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Hidden Ciphertext Policy Attribute-Based
Encryption Under Standard Assumptions

Tran Viet Xuan Phuong, Guomin Yang, Member, IEEE, and Willy Susilo, Senior Member, IEEE

Abstract— We propose two new ciphertext policy attribute-
based encryption (CP-ABE) schemes where the access policy
is defined by AND-gate with wildcard. In the first scheme,
we present a new technique that uses only one group element
to represent an attribute, while the existing ABE schemes of
the same type need to use three different group elements to
represent an attribute for the three possible values (namely,
positive, negative, and wildcard). Our new technique leads to
a new CP-ABE scheme with constant ciphertext size, which,
however, cannot hide the access policy used for encryption. The
main contribution of this paper is to propose a new CP-ABE
scheme with the property of hidden access policy by extending
the technique we used in the construction of our first scheme.
In particular, we show a way to bridge ABE based on AND-gate
with wildcard with inner product encryption and then use the
latter to achieve the goal of hidden access policy. We prove that
our second scheme is secure under the standard decisional linear
and decisional bilinear Diffie–Hellman assumptions.

Index Terms— Attribute based encryption, hidden policy, inner
product encryption, Viète’s formula.

I. INTRODUCTION

ACCESS control (i.e., authentication and authorisation)
plays an important role in many information systems.

Among all the existing cryptographic tools, Attribute Based
Encryption (ABE) has provided an effective way for fine-
grained access control. ABE, which is an extension of identity-
based encryption (IBE) [4], [23], allows an access structure/
policy to be embedded into the ciphertext (this is referred to
as ciphertext-policy ABE, or CP-ABE) or user secret key (this
is referred to as key-policy ABE, or KP-ABE). In a CP-ABE,
the user’s attributes used for key generation must satisfy the
access policy used for encryption in order to decrypt the
ciphertext, while in a KP-ABE, the user can only decrypt
ciphertexts whose attributes satisfy the policy embedded in
the key. We can see that access control is an inherent feature
of ABE, and by using some expressive access structures, we
can effectively achieve fine-grained access control. Since its
introduction in the seminal work of Sahai and Waters [21],
ABE has been extensively studied in recent years
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(e.g., [2], [3], [7], [8], [11], [12], [17], [26]). There are different
ways to define an access structure/policy for ABE.
The fuzzy IBE given by Sahai and Waters [21], which
can be treated as the first KP-ABE, used a specific threshold
access policy. Later, the Linear Secret Sharing Scheme (LSSS)
realizable (or monotone) access structure has been adopted by
many subsequent ABE schemes [3], [11], [12], [26]. In [7],
Cheung and Newport proposed another way to define access
structure using AND-Gate with wildcard. To be more precise,
for each attribute in the universe, there are two possible
values: positive and negative. A user’s attributes are then
defined by a sequence of positive and negative symbols w.r.t.
each attribute in the universe (assuming that the attributes
are placed in order in the universe). An access structure
is also defined by a sequence of positive and negative
symbols, plus a special wildcard (i.e., “don’t care”) symbol.
Cheung and Newport showed that by using this simple access
structure, which is sufficient for many applications, CP-ABE
schemes can be constructed based on standard complexity
assumptions. Subsequently, several ABE schemes [6], [9],
[20], [28] were proposed following this specific access
structure.

A. This Work

In this work, we explore new techniques for the construction
of CP-ABE schemes based on the AND-gate with wildcard
access structure. The existing schemes of this type need to
use three different elements to represent the three possible
values – positive, negative, and wildcard – of an attribute in the
access structure. In this paper, we propose a new construction
which uses only one element to represent one attribute. The
main idea behind our construction is to use the “positions”
of different symbols to perform the matching between the
access policy and user attributes. Specifically, We put the
indices of all the positive, negative and wildcard attributes
defined in an access structure into three sets, and by using the
technique of Viète’s formulas [22], we allow the decryptor to
remove all the wildcard positions, and perform the decryption
correctly if and only if the remaining user attributes match
those defined in the access structure. Our new technique
leads to a new CP-ABE scheme with constant ciphertext size.
Although a secure ABE can well protect the secrecy of the
encrypted data against unauthorised access, it does not protect
the privacy of the receivers/decryptors by default. That is,
given the ciphertext, an unauthorised user may still be able to
obtain some information of the data recipients. For example,
a health organization wants to send a message to all the

