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Optimistic fair exchange (OFE) is a protocol for solving the problem of exchanging items 
or services in a fair manner between two parties, a signer and a verifier, with the 
help of an arbitrator which is called in only when a dispute happens between the two 
parties. In almost all the previous work on OFE, after obtaining a partial signature from 
the signer, the verifier can present it to others and show that the signer has indeed 
committed itself to something corresponding to the partial signature even prior to the 
completion of the transaction. In some scenarios, this capability given to the verifier may 
be harmful to the signer. In this paper, we propose the notion of ambiguous optimistic fair 
exchange (AOFE), which is a variant of OFE and requires additionally that the verifier cannot 
convince anybody about the authorship of a partial signature generated by the signer. We 
present a formal security model for AOFE in the multi-user setting and chosen-key model, 
and propose a generic construction of AOFE that is provably secure under our model. 
Furthermore, we propose an efficient instantiation of the generic construction, security 
of which is based on Strong Diffie–Hellman assumption and Decision Linear assumption 
without random oracles.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optimistic Fair Exchange (OFE) allows two parties to fairly exchange information in such a way that at the end of a 
protocol run, either both parties have obtained the complete information from one another or none of them has obtained 
anything from the counter party. In an OFE, there is a third party, called Arbitrator, which is only called in when a dispute 
occurred between the two parties. OFE is a useful tool in practice, for example, it can be used for performing contract 
signing, fair negotiation and similar applications on the Internet. Since its introduction [1], there have been many OFE 
schemes proposed [2,16,3,11,33,14,29,32,38,4,34,15,21,35]. For all recently proposed schemes, an OFE protocol for signature 
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typically consists of three message flows. The initiator of OFE, Alice, first sends a partial signature σP to a responder, Bob, 
where σP is considered as Alice’s partial commitment to her full signature which will be sent to Bob. But beforehand, Bob 
should send his full signature back to Alice first in the second message flow. After receiving Bob’s full signature, Alice then 
sends her full signature to Bob in the third message flow. If Bob refuses to send his full signature to Alice in the second 
message flow, σP should have no use to Bob, so that Alice has no concern about giving away σP . However, after Bob has 
sent his full signature to Alice while Alice refuses to send her full signature in the third message flow, then Bob can ask the 
Arbitrator to retrieve Alice’s full signature from σP by sending both σP and Bob’s full signature to the Arbitrator. To the best 
of our knowledge, among almost all the known OFE schemes, there is one common property about Alice’s partial signature 
σP which has neither been captured in any of the security models for OFE nor been considered as a requirement for OFE. 
The property is that once σP is given out, at least one of the following statements is true.

1. Everyone can verify that Alice generates σP , because σP , similar to a standard digital signature, has the non-repudiation 
property with respect to Alice’s public key;

2. Bob can show to anybody that Alice is the signer of σP .

For example, in [15,21], the partial signature of Alice is a standard signature, which can only be generated by Alice. In 
many other OFE schemes, Alice’s signature is encrypted under the arbitrator’s public key, and then a non-interactive proof 
is generated to show that the ciphertext indeed contains a signature of Alice. This is known as verifiably encrypted signature. 
However, regarding the validity and non-repudiation of a signature, as pointed out by Boyd and Foo [10], this raises the 
question of whether a non-interactive proof that a signature is encrypted is really having any difference from a signature 
itself, as the proof is already sufficient to convince any third party that the signer has committed to the message.

This property may cause no concern in some applications, for example, in those where only the full signature is deemed 
to have some actual value to the receiving party. However, it may be undesirable in some other applications. Since σP is 
publicly verifiable and non-repudiative, σP has evidently shown Alice’s commitment to the corresponding message. This 
may incur some unfair situation, to the advantage of Bob, if Bob does not send out his full signature. In contract signing 
applications, this could be undesirable because σP can already be considered as Alice’s undeniable commitment to a contract 
in court while there is no evidence showing that Bob has committed to anything. For example, Alice wants to sign with 
Bob a contract of procuring Bob’s company. After sending out her partial signature, Alice has no way to regret and cannot 
withdraw the procurement if Bob persists. However, Bob can pause the contract signing, and use Alice’s partial signature to 
bargain for better offers with others. He then carries out a new OFE protocol with the one offering the best price to sign 
the contract. Bob can play the same trick iteratively until that no one can give an even better offer.

For making OFE be applicable to more applications and practical scenarios, in this paper, we propose to enhance the 
security requirements of OFE and construct a new OFE scheme which does not have the problems mentioned above. One 
may also think of this as an effort to make OFE more admissible as a viable fair exchange tool for real applications. We will 
build an OFE scheme which not only satisfies all the existing security requirements of OFE (with respect to the strongest 
security model available [21]), but in addition to that, will also have σP be not self-authenticating and unable for Bob to 
demonstrate to others that Alice has committed herself to something. We call this enhanced notion of OFE as Ambiguous 
Optimistic Fair Exchange (AOFE). It inherits all the formalized properties of OFE [15,21] and has a new property introduced: 
signer ambiguity. It requires that a partial signature σP generated by Alice or Bob should look alike and be indistinguishable 
even to Alice and Bob.

1.1. Related works

There have been many OFE schemes proposed in the past [2,3,11,33,14,29,32,38,4,34,15,21]. In the following, we review 
some recent ones by starting from 2003 when Park, Chong and Siegel [33] proposed an OFE based on sequential two-party 
multi-signature. It was later broken and repaired by Dodis and Reyzin [14]. The scheme is setup-driven [39,40], which re-
quires all users to register their keys with the arbitrator prior to conducting any transaction. In [32], Micali proposed another 
scheme based on a CCA2 secure public key encryption with the property of recoverable randomness (i.e., both plaintext and 
randomness used for generating the ciphertext can be retrieved during decryption). Later, Bao et al. [4] showed that the 
scheme is not fair, where a dishonest party, Bob, can obtain the full commitment of another party, Alice, without letting 
Alice get his obligation. They also proposed a fix to defend against the attack.

In PKC 2007, Dodis, Lee and Yum [15] considered OFE in a multi-user setting. Prior to their work, almost all previous re-
sults considered the single-user setting only which consists of a single signer and a single verifier (along with an arbitrator). 
The more practical multi-user setting considers a system to have multiple signers and verifiers (along with the arbitrator), 
so that a dishonest party can collude with other parties in an attempt of cheating. Dodis et al. [15] showed that security of 
OFE in the single-user setting does not necessarily imply the security in the multi-user setting. They also proposed a formal 
definition of OFE in the multi-user setting, and proposed a generic construction, which is setup-free (i.e. no key registra-
tion is required between users and the arbitrator) and can be built in the random oracle model [5] if there exist one-way 
functions, or in the standard model if there exist trapdoor one-way permutations.

In CT-RSA 2008, Huang, Yang, Wong and Susilo [21] considered OFE in the multi-user setting and chosen-key model, 
in which the adversary is allowed to choose public keys arbitrarily without showing its knowledge of the corresponding 
private keys. Prior to their work, the security of all previous OFE schemes (including the one in [15]) are proven in a
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more restricted model, called certified-key model, which requires the adversary to prove its knowledge of the corresponding 
private key before using a public key. In [21], Huang et al. gave a formal security model for OFE in the multi-user setting 
and chosen-key model, and proposed an efficient OFE scheme based on ring signature. In their scheme, a partial signature 
is a conventional signature and a full signature is a two-member ring signature in additional to the conventional signature. 
The security of their scheme was proven without relying on the random oracle assumption.

In [16], Garay, Jakobsson and MacKenzie introduced a similar notion for optimistic contract signing, named abuse-freeness. 
It requires that no party can ever prove to a third party that he is capable of choosing whether to validate or invalidate a 
contract. They also proposed a construction of abuse-free optimistic contract signing protocol. The security of their scheme 
is based on DDH assumption under the random oracle model. Besides they did not consider the multi-user setting for their 
contract signing protocol.

Liskov and Micali [30] proposed an online-untransferable signature scheme, which can be considered as an enhanced 
version of designated confirmer signature. In such a scheme, there is also a party (confirmer) semi-trusted by both the signer 
and the recipient. A dishonest recipient, who is interacting with a signer, cannot convince a third party that the signature 
is generated by the signer. But both the signer and the conformer are able to convert a signature so that anyone can 
identity its owner. The online non-transferability of their scheme is similar to the signer ambiguity (see Definition 2) of AOFE. 
However, the online attack considered in [30] would not happen in AOFE, as the signature generation and verification are 
both non-interactive. Besides, the signing process of their scheme requires several rounds of interaction with the recipient, 
and the scheme works in the certified-key model and is not setup-free, i.e. there is a setup stage between each signer and 
the confirmer, and the confirmer needs to store a public/secret key pair for each signer.

Works after [20]. There have been multiple works since the introduction of AOFE. To name a few, Chen et al. [13] introduced 
a new notion of Verifiable Encryption of Chameleon Signatures, and used it to construct a three-round abuse-free optimistic 
protocol for contract signing. A somewhat generic transform from designated confirmer signature (DCS) to AOFE was proposed 
in [22,23]. The underlying DCS scheme is required to enjoy a property named samplability, while is satisfied by only a few 
DCS schemes. The transform was later refined in [25], where the DCS is only required to satisfy standard properties, e.g. 
unforgeability and anonymity. A new notion called group-oriented optimistic fair exchange was proposed in [24], which con-
siders the fair exchange between two groups of users, keeping the anonymity of the signer in its group. Another enhanced 
version of AOFE, named Perfect AOFE, was proposed in [36], in which a partial signature leaks no information about the 
actual signer or the intended verifier. This is useful for applications where the involved parties of an exchange wish to 
further protect their privacy on whether they are indeed involved in an exchange or not. This notion was further improved 
very recently. Privacy-preserving OFE was proposed in [26], in which the arbitrator could not learn the full signature even 
after the resolution process. Very recently, another variant of AOFE called Attributed-based Optimistic Fair Exchange, was in-
troduced in [37], which integrates the advantage of both AOFE and (Ciphertext-Policy) Attributed-Based Encryption. Only 
the verifier who possesses appropriate credentials (issued by a credential center according to its attributes) can convert the 
signer’s partial signature into a full one. It is worthy to notice that the schemes proposed in [22,23,25,26] are secure in the 
certified-key model, while the schemes proposed in this work and [37] are secure in the chosen-key model.

1.2. Our work

In this paper we make the following contributions. First, we propose the notion of Ambiguous Optimistic Fair Exchange
(Ambiguous OFE, or AOFE in short) which allows a signer Alice to generate a partial signature in such a way that a verifier 
Bob cannot convince anyone about the authorship of this partial signature, and thus cannot prove to anybody that Alice 
committed herself to anything prematurely. Realizing the notion needs to make the partial signature ambiguous with re-
spect to Alice and Bob. We will see that this requires us to include both Alice and Bob’s public keys into the signing and 
verification algorithms of AOFE.

