Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

8-2017

Sequence aware functional encryption and its application in
searchable encryption

Tran Viet Xuan PHUONG

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Willy SUSILO
Fuchun GUO
Qiong HUANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons

Citation

PHUONG, Tran Viet Xuan; YANG, Guomin; SUSILO, Willy; GUO, Fuchun; and HUANG, Qiong. Sequence
aware functional encryption and its application in searchable encryption. (2017). Journal of Information
Security and Applications. 35, 106-118.

Available at: https://ink.library.smu.edu.sg/sis_research/7339

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7339&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Journal of Information Security and Applications 35 (2017) 106-118

Contents lists available at ScienceDirect

INFORMATION

Journal of Information Security and Applications Rt

journal homepage: www.elsevier.com/locate/jisa

Sequence aware functional encryption and its application in
searchable encryption

® CrossMark

Tran Viet Xuan Phuong®*, Guomin Yang?, Willy Susilo? Fuchun Guo? Qiong Huang®

aSchool of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia
b College of Mathematics and Informatics, South China Agricultural University, China

ARTICLE INFO

Article history:
Available online 20 June 2017

Keywords:

Functional encryption
Hamming distance
Privacy preserving
Searchable encryption

ABSTRACT

As a new broad vision of public-key encryption systems, functional encryption provides a promising so-
lution for many challenging security problems such as expressive access control and searching on en-
crypted data. In this paper, we present two Sequence Aware Function Encryption (SAFE) schemes. Such a
scheme is very useful in many forensics applications where the order (or pattern) of the attributes forms
an important characteristic of an attribute sequence. Our first scheme supports the matching of two bit
strings, while the second scheme can support the matching of general characters. These two schemes
are constructed based on the standard Decision Linear and Decision Bilinear Diffie-Hellman assumptions.
In addition, we show that our SAFE schemes can also provide the additional feature of attribute-hiding,
which is desirable in forensics applications. Moreover, we give an interesting application of SAFE schemes

in constructing Sequential Aware Keyword Search (SAKS) schemes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Functional encryption, which is a general term for a range of
new public-key encryption systems including Identity-based En-
cryption [1,6,7,19,21], Attribute-Based Encryption [4,5,11], Predi-
cate Encryption [8,13,14,22], and Inner-Product Encryption [3,16,17],
gives a new way of viewing encryption. It has provided a promis-
ing solution for many challenging security problems such as ex-
pressive access control and searchable encryption, which tradi-
tional public-key encryption cannot solve.

This paper focuses on a special type of functional encryption
named Sequence Aware Functional Encryption (SAFE). The essential
property of a SAFE scheme is that a ciphertext CT encrypted un-
der a string V can be decrypted by a secret key corresponding to
another string X if and only if V and X have a ‘similar’ pattern.
For example, if V is a DNA sequence ‘GACTCAGT’, then both “GACT-
CACC' and “TTCTCAGT” can be considered similar if we allow dif-
ferent symbols to appear in at most two positions. The term “Se-
quence Aware” comes from that fact that the order of the symbols
in the sequences forms a key attribute in measuring the similarity.

SAFE schemes can be defined and constructed based on differ-
ent similarity metrics such as Hamming Distance, Edit Distance,

* Corresponding author.
E-mail addresses: tvxp750@uowmail.edu.au (T.V. Xuan Phuong),
gyang@uow.edu.au (G. Yang), wsusilo@uow.edu.au (W. Susilo), fuchun@uow.edu.au
(F. Guo), csghuang-c@my.cityu.edu.hk (Q. Huang).

http://dx.doi.org/10.1016/j.jisa.2017.06.002
2214-2126/© 2017 Elsevier Ltd. All rights reserved.

Longest Common Subsequence, etc. In this paper, we focus on
the constructions based on the Hamming Distance and propose
two SAFE schemes that can support matching test between binary
strings and general character strings, respective. As user privacy is
another important issue that must be addressed in many forensics
applications, privacy-preserving is another essential requirement in
the design of a SAFE scheme. In SAFE, this means if the decryp-
tion sequence does not match the encryption sequence, then no
information about the encrypted data or the encryption sequence
(except the fact of mismatch) should be revealed.

Similar to the “Fuzzy Identity-Based Encryption” proposed by
Sahai and Waters [19], a SAFE scheme naturally implies a ‘fault-
tolerant” IBE, and hence can be used in the application of IBE with
biometric-based identity. Since biometric data such as fingerprint
or DNA sequence is very sensitive personal information, it is desir-
able that this information associated with a ciphertext is hidden
from any party who cannot successfully decrypt the ciphertext.
Therefore, to implement an IBE using biometric-based identity, it
is more preferred to use a SAFE.

Our Contribution. Our goal is to define and construct secure
SAFE schemes under standard assumptions. More precisely, this pa-
per contributes towards the above goal via the following steps.

« We provide a formal definition and security model for SAFE
schemes. In particular, the security model can capture the prop-
erty of attribute-hiding (i.e., privacy-preserving).

http://dx.doi.org/10.1016/j.jisa.2017.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2017.06.002&domain=pdf
mailto:tvxp750@uowmail.edu.au
mailto:gyang@uow.edu.au
mailto:wsusilo@uow.edu.au
mailto:fuchun@uow.edu.au
mailto:csqhuang-c@my.cityu.edu.hk
http://dx.doi.org/10.1016/j.jisa.2017.06.002

T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118 107

« We first present a SAFE construction (named SAFE-1) for bi-
nary strings. Then we address the problem of building a SAFE
scheme for general character strings. For both schemes, the de-
cryption can be processed successfully if and only if the Ham-
ming Distance of two bit/character strings is equal to a value
k associated with a user’s key. In order to allow the matching
test in our SAFE-2 scheme, we also propose a novel technique
for computing the Hamming distance between two DNA strings
including four characters {A, T, G, C}. Extensively, we show that
our scheme can be used the general characters (in this case we
use English characters) for the computation of Hamming dis-
tance between two strings. We also prove the security of our
SAFE-1 and SAFE-2 schemes under two standard assumptions
- the Decision Linear assumption and Decision Bilinear Diffie-
Hellman assumption.

In addition, we extend our SAFE-2 scheme to a Sequence Aware
Keyword Search (SAKS) scheme, which allows a fuzzy matching
test between two (encrypted) DNA strings.

Related Work. A SAFE scheme may look very similar to the
“Fuzzy ldentity-Based Encryption” proposed by Sahai and Waters
[19]. In a Fuzzy IBE, a ciphertext created under an ID ' can be
decrypted by a private key corresponding to another ID w if the
set-overlap between w and w’ is above a threshold. Sahai and Wa-
ters also mentioned that a Fuzzy IBE based on the Hamming Dis-
tance can be built by following a similar technique. However, the
Sahai and Waters Fuzzy IBE requires the encryption identity to be
attached with the ciphertext, and therefore does not satisfy the
property of attribute-hiding. Cheung et al. [9] later proposed an-
other Fuzzy IBE scheme with the attribute-hiding property. How-
ever, their construction is under the composite-order group. Ac-
cording to the results in [10,12], pairing in composite-order group
is much more expensive (between 10 times to 192 times slower)
than that in prime-order group. Compared with [9], both of our
SAFE schemes are under prime-order group, and hence are more
efficient.

Another work that is closely related to ours is the Wildcarded
IBE (or WIBE for short) proposed by Abdalla et al. in [1,2]. A wild-
carded IBE allows wildcard symbols to appear in an identity used
in the encryption process, and the wildcard positions will be ig-
nored when measuring the equality of two identity strings. It is
easy to see that a WIBE scheme can also be considered as a SAFE
scheme where the similarity metric is defined via an equality test
supporting wildcard symbols. However, different from the ham-
ming distance, in WIBE, the non-wildcard symbols at the same po-
sition of the two sequences must be identical.

In a predicate encryption system [8,14,13,22] for a (polynomial-
time) predicate P, two inputs (besides some public parameters) are
required in the encryption process, one is the message M to be
encrypted, and the other one is an index string i. A decryption key
is generated based on a master secret and a key index k. The de-
cryption key can successfully decrypt a valid encryption of (i, M)
if and only if P(k,i) = 1. In this sense, a SAFE scheme can also be
treated as a predicate encryption scheme where the predicate P is
the similarity between i and k.

As one type of predicate encryption, Hidden Vector Encryp-
tion (HVE) schemes [15,18,20] can also be treated as SAFE schemes
based on equality test supporting wildcard symbols. However, in
HVE schemes, wildcard symbols will appear in the attribute string
associated with the user secret key rather than that of the cipher-
text. Recently, Waters [23] proposed functional encryption for reg-
ular languages. Using the terminology of predicate encryption, the
key index k is a Deterministic Finite Automata (DFA), while the in-
dex key i is an input for the DFA. The message can be recovered if
and only if i is accepted by k.

Organization of the paper: In the next section, we present the
definition, security models, and some preliminaries that will be
used in the rest of the paper. The SAFE-1 scheme for bit string
is then presented in Section 3, followed by the SAFE-2 scheme for
general character strings in Section 4. We then give the security
proofs for both schemes in Section 5. The Sequence Aware Key-
word Search (SAKS) scheme is presented in Section 6. We compare
and discuss in Section 7. The paper is concluded in Section 8.

2. Preliminaries
2.1. SAFE Scheme

Let 7, X be two vectors over a finite alphabet ¥ and have the
same length n. We define a predicate F = {f;|U € X} based on the
Hamming Distance of two vectors such that f;(X) = 1 iff Hamming
Distance (7, %) = k where 0 < k < n is a fixed integer.

Definition 1. A SAFE scheme based on Hamming Distance is
a probabilistic polynomial-time algorithms which has four algo-
rithms as follows:

- Setup(1*, n) on input a security parameter 1* and the vector
length n = poly(A), the algorithm outputs a public key PK and
a master secret key MSK.

Encrypt(M, PK, ¥ = (v1,V3,...,Vy)): on input a message M, the
public key PK, and a vector ¥ € X", it outputs a ciphertext CT.
KeyGen(MSK, X = (x1,X3,...,Xn), k): on input the master secret
key MSK, a vector ¥ e ¥, and an integer k < n, the algorithm
outputs a secret key SK.