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

COMPARIONS AMONG CP-ABE SCHEMES

patients that carry certain diseases. Then the attribute universe
will contain all the diseases, and an access policy will have the
format “+ + − ∗ ∗ + . . .” where “+” (“−”) indicates positive
(negative) for a particular disease. If a CP-ABE cannot hide the
access policy, then from the fact whether a person can decrypt
the message or not, people can directly learn some sensitive
information of the user. Therefore, it is also very important
to hide the access policy in such applications. However,
most of the existing ABE schemes based on AND-Gate with
wildcard cannot achieve this property. To address this problem,
we further study the problem of hiding the access policy for
CP-ABE based on AND-Gate with wildcard. As the main con-
tribution of this work, we extend the technique we have used in
the first construction to bridge ABE based on AND-Gate with
wildcard with Inner Product Encryption (IPE) [1], [14], [24].
Specifically, we present a way to convert an access policy
containing positive, negative, and wildcard symbols into a
vector �X which is used for encryption, and the user’s attributes
containing positive and negative symbols into another vector �Y
which is used in key generation, and then apply the technique
of IPE to do the encryption. Again, we use the positions of
different symbols and the Viète’s formulas [22] to perform
the conversion. The details are provided in Section IV-A.
In Table I, we give a comparison among CP-ABE schemes that
are based on the AND-Gate access structure or have constant-
size ciphertext. We use p to denote the pairing operation,
n the number of attributes in an access structure or attribute
list, m the number of all possible values for each attribute,
and w the number of wildcard in an access structure. We can
see that among all the schemes that can support wildcard and
provide hidden access policy, our Scheme 2 gives the best
performance since the ciphertext size and the decryption cost
depend only on the number of wildcard in an access structure.

B. Paper Organization

We present the preliminaries and security definitions
in Section II, which is followed by our first scheme
in Section III. We then present the second scheme with security
proof in Section IV. The paper is concluded in Section V.

II. PRELIMINARIES

A. Bilinear Map and Its Related Assumptions

Let G and GT be two multiplicative cyclic groups of same
prime order p. Let e : G × G → GT be a bilinear map with

Fig. 1. Expressing two vectors �v and �z.

the following properties:

1) Bilineariry: e(ua, vb) = e(ub, va) = e(u, v)ab. for any
u, v ∈ G and a, b ∈ Zp .

2) Non-Degeneracy: e(g, g) �= 1.

Definition 1: The Decisional Bilinear Diffie-Hellman
(DBDH) problem in G is defined as follows: given a tuple
(g, ga, gb, gc, T ) ∈ G

4 × GT , decide whether T = e(g, g)abc

or T = e(g, g)r where a, b, c, r are randomly selected
from Zp . An algorithm A has advantage ε in solving the
DBDH problem in G if

AdvDBDH
A (k) = Pr[A(1k, g, ga, gb, gc, Z)=1|Z =e(g, g)abc]

− Pr[A(1k, g, ga, gb, gc, Z)=1|Z =gr ] ≤ ε.

We say that the DBDH assumptions holds in G if ε is
negligible for any PPT algorithm A.

Definition 2: The Decisional Linear (DLIN) problem in G

defined as follows: given a tuple (g, ga, gb, gac, gd , Z) ∈
G5 × GT , decide whether T = gb(c+d) or Z in random in G.
An algorithm A has advantage ε in solving the DLIN problem
in G if

AdvDLIN
A (k)

= Pr[A(1k, g, ga, gb, gac, gd , Z) = 1|Z = gb(c+d)]
− Pr[A(1k, g, ga, gb, gac, gd , Z) = 1|Z = gr ] ≤ ε

where a, b, c, d, r ∈R Zp . We say that the DLIN assumptions
holds in G if ε is negligible for any PPT algorithm A.

B. The Viète’s Formulas

Consider two vectors −→v = (v1, v2, . . . , vL) and −→z =
(z1, z2, . . . , zL) (Fig. 1). Vector −→v contains both alphabets
and wildcards, and vector −→z only contains alphabets. Let
J = { j1, . . . , jn} ⊂ {1, . . . , L} denote the positions of the
wildcards in vector −→v .
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TABLE II

LIST OF ATTRIBUTES AND POLICIES

Let
∏

j∈J
(i − j) =

n∑

k=0
λki k , where λk are the coefficients

dependent on J , then we have
L∑

i=1,i /∈J

vi

∏

j∈J

(i − j) =
n∑

k=0

λk

L∑

i=1

zi i
k . (1)

if vi = zi ∨ vi = ∗ for i = 1 . . . L.
To hide the computation, we can choose a random group

element Hi and put vi , zi as the exponents of Hi . Then (1)
becomes

L∏

i=1,i /∈J

H
vi

∏
j∈J (i− j )

i =
n∏

k=0

(

L∏

i=1

H zi ik

i )λk .

Using the Viète’s formulas [22] we can construct the
coefficient λk in (1) by:

λn−k = (−1)k
∑

1≤i1<i2<...<ik ≤n

ji1 ji2 . . . jik , 0 ≤ k ≤ n,

where n = |J |.
Take as an example, if we have J = { j1, j2, j3}, then the

polynomial is (x − j1)(x − j2)(x − j3), and we have λ3 = 1,
λ2 = −( j1+ j2+ j3), λ1 = ( j1 j2+ j1 j3+ j2 j3), λ0 = − j1 j2 j3.