Second, for formalizing AOFE, we propose a strong security model in the multi-user setting and chosen-key model. 
Besides the existing security requirements for OFE, that is, resolution ambiguity (the ambiguity considered in [15,21]), 
security against signers, security against verifiers and security against the arbitrator, AOFE has an additional requirement: 
signer ambiguity. It requires that the verifier can generate partial signatures which are (computationally) indistinguishable 
from the partial signatures generated by the signer. We also evaluate the relations among the security requirements and 
show that if a scheme has security against the arbitrator and (a weaker form of) signer ambiguity, then it has (a weaker 
form of) security against verifiers.

Third, we revisit two generic methods in constructing OFE [15,21], and show that if we simply extend them to the 
construction of AOFE, the resulting schemes would be insecure. Specifically, they are insecure against the arbitrator under 
our proposed model.

Fourth, we propose a generic AOFE construction. It is based on the generic OFE construction of [15], but instead of 
using a CCA secure encryption scheme, an existentially unforgeable signature scheme under chosen message attacks and 
a simulation-sound NIZK proof system, we employ a selective-tag weakly CCA secure tag-based encryption [28], a weakly 
unforgeable signature [7], a strong one-time signature and a general NIZK proof system. The security of the generic con-
struction is proven secure under our proposed multi-user setting and chosen-key model.

Last but not least, we propose a concrete and efficient instantiation of our generic construction of AOFE, the security of 
which is based on the intractability of Strong Diffie–Hellman problem and Decision Linear problem without random oracles.
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Differences from [20]. In this paper we make the following changes, compared with [20]. First of all, the model of signer 
ambiguity is revised to correct some minor issue in [20]. Second, the proof of the theorem on the relation between signer 
ambiguity and security against verifiers (Theorem 1) is revised to improve the reduction factor. Third, a new section (Sec-
tion 3) is added to discuss about the insecurity of simple extensions of two generic constructions of OFE to AOFE. Fourth, 
a generic construction of AOFE is proposed (in Section 4) with detailed security proofs, which covers the efficient construc-
tion proposed in [20].

1.3. Paper organization

In the next section, we define AOFE and propose a security model. We then show some relation among the formalized 
security requirements. A popular generic construction used in building OFE schemes is revisited in Section 4, and a new 
generic construction of AOFE is proposed and proved. In Section 5 we give an efficient instantiation of the construction, 
security of which does not rely on the random oracle heuristic. The paper is concluded in Section 6.

2. Ambiguous optimistic fair exchange

In AOFE, we require that after receiving a partial signature σP from Alice (the signer), Bob (the verifier) cannot convince 
others but himself that Alice has committed to σP . This property is analogous to the non-transferability of designated 
verifier signature [27] and the ambiguity of concurrent signature [12]. Also, the AOFE verification algorithm should take the 
public keys of both signer and (designated) verifier as inputs, in contrast to that in the traditional definition of OFE [2,15,21].

Definition 1 (Ambiguous Optimistic Fair Exchange). A (non-interactive) Ambiguous Optimistic Fair Exchange (AOFE) scheme in-
volves two users, i.e. a signer and a verifier, and an arbitrator, and consists of the following probabilistic polynomial-time 
(PPT) algorithms:

• PMGen: On input 1k where k is a security parameter, it outputs the system parameter PM.
• SetupTTP: On input PM, the algorithm generates a public arbitration key APK and a secret arbitration key ASK .
• SetupUser: On input PM and (optionally) APK , the algorithm outputs a public/secret key pair (PK, SK). For user Ui , we 

use (PKi, SKi) to denote its key pair.
• Sig and Ver: Sig(M, SKi, PKi, PK j, APK) outputs a (full) signature σF on M of user Ui with the designated verifier U j , 

where message M is chosen by user Ui from the message space M defined under PKi , while Ver(M, σF , PKi, PK j, APK)

outputs 1 or 0, indicating σF is Ui ’s valid full signature on M with designated verifier U j or not.
• PSig and PVer: They are partial signing and verification algorithms respectively. PSig(M, SKi, PKi, PK j, APK) outputs a 

partial signature σP , while PVer(M, σP , PK, APK) outputs 1 or 0, where PK = {PKi, PK j}.
• Res: This is the resolution algorithm. Res(M, σP , ASK, PK), where PK = {PKi, PK j}, outputs a full signature σF , or ⊥

indicating the failure of resolving a partial signature.

It is required that there is an efficient algorithm which given a pair (PK, SK), verifies if SK matches PK , i.e. (PK, SK) is an 
output of algorithm SetupUser . As in [15], PSig together with Res should be functionally equivalent to Sig.

Correctness: for any k ∈ N, PM←PMGen(1k), (APK, ASK) ←SetupTTP(PM), (PKi, SKi) ←SetupUser (PM, APK), (PK j, SK j) ←
SetupUser(PM, APK), and M ∈ {0, 1}∗ , let PK = {PKi, PK j}, σP ← PSig(M, SKi, PKi, PK j, APK), σF ← Sig(M, SKi, PKi, PK j, APK), 
we have:

PVer(M,σP ,PK,APK) = 1,

Ver(M,σF ,PKi,PK j,APK) = 1,

and Ver
(
M,Res(M,σP ,ASK,PK),PKi,PK j,APK

) = 1.

2.1. Security properties

Chosen-key model. We consider the security of AOFE in the multi-user setting [15] and the chosen-key model, which 
was introduced by Lysyanskaya et al. [31] in the context of sequential aggregate signature. In the chosen-key model, the 
adversary can choose any public key, except that the challenge/target public key(s) should be honestly generated. We also 
require that there exists an efficient algorithm for checking the validity of the challenge key pair(s) output by the adversary, 
i.e. if (PK, SK) is a possible output of SetupUser .

Resolution ambiguity. During an exchange, the verifier may be unable to receive the signer’s full signature due to the poor 
internet connection. In this case the verifier could ask the arbitrator to resolve the signer’s partial signature that it has 
already received. If the full signature output by algorithm Res has a different structure from that output by algorithm Sig, 
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it may bring bad effect to the credit of the signer, as others may think the signer was cheating in the exchange. To protect 
the interest of the signer, we need resolution ambiguity1 in this case.

Resolution ambiguity requires that the ‘resolved signatures’, e.g. Res(M, PSig(M, SKi, PKi, PK j, APK), ASK, {PKi, PK j}), out-
put by the arbitrator should be (computationally) indistinguishable from the ‘actual signatures’ generated by the signer, e.g. 
Sig(M, SKi, PKi, PK j, APK). We stress that there are some cases in which a signer who is unable or refuses to return its full 
commitment, should be accounted, then the resolution ambiguity is not required any more, i.e. the OFE scheme should be 
accountable.

Signer ambiguity. Informally, given a partial signature σP from a signer A, a verifier B should not be able to convince others 
that σP was generated by A. To capture this, we borrow the idea of defining the ambiguity in concurrent signatures [12], 
and require that B should be able to simulate partial signatures that look indistinguishable from those generated by A. 
We need the existence of a simulation algorithm FPSig, that takes as input (M, SK B , PK A, PK B , APK) and outputs a partial 
signature σP that is valid under PK A, PK B . This is also the reason why a verifier should be equipped with a public/secret 
key pair, and its public key should be included in the inputs of PSig and Sig. Formally, we define an experiment in which 
D is a probabilistic polynomial-time distinguisher.

PM ← PMGen
(
1k)

(APK,ASK) ← SetupTTP(PM)(
M,

{
(PKi, SKi)

}
i∈{A,B}, st

) ← D O Res(APK)

b ← {0,1}
σP ←

{
PSig(M, SK A,PK A,PK B ,APK) if b = 0
FPSig(M, SK B ,PK A,PK B ,APK) if b = 1

b′ ← D O Res(st,σP )

Succ. of D := [
b′ = b ∧ (

M,σP , {PK A,PK B}) /∈ Query(D, O Res)
]

where st is the state information of D; oracle O Res takes as input a valid partial signature σP of user Ui on message M
with respect to verifier U j , i.e. (M, σP , {PKi, PK j}), and outputs a full signature σF on M under PKi, PK j ; and Query(D, O Res)

is the set of valid queries that D issued to oracle O Res . The advantage of D , denoted by AdvSA
D (k), is defined as the gap 

between its success probability in the experiment above and 1/2, i.e. AdvSA
D (k) = |Pr[b′ = b] − 1/2|.

Definition 2 (Signer ambiguity). An AOFE scheme is signer ambiguous if for any PPT algorithm D , AdvSA
D (k) is negligible in k.

Remark 1. A similar notion introduced in [16,30] requires that the signer’s partial signature can be simulated in an indis-
tinguishable way. However, their ‘indistinguishability’ [16,30] is defined in the CPA fashion, i.e. the adversary has no oracle 
access for resolving partial signatures; while our definition of signer ambiguity is of CCA type, i.e. the adversary has access 
to O Res .

We also remark that this level of signer ambiguity may be the best that we can get. In Definition 2, D is required to 
output well-formed key pairs for both A and B . If, for example, PK B is maliciously chosen by D so that it is the hash of PK A , 
then no one probably knows the corresponding secret key SK B , and there is no way to ensure that the verifier can simulate 
the signer’s partial signatures. As far as we know, the definition of anonymity of ring signatures also imposes a similar 
requirement. In the definition of anonymity w.r.t. adversarially-chosen keys and anonymity against full key exposure [6], the two 
target key pairs, (PKi0 , SKi0 ) and (PKi1 , SKi1 ), are required to be well-formed/honestly generated. The difference is that the 
two target key pairs in [6] are prepared by the challenger, while in Definition 2 they are chosen by the distinguisher. It is 
readily seen that our definition of signer ambiguity is stronger (or at least not weaker).

Security against signers. It requires that no PPT adversary A should be able to produce a partial signature with non-
negligible probability, which looks good to a verifier but cannot be resolved to a full signature by the arbitrator. This 
ensures the fairness for verifiers, that is, if the signer has committed to a message w.r.t an (honest) verifier, the verifier 
should always be able to get the signer’s full commitment. Formally, we consider the following experiment:

PM ← PMGen
(
1k)

(APK,ASK) ← SetupTTP(PM)

(PK B , SK B) ← SetupUser(PM,APK)

1 Resolution ambiguity is the same as the ambiguity defined in [15,21]. Here we rename it in order to avoid any confusion, as we will define another 
kind of ambiguity, e.g. signer ambiguity.
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(M,σP ,PK A) ← A O B
PSig,O Res(APK,PK B)

σF ← Res
(
M,σP ,ASK, {PK A,PK B})

Succ. of A := [
PVer

(
M,σP , {PK A,PK B},APK

) = 1 ∧ Ver(M,σF ,PK A,PK B ,APK)

= 0 ∧ (M,PK A) /∈ Query
(

A, O B
PSig

)]
where oracle O Res is described in the previous experiment; O B

PSig takes as input (M, PKi) and outputs a partial signature 
on M valid under PKi, PK B generated using SK B ; and Query(A, O B

PSig) is the set of queries made by A to oracle O B
PSig . Note 

that the adversary is not allowed to corrupt PK B ; otherwise it can easily succeed in the experiment by simply using SK B

to produce a partial signature under public keys PK A, PK B . The advantage of A in the experiment, denoted by AdvSAS
A (k), is 

defined to be A’s success probability.

Definition 3 (Security against signers). An AOFE scheme is secure against signers if there is no PPT adversary A such that 
AdvSAS

A (k) is non-negligible in k.