Decrypt(CT, SK): on input a secret key SK (w.r.t. a vector X) and
a ciphertext CT (w.r.t. a vector ¥), if f;(X) =1 (i.e. Hamming
Distance (7, X) = k), the algorithm outputs a message M; oth-
erwise, it outputs L.

2.2. Security model for a SAFE scheme

Definition 2. A SAFE scheme based on Hamming Distance is selec-
tively secure if for any PPT adversary A, its advantage defined in
the following interactive game with a challenger B is negligible in
the security parameter A.

1. Init: A outputs two vectors 7, X € ¥ and an integer k.

2. Setup: The challenger B runs setup algorithm to generate PK
and MSK, then sends PK to A.

3. Query Phase 1: A can adaptively request keys for any vector
¥ € ¥ with the following constrain

« Hamming Distance (#,y) = k if and only if Hamming Dis-
tance (X,y) = k.

B responds to A with SK < KeyGen(MSK, ¥, k).

4. Challenge: A outputs two messages My, M; with equal length.
If My # M, then it is required that Hamming Distance (7,) #
k # Hamming Distance (X, y) for any y appeared in Query Phase
1. B flips a random coin b € {0, 1}. If b=0, B returns CT «
Encrypt (PK, U), My to A; otherwise, if b=1, B returns CT «
Encrypt(PK, X), Mq to A.

5. Query Phase 2: Phase 1 is repeatedly.

6. Guess: A outputs a guess bit b’ and succeeds if b’ = b.

The advantage of A in this game is defined as
Adv,(\) = |Pr[b’ = b] - % .

Full Security: In the above selective security model, the adver-
sary is required to commit the challenge vectors before seeing the
system parameters. In the full security model [16], the adversary
can choose the challenge vectors in the Challenge phase, which
makes the model stronger.

108 T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118

2.3. Bilinear map and its related assumptions

Let G and Gt be two multiplicative cyclic groups of same prime
order p. Let e : G x G — Gr be a bilinear map with the following
properties:

1. Bilinearity : e(u®, v?) = e(u?, v?) = e(u, v)®. for any u, v € G and
a,bezZp.
2. Non-degeneracy : e(g, g) # 1

Definition 3. The Decisional Bilinear Diffie-Hellman (DBDH) prob-
lem in G is defined as follows: given a tuple (g g% g, g5 T) ¢
G* x Gr, decide whether T = e(g, g)%¢ or T =e(g,g)" where q, b,
¢, r are randomly selected from Zp. An algorithm A has advantage
€ in solving the DBDH problem in G if

Adv;" () = PriA(*, g. 8%, 8. &, 2) = 11Z = e(g.)™]

— PrlA(1%, g g% g% g.2) =1|Z=g] <e.
We say that the DBDH assumptions holds in G if € is negligible for
any PPT algorithm A.

Definition 4. The Decisional Linear (DLIN) problem in G defined
as follows: given a tuple (g, g% gb, g%, g4, Z) € G® x Gy , decide
whether T = g?¢+®) or Z in random in G. An algorithm A has ad-
vantage € in solving the DLIN problem in G if

Advy"™N(0) = Pr{A(1* g, g% &b, g, g%, Z) = 1|7 =)]
- Pr[A(lk’g7gasgb’gaC’gd’Z) =]|Z:g’] <€

where a, b, ¢, d, r eg Zp. We say that the DLIN assumptions holds in
G if € is negligible for any PPT algorithm A.

2.4. Hamming distance

Lemma 1. Let v and x be two bit strings of equal length n, then
Hamming Distance (v,x) =Y 1, v;(1—=2x)+1x > x; where x =
X1,...,xp), v=(V1,...,Up).

Proof. Since
adb=a+b-2ab=a(1-2b)+b,VYa,be]0,1] (1)

we can compute the Hamming Distance (HD) between two bit vec-
tors v and x as follows:

n n n
HD(v,x) = ZU; DX = ZU,’(] —2X;) + (ZX,’).
i=1 i=1 i=1

3. SAFE-1 For bit string

We present our SAFE-1 scheme for bit strings in this section.
The new scheme achieves the attribute hiding property, and can
be proven secure under standard assumptions. Our scheme works
as follows.

- Setup(1¥, n): The setup algorithm first randomly
generates (g, G,Gr,p,e). It then chooses randomly
71, Y2, 01, 02, up, {ug o™ b {6y {E2diz ™ b wa, fw b
z1{z1,i}iz1" {22.i}iz1". 22 in Zp and g, in G. Then it selects a
random A e Z, and obtains {uy;}"i_1, {wy;}"i—1, Wa, uy under
the condition:

A = yiUp i — Yol i A = 01wy — Oy,
A = y1uy — yaus, A = 61wo — Gwy.
For i from 1 to n, it creates:

Uy =g Uy =g Uy =g", U, =g,

Wi =g W =g Wy =g W, =g,
Ti=g"T;=g»T=g"T,=g>
Z1i =810 =g%721=8".2, =g,
Vl = gyl*vz :gl/z.
Next it sets g; =g®,Y =e(g, g;), and the public key PK and
master key MSK as

PK = (g,G,Gr, p, e, g1, Y, {U1;, Uz, Th s, T,
Wi i Wa i, Zy 1, Zo Yy UL T Vi Xi izt ?)
MSK = (g2, {u1,i, Un i, b1is bis Wais Waii, 214, 22,1} i<,
{ui, ti, wi, 21, vi. 0;Yi21).
Encryption(PK, M, ¥ = (v1, V5, ..., vn)): The encryption algo-

rithm chooses random sy, s,, «, B € Zp and creates the cipher-
text as follows:

Cn=M-Y2,Co =82 C =g,
{Cri Gy = (U TV UL TAV,),
GG} = Uy TV, Uy T2V)
(Go. Gai = WZ2 X7 Wi Z2 X3P,
(G, Ca) = (WD Z2XP Wi zX P
Then ciphertext CT is set as:
CT = (G, G, G, {Cr.is Gt G, Caibiy s
{G.G.G.G)).

KeyGen(MSK, X = (x1,X5,...,Xn), k): The key generation al-
gorithm chooses randomly r;4, 1, for i=1 to n, and
f1. fo. 11,15 € Zp, and then creates the secret key as follows:

{Kl,i’KZ,i} — {g—}/zﬁ,igfl(]—zxi)“z.x"
g}’]ﬁ,ig—f](]—zxi)uu}’

{Kl’ KZ} — {g—}’zrlgfl(zxi—k)uz’
g}’]rlg*fl(zxi*k)ul}’

{](3,'.7](4,'.} _ {g’02r2.igf2(1’2)<i)w2‘x’
gﬁlrz‘ig’fZ(]*zxi)Wl,i}’

{1(37K4} — {g*@hgfz(Z"i*k’)wz7
g491 TZg*fz(in*k)Wl },

Ky = g - KUK 2K;7 K,

n

—ti et =21 22
HKU]' Ky 'Ky K
i1

n
Kz = g—(T1+rz) l_[g_(r1,i+r2.i).

i=1
The secret key is set as:
SK = (Kp, Kp, {K1 1, Ky 1, K3, Ka s,
{K1, Ky, K3, K4}).
Decrypt(SK, CT): Given a ciphertext CT associated with a string

V= (11,...,Vn) and a secret key SK associated with a string X =
(X1,...,%p) and hamming distance k, the decryption algorithm
returns

Cm
e(Ca, Ka) - (Cp, Kp) - l_[?ﬂ e(Cj. Kp) T, e(Cii. Kj.i)‘
Correctness: This correctness follows to the SAFE-1 scheme.

e(Cr i K1) = e(U T2V, g 7enigh(-2xtai)

= e(g g) e (g, g)Thven 2
-e(g, K; i)fl.iSZ -e(g, g)f1(1*2"i)“1.iuz,f$1

T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118 109

~e(g, g)f] vi(1-2x)ay, Ui
e(Cyi, Ka.i)

— e(UZSTiTZS,ZiVZVia ,gn Tl.ig—fl (1—2Xi)u1.i)

— e(g’ g)ﬁ.isluz.m . e(g’ g)rl.i'/iﬂt)/l Y2
(g, K> l.)fz.isz -e(g, g)*fl“*zxi)ul.iuz.isl
~e(g, g)_flui(l_zxi)ayzul.i.

2 n
[1]1eCi K

j=1i=1

n
= He(g’ g)rl.iS1A -e(g, g)flvi“*ZX,’)ozA
i=1

-e(g Ky)hi%2e(g, Ky)22,
e(Gr, Ky)
= E(UlSl TlsZV{",g—Vzrlgfl(in—k)uz)
= e(g g w2 (g, g)i(Cxi-kmuas,
e(g,g) N7z . e(g, g)iEx-karz
e(g ki)',
e, K2)
= e(US T2vg, grng=hiExi-louny
=e(g g2 . e(g, g)—fl (X xi—k)upuzs;
e(g, g . e(g, g)h (Cx-baram

-e(g,)%,
2

[Te.kp
j=1

= e(g’ g)f]S]A . e(g, g)fl (T x—kaA
.C(g’ K)t1sze(g’ KZ)[ZSZ)

Similarly:

4 n n

[T Te@i-Kii) = []eg &)=2 - e(g, gy -20FA

j=3i=1 i=1

€(8 K3 1) 1i2e(g, Ky)™
4

]_[E(Cj, Kj)

j=3
= e(g. 9)"12 - e(g, g (TxihpA
e(g, K3)%2e(g, Kg)™2.