C. Access Structure

Let U = {Att1, Att2, . . . , AttL } be the universe of the
attributes in the system. Each Atti is represented by a unique
value Ai . When a user joins the system, the user is tagged
with an attribute list defined as S = {S1, S2, . . . , SL } where
each symbol Si has two possible values: ‘+’ and ‘−’. Let
W = {S′

1, S′
2, . . . , S′

L} denote an AND-gate with wildcard
access policy where each symbol S′

i has three possible values:
‘+’, ‘−’, and ‘∗’. The wildcard ‘∗’ means “don’t care”
(i.e., both positive and negative attributes are accepted). We use
the notation S |� W to denote that the attribute list S of a user
satisfies W .

For example, suppose U = {Att1 = CS, Att2 = EE,
Att3 = Faculty, Att4 = Student}. Alice is a student in
the CS department; Bob is a faculty in the EE department;
Carol is a faculty holding a joint position in the
EE and CS departments. Their attribute lists are illustrated
in Table II. The access structure W1 can be satisfied by all
the CS students without being in the EE department, while
W2 can be satisfied by all CS students and faculties excluding
those in EE.

D. CP-ABE Definition
A ciphertext-policy attribute based encryption scheme con-

sists of four algorithms: Setup, Encrypt, KeyGen, and Decrypt.

• Setup(λ, U): The setup algorithm takes security
parameters and attribute universe description as input.

It outputs the public parameters P K and a master
key M SK .

• Encrypt(P K , M, W): The encryption algorithm takes as
input the public parameters P K , a message M , and access
structure W over the universe of attributes, and outputs a
ciphertext CT .

• Key Generation(M SK , L): The key generation algorithm
takes as input the master key MSK and a set of attributes
L ⊂ U , and outputs a private key SK .

• Decrypt(P K , CT , SK ): The decryption algorithm takes
as input the public parameters P K , a ciphertext CT , and
a private key SK , and outputs a message M or a special
symbol ‘⊥’.

E. Security Definition for CP-ABE With Hidden Access Policy

We define the Selective IND-CPA security for CP-ABE with
hidden access policy via the following game.

• Init: The adversary commits to the challenge access
policies W0, W1.

• Setup: The challenger runs the Setup algorithm and gives
P K to the adversary.

• Phase 1: The adversary submits the attribute list L for a
KeyGen query. If (L |� W0 ∧ L |� W1) or (L �|� W0∧
L �|� W1), the challenger gives the adversary the secret
key SKL . The adversary can repeat this polynomially
many times.

• Challenge: The adversary submits messages M0, M1 to
the challenger. If the adversary obtained the SKL whose
associated attribute list L satisfies both W0 and W1
in Phase 1, then it is required that M0 = M1. The
challenger flips a random coin β and passes the ciphertext
Encrypt (P K , Mβ , Wβ) to the adversary.

• Phase 2: Phase 1 is repeated. If M0 �= M1, the adversary
cannot submit L such that L |� W0 ∧ L |� W1.

• Guess: The adversary outputs a guess β ′ of β.
We say a CP-ABE scheme with hidden access policy is

secure if for any probabilistic polynomial-time adversary A,

AdvIND−CPA
A (k) = |Pr[β ′ = β] − 1

2
|

is negligible in the security parameter k.
Full Security: In the above selective security model, the

adversary is required to commit the challenge policy before
seeing the system parameters. In the full security model, the
adversary can choose the challenge policy in the Challenge
phase, which makes the model stronger. However, similar to
many other CP-ABE schemes given in Table I, we cannot
directly prove the security of our schemes in the full security
model. We should note that there are transformations from the
selective security to full security [15], and we can apply the
same transformation to our schemes presented in this paper.
However, the transformed schemes will be based on composite
order pairing groups, and hence less efficient.

III. OUR FIRST CONSTRUCTION

In this section, we present our first scheme based on the
AND-Gate with wildcard access policy. Below is the main
idea of our construction.
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Fig. 2. Access Policy.

We represent each attribute in the universe by an element Ai .
Given an access structure W , we first define three sets J ,
V , and Z where J contains the positions of all the wildcard
positions, and V and Z contain the positions of all the positive
and negative attributes, respectively. We then represent each
positive/negative attribute in an access structure as shown
in Fig. 2.

The set J is attached to the ciphertext and sent to the
decryptor. In the decryption process, based on J , the decryptor
can reconstruct the coefficients λw j , and generate

∏

j∈J

(Ai )
i j λw j = (Ai )

∏

w j ∈J
(i−w j )

according to the Viète’s formulas, for each positive or negative
attribute Atti associated with the secret key. In this way, all the
wildcard positions will take no effect during decryption. Below
are the details of our construction.

Setup(1k): Let N1, N2, N3 be three upper bounds defined
as N1 ≤ L: the maximum number of wildcard in an access
structure; N2 ≤ L: the maximum number of positive attribute
in an attribute set S; N3 ≤ L: the maximum number of
negative attribute in an attribute set S.