Security against verifiers. This security notion requires that any PPT verifier B should not be able to transform a partial 
signature into a full signature with non-negligible probability if no help has been obtained from the signer or the arbitrator. 
This requirement has some similarity to the notion of opacity for verifiably encrypted signature [8]. Formally, we consider 
the following experiment:

PM ← PMGen
(
1k)

(APK,ASK) ← SetupTTP(PM)

(PK A, SK A) ← SetupUser(PM,APK)

(M,PK B ,σF ) ← B O PSig,O Res(PK A,APK)

Succ. of B := [
Ver(M,σF ,PK A,PK B ,APK) = 1 ∧ (

M, ·, {PK A,PK B}) /∈ Query(B, O Res)
]

where oracle O Res is described in the experiment of signer ambiguity, Query(B, O Res) is the set of valid queries B issued 
to the resolution oracle O Res , and oracle O PSig takes as input a message M and a public key PK j and returns a valid partial 
signature σP on M under PK A, PK j generated using SK A . In the experiment, B can ask the arbitrator for resolving any partial 
signature with respect to any pair of public keys adaptively chosen by B , with the limitation described in the experiment. 
The advantage of B in the experiment, denoted by AdvSAV

B (k), is defined to be B ’s success probability in the experiment 
above.

Definition 4 (Security against verifiers). An AOFE scheme is secure against verifiers if there is no PPT adversary B such that 
AdvSAV

B (k) is non-negligible in k.

Security against the arbitrator. Intuitively, security against the arbitrator requires that no PPT adversary C including the 
arbitrator, should be able to generate with non-negligible probability a valid full signature without explicitly asking the 
signer to do so. It ensures the fairness for signers, that is, no one can frame the actual signer on a message with a forgery. 
Formally, we consider the following experiment:

PM ← PMGen
(
1k)(

APK,ASK∗) ← C(PM)

(PK A, SK A) ← SetupUser(PM,APK)

(M,PK B ,σF ) ← C O PSig
(
ASK∗,APK,PK A

)
Succ. of C := [

Ver(M,σF ,PK A,PK B ,APK) = 1 ∧ (M,PK B) /∈ Query(C, O PSig)
]

where the oracle O PSig is described in the previous experiment, ASK∗ is C ’s state information, which might not be the 
corresponding private key of APK , and Query(C, O PSig) is the set of queries C issued to the oracle O PSig . The advantage of C
in this experiment, denoted by AdvSAA

C (k), is defined to be C ’s success probability.

Definition 5 (Security against the arbitrator). An AOFE scheme is said to be secure against the arbitrator if there is no PPT 
adversary C such that AdvSAA

C (k) is non-negligible in k.
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Remark 2. In AOFE, both signer A and verifier B are equipped with public/secret key pairs (of the same structure), and both 
of them can generate indistinguishable partial signatures on the same message. If the security against the arbitrator holds 
for A, it holds for B as well. That is, even when colluding with A (and other signers), the arbitrator should not be able to 
frame B for a full signature on a message, if it has not obtained a partial signature on the message generated by B .

Definition 6 (Secure AOFE). An AOFE scheme is secure in the multi-user setting and chosen-key model if it is resolution 
ambiguous, signer ambiguous, secure against signers, secure against verifiers and secure against the arbitrator.

2.2. Weak variants of security models

Intuitively, if an AOFE scheme is not secure against verifiers, the scheme cannot be signer ambiguous, because a malicious 
verifier can convert a signer’s partial signature to a full one, which allows the verifier to win the signer ambiguity game. For 
technical reasons, we first describe some weakened models below. In the definition of signer ambiguity (Definition 2), the 
two public/secret key pairs are selected by D . In a slightly weaker variant, the two key pairs are selected by the challenger, 
and then given to D . This is comparable to the ambiguity definition of concurrent signature [12], or the strongest definition 
of anonymity of ring signature considered in [6], namely anonymity against full key exposure. We can also define an even 
weaker version of signer ambiguity, in which D is given (PK A, PK B , SK B) and oracle access to O PSig . We call this variant the 
weak signer ambiguity.

In the definition of security against verifiers (Definition 4), the verifier’s public key PKB is adaptively selected by the 
adversary B . In a weaker variant, the challenger selects (PK B , SK B) and gives the pair to B . The rest of the model remains 
unchanged. We call this variant weak security against verifiers. Below we show that if an AOFE scheme is weakly signer 
ambiguous and secure against the arbitrator, then it is weakly secure against verifiers.

Theorem 1. In AOFE, weak signer ambiguity and security against the arbitrator (Definition 5) together imply weak security against 
verifiers.

Proof. Suppose that an AOFE scheme is not weakly secure against verifiers. Let B be the PPT adversary that has non-
negligible advantage ε in the experiment of weak security against verifiers after making at most q queries of the form 
(·, PK B) to oracle O PSig . By the security against the arbitrator, with overwhelming probability B has queried O PSig in the 
form (·, PK B). Hence the value of q is at least one.

Denote the experiment of weak security against verifiers by Ex(0) . Note that in Ex(0) all queries to O PSig are answered 
with partial signatures generated using SK A . We now define a series of experiments, Ex(1), · · · , Ex(q) , so that Ex(i) (i ≥ 1) is 
the same as Ex(i−1) except that the (q +1 − i)-th, · · ·, q-th queries of the form (·, PK B) submitted to O PSig are answered with 
partial signatures generated using SK B . Let B ’s success probability in Ex(i) be εi . Note that ε0 = ε , and in Ex(q) all queries 
(·, PK B) to O PSig are answered with partial signatures generated using SK B . Since B also knows SK B (via corruption), it can 
use SK B to generate partial signatures using SK B on any message. Therefore, making queries (·, PK B) to O PSig does not help 
B on winning the experiment if the answers are generated using SK B . It is equivalent to the case that B does not issue 
any query (·, PK B) to O PSig . Hence guaranteed by the security against the arbitrator, we have that B ’s advantage in Ex(q) is 
negligible as B has to output a full signature without getting any corresponding partial signature.

The non-negligible gap, ε0 − εq , between B ’s advantage in Ex(0) and that in Ex(q) translates into a non-negligible gap 
between B ’s advantage in a pair of neighboring hybrid experiments. We construct a PPT algorithm D that uses B as a 
subroutine to break the weak signer ambiguity.

Given (APK, PK A, PK B , SK B), algorithm D selects i uniformly from {1, · · · , q}, invokes B on input (APK, PK A, PK B , SK B), 
and then simulates the oracles for B . The oracle O Res is simulated by D using its own resolution oracle. If B makes a 
query (M, PK j) to O PSig where PK j 	= PK B , D forwards this query to its own partial signing oracle, and returns the obtained 
answer back to B . Now consider the �-th query of the form (M, PK B) made by B to O PSig . If � < q + 1 − i, D forwards 
it to its own oracle, and returns the obtained answer. If � = q + 1 − i, D requests its challenger for the challenge partial 
signature σ ∗

P on M and returns the obtained signature to B . If � > q +1 − i, D simply uses SK B to produce a partial signature 
on M . At the end of the simulation, when B outputs (M∗, σ ∗

F ). If B succeeds in the experiment, D outputs b′ = 0; otherwise, 
D outputs a random bit b′ .

If D ’s challenger uses SK A and follows PSig algorithm to produce σ ∗
P , i.e. b = 0, the view of B is identical to that in 

Ex(i−1) and the probability that D outputs b′ = 0 is

ε i
def= εi−1 + 1

2
(1 − εi−1) = 1

2
+ 1

2
εi−1.

If the challenger uses SK B and follows the simulation algorithm FPSig to produce σ ∗
P , i.e. b = 1, the view of B is identical 

to that in Ex(i) , and D outputs b′ = 0 with probability

ε i
def= εi + 1

2
(1 − εi) = 1

2
+ 1

2
εi .
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Denote by Pr[b′ = 0|b = 0] (resp. Pr[b′ = 0|b = 1]) the probability that D outputs b′ = 0 when σ ∗
P is output by algorithm 

Sig (resp. FPSig). Since the index i is uniformly distributed in {1, · · · , q}, we have that

Pr
[
b′ = b

] = Pr
[
b′ = 0 ∧ b = 0

] + Pr
[
b′ = 1 ∧ b = 1

]
= 1

2
+ 1

2

(
Pr

[
b′ = 0|b = 0

] − Pr
[
b′ = 0|b = 1

])

= 1

2
+ 1

2

(
1

q

q∑
j=1

ε j − 1

q

q∑
j=1

ε j

)

= 1

2
+ 1

2q

( q∑
j=1

(
1

2
+ 1

2
εi−1

)
−

q∑
j=1

(
1

2
+ 1

2
εi

))

= 1

2
+ 1

4q
(ε0 − εq)

which is non-negligibly larger than 1
2 since q is polynomial in the security parameter. This contradicts with the weak signer 

ambiguity assumption. �
Corollary 1. In AOFE, signer ambiguity (Definition 2) and security against the arbitrator (Definition 5) together imply weak security 
against verifiers.

Letting an adversary select the two challenge public keys gives the adversary more power in attacking signer ambiguity. 
Therefore, signer ambiguity defined in Section 2.1 is at least as strong as the weak signer ambiguity. Hence this corollary 
follows the theorem above directly.

3. Previous constructions revisited

In this section we first analyze the extension of two generic constructions to AOFE, and show that the resulting schemes 
are actually insecure under our proposed security model.

3.1. The first try

In [21] Huang et al. provided a simple and straightforward method in constructing efficient optimistic fair exchange 
schemes. In their proposal, each user has two key pairs, one for public key signature, and the other for ring signature. 
The partial signature of a user consists of only a (standard) signature on the message, while the full signature includes 
additionally a ring signature under the ring consisting of the signer and the arbitrator.

The main difference between OFE and AOFE is that in addition to all the security properties of OFE, AOFE also enjoys 
signer ambiguity. A natural way to extend their method in the construction of AOFE is to use two ring signatures in the 
scheme, i.e. the partial signature consists of a ring signature on M under the ring of the signer and the verifier, and the full 
signature includes additionally a ring signature on M under the ring of the signer and the arbitrator.

(Insecurity): It seems that we achieve signer ambiguity via this method, due to the anonymity of the underlying ring 
signature scheme. However, this construction is insecure against the arbitrator. That is, the arbitrator can frame any signer 
on any message without asking the signer to sign any message. To do this, the arbitrator C colludes with a verifier U j , 
and selects a target user Ui and a target message M . U j generates a partial signature σP on M with regard to the group 
{Ui, U j}, and claims that σP was generated by Ui . Then C resolves it to σF by producing a ring signature under the ring 
{C, Ui}. The two rings intersect at Ui , and thus σF is binding to Ui .

3.2. The second try

In [15] Dodis et al. revisited a generic construction of optimistic fair exchange. Roughly, the partial signature of a user 
includes an encryption c of his signature σ on the message M generated under the arbitrator’s public key, and an NIZK 
proof π showing that c contains the user’s signature on M . The user’s full signature on M is σ . They showed that this 
generic construction is a secure OFE scheme in the multi-user setting (under the certified-key model).