Then we have:
4

n
[Te@i. k) [TeCpi Ki)
i=1

=1
= e(g Ki)"2e(g, K2)"*2e(g, K3)"*2e(g, Ka)™*

e(g. g1 %e(g, g) 4
e(g’ g) Cvi(A-2x)+Xxi—k) fia A

e(g, g) Cvi(1=2x)+>x—k) LA

n

[[ele K" e(g Ky)2
i1

e(g K3)" i%2e(g, Ky 1)%*
e(g. g)s1he(g, g)rs1 A,

Also, since

e(Ca.Ky) = e (gSZ .8 KK KK R

n

—tipr—taipr—21i =22
HKUI' Ky 'Ky Ky)
i=1

n
e(CB, Kg) = e<g$1A’ g—(T1+rz) l_[g—(r1v,-+r2j)>

i=1
Fig. 1 we have
Crn
e(Ca. Kn) - e(Cp. Kp) - [T7_1 €(C;. Kp) TT1y e(Ci. Kj)

M
= e(g, @) Cu-20+Lx—k (p+Hra)d

Therefore, the message M will be returned iff Hamming Dis-
tance (v,x) = k meaning > v;(1 -2x;) + > x;—k=0.

4. SAFE-2 For character string

In this section, we present our SAFE-2 scheme based on the
Hamming distance of two character (instead of bit) strings. The
major challenge here is that we cannot directly apply the Ham-
ming distance evaluation formula given in Section II-D for charac-
ter strings. In order to address this problem, we propose a new
technique for computing the hamming distance of two characters.

4.1. Hamming distance of character string

For simplicity, we demonstrate our idea using DNA strings
where the alphabet is {A, G, T, C}. Then each character in a DNA
string can be encoded as

A=00
G=01
T=10
C=11.

We should note that the idea can be easily extended to strings con-
sisting of characters from a different alphabet.

Let X and Y denote two characters that are located at the same
position in two character strings. We first calculate the Hamming
distance between X and Y by applying the XOR operation between
the two 2-bit strings corresponding to X and Y, and then obtain
the Hamming distance between two character strings based on the
Hamming distance of individual characters. Below we demonstrate
our technique using a concrete example.

Suppose that we have two character strings:

= (AT,C)
X=(C,G,A).

First, each character is converted to a bit string:

i =A=(0,0)
v =T =(1,0)
=C=(1,1)
X =G=(0,1)
% =T=(1,0)
X =A=(0,0)

Then, the Hamming distance between individual characters is cal-
culated as follows:

1-(ABG)=1-[1-(080)]x[1-(0a1)]
1

=1-0=
1-(TET) =1-1-(1eD]x[1-(0a0)]
—1-1=0

1-(CBA) =1-[1-(180)] x[1-(180)]
—1-0=1

110 T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118

2
[T(L = x;i =y + 2x;y)
i1

Hence, we can construct two vectors as :

(I=x; =y1 +2x1y1) - (1 = x2 = y2 + 2x2)2)

= l=xi—y1—x2—y2—2x0y + X100 + x1y2 — 2X1X0)2
+X0y1 + y1y2 = 2x1y1y2 = 2x100y1 = 2x1y1y2 + 4x10y1y2

xa =1, —x1,—1,-2x1,=x2, =1, =2x2, X1 X2, X1, =2X1 X2, X2, 1, =2x1, =2x1 X2, —2X1, 4X1X3)
Xz =, Lynyn, Lysya,ye, Ly, ya, Y1, Yiy2. Y2, Y1, YiY2, YiY2).

2

3)

Fig. 1. The algorithm to create two vectors to check the hamming distance between two characters.

Therefore, we have HammingDistance(¥,X) = 2. From the above
simply example, we can get the following Lemma.

Lemma 2. Let x and y be two characters from an alphabet where
each character can be represented using 2 bits, then Hamming Dis-
tance (x,y) = [T (1 = X; = yi + 2x¥).

Proof. Since

a®b=a+b-2abV¥a,be]0,1] (4)
we can compute the Hamming Distance (HD) between two bit vec-
tors x and y as follows:

2 2

HD(x,y) = [0 —xi®y) = [[(1 —xi —yi + 2xy0).
=1 i=1

Hence, we can derive a general formula to compute the Ham-
ming distance of two characters as follows. Given

A= (a1.az)
B = (b1.b)
we first construct two vectors following (3) and (4)
X = (1, —aq, -1, —2a4, —az, —1, —2ay, a1a, a,
— 2a1a3, a3, 1, —2ay, —2a1a,, —2a4, 4a,ay) (1)
Xg = (1,1,bq1,b1,1,by, by, by, 1, by, by, by, b1by, b,
b1, biby, biby) (ii).

Then
2
<Xap, Xp> = l_[(l — a; — b; + 2a;b;)
i=1
=1 —-(m®by)) x (1~ (a2 b))
= HammingDistance(A, B). (5)

4.2. Construction of SAFE2-scheme:

Based on the method for calculating the hamming distance of
two characters, we present our SAFE-2 scheme below.

- Setup(1¥, X, n): The setup algorithm first randomly
generates (g,G,Gr,p,e). It then chooses randomly
Y1, Y2, 01, 00, ug, {ug 3y b (e by (it o wa, fw b
z{z11}L1 {22}, 22 In Zp and g in G. Then it selects a
random A € Zp and obtains {uy;}I ;, {wy;}I ;, wa, u under the
condition:

A =yl — Yoy, A = 01wy ; — Ghwy
A = yiup — poug, A = 01wy — Grwy.
For i from 1 to n, it creates:

Uy =g Uy =g Uy =g", U, =g,

Wy =g"i W =g Wy =g W, =g,
=g T,=g%T=g"T=g?

Z1i =82 =871 =g".2, =g,

Vl =g}/1~v2=gy2-

Next it sets g; =g®,Y =e(g, g;), and the public key PK and
master key MSK as

PK = (g,G,Gr,p. e, 8. Y, {U1;, Uz, Ty i, T,
Wi Wa i Z1 4. Zo Y ict. AU T Vi Xibica?)
MSK = (g2, {uq,i, Uz i» b1 t2js Wi iy Wa i, Z1 4> 22, i1
{ui, ti. wi, i, v, 0i)%i21).

Encryption(PK, M,V = (1,75, ...,V's) € £"): The encryption
algorithm chooses random sq, 53, &, B € Zp. In v/, each vlf is con-
verted to a 2-bit string (aq, ay). Then it computes as in (i):

U,‘D:],Uh=—a1,Ul'2=—1,..., 1/1142—201,
Vi, = 40102,

Then a vector ¥ for ¢/ is created as

U= W1y s Vi V2gs s V2 s Ungs oo o, Unys).

Next, the ciphertext is created as follows
Cn=MY? C=g"CG=g},

(Cuij Goig) = URTRV U3 T,),

1,71,
G, G} = (U T2V UG T2V),
v B vi. B
{Gij Caij} = WPLZPX, " W2 X,)

(G, G} = (WhZxP Wz xF).
The final ciphertext CT is set as
CT = (Cn, Gy, G, G, G2, G5, Gy,
{{Crijr Caij> Gaiijy Cainj} 201D

KeyGen(MSK, x’ = (X(- X},xp) € T k): Choose randomly
ri1, T2 fori=1ton, and fi, fo,11.12 € Zp. In ¥, each x is
first converted to a 2-bit string (bq, by). Then it computes as in
(ii):
Xip=1,%,=1,x,=b1,.... Xy, =biby,
Xijs = b] b2
Then a vector X is created as follows
X= (X152 X135, X200 X215 s Xigs -+ -, Xy)
Next, compute
{Kiij. Kaij} = {gronigh¥tar grnighiy
(K, Ky} = (g renghhm gringh(-luy
{Ka i, Ky} = {g0righmsi ghmigh iy,

T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118 111

(K3, Ks)} = {g—921‘2gfz(—k)wzyg911’2g—fz(—k)W1 1,
Ky = g - K"K, 2K 7 K, ™

n

—Ui =i pr—21i =22
HKI,i‘j K2111<3l] K4l] ’
i=1

n
Kz = g—(r1+r2) Hgf(ﬁﬁrz.i).
i=1

The secret key is set as
SK = (Ka, Kp, K1, K3, K3, Ky,
{{K1.i.j. Kaioj K. j Kai 3 120 30)-
- Decrypt(SK, CT): Given a ciphertext CT associated with a string

VvV =1,....”y) and a secret key SK associated with another
string X' = (x'1,...,xn), the decryption algorithm works as fol-
lows.
Z = e(Ca, Kn)'® - e(Cp, Kp)'®
4 n 15

JTe@. kT]eCij Keij):

t=1 i=1 j=0

Cm
M=

Z

If two characters v; =/, then the inner product < #;, X; >=0.
Otherwise, if two characters v} # x{, then < 7;, X >= 1. There-
fore, the message M will be returned iff Hamming Distance
(V'.x') = k meaning 31, (Y12 viXi) —k=0.

5. Security proof of SAFE-1 and SAFE-2

Theorem 1. Assume the Decision Bilinear Diffie-Hellman assumption
and Decisional Linear Assumption hold in group G, then our SAFE-1
scheme is secure.

To prove the security of SAFE-1, we consider two cases My = M;
and MO #* M].

In the case My = My, we only consider the following game se-
quence from Game; to Games. In this case, we only prove the
property of attribute hiding. For the other case My # M;, we need
to consider the whole proof from Game, to Gameg. Below we first
give a high level description of each game. In each game, we sepa-
rate the vector used to generate (C; ;, C; ;, Cy, C3) from the vector
for (G5, 4, Cy, i C3, C3). However, the same vector is used for both
parts in Gamey and Gameg.

Game : The challenge ciphertext CT is generated under (7,)
and My. The ciphertext CTy is computed as follows:

(Mo -Y™%,8%, g7,

S1 TSV 7181 TS2y Vi n
{Ul,iTl,ivl ’UZ,iTZ.iVZ }i=1’

wizp X Wz P

U TV U3 T,
wizexP wszexbh)

Game; : The challenge ciphertext CT; is generated under (¥, ¥/) and
a random message R € Gy. The ciphertext CT; is computed as fol-
lows:

(R.g2.g.

S1 TS/ Vi S1 TS27Vid\n S1TS21/ S1TS21/
U TV U LV, L AUy TV U TPV)

Wz X W Ze X PN W Ze X Wy 23 X]Y)
Game, : The challenge ciphertext CT, is generated under (¥, 0) and
a random message R € Gt. The ciphertext CT, is computed as fol-
lows:

(R.g2.g.