The setup algorithm first generates bilinear groups G,
GT with order p, and selects two random genera-
tors V0, V1, g ∈ G. Then randomly choose α, β1, β2,
a1, . . . , aL ∈R Zp , and set �1 = e(g, V0)

αβ1e(g, V1)
αβ1 ,

�2 = e(g, V0)
αβ2e(g, V1)

αβ2 . Let Ai = gai for 1 = 1, . . . , L.
The Public Key and Master Secret Key are defined as:

P K = (e, g,�1,�2, gα, V0, V1, A1, . . . , AL),

M SK = (α, β1, β2, a1, . . . , aL).

Encrypt(W, M, P K ): Suppose that the access structure
W contains: n1 ≤ N1 wildcards which occur at positions
J = {w1, . . . , wn1}; n2 ≤ N2 positive attributes which occur
at positions V = {v1, . . . , vn2 }; n3 ≤ N3 negative attributes
which occur at positions Z = {z1, . . . , zn3}. Compute for
the wildcard positions {w j } ( j = 0, 1, 2, · · · , n1) {λw j }
and set tw = ∑n1

j=0 λw j . The encryption algorithm then

chooses r1, r2 ∈R Zp , and creates the ciphertext as:

C0 = M�r1
1 �r2

2 , C1 = g
αr1
tw , C2 = g

r2
tw ,

C3 = (V0

∏

i∈V

(A

n1∏

j=0
(i−w j )

tw
i )r1+r2 ,

C4 = (V1

∏

i∈Z

(A

n1∏

j=0
(i−w j )

tw
i )r1+r2 ,

The ciphertext is set as:

CT = (C0, C1, C2, C3, J = {w1, w2, . . . , wn1}).
KeyGen(M SK , S): Suppose that a user joins the system

with the attribute list S, which contains: n′
2 ≤ N2 positive

attributes which occur at positions V ′ = {v ′
1, . . . , v

′
n′

2
};

n′
3 ≤ N3 negative attributes which occur at positions Z ′ =

{z′
1, . . . , z′

n′
3
}.

By means of the Viète’s formulas, for all the posi-
tive positions {v ′

k} (k = 0, 1, 2, · · · , n′
2), calculate {λv ′

k
}

and set t ′v = ∑n2
k=0 λv ′

k
; and for all the negative posi-

tions {z′
τ } (τ = 0, 1, 2, · · · , n′

3), calculate {λz′
τ
} and set

t ′z = ∑n′
3

τ=0 λz′
τ
. The algorithm then chooses s ∈R Zp and

computes s1 = β1 + s, s2 = β2 + s and creates the secret
key as:

L1 = g
αs
t ′v , L2 = g

αs
t ′z ,

K1 = {K1,0, K1,1, . . . , K1,N1}
= {V s1

0

∏

i∈V ′
gsai , V s1

0

∏

i∈V ′
gsai i , . . . , V s1

0

∏

i∈V ′
gsai i N1 },

K ′
1 = {K ′

1,0, K ′
1,1, . . . , K ′

1,N1
}

= {V αs2
0

∏

i∈V ′
gsαai , V αs2

0

∏

i∈V ′
gsαai i , . . . , V αs2

0

∏

i∈V ′
gsαai i N1 }.

K2 = {K2,0, K2,1, . . . , K2,N1 }
= {V s1

1

∏

i∈Z ′
gsai , V s1

1

∏

i∈Z ′
gsai i , . . . , V s1

1

∏

i∈Z ′
gsai i N1 },

K ′
2 = {K ′

2,0, K ′
2,1, . . . , K ′

2,N1
}

= {V αs2
1

∏

i∈Z ′
gsαai , V αs2

1

∏

i∈Z ′
gsαai i , . . . , V αs2

1

∏

i∈Z ′
gsαai i N1 }.

The user secret key is set as:

SK = (L1, L2, K1, K ′
1, K2, K ′

2).

Decrypt(CT, SK ): The algorithm first identifies the wild-
card positions in J = {w1, . . . , wn1} and computes {λw j }.
Then we have the equation shown at the bottom of this page,
and M can be recovered by �−r1

1 �−r2
2 · C0.

e(L1, C3)
t ′v · e(L2, C4)

t ′z

e(
n1∏

j=0
K

λw j
1, j , C1) · e(

n1∏

j=0
(K ′

1, j )
λw j , C2) · e(

n1∏

j=0
K

λw j
2, j , C1) · e(

n1∏

j=0
(K ′

2, j )
λw j , C2)

= e(g, V0)
−αβ1r1 e(g, V0)

−αβ2r2 e(g, V1)
−αβ1r1 e(g, V1)

−αβ2r2

= �−r1
1 �−r2

2
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IV. CP-ABE WITH HIDDEN ACCESS POLICY

Although the CP-ABE scheme presented in the previous
section can achieve constant ciphertext size, it cannot hide the
access policy since the wildcard positions need to be included
in the ciphertext. In this section, we extend the technique used
in our first construction to build another CPA-ABE which can
hide the access policy. One way to achieve the attribute hiding
property is to apply the Inner Product Encryption technique in
the construction of CP-ABE. Such an approach has been used
in previous works on policy hiding CP-ABE [5], [15], [16].
However, since our CP-ABE scheme is based on the Viète’s
formula, we cannot directly use the previous approach. In this
paper, we propose a new transformation technique which can
deal with the Viète’s formula.