One may trivially extends this scheme to AOFE. Namely, the NIZK proof shows that c contains either the signer’s signature 
on M or the verifier’s signature on M , using the signature and the randomness for the encryption as the witness. This may 
seem to be a secure AOFE scheme. Namely, the NIZK proof shows the membership of the following language:

L = {(
(pkTA,PKi,PK j, c, M), (σ , r)

) : c = E .Enc(pkTA,σ ; r) ∧ (
S.Ver(PKi,σ , M) = 1 ∨ S.Ver(PK j,σ , M) = 1

)}
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where pkTA is the public key of the arbitrator, E is the encryption scheme and S is the signature scheme. However, the 
following attack demonstrates that it is actually insecure under the security model proposed in Section 2.1.

(The attack): We consider the security against the arbitrator (see Definition 5). Let C be an adversary. Given the challenge 
public key PK A , C randomly selects a message M , and generates two public keys, say, PK B , PK D . Then it asks the oracle 
O PSig to sign M w.r.t. PK D , and obtains a ciphertext c, and an NIZK proof πAD showing that c contains a signature generated 
by either user A or user D . C then uses the arbitrator’s secret key to recover user A’s signature σ , and re-encrypts σ
under the arbitrator’s public key using a fresh randomness r′ . Let the new ciphertext be c′ . Finally, the adversary produces 
a new NIZK proof πAB showing that c′ is an encryption of a signature on M generated by either A or B , using σ , r′ as the 
witness. By the validity of (c, πAD), we can easily get that (c′, πAB) is also a valid output. Note that in the whole attack C
didn’t submit (M, PK B) to the oracle O PSig . Thus, the security against the arbitrator breaks. However, it’s not hard to prove 
that this generic construction is secure against the arbitrator under a weaker model which differs from the one described 
in Section 2.1 only in that it’s required (M, ·) /∈ Query(C, O PSig) instead of (M, PK B) /∈ Query(C, O PSig). This weak security 
against the arbitrator is guaranteed by the unforgeability (EUF-CMA) of the underlying signature scheme.

From the attacks above, we learn that constructing a secure AOFE scheme is not a trivial task. The introduction of signer 
ambiguity to OFE makes the security against the arbitrator more subtle. Besides, the security against the arbitrator of AOFE 
seems to be stronger than that of OFE defined in [15,21]. However, they in fact are not comparable. In the model considered 
in this paper, the public key of the verifier is involved in the generation of a partial signature, thus every query the adversary 
submits to oracles includes an additional public key; while this is not the case in the model of OFE. In the security against 
the arbitrator (Definition 5), the adversary is allowed to obtain the signer’s signature on M (but with respect to any public 
key rather than PK B ). This is similar with the strong unforgeability of digital signatures [19].

4. Our generic construction

Now we propose a generic construction of AOFE in the standard model, which is similar with the one widely used 
in building OFE schemes. Namely, the signer’s signature is encrypted under the arbitrator’s public key, and then a non-
interactive proof is given to show that the ciphertext contains the signer’s signature on the message. As pointed by Boyd et 
al. [10], the non-interactive proof is not much different from the signer’s signature, as it’s also sufficient to prove to others 
that the signer is bound to the message. Since AOFE requires that a verifier cannot prove to others that the signer is bound 
to a message, in the generic construction the signer has the verifier involved in the proof. That is, the signer provides a non-
interactive proof showing that the ciphertext contains either the signer’s signature or the verifier’s signature on the message.

4.1. The proposal

Let S = (Kg, Sig, Ver) be a public key signature scheme that is weakly existentially unforgeable under chosen message attacks
[7,19], and OTS = (Kg, Sig, Ver) be a strong one-time signature scheme. Let E = (Kg, Enc, Dec) be a tag-based public key 
encryption scheme that is selective-tag weakly CCA secure, and Π = (Kg, Prv, Ver, (Sim1, Sim2)) be an NIZK proof system for 
the following language:

L = {(
(pkTA,PKi,PK j, c, tag, M), (σ , r)

) :
c = E .Enc(pkTA, tag,σ ; r) ∧ (

S.Ver(PKi,σ , M) = 1 ∨ S.Ver(PK j,σ , M) = 1
)}

.

Algorithm Π.Kg takes as input 1k and outputs a common reference string crs. Prv and Ver are the prover strategy and 
verification algorithm respectively. (Sim1, Sim2) is the simulator, where Sim1 takes as input 1k and outputs a simulated 
common reference string crs that’s indistinguishable from a real one, along with the corresponding trapdoor τS , and Sim2
takes as input (crs, τS , x) and outputs a non-interactive proof whose distribution is indistinguishable from that of proofs 
output by the prover. Note that the membership of the language above is efficiently checkable, so we have that L ∈ NP . 
Fig. 1 (on page 186) describes our generic construction of AOFE, named GAOFE.

Note that in Fig. 1 (page 186) we omit the description of the parameter generation algorithm just for simplicity. This 
algorithm simply calls the corresponding parameter generation algorithms of the encryption scheme and the signature 
scheme to generate their parameters, which will be used in the other algorithms of GAOFE.

Remark 3. Note that in the construction, the public keys of both the signer and the verifier, i.e. PKi and PK j , are included in 
the message to be signed of the one-time signature δ. This is important, as otherwise the scheme would be vulnerable to an 
attack which compromises the security against signers. Specifically, the signer Alice runs as the verifier an execution of the 
protocol with Bob. After obtaining Bob’s partial signature σP ,B , Alice aborts this execution, and then restarts a new execution 
as the signer with Bob. She sends σP ,B as her partial signature to Bob. As σP ,B is a valid signature with regard to the group 
consisting of Alice and Bob, and the partial signature doesn’t specify who the signer is and who the receiver is, Bob would 
view it as a valid one, and then returns his full signature. At this time, Alice aborts this execution again. Bob then resorts 
to the arbitrator for resolving σP ,B to a full one. However, since it was originally generated by Bob himself, the arbitrator 
can only resolve it to Bob’s full signature. So in this case, Bob cannot get Alice’s full signature, and thus the security against 
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• SetupTTP: Given PM, the arbitrator runs E .Kg(1k) to generate a key pair, (pkTA, skTA), and invokes Π.Kg(1k) to produce a 
common reference string. It publishes APK = (pkTA, crs) and stores ASK = skTA secretly.

• SetupUser: Each user Ui runs S.Kg(1k) to generate a key pair for the signature scheme, (pki, ski), and publishes PKi = pki
and stores SKi = ski .

• PSig: To partially sign a message M with verifier U j , the user Ui does the following.
◦ Generate a new pair of one-time key for OTS, i.e. (otvk, otsk) ← OTS.Kg(1k).
◦ Compute a signature σ on otvk, i.e. σ ← S.Sig(SKi, otvk).
◦ Encrypt the signature under the arbitrator’s public key using randomness r with respect to tag otvk, i.e. c ←
E .Enc(pkTA, otvk, σ ; r).

◦ Produce an NIZK proof π using witness (σ , r), i.e.

π ← Π.Prv
(
crs, (pkTA,PKi,PK j, c,otvk,otvk), (σ , r)

)
.

◦ Sign the ciphertext, the proof and the message using otsk, i.e.

δ ← OTS.Sig(otsk, c‖π‖M‖PKi‖PK j).

The partial signature σP is composed of (c, π, δ, otvk).
• PVer: On receiving Ui ’s partial signature σP = (c, π, δ, otvk) on message M , user U j checks if 

OTS.Ver(otvk, δ, c‖π‖M‖PKi‖PK j) = 1 and Π.Ver(crs, (pkTA, PKi, PK j, c, otvk, otvk), π) = 1. If either fails, it rejects; 
otherwise, it accepts.

• Sig: To sign a message M with verifier U j , user Ui first computes a partial signature σP = (c, π, δ, otvk) as above, and then 
sets its full signature to be σF = (σ , σP ).

• Ver: On receiving Ui ’s full signature σF = (σ , (c, π, δ, otvk)) on message M , the verifier first checks if 
PVer(M, (c, π, δ, otvk), {PKi, PK j}, APK) = 1 and S.Ver(pki, σ , otvk) = 1. If either fails, it outputs 0 (reject); otherwise, it out-
puts 1 (accept).

• Res: On receiving from U j a partial signature σP = (c, π, δ, otvk) claimed to be generated by Ui , the arbitrator checks the 
validity of σP by calling algorithm PVer. If it’s invalid, it returns ⊥ to U j . Otherwise, it recovers σ from c by computing 
σ ← E .Dec(skTA, otvk, c). If S.Ver(PKi, σ , otvk) = 1, the arbitrator returns σ to U j ; otherwise, it returns ⊥.

Fig. 1. Our generic construction of AOFE, GAOFE.

signers is broken. Therefore, it seems necessary to specify in the message to be signed the identities of the signer and the 
verifier. Besides the validity check of the partial signature, the verifier should also check if the public key of the receiver 
specified in the signature, i.e. PK j , is his. If not, it should reject. However, the inclusion of public keys doesn’t contradict 
the signer ambiguity. The embedding of PKi and PK j to the message to be signed doesn’t require any private information, 
and anyone can do it. The verifier is still able to use his secret key to produce indistinguishable partial signatures. We also 
note that the attack above does not happen in ordinary OFE at all. Thus, this attack shows a big difference between AOFE 
and OFE.

4.2. Security analysis

Theorem 2. GAOFE is a secure ambiguous optimistic fair exchange scheme.

The theorem follows the following lemmas directly:

Lemma 1. GAOFE is resolution ambiguous.

Proof. Guaranteed by the security against signers (as shown in Lemma 3), if a partial signature σP is valid, then with 
overwhelming probability that the arbitrator can extract the signer’s signature σ on the message. Conditioned on that 
the resolution succeeds, the signature output by the arbitrator is the same as that output by the signer. Therefore, the 
distribution of the output by the arbitrator is indistinguishable from that of the signer’s signatures. So the construction 
above is resolution ambiguous. �
Lemma 2. GAOFE is signer ambiguous.

Before presenting the proof, we describe how the simulation algorithm FPSig works. To simulate a partial signature 
on M , the verifier U j generates a fresh one-time key pair (otvk, otsk) and uses its own secret key SK j to generate its 
signature σ on otvk. The rest remains the same as algorithm PSig.

Proof. Let D be a PPT adversary against the security against verifiers. We modify the experiment so that the challenger 
runs Π.Sim1 algorithm to generate the common reference string crs along with a simulation trapdoor τS . By the common
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reference string indistinguishability of Π , D ’s advantage in new experiment is negligibly close to that in the original exper-
iment.

Second, we modify the experiment so that to answer each query the adversary submits to O PSig and to prepare the 
challenge partial signature, the challenger calls Π.Sim2 on input τS to produce the proof π , instead of calling the prover 
strategy with the witness (σ , r). Guaranteed by the zero-knowledge property of Π , this modification brings only a negligible 
difference to D ’s advantage.

Third, the experiment is modified again so that for each valid query submitted by the adversary to oracle O Res , i.e. 
(M, σP , {PKi, PK j}) where σP = (c, π, δ, otvk), if otvk was ever used by O PSig in answering B ’s partial signing query, i.e. 
(M ′, PK′) is the query and σ ′ = (c′, π ′, δ′, otvk) is the answer, but (c, π, M, {PKi, PK j}, δ) 	= (c′, π ′, M ′, {PK A, PK′}, δ′), the ex-
periment is aborted. As will be discussed in the proof of Lemma 5, this case happens with negligible probability, guaranteed 
by the strong one-time unforgeability of OTS. Hence, D ’s advantage does not change noticeably.