{USPTSZ,VV"O‘ US TS2yvieyn

S1TS21/0 S1 S22
1,i°1,i°1 2,i72,i'2 Ji=1 Ul Tl Vl ’U2 TZ V2 }’

Wz WolZs i, W Ze Wy Z3)

Game; : The challenge ciphertext CT3 is generated under (¥, X) and
a random message R € Gr. The ciphertext CT3 is computed as fol-
lows:

(R.g". g
(U Ty U Vs By AUY TRV U T2V,

Wz X P W Zs X PN WD 2 X Wa 25 X))

Game, : The challenge ciphertext CT, is generated under (0, X) and
a random message R € Gr. The ciphertext CT,4 is computed as fol-
lows:

(R.g>.g.
UF T U T U] T3 U T2,
WRZe X2 W Zg XYLy W 2o Xl W ZX])

Games : The challenge ciphertext CTs is generated under (X, X) and
a random message R € Gr. The ciphertext CTs5 is computed as fol-
lows:

(R.g”.8),
(U TV, Ugt TaVo ™ i AUy TV Uy T Vs,
WiZe X0 P W Ze X PV (W 2] W3 Z3 X))

Gameg : The challenge ciphertext CTg is generated under (X, X) and
message M; € Gr. The ciphertext CTg is computed as follows:

(M -Y™2, g% g}
{USL T2V USITSRVNn | (USITRVE USTRVE),

1i 1, 2,i°2,i
WiZe X3P W Ze X PV W 2] W 23 X))

5.1. Indistinguishability between Game, and Game;

Suppose that there exists an adversary .4 which can distin-
guish the two games with a non-negligible advantage ¢, we con-
struct another algorithm B which uses A to solve the Decision
Bilinear Diffie-Hellman problem also with advantage €. On input
(g, A=g" B=gb C=g7) e G4, B simulates the game for A as
follows.

Setup: B selects random elements y{, ¥, 01, 6, A, U7,

{ur iy o (g (el o wa, {we bl

z1{z1,i}1 . {22} 1. 22 in Zp. Then it selects a random A € Zj to
obtain {u;}! ;, {wy;}I{, Wy, up under the condition:

A = yiUy i — Yaly A = 01wy — Oawy ;.
A = yiuy — Yo A = 01wy — Oawy.
Then for i =1 to n, B sets:
Ui =g" Uy =g", Uy = g%, Uy = g,
Ty = (&)""ght, Ty = (g°)gh,
T = (g)'rghi Ty = (g°)72g",
Wi = g"i Wy =g Wy, = g"1, W, = g"2,
Zyi= (@) g,z = (&) g
Zyi = (&) g2, Z,(g") " g™

and
Vl =g}/],V2 :gVZ’Xl :g9]9X2 :g92
g =g%Y=e g " e@et

Each public key component is distributed properly following the
random exponents:

ti=Uvyib+tii i =vyab+ by,

112 T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118

Zi = vithb+ 211,25 = vithb + 2,
t_1 =)/1b+t],t_2 =)/2b+t2,Z_] = 91b+Zl,Z_2 = 92b+22,
g =g g

Key Generation Phase 1 & 2: A issues private key queries for
vectors. Consider a query for a vector y= (¥1,...,yn). A can re-
quest the private key query as long as > y;(1 —2v;) + (Q_v; — k) =
cx # 0.

B picks random exponents {ry;}!,, {r;}l_;, and f], f5. 11,12,
Then B computes:

K= g—yzmg(ﬁﬁ{)(1*2yi)uz.i
— g%(1*2.Vi)u2.ig*)/2r].igf1/(]*ZYi)UZ.i
= g (7 K

K = gym.ig—(ﬁ#{)(l—ny)u1,.-
— g—ﬁ(1—2}’x‘)”1,ig)/1r1,fg—f{(1—2yi)ul_i
=g HOK

Ky = g7n g<ﬁ+f;)<2y;—k>uz
= g (XY g—yan gff (Cyi-kouz
— g Ty g1,

K, = ghnig-Ga i Eyi-m
— g2 Cybt gyn o= i (Cyi—kou
— gfﬁ(Zyﬁk)ul vKé,

which implicitly sets: f; = % + f{. Next B computes:
K3 = g—gzrz_ig(ﬁ-*-fﬁ)“—2)’i)Wz,i
— g%“*zﬁ)wlig—ezrz.igfz/(1—2}’1)W2.i
— gﬁ(FZJ’x)Wz;i 'Ké.i'
Kyi = g491Tz.ig—(ﬁ-*-fz/)(l—Z}’f)W].f
— g—ﬁ(1—ZYi)Wl.igb’lTl_,vg—fz’(l—Zy,)w“
— g—ﬁ(l—zm)wl.i . K‘/“
K3 — g*92r2g(ﬁ+f2/)(zy|‘*k)wz
— gﬁ(ZYi*k)W2g79zrzgf2'(Z)’i*k)Wz
— gﬁ(ZYi*k)Wz ~K§.
Ky = g91T2g*(ﬁ+fz')(Zyl'*k)W1
— g*ﬁ(Z}’i*k)ngylng—fé(ZYi—k)uz
— g*ﬁ(ZJ’i*k)ul 'Kz/l’

which implicitly sets: f; = % + f}. Then Kg and K, are computed
as:

n
Kz = g—(r1+r2) l_[g—(r1.i+r2,i)
i=1

n — — P —
Ky = & [] K KK K,
i=1
i -T2 -2
Ky VK7 K K™
For K4, we can compute
K;FK;EZ — (gﬁ(1*ZYi)u2,i ,K{’i)*m
.(gfﬁ(ldyi)ul.i ,Kii)fm
— (g%(1*2”)“21)—(ViVIb‘HLi) . (I({j)_?,i, (Ké,i)—ai
.(g*%(]*Z.Vi)ul,i)*(viyzb*[l,i)
— g*%%(1*2%)(1/1“2,{*}’2“1.1) . (K{’i)*m, (Ké.i)*a

gﬁ (1=2yp) (W itz =z jt1 1)

— g*%Ui(]*%ﬁ')gﬁ(1*2)’1')(“1_:'[2,1*“2.1'[1,1')
,(K‘;'i)*tl.i . (Kii)*fz.i_
K;EKEE - gﬁ(lﬂm)uz _K]/)fﬁ. (g*%(1*Z.Vi)ul ,Ké)fﬁ
_ (gﬁ(ZYi*k)uz.i)*(Vlerf]) . (K{)fﬁ_ (Ké)fE
(g*%(ZYﬁk)Ul)—(V2b+[1)
— g—%@yf—k)murnuﬂ . (I({)*E- (Ké)fﬂ
gﬁ (X yi—k) (urtz—uaty)

_ g By g (SR @it on)

-t —Htigbig-t -
(KT (Ky) K MK KRG
— g*%(Vi(1*ZYi)+Z.Vi*k)gﬁ(l*ZYE)(ul.itz.i*uz.itl.i)
gﬁ Cyi—k)(uity—uaty) | (Kl,l)_m . (Kél)—a
(KD (g
Similarly, we can compute
~Z1i =22 =71 Jr—22
K3J,1 KA“2 KK, ™
= (K3)75 (Ky)72 (K3) 77 - (K722 -
gﬁ (1-2y;) (W1 i23,1~W2,i21.i)
gﬁ (ZYi*k)(Wﬂz*th)gf%(vi(l—Zyi)JrZyi—k).

Since g, = g®2g* then K, can be computed as:

n
Ky = g}n l—[gﬁ (1-2y;) (uy it i—Uy ity +W1 iZ2 i—W2,iZ1)
i=1
gﬁ (Cyi=k) (uta—taty +w1 2 =Wz) | (K]"i)*?.i
(K)R (KD (Ky) R (K TE L (KY) R
(K3)70 (K)72,
B gives A the private key:
(Ka, K, {Kq 1. K31, K3 1, Kg i3] (K1, Ko, K3, Kg}) - for the
vector y.

Challenge Ciphertext: To generate a challenge ciphertext, B
picks random s, o', 8’ € Zp. B implicitly sets:

SK =
queried

si=s).sa=ca=-bc+a’,f=-bc+p.

Then B sets A =g¢ = g%2, B =gh% =gs1‘. For i from 1 to n, B com-
putes:

Gi= (gh11)%1 ((gh)Vin ghi)Cglivi (=beta’)

— [JS1 TS2/ Vi
_Ul,iTl,ivl

Gpi = (g21)% ((gh)vivaglei)cgtiva(-bere’)

— [JS1 TS2/Vi%
_UZ,iTZ,iVZ

Ci = (g)" ((gh)gh)‘gn here) — UsiTRye
G = (g2)" ((g0)r2gh) gr-here) — U T2V
Gy = (V)51 ((g0)Vith ghri)cglidr(~betp)

$1 752 vUif
:leizl%ixl

Cyi = (gW2i)s ((g'l7)vi92g22,i)Cguiez(_bc+ﬂ/)

v
= Wzs1 izgz,ixz

G = (") (&) "g") 8") — Wy Zpx]

Co = ()" (()2g) g) — w5 zpxy.
Next B computes Gy, = Z2 - e(g, g)* - My. If Z = e(g, £)% the chal-
lenge ciphertext is distributed in Game,, otherwise if Z is ran-
domly chosen in G, then the challenge ciphertext is distributed in

Game;. Hence, if A can distinguish these two games, B can solve
the DBDH problem.

T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118 113

5.2. Indistinguishability between Game; and Game,

Suppose that there exists an adversary A which can distinguish
these two games with non-negligible advantage €, we construct
another algorithm B which uses A to solve the Decision Linear
problem with advantage €. On input (g, g% gb, g%, g%,7) € Gg, B
simulates the game for A as follows.