A. Our Idea

Our main idea is to convert the access policy and user
attributes into two vectors, and then apply the technique of
Inner Product Encryption to hide the access policy. Similar
to the first scheme, we separate the positive, negative, and
wildcard symbols in an access structure into three sets: V , Z ,
and J . Based on the set J , by applying the Viète’s formulas,

we can construct a polynomial
n∑

k=0
aki k with coefficients

(a0, a1, . . . , an).
Then we combine the set of positive positions V as:

�V = +
∑

i∈V

∏

w j ∈J

(i − w j )

and the set of negative positions Z as:

�Z = −
∑

i∈Z

∏

w j ∈J

(i − w j ).

We then produce a vector

−→v = (a0, a1, . . . , an, 0n+1, . . . , 0N1 ,�V ,�Z )

which will be used for encryption.
In user key generation, we also separate the positive

and negative attributes into two sets and construct two
vectors

�xV ′ = (v ′
0, v

′
1, v

′
2, . . . , v

′
N1

, 1, 0),

�xZ ′ = (z′
0, z′

1, z′
2, . . . , z′

N1
, 0, 1),

in which:

v ′
k = −

∑

i∈V ′
i k, k = 0, . . . , N1,

z′
k = +

∑

i∈Z ′
i k, k = 0, . . . , N1.

Notice that we assume there are at most N1 wildcard positions
in an access policy. The decryption will be based on the inner
products of (�v, �xV ′) and (�v, �xZ ′), which should both return 0
in order to have a successful decryption.

Below we give a simple example based on Table II to
illustrate our idea. Let L = 4, N1 = 2 and W2 = (+,−, ∗, ∗)
be the access policy. Then we create three sets for wildcard

Fig. 3. The vector �v for access policy W2.

Fig. 4. The vector �z for Alice and Bob.

positions J = {3, 4}, positive positions V = {1}, and negative
positions Z = {2}. Based on Viète’s formulas, we can calculate

a2 = 1; a1 = −7, a0 = 12

and obtain the vector �v for the access policy (Fig. 3) and the
vectors for Alice and Bob as shown in Fig 4.

If we calculate the inner product of �v and the two vectors
of Alice, the product will return 0, i.e., Alice’s attributes
satisfy the access policy W2. On the other hand, the inner
product of (�v, �Bobv) = 8 and (�v, �Bobz) = 4, which means
Bob’s attributes cannot satisfy W2.

B. Our Second Construction

Setup(1k): Assume that we have L attributes in the universe,
and each attribute has two possible values: positive and
negative. In addition, we also consider wildcard (meaning
“don’t care”) in access structures. Let N1, N2, N3 be
three upper bounds defined as:

N1 ≤ L: the maximum number of wildcard in an access
structure;

N2 ≤ L: the maximum number of positive attribute in an
attribute set S;

N3 ≤ L: the maximum number of negative attribute in an
attribute set S.

The setup algorithm first randomly generates
(g, G, GT , p, e) and set n = N1 +3. It then chooses randomly
γ1, γ2, θ1, θ2, {u1,i}n

i=1, t1, {t1,i }n
i=1, {t2,i }n

i=1, {w1,i}n
i=1,

{z1,i}n
i=1, {z2,i }n

i=1 in Zp and g2 in G. Then it selects a
random � ∈ Zp and obtains {u2,i}n

i=1, {w2,i }n
i=1, w2, u2

under the condition:

� = γ1u2,i − γ2u1,i � = θ1w2,i − θ2w1,i .

For i from 1 to n, it creates:

U1,i = gu1,i , U2,i = gu2,i , W1,i = gw1,i , W2,i = gw2,i ,

T1,i = gt1,i , T2,i = gt2,i , Z1,i = gz1,i ,

V1 = gγ1, V2 = gγ2, X1 = gθ1, V2 = gθ2 .