Assume that D can win this experiment with non-negligible advantage εD , we then use it to build another PPT algo-
rithm D ′ to break the selective-tag CCA security of E , as below.

D ′ first calls OTS.Kg(1k) to generate a one-time key pair (otvk∗, otsk∗), and submits otvk∗ to its challenger as the chal-
lenge tag, which then returns a public key pk of E . D ′ runs Π.Sim1(1k) to generate (crs, τS ), and calls S.Kg(1k) to generate 
a key pair for the honest user U A , say, (PK A, SK A). It invokes D on input (APK, PK A) = ((pk, crs), PK A), and then begins to 
simulate oracle O Res for D .

Given a query (M, σP , {PKi, PK j}) where σP = (c, π, δ, otvk), D ′ first checks if the query passes the PVer algorithm. If 
not, it returns ⊥ to D; otherwise, the soundness of Π implies that c contains a valid signature σ on otvk with respect 
to either PKi or PK j . D ′ forwards the ciphertext c and the tag otvk to its own decryption oracle, and obtains σ . If either 
S.Ver(PKi, σ , otvk) = 1 or S.Ver(PK j, σ , otvk) = 1 holds, D ′ returns σ to D .

At some time, D submits (M∗, (PK A, SK A), (PK B , SK B)). D ′ first checks if both the key pairs are valid. If not, D aborts and 
outputs a random bit. Otherwise, it does the following:

1. Run S.Sig twice to generate signatures σ0, σ1 on otvk∗ using SK A , SK B respectively.
2. Submit σ0, σ1 to its own challenger, which returns a ciphertext c∗ of σb with respect to tag otvk∗ for some random bit 

b ∈ {0, 1}.
3. Call the simulator Π.Sim2 on input the trapdoor τS to generate a proof π∗ for (pk, PK A, PK B , c∗, otvk∗).
4. Use otsk∗ to compute a one-time signature δ∗ on c∗‖π∗‖M∗‖PK A‖PK B .

The challenge signature prepared by D ′ is σ ∗
P = (c∗, π∗, δ∗, otvk∗). If b = 0, σ ∗

P is a valid partial signature output by algo-
rithm PSig; otherwise, σ ∗ is a simulated partial signature output by algorithm FPSig.

D ′ returns σ ∗
P to the adversary, and then continues to simulate the oracle O Res . Let (M, σP , {PKi, PK j}) be any of its valid 

queries, where σP = (c, π, δ, otvk). We distinguish the following two cases:

1. otvk 	= otvk∗ . In this case, D ′ simulates O Res in the same way as above.
2. otvk = otvk∗ . We say, this case will not happen in the experiment. First of all, we can exclude the subcase 

(c∗‖π∗‖M∗‖PK A‖PK B , δ∗) = (c‖π‖M‖PKi‖PK j, δ), because the adversary is prohibited from asking O Res for resolving 
(M∗, σ ∗

P , {PK A, PK B}). On the other hand, if (c∗‖π∗‖M∗‖PK A‖PK B , δ∗) 	= (c‖π‖M‖PKi‖PK j, δ), according to the experi-
ment’s specification, the experiment is aborted.

Finally, A outputs a bit d. D then outputs a bit b′ = d and halts.
It’s readily seen that the oracle O Res is simulated indistinguishably by D ′ . If D succeeds in the experiment, D ′ also 

succeeds in outputting the bit b′ . So D ’s advantage is

AdvT−PKE
D ′ (k) ≥ AdvSA

D (k) = εD

which is non-negligible by hypothesis. Therefore, the selective-tag CCA security of E is broken. �
Lemma 3. GAOFE is secure against signers.

Proof. If a partial signature (c, π, δ, otvk) of U A is valid on message M with respect to verifier U B , by the soundness of Π
and the perfect completeness of E , with overwhelming probability the arbitrator can recover from the ciphertext c a valid 
signature σ on M generated by either U A or U B . On the other hand, due to the security against the arbitrator (as shown 
in Lemma 5), we know that only with negligible probability can the adversary A forge a signature on behalf of an honest 
user U B . Therefore, the valid signature must be generated by the adversary itself. Hence, the adversary can only break the 
security against signers with negligible probability. �
Lemma 4. GAOFE is secure against verifiers.

Proof. Let B be an efficient adversary against the security against verifiers. Let P be the set of partial signatures returned 
by the oracle O PSig , and let (M∗, PK B , σ ∗

F ) be B ’s final output, where σ ∗
F = (σ ∗

P , σ ∗). First of all, we modify the experiment 
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so that if σ ∗
P /∈P , we abort it. Guaranteed by the security against the arbitrator (shown in Lemma 5), the modification leads 

to only a negligible difference in B ’s success probability.
Second, we modify the experiment so that the challenger runs Π.Sim1 algorithm to generate the common reference 

string crs along with a simulation trapdoor τS , and to answer each query the adversary submits to O PSig the challenger 
calls Π.Sim2 with τS to produce the proof π , instead of calling the prover strategy with the witness (σ , r). By the zero 
knowledge property of Π , we know that the modification brings a negligible difference to B ’s success probability.

Third, the experiment is modified again so that for each valid query submitted by the adversary to oracle O Res , i.e. 
(M, σP , {PKi, PK j}) where σP = (c, π, δ, otvk), if otvk was ever used by O PSig in answering B ’s partial signing query, i.e. 
(M ′, PK′) is the query and σ ′ = (c′, π ′, δ′, otvk) is the answer, but (c, π, M, {PKi, PK j}, δ) 	= (c′, π ′, M ′, {PK A, PK′}, δ′), the 
experiment is aborted. If the case happens, obviously, it indicates that the adversary produces a forgery for the signature 
scheme OTS. Guaranteed by the strong one-time unforgeability of OTS, we have that the modification affects B ’s success 
probability negligibly as well.

Next we show that B ’s success probability in this experiment, say, εB , is negligible in k. Assume that εB is non-negligible, 
we then use B to build another PPT algorithm D to break the selective-tag CCA security of E .

D first invokes the algorithm S.Kg(1k) to generate a pair of one-time key, (otvk∗, otvk∗), submits otvk∗ to its challenger 
as the target tag, and receives a challenge public key pk of E from the challenger. It runs Π.Sim1(1k) to generate (crs, τS ), 
and calls S.Kg to generate (PK A, SK A). Suppose that B will submit at most q distinct query to oracle O PSig , which is 
polynomial in the security parameter. D picks i at random from the set {1, · · · , q}, and sets pkTA = pk, APK = (crs, pkTA). 
It invokes B on input (APK, PK A), and then begins to simulate oracles for B as follows.

• O Res: On input a resolution query, (M, σP , PKi, PK j), D first checks the validity of the query, and returns ⊥ if it doesn’t 
pass the PVer algorithm. It asks its decryption oracle to decrypt c with respect to tag otvk, and receives σ from it. 
D returns σ if S.Ver(PKi, σ , otvk) = 1 or S.Ver(PK j, σ , otvk) = 1.

• O PSig: Let (M, PK′) be the j-th distinct query B submits to the oracle. If j 	= i, this query is dealt with by D like a 
real user. If j = i, D computes σ ∗ ← S.Sig(SK A, otvk∗). It sets σ0 = σ ∗ and randomly selects σ1 from the range of 
S.Sig(·, ·), and forwards σ0, σ1 to its challenger, which randomly chooses one of them say, σb for some bit b ∈ {0, 1}, 
to encrypt. Let the ciphertext be c∗ . D then calls algorithm Π.Sim2 with the simulation trapdoor τS to produce a 
proof π∗ on (pkTA, PK A, PK′, c∗, otvk∗, otvk∗). It then completes the generation of the partial signature by computing 
δ∗ = OTS.Sig(otsk∗, c∗‖π∗‖M‖PK A‖PK′), and returns σ ∗

P = (c∗, π∗, δ∗, otvk∗) back to the adversary B .

Finally B outputs (M∗, PK B , σ ∗
F ), where σ ∗

F = (σ ∗
P , σ ∗). If the output doesn’t satisfy the winning condition, D aborts and out-

puts a random bit. By the specification of the experiment, we know that σ ∗
P ∈P . If (M∗, PK B) is not the i-th distinct query to 

oracle O PSig , alternatively, D ’s guess of i is incorrect, D aborts and outputs a random bit. If Ver(M∗, σ ∗
F , PK A, PK B , APK) = 1, 

D outputs 0; otherwise, it outputs 1.
We now consider the simulation of oracles O Res and O PSig . Let (M, σP = (c, π, δ, otvk), {PKi, PK j}) be a valid query to 

O Res . If c 	= c∗ , D can handle this query as above. We then focus on the other case, c = c∗ .

• If otvk 	= otvk∗ , D can simply forward (otvk, c∗) to its decryption oracle as the tag otvk is different from the challenge 
one, otvk∗ , and obtain the signature σ .

• If otvk = otvk∗ , D is not allowed to ask its oracle to decrypt c∗ with respect to otvk∗ . However, as discussed in the proof 
of Lemma 2, this case will not happen.

Regarding the oracle O PSig , it’s perfectly simulated when j 	= i. For j = i, if c∗ is an encryption of σ0, the view of B
is identical to that in a real attack, and B will succeed in the experiment with probability εB , which is non-negligible. 
If c∗ is an encryption of σ1, the view of the adversary is indistinguishable from that in a real attack, due to the zero 
knowledge property of Π . Since c∗ is independent of PK A , and thus provides no help to B in generating σ ∗

F . In this case, if 
B successfully produces a valid full signature σ ∗

F , it should be that B forges a full signature on behalf of the honest user U A , 
thus breaking the security against arbitrator. As shown in Lemma 5, B ’s success probability in this case is negligible.

Let b′ be the bit that D outputs. We want to show that |Pr[b′ = 1 ∧ b = 1] − Pr[b′ = 0 ∧ b = 1]| is non-negligible in k. 
No matter b = 0 or b = 1, the probability that D aborts due to an incorrect guess of i is the same, and when it aborts, it 
outputs 0 with probability exactly one-half. Therefore, we only need to focus on the case in which D guesses i correctly, 
which happens with probability 1/q. Denote this event by Corr.

If b = 0, as we discussed above, the probability that B outputs a valid σ ∗
F is εB . Thus, D outputs 0 with probability at 

least εB . On the other side, i.e. b = 1, as discussed above, the probability that D outputs 0 is ε, which is the maximum 
probability that an efficient can break the security against the arbitrator, and is negligible. So we get the following:

AdvT−PKE
D (k) =

∣∣∣∣Pr
[
b′ = b

] − 1

2

∣∣∣∣
=

∣∣∣∣Pr
[
b′ = b ∧ Corr

] + Pr
[
b′ = b ∧ ¬Corr

] − 1

2

∣∣∣∣
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=
∣∣∣∣Pr[Corr]Pr

[
b′ = b|Corr

] + Pr[¬Corr]Pr
[
b′ = b|¬Corr

] − 1

2

∣∣∣∣
=

∣∣∣∣1

q

(
1

2
Pr

[
b′ = 0|b = 0 ∧ Corr

] + 1

2

(
1 − Pr

[
b′ = 0|b = 1 ∧ Corr

])) +
(

1 − 1

q

)
1

2
− 1

2

∣∣∣∣
= 1

2q

∣∣Pr
[
b′ = 0|b = 0 ∧ Corr

] − Pr
[
b′ = 0|b = 1 ∧ Corr

]∣∣
≥ 1

2q
|εB − ε|

which is also non-negligible. Therefore, the selective-tag CCA security of E is broken. �
Lemma 5. GAOFE is secure against the arbitrator.