Setup: B selects random elements y1, ¥, 01, 65, A, Uy,

{ur by, o {ed i e o wa {w by

z1{z11}1.1. {z2,i}1_ ;. 22 in Zp. Then it selects a random A € Zj to
obtain {uy;}! ;, {wy;}I ;. W, up under the condition:

A = yiuyi— Yoty A = 01wy — Oawy
A = y1uz — yaus, A = 61wz — Gwy.
Then for i =1 to n, B sets:

Ui = (g)"1, U = (g9)", Uy = (87",
Ti=gv. T =g"T,;=g>T,=g2U, = (g)"

Wi = (g™ Wy = (g™ (g™,

Wh i = (8%)"2i (") Wy = (g)"2(g")™,

Zy; =g Zy = g1 ()N, 2y = g2 ()P,
Z,=g2(@) Vi =g Vy =g Xy =g,
Xo=g"g1=@EY".8=2"

Each public key component is distributed properly following the
random exponents:

Ui = auq g, Up = auq, Uy ; = AUy j, Uy = AUy,

Wy = awy; + 01bv;, wi = aw; + 6b,
W_Z,i =awy; + 6,bv;, wo = aw, + 6, b,
Zi,‘ = Ui91b + 21, Z_1 = 91’) + 21,

3 = Vibhb+ 254, 2; = b + z;.
Key Generation Phase 1 & 2: A issues private key queries for vec-
tors. Consider a query for a vector ¥ = (¥1,...,¥n). B picks random
exponents {r;j},f;], {ré,i T, and fy, fo, 7}, 15,. Then B computes:
Ky ; = g2 Cui0=2ybir) gfi (1-2yta,

— gVZUi(I*Z.Vi)bg’}Qr;.igﬁ (1-2yi)uy

— gyzui(l—Zy,»)b . Kfr
Ky ; = g (ui=200b+1i) g fi (1-2y)u

— g—ylvi(l—ny)bgyzrﬁ_ig—fl(1—2y1)u1‘.-

= g rvid-2yb. Kﬁ,r
Ky = g 12 (Cyimkbir) ofi (Tyi-kouz

=gh (nyk)bgﬂzr{ gf1 (XCyi—kuz

= gr(Cyi=b g1
Ky = gnCEyimk)tr) g=fiyi-lou

— g N (Ey-hbgrar g fi(Tyi—kou

— g nEyi-kb g1
which implicitly sets:

ri=—1=2y)vb+r] ;1 =—(Cyi—kb+r].
Next B computes:

K= g_ez(vi(l_Zyi)b‘*'aré.,’)ng(1*2}’1')W2.i
— g*ezvi(l*ZYi)bg*J/zré_,-agfz(1*2%)“2.1
—6,v;(1-2y;)b !
=g Vi (1-2y;) 'K3,i-
K4,i — gﬁl (Ui(‘l*zy;)bJraré_,)g—fz(l—ZYi)Wl_i
— g91 Vi(l*2J/i)bg'920r§jg*fz(1*2)’|‘)W1.i

— ggﬂ/i(l*ZJ/i)b . KA .
i

K = g*ez((z}’i*k)bﬂlré)gfz(ZJ/i*k)Wz
— *92(Z}'i*k)bgfﬂzarégfz(ZYi*k)W2
— g Cyi-lb Kj.

Ky = g51((Z}'i*k))ﬂlré)g*fz(ZYﬁk)M
— gH] (Z}’i*k)bgl/zarﬁgffz(Z)’i*k)wl

—k)b

— gﬁl(Zy)b Kz/17

which implicitly sets:

;= 1- Zy,')l)ib + arévi, Iy = (Zyl — k)b + aré.
Then Kz and K4 are computed as :

n
Kz = g—(rl'H’z) Hg—(fu'*"‘z.i)
i=1
— g—(—(Z%‘—k)bﬁ-Tﬁ+(ZYi—k)b+aT§)

n
ng— (=(1=2ypvib+r} +(1-2y)vib+ary ;)
i=1
n
= g—(rHar’z) Hg*(ri,ﬁaré.i).
i=1
n —
=i pr—t1 pet2ipr—ta jr—21i pr—21
Ky = g l_[K”1 K1 1K2J.K2 2K3.,'] K3 !
i=1
Ti-Z5
K4,i K, 7.
For K4, we can compute
1(1*?1»1’1(;2-}'1(1*[1 Kéz = g revi(1=2y0bty; gy (1-2y) btz
i i
,g*Vz (Zyl'*k)bflg)/l (X yi—k)bt,
(K]0 (K) - (KO - (K)o
—Z1i =22
I<3,i K4.i
— g*ez(viﬂ*ZYi)b)(*Zl.i*%bvi)g(*ezaréj)(*hﬁ@bVi)
g(fz(1*2Yi)Wz.i)(*Zl.i*91bvi)
g(*fz(1*ZJ’;’)WLi)(*Zz.i*ezbvi)
g31 ;1 72Yi)b)(722.i’92bvi)g(91uré‘l)(’ZZ.i’Qvax)
— g*(vl(1*ZYi>b+ar£.i)Ag(f2(1*Zyi)WZ.i>(*Z].i*01bUi)
g(*fz(1*ZJ’i)Wl.i)(*Zz.i*@bUi).
K;ZK;Z — g*92(ZJ’i*’<)b(*Z1 *91)g(*9zﬂr§)(*21*91b)
g(fZ(Z.Vx*k)WZ)(*Z] *elb)g(*fz(zyi*k)wl)(*22*0217)
g91((Zyi—k)b)(—zz—ﬁzb)g((?laré)(—zz—Ozb)
— g*((z}’i*k)bJrUTé)Ag(fz(Zyl'*k)wz)(*zlfglb)
g(*fz(z}’i*k)wl)(*Zz*gzb).

Since g, = g* then K, is computed as :

n
Ky = g)\ Hgf]&“i“*z}’i)btl.ig}/]Vi(lfz}’x‘)hfz.i
i=1
g*Vz(ZYi*k)bflg}’l (X yi—k)bt,
(KT)~ (K)~ (K™ - (Kg) ™
g—(i/i(1—ZJ’i)b‘*'UTé_,-)Ag(fz(1—ZYi)Wz.i)(—ZLi—leVi)
g(_fz(1_ZYi)Wl.i)(_ZZ,E_GZbUi)g(_fZ(Z)’i_k)wl)(_Zz_ezb)
g—((ZYi—k)b'*—ﬂTé)Ag(fz(ZYi—k)Wz)(—21—9117).
B giVeS A the private key SK = (KA, KBv {Kl,l'v Kz’,', K3,iv K4.i}?:] s {K] s
K5, K3, K4}) for the queried vector y.

Challenge Ciphertext: To generate a challenge ciphertext, B
picks random s/, &’ € Zp. B implicitly sets:

s1=658=da=auo

114 T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118

Then B sets: A=gd =g%2 B= (g%)4 =g’11. For i from 1 to n, B
computes:

Ci= (gaul.I)C(gd)tl‘igViyl (o) _ UlsjiTiziVl“i“

Gi = (g™2)° (gh)igh @) = U3 T2V}

G = (@) (gHhgn @ = U TRV

G = (g")% (g)1gn @) = Uy T,2vy .

Next B computes for i from 1 to n:

Gy = (8™1) (g Mz Cyy = (g™2) (g1 2%

G = (@) (@g)"Z%, Cy = (g™)(g)" 2"

If Z = gh+®g" for r chosen randomly in Zp, then B is simulating

Game; with g =r:

Coi = () (g (g r) = Wiz X

R Wi
Cai = (™) (g2 (&g um = Witz X
G = (@) (g (@ Vg =W ZpX]
Co = (™) ()" (& Vg =Wy Z3X]
If Z = gh+d | then B is simulating Game,
Cai = (@) (g1 (") = Wiz,
Cai = (gi)(glya (@) =Wz
Gy = (g™ (@) (@) =wyzy
Ca = (g™) ()™ (D)% = Wy'Z3.

Therefore, if A can distinguish the two games, B can solve the DLIN
problem.

5.3. Indistinguishability of Game, and Gamejz

Suppose that there exists an adversary A which can distinguish
these two games with a non-negligible advantage ¢, we construct
another algorithm B that uses A to solve the Decision Linear prob-
lem with advantage €. On input (g, g% g, g%, g%, Z) € Gg, B simu-
lates the game for A as follows.

Setup: 3 selects random elements y{, ¥, 01, 6, A, Uy,

{u 37, o {0 e s s w, {w iy,
z1{z11}L. {221}, 22 in Zp. Then it selects a random A € Z) to
obtain {uy;}" ;. {wy;} ;. w2, up under the condition:
A = Y1ty — yally i, A = 01wy — Gawy .
A = y1uy — yauy, A = 61wy — Ghwy.
Then for i = 1 to n, B sets:
Ui = ()", U = (8)", Uy = (8)", Uy = (7)™,
Ti=g"T=g"Ti=gT=g"
Wi = (€)W Wy = (g™ (g™,
Wh i = (892 (") Wy = (g)"2(g")™,
Zy; = gni(@)h, zy = g (g™,
Zy; = g2i(gh), Z, = g2 ().
Vi=gh Vh=gn X =g" X, =g",
gi=@E""a=g"
Each public key component is distributed properly following the
random exponents:
Ui = auy;, Uy = auy, Uz = Al il = ally,
aws ; + 61bv;, wy = aw; + 6, b,
Wy = awy; + O1bx;, Wy = aw; + 0, b,

Wi

Zi,‘ = U,‘@]b + 21, Z_] = H]b + 24,

Zi,‘ = U,‘@zb + 23, Zy =6,b+2z;.

Key Generation Phase 1 & 2: A issues private key queries for
vectors. Consider a query for a vector y = (y1,..., ¥n). Notice that
A obeys the restrictions defined in the model. That is > v;(1 —
2y;)+ Y. ¥i—k=0mod p if and only if > x;(1 -2y;))+ > yi—k=
0 mod p. There are two cases we need to consider.

«Case 1@ Y vi(1-2y)+Xyi—-k=0=3x(1-2y)+>yi—
k=0mod p. In this case, B picks random exponents
{r 4, {rh 3L, and fi, fo, 17, 15.. Then B computes:

Kii= g7y2(71)!'(172.Vi)b+r;j)gf1(172.Vi)u2,i
— gJ/ZVi(l—Z}/i)bg—Vzrﬁjgﬁ (1=-2y)uy;
— gyzvi(l_z}/i)b . K{]

K= gy]<—V1(1_2yi)b+r;vi)g*fl(1’2%)“1.1'
— g*}’lviﬂ*Zy,')bg)/zri,ig*fl(1*2%)”1.1'

—y1v;(1=2y;)b

=g y1vi(1-2y;) 'Kéj-

K = g*)’z(*(ZYi*k)bJrTi)gf](ZJ’i*k)uz
— g}’z(ZYx*k)bg*)/zTigfl Cyi—kuz
— g}/z(Zyﬁk)b . K{.