Next it sets g1 = g�, Y = e(g, g2), and the public key P K
and master key M SK as

P K = (g, G, GT , p, e, g1, Y, {U1,i , U2,i , T1,i , T2.i ,

W1.i , W2,i , Z1,i , Z2,i }n
i=1, {Vi , Xi }2

i=1)

M SK = (g2, {u1,i , u2,i , t1,i , t2,i , w1,i , w2,i , z1,i , z2,i }n
i=1,

{vi , xi }2
i=1).
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Encrypt(W, M, P K ): Suppose that the access structure W
contains: n1 ≤ N1 wildcards which occur at positions J =
{w1, . . . , wn1}; n2 ≤ N2 positive attributes which occur at
positions V = {v1, . . . , vn2 }; n3 ≤ N3 negative attributes
which occur at positions Z = {z1, . . . , zn3}. Based on
Viète’s formulas, compute for the wildcard positions {w j }
( j = 0, 1, 2, · · · , n1)

an1 = 1

an1−1 = −(w1 + w2 + . . . + wn1)

an1−2 = (w1w2 + w1w3 + . . . + wn1−1wn1)

. . .

a0 = −(w1 · w2 · · · wn1)

Next it computes:

�V = +
∑

i∈V

∏

w j ∈J

(i − w j )

�Z = −
∑

i∈Z

∏

w j ∈J

(i − w j )

It creates a vector �v = (v1, v2, . . . , vn) as:

�v = (a0, a1, . . . , an1, 0n1+1, . . . , 0N1 ,�V ,�Z ).

The encryption algorithm chooses random s1, s2, α, β ∈ Zp

and creates the ciphertext as follows:

Cm = M · Y s2, CA = gs2, CB = gs1
1 ,

{C1,i , C2,i } = {Us1
1,i T

s2
1,i V

vi α
1 , Us1

2,i T s2
2,i V

vi α
2 },

{C3,i , C4,i } = {W s1
1,i Z s2

1,i Xvi β
1 , W s1

2,i Z s2
2,i Xviβ

2 },
Then ciphertext CT is set as:

CT = (Cm, CA, CB , {C1,i , C2,i , C3,i , C4,i }n
i=1).

KeyGen(M SK , S): Suppose that a user joins the system
with the attribute list S, which contains: n′

2 ≤ N2 positive
attributes which occur at positions V ′ = {v ′

1, . . . , v
′
n′

2
};

n′
3 ≤ N3 negative attributes which occur at positions Z ′ =

{z′
1, . . . , z′

n′
3
}. By means of the Viète’s formulas, for all the

positive positions {v ′
k} (k = 0, 1, 2, · · · , n′

2), for all the
negative positions {z′

τ } (τ = 0, 1, 2, · · · , n′
3), it sets:

v ′
k = −

∑

i∈V ′
i k, k = 0, . . . , N1

z′
k = +

∑

i∈Z ′
i k, k = 0, . . . , N1

It creates vectors −→xV and −→xZ as:
−→xV = (v ′

0, v
′
1, . . . , v

′
N1

, 1, 0).
−→xZ = (z′

0, z′
1,+ . . . , z′

N1
, 0, 1).

The key generation algorithm chooses randomly ri,1, ri,2 for
i = 1 to n, and f1, f2, r1, r2 ∈ Zp , and then creates the secret
key as follows:

{K1,i , K2,i } = {g−γ2r1,i g f1xVi u2,i , gγ1r1,i g− f1xVi u1,i },
{K3,i , K4,i } = {g−θ2r2,i g f2xZi w2,i , gθ1r2,i g− f2xZi w1,i },

K A = g2 ·
∏n

i=1
K

−t1,i
1,i K

−t2,i
2,i K

−z1,i
3,i K

−z2,i
4,i ,

K B =
∏n

i=1
g−(r1,i +r2,i ).

The secret key is set as:

SK = (K A, K B , {K1,i , K2,i , K3,i , K4,i }n
i=1).

Decrypt(SK , CT ): The decryption algorithm returns

Cm

e(CA, K A) · e(CB , K B)
∏4

j=1
∏n

i=1 e(C j,i , K j,i )
.

Correctness:

e(C1,i , K1,i )

= e(Us1
1,i T

s2
1,i V

vi α
1 , g−γ2r1,i g f1xVi u2,i )

= e(g, g)r1,i s1(−u1,iγ2) · e(g, g)−r1,iviαγ1γ2 · e(g, K1,i)
t1,i s2

·e(g, g) f1xVi u1,i u2,i s1 · e(g, g) f1vi xVi αγ1u2,i .

e(C2,i , K2,i )

= e(Us1
2,i T

s2
2,i V

viα
2 , gγ1r1,i g− f1xVi u1,i )

= e(g, g)r1,i s1u2,i γ1 · e(g, g)r1,i viαγ1γ2 · e(g, K2,i )
t2,i s2

·e(g, g)− f1xVi u1,i u2,i s1 · e(g, g)− f1vi xVi αγ2u1,i .
∏2

j=1

∏n

i=1
e(C j,i , K j,i )

=
∏n

i=1
e(g, g)r1,i s1� · e(g, g) f1vi xVi α�

·e(g, K1,i)
t1,i s2e(g, K2,i)

t2,i s2 .