Proof. Let C be a PPT adversary C which breaks the security against the arbitrator, and (M∗, σ ∗
F , PK B) be its final output, 

where σ ∗
F = (σ ∗

P , σ ∗) and σ ∗
P = (c∗, π∗, δ∗, otvk∗). We distinguish the following two cases.

1. otvk∗ never appeared in oracle O PSig ’s answers. In this case, we can use C ’s capability to build a PPT adversary F0 to 
break the weak unforgeability of S .
Suppose that C issues at most q distinct queries to oracle O PSig . F0 runs S.Kg(1k)q times to generate q one-time key 
pairs, say, (otvk1, otvk1), · · · , (otvkq, otskq). It submits {otvk1, · · · , otvkq} to its challenger, which then returns a public key 
pk and the corresponding signatures, {σ1, · · · , σq}. F0 then invokes C on input 1k , which returns a public key of the 
arbitrator, APK = (pkTA, crs). F0 then returns PK A = pk to C , and begins to simulate the partial signing oracle O PSig

for C . On input the i-th distinct query (M, PK ji ), F0 chooses a random string r from the randomness space of E , uses r
to encrypt σi under pkTA with respect to the tag otvki , and uses (σi, r) as the witness to compute an NIZK proof π . 
F0 runs OTS.Sig with secret key otski to generate a one-time signature δ on c‖π‖M‖PK A‖PK ji . It returns (c, π, δ, otvki)

to C . It’s readily seen that the simulation of O PSig is perfect.
Finally, C outputs (M∗, PK B , σ ∗

F ) where σ ∗
F = ((c∗, π∗, δ∗, otvk∗), σ ∗), and wins the experiment with non-negligible 

probability εC . F0 outputs (otvk∗, σ ∗). By the validity of C ’s output, we know that S.Ver(pk, σ ∗, otvk∗) = 1. Since otvk∗
is fresh, i.e., otvk∗ /∈ {otvk1, · · · , otvkq}, F0 didn’t ask its signing oracle to return a signature on otvk∗ . Thus, (otvk∗, σ ∗)
is a valid forgery for S . Therefore, F0 breaks the security of S with probability at least the same as C .

2. otvk∗ appeared in one of O PSig ’s answers to C ’s partial signing queries. Again, we assume that C issues at most q
queries to O PSig , which is polynomial in k. We use C to build an algorithm F1 to break the security of OTS.
Given a public key otvk∗ of OTS and a one-time signing oracle, F1 invokes C on input 1k and obtains APK = (pkTA, crs)

from it. It then calls S.Kg(1k) to generate a key pair for user A, say, (PK A, SK A), and randomly selects i from {1, · · · , q}. 
F1 gives PK A to C , and then begins to simulate oracle O PSig for it.
If j 	= i, F1 simulates the oracle like an honest user U A does. If j = i, it uses SK A to generate a signature σ on 
otvk∗ , selects a random string r, computes c ← E .Enc(pkTA, otvk∗, σ ; r) and uses (σ , r) as the witness to produce 
an NIZK proof π . F1 then submits c‖π‖M‖PK A‖PKi to its signing oracle, and obtains a signature δ∗ . It then returns 
(c, π, δ, otvk∗) back to C .
Finally C outputs (M∗, σ ∗

F , PK B) where σ ∗
F = (σ ∗

P , σ ∗) and σ ∗
P = (c∗, π∗, δ∗, otvk∗). F1 outputs (c∗‖π∗‖M∗‖PK A‖PK B , δ∗). 

Assume that C wins the experiment. So we have that OTS.Ver(otvk∗, δ∗, c∗‖π∗‖M∗‖PK A‖PK B) = 1 and C didn’t issue a 
query on input (M∗, PK B). Since the pair (M∗, PK B) is fresh, we have that

c∗‖π∗‖M∗‖PK A‖PK B 	= c‖π‖M‖PK A‖PKi .

So δ∗ is a valid signature on a new message. Therefore, the security of OTS is broken.

Since we do not know which of the two cases above will happen, we simply toss a coin b, and run the algorithm Fb . Still, 
we have non-negligible probability to break the security of either S or OTS, if C wins its experiment with non-negligible 
probability. �
Remark 4. In our construction, the signer uses its secret key to generate a signature on a fresh one-time verification key, 
while the message is signed using the corresponding one-time signing key. As shown by Huang et al. in [19], this combina-
tion leads to a strongly unforgeable signature scheme. It’s not hard to see that our proposed AOFE scheme actually achieves 
a stronger version of security against the arbitrator. That is, even if the adversary sees the signer U A ’s full signature σF on a 
message M with verifier U B , it cannot produce another full signature on M , say, σ ′

F , such that Ver(M, σ ′
F , PK A, PK B , APK) = 1. 

The claim can be shown using the proof given above without much modification.
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5. A concrete scheme without random oracles

In this section, we propose an AOFE scheme, which is based on Groth and Sahai’s idea of constructing a fully anonymous 
group signature scheme [17,18]. Before describing the scheme, we first introduce the assumptions and building tools used 
in our construction.

5.1. Assumptions

(Admissible pairing): Let G1 and GT be two cyclic groups of large prime order p. ê is an admissible pairing if ê : G1 ×G1 →
GT is a map with the following properties: (1) Bilinearity: ∀R, S ∈ G1 and ∀a, b ∈ Z, ê(Ra, Sb) = ê(R, S)ab; (2) Non-
degeneracy: ∃R, S ∈G1 such that ê(R, S) 	= 1; and (3) Computability: there exists an efficient algorithm for computing ê(R, S)

for any R, S ∈G1.

(Decision Linear Assumption (DLIN) [9]): Let G1 be a cyclic group of large prime order p. The Decision Linear Assumption 
for G1 holds if for any PPT adversary A , the following probability is negligibly close to 1/2:

Pr
[

F , H, W ←G1; r, s ← Zp; Z0 ← W r+s; Z1 ←G1;d ← {0,1} : A
(

F , H, W , F r, Hs, Zd
) = d

]
.

(Strong Diffie–Hellman Assumption (SDH) [7]): The q-SDH problem in G1 is defined as follows: given a (q + 1)-tuple 
(g, gx, gx2

, · · · , gxq
), output a pair (g1/(x+c), c) where c ∈ Z

∗
p . The q-SDH assumption holds if for any PPT adversary A , the 

following probability is negligible:

Pr
[
x ← Z

∗
p : A

(
g, gx, · · · , gxq ) = (

g
1

x+c , c
)]

.

5.2. Building tools

(Tag-based encryption scheme): We use a tag-based public key encryption scheme E with security based on the DLIN 
assumption reviewed above. Below is a brief review of a suitable scheme due to Kiltz [28].

Key generation: (pk, sk) = ((F , H, K , L), (κ, λ)) ← E .K (p, G1, GT , ̂e, g), where F = gκ and H = gλ;

Encryption: Let M ∈ G1 be a message, tag ∈ Zp a tag, and r, s ∈ Zp the randomness. The ciphertext y is computed as 
y = (y1, y2, y3, y4, y5) = (F r, Hs, M · gr+s, (gtag K )r, (gtagL)s);

Decryption: The validity of a ciphertext can be checked without knowing the secret key. Anyone can check if ê(F , y4) =
ê(y1, gtag K ) and ê(H, y5) = ê(y2, gtagL). If any one fails, ⊥ is returned. Otherwise, M is recovered by computing M =
y3 · y−1/κ

1 · y−1/λ

2 .

Note that the plaintext can also be recovered if the discrete logarithms of K and L with respect to g are known. 
Assume that K = gκ ′

and L = gλ′
. After checking the validity of y = (y1, y2, y3, y4, y5), M can be computed as M = y3 ·

y−1/(tag+κ ′)
4 · y−1/(tag+λ′)

5 . Kiltz proved [28] that under the DLIN assumption, the tag-based encryption scheme is selective-tag 
weakly chosen-ciphertext secure, that is, an adversary A cannot tell which message was encrypted under tag∗ (selected by 
A though) before seeing the public key, even when it has access to a decryption oracle that decrypts ciphertexts under any 
tag other than tag∗ . Readers may refer to [28] for the definition of selective-tag weakly CCA security.

(Non-interactive proofs): Recently, Groth and Sahai [18] proposed a general methodology for constructing simple and 
efficient non-interactive witness indistinguishable (NIWI) proofs and non-interactive zero-knowledge (NIZK) proofs that 
work for bilinear groups, without requiring complex NP-reductions. They proposed efficient non-interactive (NI) proofs 
for a set of equations in a bilinear group (p, G1, GT , ̂e, g) over variables in G1 and Zp , such as pairing products, i.e. 
ê(x1, y1) · ê(x2, y2) = T , or multi-exponentiations, i.e. xδ1

1 xδ2
2 = 1, having solutions xi ∈ G1, δ j ∈ Zp , so that all equations 

are simultaneously satisfied. Their NI proofs can be based on subgroup decision assumption, (symmetric) external Diffie–
Hellman ((S)XDH) assumption, and decision linear (DLIN) assumption. In our construction, we will use their DLIN-based 
technique.

(Commitment scheme): Groth–Sahai’s DLIN-based proofs consist of two commitment schemes, one for committing to variables 
of G1, and the other one to variables in Zp . The common reference string for either of the two schemes, can be generated 
in either of two indistinguishable ways.

For the first commitment scheme, a real common reference string is set up to U = F R , V = H S , and W = g R+S , a com-
mitment to a variable x ∈ G1 can be respectively expressed as c = (c1, c2, c3) = (F r U t , Hs V t , gr+s W t x) for randomness 
r, s ∈ Zp . The key for extracting x from c is xk = (κ, λ) = (logg F , logg H), so the scheme is perfectly binding. A simulated 
common reference string consists of F , H , U = F R , V = H S and W = gT where T 	= R + S , and thus the scheme is also 
perfectly hiding.

For the commitment to a variable δ ∈ Zp , a real common reference string consists of F , H , U ′ = F R ′
, V ′ = H S ′

and 
W ′ = gT ′

where T ′ 	= R ′ + S ′ , and a commitment to δ is expressed as c′ = (c′
1, c

′
2, c

′
3) = (F r′

(U ′)δ, Hs′(V ′)δ, gr′+s′ (W ′)δ)
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for randomness r′, s′ ∈ Zp . The commitment scheme is perfectly binding. A simulated common reference string consists of 
F , H , U = F R ′

, V = H S ′
, W = g R ′+S ′

. The commitment scheme then becomes perfectly hiding. The simulation trapdoor is 
tk = (R ′, S ′), and we can use it to reveal a commitment to 0 to any other value δ ∈ Zp . Due to the DLIN assumption, we 
have that any PPT adversary cannot tell a real common reference string apart from a simulated one.