Ky = g Eyimktm) gh (Cyi-ku
=g (Z}’x‘—k)bgyzfﬁ gf1 Cyi—ku
— g—)/l QCyi—k)b | Ké’

which implicitly sets:

ri=—1=2y)vb+r{ 1 ==y —kb+r].
Next B computes:

Kz = *92(?‘{(1*25’i)b+ﬂr§_,v)gf2(1*2}’1’)Wz,i
— g*azxi(l*2yi)bg*)/2r£.,-agf2(1*2%')“24
—6,x(1-2y,)b
_ 2% (1-2y;) 'Ké,i'
1(4'_ — g-91 (Xi(1—2J’i)b+aT§_l)g—fz(1—2J’i)WLi
:g'91xi(l*2}'i)b 2ar§jg—f2(l—2y,‘)w]_,-
(1-2y,)b
=g'91x(Vi) KZ/“
K5 = g*ez((Z}’i*k)bJrClrﬁ)gfz(Z}’i*k)Wz
— *02(Zyl'*k)bgfezarégfz(ZYi*k)Wz
— g (XZyi—lb Ké.
Ky = gﬁl((Z)’i—k))-%-aré)g—fz(z}’x—k)wl
— g31 (Z}’i—k)bglfzarﬁg—fz(Z)’i—k)Wl
—k)b
2851(25’) _K‘/p
which implicitly sets: rp; = (1 —2y;)x;b + ar;)i, rn=0y-

k)b + ar).
B also compute K, and Kg as follows.

Kg = g—(rl'H’z) ﬁg—(flj'*'rz.i)
i=1
— g—(—(ZYi—k)b-*—T{+(ZYi—k)b+aT§)
ﬁg—(—(1—2yi)v,-b+r§_i+(l—2y1-)x,-b+ar;_i)
i=1
— g(zUi(l*ZYi)JrZYi*k)*(in(1*2%)*2%*@

n
g ritan) l_[g*<r§.,-+ar£.i)
i=1

n
= g [g oo,
i=1

T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118 115

n — g na(Xyi-bb g7
it e =g Ky,
Kn = & [[KK KK 2

ie1 which implicitly sets:
i T T -T2
Ky T K TR K. ri=—c(1=2y)vib+ 1} .11 = —c(Q_yi—k)b+1}.
For Ky, its components are computed as follows: Next B computes:
K;;l.ikzilfz,iKlfn K;Q K3 = g—ezcv(xi(l—2y,-)b+ar§v,.)gf2(l—2y,-)w2_i
:g*)’zviﬂ*ZYi)bfl,igﬂ/lUi(1*2}’i)bfz.i _ 792c,,x,‘(172y,»)bg7)/zr§‘iﬂgfz(1*2%)“2.:’
.g*Vz(Z)’i*k)bﬁg*Vl (X yi—k)bt _ g—Ozcl,xi(l—Zyi)b . I<§_1'~
(K7)T (K)T (KT () TR Ky = ghonti(-20brar) fo(1-2ywi,
1<3*_f71<;? = O (1-20)bghhar; o fs (1-2y W,
— g 025 (1-290b) (~21-61) = ghox(=20b |
g(*ezaré_,-)(*ﬁ_i*@lbvi) K = g—02(cv(Zy,v—k)b-#aré)gfz(Zyi—k)wz
g(fz(1—2y,-)Wz.f>(—zl_i—91bvi) _ —OZCV(Zyi—k)bg—Ozar’zgfz(Zy,v—k)wz
g(7f2(l*}’i)Wl.i)(*Zz.i*Ovai) = g a(Xyi-lob Ké.
gl (i(1=2y)b) (=22,=0>bvi) Ky = gha(Cyi)+ary) g=f(Xyi—low:
gthan)(=22i=62bv)) = g (TyKbgrar, g (L yi—kowy
— g*(l/i(l*ZJ/i)bJraré_,')Ag(fz(1*ZYi)Wz_i)(*Zl,i*01 bv;) — ggﬁv(zyl‘*k)b . K‘/l’
g(*fz(l*Zy.')WLi)(*Zz.i*szvi) s ..
o which implicitly sets: rp; = cy(1 = 2yp)xib+ary ;. 12 = (X yi —
K37K, k)b + ar}. Then Kp and K, are computed as follows:
— g (X yi—k)b(-21-6)g(*ezafé)(*ﬁ —01b) n
g(fz Cyi—kyw) (=21 -6 b)g(*fz(ZYi*k)Wl)(*ZZ*GZb) Kg = g*(r1+r2) l_[g’(rl.ﬁ’rz.i)
g91 (X yi—k)b)(-z2 *92b)g(91 arh)(—z;—6,b) i=1
= g (Cyikbta) Ag(f(Lyi—kws) (~21-61b) = g~ Co@ybbintaEyi—ibtan)
n
g(—f2(2yi—k)w1)(=22-0;b) 1_[g—(—cx(l—2y,‘)v,b+r;‘i+cu(1—Zyi)xib+arg_i)
Since g, = g* then K, can be computed as: i=1
n — g(cx(zvi(l_ZYi)+ZJ/i—k)—Cv(in(1_ZYi)+Zyi_k)
Ky = —yaVi (1=2yp)bty g1 (1-2y;) bty ; n
W =g Eg g g (rvar) ngf(r;ﬁar;.,.)
.g*V2 (X yi—k)bty g)’] (X yi—k)bty i=n1
~(K]"i)’”" . (Kii)’t“ S(KpDTh (KGR = g (ri+ary) Hgf(riﬁﬂré.;),
,g—(xf(172yi)b+ar§,,-)Ag(fz(1—2y.-)Wz.,-)(—zl_i—91bv,-) i=1
(—Fo(1=-2y)w1) (~22,1~0>bv;) L .
g 1 2.i—t2 Ky = o l_[K1 :uK]—ﬁ K2 52.1K2—t2
,g*((ZYi*k)bJraré)Ag(fz(zyl'*k)wz)(*21*9113) i1 '
o= (X yi—k)w1)(=z2—0,b) iy-T 22—
g . KKK, K
B gives A the private key SK = For K,, the components are computed as follows:
(KA, KB, {K]’,', K2,iv K3.i’ K4,l'}?:] s {Kl s Kz, K3, K4}) for the queried —tyi pr—tai =ty 17—t
vector y. K VKKK
« Case 2: > v;(1-2y;)+XY.yi—k=cy#0 and > x;(1-2y;)+ = g 262yt i g1 6 (1-2yp)bta
>yi—k=cx#0. In this case, B picks random exponents g V2o (0ot g6yt

{rr 30 {r) 3, and fy, fo, 1), 15,. Then B computes:
Litiz1 V2,iti 172 (K)T (K)7 (KT (Ky) T

—Z1ijr—22i
I<3,i I<4.i
— g~ 0200 (xi(1-2y;)b) (=21 ;—61 bx;)

K= g*)/z(*vai(1*2J’i)b+Tibi)gf1(1*2%)”2,1
— gyzcxvi(l—Zyi)bg_yzrq_igfl(1—2J’i)u2.i
g)’szUf(l—z}/i)b . K{z

(=baar) ;) (=21 ;—61bv;)

Ky =g" (Cx*Vi(‘l*Z)’i)b*'r;‘i)g*fl(I*ZYE)ul,i i(fz(1ny,-)WZ,,)(fz“-fOlbxx)
= g no(-2ybghang=h -2y G (1-29)) (-22,-bx)
= g nen(=2b g7 g1) (22 -0abvy)

K = g—yzcx(—(Zyi—k>b+r§)gf1 Cyi—kuy g(—fz(l—Zyi)wl.,-)(—zz_i—esz,-)
= g Eyi—hbg—rar gh (Tyi-kuz = g o&i(-2yb+ar, pA
= g}’zcx(ZYx—k)b . K{. g(fz(1*2}’;’)Wz,i)(*l1.i*91in)
K = gylcx(*(ZYE*k))+r;)g*fl Cyi=kyuy g(*fZ(1*2J'i)wl.i)(*zz.i*92bxi)

=g & (ZJ’i*")bg}’z r g*f1 Cyi—kuy K;KKZZ

116 T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118

— *92Cv(ZYi*k)b(*Zl*Ol)g(*gzaré)(*llfﬁb)
g(fz(zyl'*k)wz)(*llfﬁb)
gﬁ1c,,((Zyi—k)b)(—zz—Ozb)g(G,ar;)(—zz—sz)
g(*fz(ZYi*k)Wﬂ(*Zz*ezb)

- g*(Cv(Zyt’*k)bﬂlré)Ag(fz(Zyl‘*k)Wz)(*Zl*911))
g(*fz(Z)’i*k)M)(*22*92’3).

Since g, = g* then K, is computed as:

n
Ky = g}\ l_[g_)/ZCXUi(l_Zyx>b[1jgy] &xVi(1-2y)bty i
i=1
.g*Vsz(ZYi*k)bﬁ g}’1 (X yi—k)bty
()T (g) (KD ()
'g—(cl,x,-(l—Zyi)b+ar;‘i)A
g(fz(1 =2Yi)W2,i) (=21 i—01bx;)
,g(*fzﬂ =2Yi)W1,i) (=2,i—02bx;)
'g—(cy(Zy,-—k)b+ar£)A
g(fz(zyl'*k)wz)(*llfglb)
,g(*fz(zyi*k)wl)(*22*0217)_
B gives A the private key SK =
(KA, Kp, {Kl,ia KZ,i! K3,i* K4','}?:1 s {K] Ko, K3, K4}) for the queried
vector .
Challenge Ciphertext: To generate a challenge ciphertext, B
picks random s, o’ € Zp. B implicitly sets:

s1=C8=da=ao

Then B sets: A= g? =g B = (g*)% =g]. For i from 1 to n, B
computes:

Cri = (g™ (gHhigm@) =Up TRV
o = (8" (g") g @) = Ug T2V
G = (g™ (g)hgn@ = U Tvf!
G = (g")" (g)g" @) = Up T5vs.
Next B computes for i from 1 to n:
G = (g™ (g!yz
Caj = (g™ (g!yz
G = (™) (ghnz?
Cy = (g™2) (gHn 2"
If Z = gb(c+d) then, B is playing Game, with A
G = ()" (g (g H)

= Wz Xy
Cai = (g™2)" (g2 (gD g)Pa

= W;,lizgz.ixgiﬂ
G = (&™) (g7 (g Dg")?

— Wy zex
Cy = (g™2) (g (gherDgh

= wzexP.
Otherwise, if Z = gb+®g" for r chosen randomly in Z,, then B
is playing Games; with A by setting 8 =r
i = (&™) (g (&) =Wz,
Cai = (™) (g2 (&) =Wy Z3,
G = (@) (gHn (@D =wzy

G = (g™ (&) (@)% =wyZy

Therefore, if A can distinguish Game, from Games, then B can
solve the DLIN problem.

The rest of the proof is similar to the above proofs:

« the indistinguishability between Game; and Game, can be
proved in the same way as for Game, and Games;

+ the indistinguishability between Game, and Games can be
proved in the same way as for Game; and Game,;

« the indistinguishability of Games and Gameg can be proved in
the same way as for Gamey and Game;.

Theorem 2. Assume the Decision Bilinear Diffie-Hellman assumption
and Decisional Linear Assumption hold in group G, then our SAFE-2
scheme is secure.

We can obtain the security proof by modifying the proof of
Theorem 1. When the adversary .4 announces two character strings
in X" as the challenge, they will be converted to two vectors
as in (i) and (ii): U= (U1, ..., V1pgs V2gs o> V2pss -+ Ungs -+ Unys)3 s
similarly (i), X = (15, ..., X1,5,X29» - - -» X2psh e s Xngs .- Xn,5). Such
a convertion will also be done in answering the key generation
queries. The rest of the proof is similar to that of Theorem 1 and
hence is omitted.

6. Sequence aware keyword search scheme

In this section, we propose a Sequence Aware Keyword Search
(SAKS) Scheme which is an application of our SAFE-2 scheme. Us-
ing our SAKS scheme, an encrypter can create a ciphertext CT cor-
responding to a user public key and a DNA string such as AGTAC;
the owner of the public key can use the corresponding secret key
to create a trapdoor T for another string such as AGTAT and a dis-
tance d. A test function on CT and T will return true if and only if
the hamming distance of the two strings is equal to d.

A SAKS scheme consists of the following four probabilistic
polynomial-time algorithms:

- Key Gen(1", X): on input a security parameter 1", an alphabet
¥, the algorithm outputs a public key PK and the corresponding
secret key MSK.

PEKS(PK,W = (w1, w5, ...,wy) € £"): on input a public key
PK, a keyword W = (wq, Wy, ..., wy), the algorithm outputs a
searchable encryption CT.

Trapdoor(MSK, W = (W{, Wy, ..., Wy) € X", k): on input a secret
key MSK and a keyword w of length n, and a distance k the
algorithm outputs a trapdoor T.

Test(CT,T;): on input a ciphertext CT with keywords
W= (wq,wy,...,wy) and a trapdoor T; with Kkey-
word W= (Wq,Wy,...,w), the algorithm outputs 1 if
HammingDistance(W, w) = k, or 0 otherwise.

SAKS Security Model The security model for a SAKS scheme
is defined via the following game between an adversary A and a
challenger B.

« Init: A submits two strings W, W of equal length and a dis-
tance value .

« Setup: The challenger B runs Setup(1", X) to generate PK and
MSK. PK is then passed to A.

» Query Phase 1: The challenger answers trapdoor queries
for any keyword w such that HammingDistance(W}, w) # T
and HammingDistance(W;,w) #t by returning Ty «
Trapdoor (MSK, w, 7).

 Challenge: The challenger flips a coin u <« {0, 1}. Then
the challenger computes the challenge ciphertext C* «
Encrypt (PK, Wﬁi‘) which is given to A.

T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118 117

» Query Phase 2: same as Query Phase 1.

+ Output: A outputs a bit u’ as her guess for u.
Define the advantage of A as Advy"*®(k) = [Pr3”KS (k) [u/ =
wul—=1/2].

6.1. SAKS Construction

.- Setup(1¥, n): The setup algorithm first randomly
generates (g,G,Gr,p,e). It then chooses randomly
Y1, Y2, 01, 02, ug, {ug 1y b (e by (e s wr, {wy
z1{z11}L. {221}, 22 in Zp. Then it selects a random A € Zy
and obtains {u,;}!' |, {wy;}!;, w,, uy under the condition:
A =Yy — Vallg i A = 01wy — Ohwy .
A = 7/11,12 — '}/zl,l], A= 9]W2 — 92W1.
For i from 1 to n, it creates:
Upi =g Uy =g, Uy = g", Uy = g,
Wy =g"i Wy =g Wy =g" W, = g"2,
Ti=g"T=g>T=g"T =g
21 =80 =871 =", =g,
Vi=g"V, =g~
Next it sets g; = g2, and the public key PK and master key MSK
as
PK = (gv G’ GT’ p.e g1, {Ul.iv UZ,i: Tl,iv TZ.is
Wi Wai, Zy i, 2y i3t
U, T, Vi, Xi}izt?)
MSK = ({uy 3, Uz, ty . b2
Wi, Wai, Z1 4 22,1} it
{ui ti. Wi zi, v, 611 i0).
PEKS(PK,W = (w1, wo, ..., wp) € £"): The encryption algo-
rithm chooses random sy, s, o, 8 € Zp. Each characters w; in W
is converted to (aq, ay). Then algorithm creates vector ¥ as in
(i):
V= (Vg s Viggs Vago oo Vaygs v Ungy oo oy Unys)
Next, the ciphertext is created as follows
Ca=g» CGg=g,
{Cij. Gijl = {USI-TSZ-V1UIJD[, UL T2V,

1,i°1,i 2,i72,i
{C1.G} = {Uf’TfZV"‘, U;‘TZSZVZ"‘},
v B v;. B
{C3,i<jvc4,i~j} = {Wls.liziz,ixlj ’Wzs,liz?,ixzj }.
GG} = (whzexP wizexfy.

Then ciphertext CT is set as
Cly = (G4, G, (1, G, G3, Gy,
HCrijo oo Gaiijo Caij} 203i)-

Trapdoor(MSK, w = (W1, Wy, ..., Wy) € £™ k): Choose random
;1. T2 fori=1ton, and fi, f5, 11,15 € Zp. Each characters w;
in w is converted to (bq, by). Then create vector X as in (ii):

X=(X1gs s X115 X291 X250 o5 Xngs - -+ Xy).
Then compute
{Kl,i,j’ Kz,i,j} — {g*yzﬁ.igf]"ij”lf’g)/lrl.igflxiﬂu}’
{KL Kz} — {g*VZrlgf](*k)uzvgylrlgfl(*k)ul}’
Kai Kai) = —Oy13; 2Xi;Wai 1121 gl 2Xi Wi
{K3i, Kq i} = {g gf) ,
(K3, Ks} = {g*92T2gf2(*k)W27g91 ng*fz(*k)W1 1
Ky = g - K"K 2K K™

n

—lipr—bip—21ir—2.i
l_[K RN KZ,i,j K3.i,j K4,i.j ’
i=1

n
KB — g—(T1+T2) l_[g_(r1,i+r2.i).
i=1

The trapdoor is set as
Ty = (Ka, K, {{K1ij. K2 j. K33
Ky ij}jmo"}iza" (K1 Ko, K3, Ka}).

+ Test(Tw, CT): Given a ciphertext CT associated with a alpha-
bet string W = (w1, W, ...,wy) and trapdoor T; associated
with another alphabet string w = (W, Wy, ..., w;), the algo-
rithm tests
e(Ca. Kn)'® - e(Cp. Kp)'® -

n 15

4
TTTTTTe(C K)'® - eCijo Keij) = 1.

t=1i=1 j=0

Return 1 if and only if the equation holds.

The correctness of the SAKS scheme directly follows that of the
SAFE-2 scheme.

Theorem 3. Assume the Decisional Linear Assumption holds in G,
then our SAKS scheme is selectively secure.

Proof. Suppose that there exists an adversary A which can win
the game with a non-negligible advantage €, we construct another
algorithm B that uses A to solve the Decision Linear problem with
advantage €. On input (g, g% gb, g%, g¢,7) € Gg, B simulates the
game for A.

. . >

« Init: A declares two challenge strings Wj = (W§,..... w},).
VVE‘: (Wig.....wi,) and a distance 7. B flips a coin u €
{0, 1}. Let W} = (w;o,...,w;nl). Then each character Wy,

in Wj is converted to a 2-bit string (a;, a) and the al-
gorithm creates vector v}, as in (i), then vector v}, is v}, =

v, 7P /PR |/ /N v
Mg 157 " H2g H215 Hng “”15)

The rest is similar to the Public key and Master Secret Key
generation in Theorem 1 - indistinguishably of Game 2 and
Game 3.

Query Phase 1: A queries trapdoor for word w = (Wy, ..., Wn)
under the restriction Hamming Distance (W}, w) # t. Each char-
acter w; in w is converted to a 2-bit string (b;, b,). Then
the algorithm creates vector X as in (ii), then vector X is :
X=(X1g>---»X1,5, V29> X2p55 -+ +» X0, - --» Xny5). Then B simu-
lates the trapdoor by following the simulation of Key Gener-
ation query in Theorem 1 - indistinguishably of Game 2 and
Game 3, Case 2.

Challenge: This is similar to the simulation of the Challenge Ci-
phertext in Theorem 1 - indistinguishably of Game 2 and Game
3

Query Phase 2: Repeat Phase 1.

Outputs: A outputs a bit w’. Then B outputs 1 if 4/ = and 0
if ' # .