(Groth–Sahai Proofs): Groth–Sahai NI proof system for bilinear groups consists of four PPT algorithms, (K N I , P , V , X), where 
the key generator K N I takes as input a system parameter (p, G1, GT , ̂e, g) and outputs a common reference string crs =
(F , H, U , V , W , U ′, V ′, W ′) and an extraction key xk; the algorithm P takes as input crs, a problem instance and a witness 
(· · · , xi, · · · , δ j, · · ·) and outputs a proof π ; the verification algorithm V takes as input crs, a problem instance, and a 
proof π , and outputs 1 indicating that π is valid or 0 indicating that π is invalid; and the extraction algorithm X takes as 
input crs, a problem instance, and a proof π , and outputs (· · · , xi, · · ·).

Groth–Sahai NI proofs have perfect completeness, and perfect soundness on a real common reference string. Besides, 
they have perfect partial knowledge: the extraction algorithm will extract (· · · , xi, · · ·) from the proof, such that there is a 
solution for the equations using these xi ’s. Groth–Sahai proofs also have perfect witness-indistinguishability on a simulated 
common reference string: if there are many possible witnesses for the equations being satisfiable, the proof π does not 
reveal anything about which witness was used by the prover in generating π .

In our construction (Section 5.4), we use two NI proof systems: NIWI and NIZK. The NIWI proof system is used for 
showing that a BB-signature σ is valid with respect to either PKi or PK j , i.e.

NIWI
{
α : ê

(
α, gH(otvk)PKi

) = ê(g, g) ∨ ê
(
α, gH(otvk)PK j

) = ê(g, g)
}
.

The NIZK proof system is used for showing that the commitment c = (c1, c2, c3) = (F rc U t , Hsc V t , grc+sc W tσ) in the NIWI 
proof π1 and the ciphertext y = (y1, y2, y3, y4, y5) = (F ry , Hsy , gry+sy σ , (gtag K )ry , (gtagL)sy ), where tag = H(otvk), contain 
the same σ . This is equivalent to showing the knowledge of a solution to the equation (c−1

1 y1)F r U t = 1 ∧ (c−1
2 y2)Hs V t =

1 ∧ (c−1
3 y3)gr+s W t = 1. If c and y contain different messages, then there will be no r, s, t satisfying all the equations 

above. Groth and Sahai [18] showed a way to turn the set of equations above to a tractable set, which has zero-knowledge 
proofs. The set of equations above is equivalent to the following one, which is tractable:

φ = 1 ∧ (
c−1

1 y1
)φ

F r U t = 1 ∧ (
c−1

2 y2
)φ

Hs V t = 1 ∧ (
c−1

3 y3
)φ

gr+s W t = 1.

This NIZK proof system was also used by Groth in constructing a fully anonymous group signature scheme [17]. Readers 
may refer to [17,18] for more details.

5.3. High level description of our construction

As mentioned in the introduction, many OFE schemes in the literature follows a generic framework: Alice encrypts her 
signature under the arbitrator’s public key, and provides a proof showing that the ciphertext contains her signature. To 
extend this framework to AOFE, we may let Alice encrypt her signature under the arbitrator’s public key and provide a 
proof showing that the ciphertext contains either her signature or Bob’s signature.

Our concrete construction below follows the framework, which is based on the idea of Groth in constructing a fully 
anonymous group signature [17]. In detail, Alice’s signature consists of a weakly secure BB-signature [7] and a strong 
one-time signature. Since only the BB-signature is related to Alice’s identity, we encrypt it under the arbitrator’s public key 
using Kiltz’ tag-based encryption scheme [28], with the one-time verification key as the tag. The non-interactive proof is 
based on a technique due to Groth and Sahai [18]. It is efficient and does not require any complex NP-reduction. The proof 
consists of two parts. The first part includes a commitment to Alice’s BB-signature along with a non-interactive witness 
indistinguishable (NIWI) proof showing that either Alice’s BB-signature or Bob’s BB-signature on the one-time verification 
key is in the commitment. The second part is non-interactive zero-knowledge (NIZK) proof (of knowledge) showing that 
the commitment and the ciphertext contains the same thing. These two parts together imply that the ciphertext contains a 
BB-signature on the message generated by either Alice or Bob. Both the ciphertext and the proof are authenticated using the 
one-time signing key. Guaranteed by the strong unforgeability of the one-time signature, no efficient adversary can modify 
the ciphertext or the proof.

5.4. The concrete scheme and security analysis

Our proposed concrete scheme, AOFE, is shown in Fig. 2.

Theorem 3. The proposed AOFE is secure in the multi-user setting and chosen-key model without random oracles, provided that DLIN 
assumption and SDH assumption hold.

AOFE follows the framework of the generic construction proposed in Section 4. Intuitively, the resolution ambiguity is 
guaranteed by the extractability and soundness of the NIWI proof of knowledge system. The signer ambiguity and security 
against verifiers are due to the CCA security of the encryption scheme. Security against signers and security against the 
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• PMGen takes 1k and outputs PM = (1k, p, G1, GT , ̂e, g) so that G1 and GT are cyclic groups of prime order p; g is a random 
generator of G1; ê : G1 ×G1 → GT is an admissible bilinear pairing; and group operations on G1 and GT can be efficiently 
performed.

• SetupTTP: The arbitrator runs the key generation algorithm of the non-interactive proof system to generate a common ref-
erence string crs and an extraction key xk, i.e. (crs, xk) ← KN I (1k), where crs = (F , H, U , V , W , U ′ , V ′, W ′). It also 
randomly selects K , L ← G1, and sets (APK, ASK) = ((crs, K , L), xk), where F , H, K , L together form the public key of the 
tag-based encryption scheme [28], and xk is the extraction key of the NIWI proof system [17,18], which is also the decryp-
tion key of the tag-based encryption scheme.

• SetupUser: Each user Ui randomly selects xi ← Zp , and sets (PKi, SKi) = (gxi , xi).
• PSig: To partially sign a message m with verifier U j , user Ui does the following.

1. Call the key generation algorithm of S to generate a one-time key pair (otvk, otsk).
2. Use SKi to compute a BB-signature σ on H(otvk), i.e. σ ← g1/(xi+H(otvk)) .
3. Compute a tag-based encryption [28] y of σ , i.e. y = (y1, y2, y3, y4, y5) ← E .Epk(σ , H(otvk)), where pk = (F , H, K , L).
4. Compute an NIWI proof π1 showing that σ is a valid signature under either PKi or PK j , i.e. π1 ←

P W I (crs, (ê(g, g), PKi, PK j , H(otvk)), (σ )), which shows that the following holds:

ê
(
σ ,PKi · gH(otvk)) = ê(g, g) ∨ ê

(
σ ,PK j · gH(otvk)) = ê(g, g).

5. Compute an NIZK proof π2 showing that y and the commitment C to σ in π1 contain the same σ , i.e. π2 ←
P Z K (crs, (y, π1), (r, s, t)).

6. Use otsk to sign the whole transcript and the message M , i.e. σot ← S.Sotsk(M‖π1‖y‖π2‖PKi‖PK j).
The partial signature σP of Ui on message M then consists of (otvk, σot , π1, y, π2).

• PVer: After obtaining Ui ’s partial signature σP = (otvk, σot , π1, y, π2), the verifier U j checks the following. If any one fails, 
U j rejects; otherwise, it accepts.
1. If σot is a valid one-time signature on M‖π1‖y‖π2‖PKi‖PK j under otvk.

2. If π1 is a valid NIWI proof, i.e. V W I (crs, (ê(g, g), PKi, PK j, H(otvk)), π1) 
?= 1.

3. If π2 is a valid NIZK proof, i.e. V Z K (crs, (y, π1), π2) ?= 1.
• Sig: To sign a message M with verifier U j , user Ui generates a partial signature σP as in PSig, and set the full signature σF

as σF = (σP , σ ).

• Ver: After receiving σF on M from Ui , user U j checks if PVer(M, σP , {PKi, PK j}, APK) ?= 1, and if ê(σ , PKi · gH(otvk)) ?= ê(g, g). 
If any of the checks fails, U j rejects; otherwise, it accepts.

• Res: After receiving Ui ’s partial signature σP on message M from user U j , the arbitrator firstly checks the validity of σP . If 
invalid, it returns ⊥ to U j . Otherwise, it extracts σ from π1 by calling σ ← Xxk(crs, π1). The arbitrator returns σ to U j .

Fig. 2. Our proposed concrete scheme of AOFE, AOFE.

arbitrator are guaranteed by the weak unforgeability of BB-signature scheme. Proof of the security of the scheme almost 
follows that of our generic construction of AOFE.

One may notice that an NIWI proof π1 and an NIZK proof π2 are used in the generation of partial signatures in AOFE, 
while only an NIZK proof is required in the generic construction GAOFE. This is not to say the instantiation deviates from 
the generic construction. In fact, proofs π1 and π2 functionally serve as the NIZK proof in GAOFE. To see it, notice that 
the simulator of the NIZK proof (in GAOFE) is mainly used in the proof of signer ambiguity. A simulated partial signature 
is generated by first using the intended verifier U j ’s secret key to generate a (conventional) signature and then running 
the NIZK simulator to produce a simulated proof to show that the ciphertext contains either the signer Ui ’s signature or 
U j ’s signature. While in the instantiation, the NIWI proof π1 is simulated by using U j ’s signature to show that there is a 
signature of either Ui or U j , and the NIZK proof π2 is simulated by calling the corresponding simulator to show that the 
(tag-based) ciphertext contains a signature same as the witness used in π1.

6. Conclusion

In this paper, we proposed the notion of ambiguous optimistic fair exchange (AOFE), and gave a formal security model 
for it. We discussed the relationship among some variants of the model, and showed that signer ambiguity and security 
against the arbitrator together imply security against verifiers (in a weaker sense). We revisited two generic constructions 
of OFE, and showed that they cannot be simply extended to AOFE. We then proposed a generic construction of AOFE, and 
proved its security under the proposed multi-user setting and chosen-key model. We also proposed a concrete and efficient 
construction of AOFE in bilinear groups, security of which is based on Decision Linear assumption and Strong Diffie–Hellman 
assumption without random oracles.