Therefore, by following the same analysis as in Theorem 1 - in-
distinguishably of Game 2 and Game 3, if A can distinguish the ci-
phertext, then B can solve the DLIN problem. O

7. Comparison and discussion

We give a detailed comparison among our SAFE1 scheme and
SAFE2 scheme in Table 1. The schemes are compared in terms of
the order of the number of characters, number expression of bit
,ciphertext size, key size, decryption cost. In addition, we show

118 T.V. Xuan Phuong et al./Journal of Information Security and Applications 35 (2017) 106-118

Table 1
Performance Comparison.

Scheme Number of character =~ Number expression of bit Ciphertext Size Key Size Decryption Cost
SAFE 1 No 1 (n+6)|G| + Gr (n+6)|G| (4n+6)p

SAFE 2 4 2 (16n + 6)|G| + Gr (16n +6)|G| (64n +6)p

SAFE 2-General 26 8 8% xn+6)|G|+Gr (88 xn+6)|G] (8% x4xn+6)p

p: pairing operation, n : length of input string

that our SAFE 2 scheme can be applied for general alphabets, in
this case we choose the typical English alphabet. Instead of using
2-bit to express for (A, T, G, C) in the SAFE 2 scheme, we use 8-bit
to express for each English letter in the extension of general case.
For example, from the letter A is converted to 0100001, to the let-
ter Z is converted to 01011010. Then we can check the similar two
letters between two strings by applying (5). Since this is our first
consideration for the general characters, it is inevitable to increase
the computation cost.

8. Conclusion

In this paper, we proposed two Sequence Aware Functional En-
cryption (SAFE) schemes based on Hamming Distance. The first
construction is for matching bit strings and the second construc-
tion is for character strings. Our SAFE schemes not only achieves
confidentiality but also attribute hiding under some standard as-
sumptions. We also showed that our SAFE scheme can be extended
to a searchable encryption scheme. Our future work is to construct
SAFE schemes based on other similarity metrics such as edit dis-
tance and longest common subsequence.

References

[1] Abdalla M, Catalano D, Dent A, Malone-Lee], Neven G, Smart N. Identity-based
encryption gone wild. In: Bugliesi M, Preneel B, Sassone V, Wegener I, editors.
Automata, Languages and Programming. Lecture Notes in Computer Science,
4052. Springer Berlin Heidelberg; 2006. p. 300-11. doi:10.1007/11787006_26.
Abdalla M, De Caro A, Phan DH. Generalized key delegation for wildcarded
identity-based and inner-product encryption. Inf Forensics Secur, IEEE Trans
2012;7(6):1695-706. doi:10.1109/TIFS.2012.2213594.

Agrawal S, Freeman D, Vaikuntanathan V. Functional encryption for in-
ner product predicates from learning with errors. In: Lee D, Wang X, ed-
itors. Advances in Cryptology - ASIACRYPT 2011. Lecture Notes in Com-
puter Science, 7073. Springer Berlin Heidelberg; 2011. p. 21-40. doi:10.1007/
978-3-642-25385-0_2.

Attrapadung N, Libert B, Panafieu E. Expressive key-policy attribute-based en-
cryption with constant-size ciphertexts. In: Catalano D, Fazio N, Gennaro R,
Nicolosi A, editors. Public Key Cryptography - PKC 2011. Lecture Notes in Com-
puter Science, 6571. Springer Berlin Heidelberg; 2011. p. 90-108. doi:10.1007/
978-3-642-19379-8_6.

Bethencourt], Sahai A, Waters B. Ciphertext-policy attribute-based encryption.
In: Security and Privacy, 2007. SP '07. IEEE Symposium on; 2007. p. 321-34.
doi:10.1109/SP.2007.11.

Boneh D, Boyen X. Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin C, Camenisch], editors. Advances in Cryptology
- EUROCRYPT 2004. Lecture Notes in Computer Science, 3027. Springer Berlin
Heidelberg; 2004. p. 223-38. doi:10.1007/978-3-540-24676-3_14.

Boneh D, Franklin M. Identity-based encryption from the weil pairing. In: Kil-
ian], editor. Advances in Cryptology - CRYPTO 2001. Lecture Notes in Com-
puter Science, 2139. Springer Berlin Heidelberg; 2001. p. 213-29. doi:10.1007/
3-540-44647-8_13.

2

[3

[4

[5

6

17

[8] Boneh D, Waters B. Conjunctive, subset, and range queries on encrypted data.
In: Proceedings of the 4th conference on Theory of cryptography. In: TCC'07.
Berlin, Heidelberg: Springer-Verlag; 2007. p. 535-54.

[9] Cheung DW, Mamoulis N, Wong WK, Yiu S, Zhang Y. Anonymous fuzzy iden-
tity-based encryption for similarity search. In: Algorithms and Computation -
21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17,
2010, Proceedings, Part I; 2010. p. 61-72.

[10] Freeman DM. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Proceedings of the 29th Annual Interna-
tional Conference on Theory and Applications of Cryptographic Techniques. In:
EUROCRYPT'10; 2010. p. 44-61.

[11] Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM con-
ference on Computer and communications security. In: CCS '06. New York, NY,
USA: ACM; 2006. p. 89-98. doi:10.1145/1180405.1180418.

[12] Guillevic A. Comparing the pairing efficiency over composite-order and
prime-order elliptic curves. In: Applied Cryptography and Network Security,
7954; 2013. p. 357-72.

[13] lovino V, Persiano G. Hidden-vector encryption with groups of prime order.
In: Proceedings of the 2nd international conference on Pairing-Based Cryp-
tography. In: Pairing '08. Berlin, Heidelberg: Springer-Verlag; 2008. p. 75-88.
doi:10.1007/978-3-540-85538-5_5.

[14] Katz], Sahai A, Waters B. Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Proceedings of the theory and ap-
plications of cryptographic techniques 27th annual international conference on
Advances in cryptology. In: EUROCRYPT'08. Berlin, Heidelberg: Springer-Verlag;
2008. p. 146-62.

[15] Lee K, Lee DH. Improved hidden vector encryption with short cipher-
texts and tokens. Des Codes Cryptography 2011;58(3):297-319. doi:10.1007/
510623-010-9412-x.

[16] Okamoto T, Takashima K. Adaptively attribute-hiding (hierarchical) inner prod-
uct encryption. In: Pointcheval D, Johansson T, editors. Advances in Cryptology
- EUROCRYPT 2012. Lecture Notes in Computer Science, 7237. Springer Berlin
Heidelberg; 2012. p. 591-608. doi:10.1007/978-3-642-29011-4_35.

[17] Park J. Inner-product encryption under standard assumptions. Des, Codes Cryp-
tography 2011;58(3):235-57. doi:10.1007/s10623-010-9405-9.

[18] Park JH, Lee K, Susilo W, Lee DH. Fully secure hidden vector encryption under
standard assumptions. Inf Sci 2013;232:188-207.

[19] Sahai A, Waters B. Fuzzy identity-based encryption. In: Proceedings of the
24th annual international conference on Theory and Applications of Cryp-
tographic Techniques. In: EUROCRYPT'05. Berlin, Heidelberg: Springer-Verlag;
2005. p. 457-73. doi:10.1007/11426639_27.

[20] Sedghi S, Liesdonk P, Nikova S, Hartel P, Jonker W. Searching keywords with
wildcards on encrypted data. In: Garay], Prisco R, editors. Security and Cryp-
tography for Networks. Lecture Notes in Computer Science, 6280. Springer
Berlin Heidelberg; 2010. p. 138-53. doi:10.1007/978-3-642-15317-4_10.

[21] Shamir A. Identity-based cryptosystems and signature schemes. In: Pro-
ceedings of CRYPTO 84 on Advances in cryptology. New York, NY, USA:
Springer-Verlag New York, Inc.; 1985. p. 47-53.

[22] Shi E, Waters B. Delegating capabilities in predicate encryption systems. In:
Proceedings of the 35th international colloquium on Automata, Languages and
Programming, Part II. In: ICALP "08. Berlin, Heidelberg: Springer-Verlag; 2008.
p. 560-78. doi:10.1007/978-3-540-70583-3_46.

[23] Waters B. Functional encryption for regular languages. In: Safavi-Naini R,
Canetti R, editors. Advances in Cryptology - CRYPTO 2012. Lecture Notes in
Computer Science, 7417. Springer Berlin Heidelberg; 2012. p. 218-35. doi:10.
1007/978-3-642-32009-5_14.

http://dx.doi.org/10.1007/11787006_26
http://dx.doi.org/10.1109/TIFS.2012.2213594
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-19379-8_6
http://dx.doi.org/10.1109/SP.2007.11
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/3-540-44647-8_13
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0008
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0008
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0008
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0009
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0009
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0009
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0009
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0009
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0009
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0010
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0010
http://dx.doi.org/10.1145/1180405.1180418
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0012
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0012
http://dx.doi.org/10.1007/978-3-540-85538-5_5
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0014
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0014
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0014
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0014
http://dx.doi.org/10.1007/s10623-010-9412-x
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/s10623-010-9405-9
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0018
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0018
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0018
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0018
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0018
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-15317-4_10
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0021
http://refhub.elsevier.com/S2214-2126(17)30004-2/sbref0021
http://dx.doi.org/10.1007/978-3-540-70583-3_46
http://dx.doi.org/10.1007/978-3-642-32009-5_14

	Sequence aware functional encryption and its application in searchable encryption
	Citation

	Sequence aware functional encryption and its application in searchable encryption
	1 Introduction
	2 Preliminaries
	2.1 SAFE Scheme
	2.2 Security model for a SAFE scheme
	2.3 Bilinear map and its related assumptions
	2.4 Hamming distance

	3 SAFE-1 For bit string
	4 SAFE-2 For character string
	4.1 Hamming distance of character string
	4.2 Construction of SAFE2-scheme:

	5 Security proof of SAFE-1 and SAFE-2
	5.1 Indistinguishability between Game0 and Game1
	5.2 Indistinguishability between Game1 and Game2
	5.3 Indistinguishability of Game2 and Game3

	6 Sequence aware keyword search scheme
	6.1 SAKS Construction

	7 Comparison and discussion
	8 Conclusion
	 References