References

[1] N. Asokan, M. Schunter, M. Waidner, Optimistic protocols for fair exchange, in: ACM CCS’97, ACM, 1997, pp. 7–17.
[2] N. Asokan, V. Shoup, M. Waidner, Optimistic fair exchange of digital signatures (extended abstract), in: Advances in Cryptology – EUROCRYPT 98, in: 

Lecture Notes in Computer Science, vol. 1403, Springer, 1998, pp. 591–606.

http://refhub.elsevier.com/S0304-3975(14)00733-6/bib41736F6B616E536357613937s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib41736F6B616E536857613938s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib41736F6B616E536857613938s1


Q. Huang et al. / Theoretical Computer Science 562 (2015) 177–193 193

[3] N. Asokan, V. Shoup, M. Waidner, Optimistic fair exchange of digital signatures, IEEE J. Sel. Areas Comm. 18 (4) (2000) 593–610.
[4] F. Bao, G. Wang, J. Zhou, H. Zhu, Analysis and improvement of Micali’s fair contract signing protocol, in: ACISP04, in: Lecture Notes in Computer 

Science, vol. 3108, Springer, 2004, pp. 176–187.
[5] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in: ACM CCS’93, ACM, 1993, pp. 62–73.
[6] A. Bender, J. Katz, R. Morselli, Ring signatures: stronger definitions, and constructions without random oracles, in: TCC06, in: Lecture Notes in Computer 

Science, vol. 3876, Springer, 2006, pp. 60–79.
[7] D. Boneh, X. Boyen, Short signatures without random oracles, in: EUROCRYPT04, in: Lecture Notes in Computer Science, vol. 3027, Springer, 2004, 

pp. 56–73.
[8] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted signatures from bilinear maps, in: Advances in Cryptology – EUROCRYPT 

2003, in: Lecture Notes in Computer Science, vol. 2656, Springer, 2003, pp. 416–432.
[9] D. Boneh, X. Boyen, H. Shacham, Short group signatures, in: Advances in Cryptology – CRYPTO 2004, in: Lecture Notes in Computer Science, vol. 3152, 

Springer, 2004, pp. 41–55.
[10] C. Boyd, E. Foo, Off-line fair payment protocols using convertible signatures, in: Advances in Cryptology – ASIACRYPT 98, in: Lecture Notes in Computer 

Science, vol. 1514, Springer, 1998, pp. 271–285.
[11] J. Camenisch, I. Damgård, Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes, 

in: ASIACRYPT00, in: Lecture Notes in Computer Science, vol. 1976, Springer, 2000, pp. 331–345.
[12] L. Chen, C. Kudla, K.G. Paterson, Concurrent signatures, in: EUROCRYPT04, in: Lecture Notes in Computer Science, vol. 3027, Springer, 2004, pp. 287–305.
[13] X. Chen, F. Zhang, H. Tian, Q. Wu, Y. Mu, K. Kim, Three-round abuse-free optimistic contract signing with everlasting secrecy, in: Proceedings of FC 

2010, in: Lecture Notes in Computer Science, vol. 6052, Springer, 2010, pp. 304–311.
[14] Y. Dodis, L. Reyzin, Breaking and repairing optimistic fair exchange from PODC 2003, in: ACM Workshop on Digital Rights Management, DRM 2003, 

ACM, 2003, pp. 47–54.
[15] Y. Dodis, P.J. Lee, D.H. Yum, Optimistic fair exchange in a multi-user setting, in: PKC07, in: Lecture Notes in Computer Science, vol. 4450, Springer, 2007, 

pp. 118–133.
[16] J.A. Garay, M. Jakobsson, P. MacKenzie, Abuse-free optimistic contract signing, in: CRYPTO99, in: Lecture Notes in Computer Science, vol. 1666, Springer, 

1999, pp. 449–466.
[17] J. Groth, Fully anonymous group signatures without random oracles, in: K. Kurosawa (Ed.), ASIACRYPT07, in: Lecture Notes in Computer Science, 

vol. 4833, Springer, 2007, pp. 164–180.
[18] J. Groth, A. Sahai, Efficient non-interactive proof systems for bilinear groups, in: EUROCRYPT08, in: Lecture Notes in Computer Science, vol. 4965, 

Springer, 2008, pp. 415–432, also at Cryptology ePrint Archive, Report 2007/155, http://eprint.iacr.org/.
[19] Q. Huang, D.S. Wong, J. Li, Y. Zhao, Generic transformation from weakly to strongly unforgeable signatures, J. Comput. Sci. Tech. 23 (2) (2008) 240–252.
[20] Q. Huang, G. Yang, D.S. Wong, W. Susilo, Ambiguous optimistic fair exchange, in: ASIACRYPT08, in: Lecture Notes in Computer Science, vol. 5350, 

Springer, 2008, pp. 74–89.
[21] Q. Huang, G. Yang, D.S. Wong, W. Susilo, Efficient optimistic fair exchange secure in the multi-user setting and chosen-key model without random 

oracles, in: CT-RSA08, in: Lecture Notes in Computer Science, vol. 4964, Springer, 2008, pp. 106–120.
[22] Q. Huang, D.S. Wong, W. Susilo, A new construction of designated confirmer signature and its application to optimistic fair exchange – (extended 

abstract), in: Proceedings of Pairing-Based Cryptography, Pairing 2010, in: Lecture Notes in Computer Science, vol. 6487, Springer, 2010, pp. 41–61.
[23] Q. Huang, D.S. Wong, W. Susilo, Efficient designated confirmer signature and DCS-based ambiguous optimistic fair exchange, IEEE Trans. Inf. Forensics 

Secur. 6 (4) (2011) 1233–1247.
[24] Q. Huang, D.S. Wong, W. Susilo, Group-oriented fair exchange of signatures, Inform. Sci. 181 (16) (2011) 3267–3283.
[25] Q. Huang, D.S. Wong, W. Susilo, The construction of ambiguous optimistic fair exchange from designated confirmer signature without random oracles, 

in: Proceedings of Public Key Cryptography, PKC 2012, in: Lecture Notes in Computer Science, vol. 7293, Springer, 2012, pp. 120–137.
[26] Q. Huang, D.S. Wong, W. Susilo, P2ofe: privacy-preserving optimistic fair exchange of digital signatures, in: Proceedings of RSA Conference, Cryptogra-

phers’ Track, CT-RSA 2014, in: Lecture Notes in Computer Science, vol. 8366, Springer, 2014, pp. 367–384.
[27] M. Jakobsson, K. Sako, R. Impagliazzo, Designated verifier proofs and their applications, in: EUROCRYPT96, in: Lecture Notes in Computer Science, 

vol. 1070, Springer, 1996, pp. 143–154.
[28] E. Kiltz, Chosen-ciphertext security from tag-based encryption, in: TCC06, in: Lecture Notes in Computer Science, vol. 3876, Springer, 2006, pp. 581–600.
[29] S. Kremer, Formal analysis of optimistic fair exchange protocols, Ph.D. thesis, Université Libre de Bruxelles, 2003.
[30] M. Liskov, S. Micali, Online-untransferable signatures, in: PKC08, in: Lecture Notes in Computer Science, vol. 4939, Springer, 2008, pp. 248–267.
[31] A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham, Sequential aggregate signatures from trapdoor permutations, in: C. Cachin, J. Camenisch (Eds.), EURO-

CRYPT04, in: Lecture Notes in Computer Science, vol. 3027, Springer, May 2004, pp. 74–90.
[32] S. Micali, Simple and fast optimistic protocols for fair electronic exchange, in: ACM Symposium on Principles of Distributed Computing, PODC 2003, 

ACM, 2003, pp. 12–19.
[33] J.M. Park, E.K. Chong, H.J. Siegel, Constructing fair-exchange protocols for e-commerce via distributed computation of RSA signatures, in: PODC 2003, 

ACM, 2003, pp. 172–181.
[34] G. Wang, An abuse-free fair contract signing protocol based on the RSA signature, in: Proceedings of 14th International Conference on World Wide 

Web, WWW 2005, ACM, 2005, pp. 412–421.
[35] G. Wang, An abuse-free fair contract signing protocol based on the RSA signature, IEEE Trans. Inf. Forensics Secur. 5 (1) (March 2010) 158–168.
[36] Y. Wang, M.H. Au, W. Susilo, Perfect ambiguous optimistic fair exchange, in: Proceedings of ICICS 2012, in: Lecture Notes in Computer Science, vol. 7618, 

Springer, 2012, pp. 142–153.
[37] Y. Wang, M.H. Au, W. Susilo, Attribute-based optimistic fair exchange: how to restrict brokers with policies, Theoret. Comput. Sci. 527 (2014) 83–96.
[38] H. Zhu, Constructing optimistic fair exchange protocols from committed signatures, Cryptology ePrint Archive, Report 2005/012, http://eprint.iacr.org/, 

2003.
[39] H. Zhu, F. Bao, Stand-alone and setup-free verifiably committed signatures, in: CT-RSA06, in: Lecture Notes in Computer Science, vol. 3860, Springer, 

2006, pp. 159–173.
[40] H. Zhu, W. Susilo, Y. Mu, Multi-party stand-alone and setup-free verifiably committed signatures, in: PKC07, in: Lecture Notes in Computer Science, 

vol. 4450, Springer, 2007, pp. 134–149.

http://refhub.elsevier.com/S0304-3975(14)00733-6/bib41736F6B616E536857613030s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib42616F57615A685A683034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib42616F57615A685A683034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib42656C6C617265526F3933s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib42656E6465724B614D6F3036s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib42656E6465724B614D6F3036s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F6E6568426F3034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F6E6568426F3034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F6E656847654C792B3033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F6E656847654C792B3033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F6E6568426F53683034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F6E6568426F53683034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F7964466F3938s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib426F7964466F3938s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib43616D656E6973636844613030s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib43616D656E6973636844613030s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4368656E4B7550613034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4368656E5A6854692B3130s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4368656E5A6854692B3130s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib446F64697352653033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib446F64697352653033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib446F6469734C6559753037s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib446F6469734C6559753037s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib47617261794A614D613939s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib47617261794A614D613939s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib47726F74683037s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib47726F74683037s1
http://eprint.iacr.org/
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F4C692B3038s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E675961576F2B303862s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E675961576F2B303862s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E675961576F2B3038s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E675961576F2B3038s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753130s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753130s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F5375313162s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F5375313162s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753131s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753132s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753132s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753134s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4875616E67576F53753134s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4A616B6F6273736F6E5361496D3936s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4A616B6F6273736F6E5361496D3936s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4B696C747A3036s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4B72656D65723033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4C69736B6F764D693038s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4C797379616E736B6179614D6952652B3034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4C797379616E736B6179614D6952652B3034s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4D6963616C693033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib4D6963616C693033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib5061726B436853693033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib5061726B436853693033s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib57616E673035s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib57616E673035s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib57616E673130s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib57616E67417553753132s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib57616E67417553753132s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib57616E67417553753134s1
http://eprint.iacr.org/
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib5A687542613036s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib5A687542613036s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib5A687553754D753037s1
http://refhub.elsevier.com/S0304-3975(14)00733-6/bib5A687553754D753037s1

	Ambiguous optimistic fair exchange: Definition and constructions
	Citation

	Ambiguous optimistic fair exchange: Deﬁnition and constructions
	1 Introduction
	1.1 Related works
	1.2 Our work
	1.3 Paper organization

	2 Ambiguous optimistic fair exchange
	2.1 Security properties
	2.2 Weak variants of security models

	3 Previous constructions revisited
	3.1 The ﬁrst try
	3.2 The second try

	4 Our generic construction
	4.1 The proposal
	4.2 Security analysis

	5 A concrete scheme without random oracles
	5.1 Assumptions
	5.2 Building tools
	5.3 High level description of our construction
	5.4 The concrete scheme and security analysis

	6 Conclusion
	References