∏4

j=3

n∏

i=1

e(C j,i , K j,i )

=
∏n

i=1
e(g, g)r2,i s1� · e(g, g) f2vi xZi β�

·e(g, K3,i)
z1,i s2e(g, K4,i )

z2,i s2 .

Then we have:
∏4

j=1

∏n

i=1
e(C j,i , K j,i )

= e(g, g)(
∑

vi xVi ) f1α�e(g, g)(
∑

vi xZi ) f2β�

×
∏n

i=1
e(g, K1,i)

t1,i s2e(g, K2,i)
t2,i s2e(g, K3,i)

z1,i s2

× e(g, K4,i)
z2,i s2e(g, g)r1,i s1�e(g, g)r2,i s1�.

Also, since

e(CA, K A) = e(gs2, g2 ·
∏n

i=1
K

−t1,i
1,i K

−t2,i
2,i K

−z1,i
3,i K

−z2,i
4,i )

e(CB, K B) = e(gs1�,
∏n

i=1
g−(r1,i+r2,i ))

we have
Cm

e(CA, K A) · e(CB , K B) · ∏4
j=1

∏n
i=1 e(C j,i , K j,i )

= M

e(g, g)((
∑

vi xVi ) f1α�)+((
∑

vi xZi ) f2β�)
.

Therefore, the message M will be returned iff (�v,−→xV ) = 0 and
(�v,−→xZ ) = 0, meaning the attributes list in user key SK satisfies
the access policy in the ciphertext CT .

C. Security Proof for Our Second Construction

Theorem 1: Assume the Decision Bilinear Diffie-Hellman
assumption and Decisional Linear Assumption hold in
group G, then our CP-ABE scheme is selective IND-CPA
secure and policy hiding.
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Since our scheme actually uses the vector corresponding
to an access policy to do the encryption. In order to prove
that our scheme is policy hiding, we only need to prove
that the adversary cannot tell which vector, among the two
vectors �v and �x corresponding to W0 and W1 respectively,
has been used to generate the ciphertext. In our proof we will
consider two cases M0 = M1 and M0 �= M1.

In the case M0 = M1, we only consider the following
game sequence from Game1 to Game5. In this case, we only
prove the property of attribute hiding. For the other case
M0 �= M1, we need to consider the whole proof from
Game0 to Game6. Below we first give a high level descrip-
tion of each game. In each game, we separate the vector
used to generate (CA, CB , C1,i , C2,i ) from the vector for
(CA, CB , C3,i , C4,i ). However, the same vector is used for
both parts in Game0 and Game6.

Game0: The challenge ciphertext CT0 is generated under
(�v, �v) and M0. The ciphertext CT0 is computed as
follows:

(M0 · Y −s2, gs2, gs1
1 , {Us1

1,i T
s2

1,i V
viα
1 , Us1

2,i T
s2

2,i V
viα
2 }n

i=1,

{W s1
1,i Z s2

1,i Xviβ
1 , W s1

2,i Z s2
2,i Xvi β

2 }n
i=1)

Game1: The challenge ciphertext CT1 is generated under
(�v, �v) and a random message R ∈ GT . The ciphertext CT1 is
computed as follows:

(R′, gs2, gs1
1 , {Us1

1,i T
s2
1,i V

viα
1 , Us1

2,i T
s2

2,i V
viα
2 }n

i=1,

{W s1
1,i Z s2

1,i Xvi β
1 W s1

2,i Z s2
2,i Xviβ

2 }n
i=1)

Game2: The challenge ciphertext CT2 is generated under
(�v, �0) and a random message R ∈ GT . The ciphertext CT2 is
computed as follows:

(R′, gs2, gs1
1 , {Us1

1,i T
s2
1,i V

viα
1 , Us1

2,i T
s2

2,i V
viα
2 }n

i=1,

{W s1
1,i Z s2

1,i , W s1
2,i Z s2

2,i }n
i=1,)

Game3: The challenge ciphertext CT3 is generated under
(�v, �x) and a random message R ∈ GT . The ciphertext CT3 is
computed as follows:

(R′, gs2, gs1
1 , {Us1

1,i T
s2
1,i V

viα
1 , Us1

2,i T
s2

2,i V
viα
2 }n

i=1,

{W s1
1,i Z s2

1,i X xi β
1 , W s1

2,i Z s2
2,i X xiβ

2 }n
i=1)

Game4: The challenge ciphertext CT4 is generated under
(�0, �x) and a random message R ∈ GT . The ciphertext CT4 is
computed as follows:

(R′, gs2, gs1
1 , {Us1

1,i T
s2

1,i , Us1
2,i T

s2
2,i }n

i=1,

{W s1
1,i Z s2

1,i X xi β
1 , W s1

2,i Z s2
2,i X xi β

2 }n
i=1)

Game5: The challenge ciphertext CT5 is generated under
(�x, �x) and a random message R ∈ GT . The ciphertext CT5 is
computed as follows:

(R′, gs2, gs1
1 , {Us1

1,i T
s2
1,i V

xiα
1 , Us1

2,i T
s2

2,i V
xiα

2 }n
i=1,

{W s1
1,i Z s2

1,i X xiβ
1 , W s1

2,i Z s2
2,i X xi β

2 }n
i=1,)

Game6: The challenge ciphertext CT6 is generated under
(�x, �x) and message M1 ∈ GT . The ciphertext CT6 is computed
as follows:

(M1 · Y −s2, gs2, gs1
1 , {Us1

1,i T
s2

1,i V
xiα

1 , Us1
2,i T s2

2,i V
xiα

2 }n
i=1,

{W s1
1,i Z s2

1,i X xiβ
1 , W s1

2,i Z s2
2,i X xi β

2 }n
i=1).

D. Indistinguishability Between Game0 and Game1

Suppose that there exists an adversary A which can
distinguish the two games with a non-negligible advantage ε,
we construct another algorithm B which uses A to solve the
Decision Bilinear Diffie-Hellman problem also with advan-
tage ε. On input (g, A = ga, B = gb, C = gc, Z) ∈ G4,
B simulates the game for A as follows.

• Setup: B selects random elements γ1, γ2, θ1, θ2,
λ, {u1,i }n

i=1, {t1,i}n
i=1, {t2,i }n

i=1, {w1,i }n
i=1, {z1,i}n

i=1,
{z2,i }n

i=1, in Zp .
Then it selects a random � ∈ Zp to obtain

{u2,i }n
i=1, {w2,i }n

i=1 under the condition:

� = γ1u2,i − γ2u1,i � = θ1w2,i − θ2w1,i .

Then for i = 1 to n, B sets:

U1,i = gu1,i , U2,i = gu2,i ,

T1,i = (gb)viγ1 gt1,i , T2,i = (gb)viγ2 gt2,i ,

W1,i = gw1,i , W2,i = gw2,i ,

Z1,i = (gb)viθ1 gz1,i , Z2,i = (gb)viθ1 gz2,i .

and

V1 = gγ1, V2 = gγ2, X1 = gθ1, X2 = gθ2

g1 = g�, Y = e(ga, gb)−� · e(g, g)λ.

Each public key component is distributed properly fol-
lowing the random exponents:

t1,i = viγ1b + t1,i , t2,i = viγ2b + t2,i ,

z1,i = viθ1b + z1,i , z2,i = viθ2b + z2,i ,

g2 = g−ab�gλ.

• Key Generation Phase 1 & 2: A issues private key queries
for the attribute list L. Consider a query with two vectors
�yV = (yV1, . . . , yVn) and �yZ = (yZ1, . . . , yZn ). A can

request the private key query as long as (−→v ,−→y V ) =
(−→v ,−→y Z ) = cy �= 0.

B picks random exponents {r1,i }n
i=1, {r2,i }n

i=1, and
f ′
1, f ′

2, r1, r2,. Then B computes:

K1,i = g−γ2r1,i g
( a

2cy
+ f ′

1)yVi u2,i

= g
a

2cy
yVi u2,i g−γ2r1,i g f ′

1 yVi u2,i

= g
a

2cy
yVi u2,i · K ′

1,i .

K2,i = gγ1r1,i g
−( a

2cy
+ f ′

1)yVi u1,i

= g
− a

2cy
yVi u1,i gγ1r1,i g− f ′

1 yVi u1,i

= g
− a

2cy
yVi u1,i · K ′

2,i .
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which implicitly sets: f1 = a
2cy

+ f ′
1. Next B computes:

K3,i = g−θ2r2,i g
( a

2cy
+ f ′

2)yZi w2,i

= g
a

2cy
yZi w2,i g−θ2r2,i g f ′

2 yZi w2,i

= g
a

2cy
yZi w2,i · K ′

3,i .

K4,i = gθ1r2,i g
−( a

2cy
+ f ′

2)yZi w1,i

= g
− a

2cy
yZi w1,i gθ1r1,i g− f ′

2 yZi w1,i

= g
− a

2cy
yZi w1,i · K ′

4,i .

which implicitly sets: f2 = a
2cy

+ f ′
2. Then K B and K A

are computed as:

K B =
∏n

i=1
g−(r1,i +r2,i )

K A = g2

∏n

i=1
K

−t1,i
1,i K

−t2,i
2,i K

−z1,i
3,i K

−z2,i
4,i .

For K A, we can compute:

K
−t1,i
1,i K

−t2,i
2,i

= (g
a

2cy
yVi u2,i · K ′

1,i )
−t1,i · (g

− a
2cy

yVi u1,i · K ′
2,i )

−t1,i

= (g
a

2cy
yVi u2,i )−(viγ1b+t1,i ) · (K ′

1,i )
−t1,i · (K ′

2,i )
−t2,i

· (g
− a

2cy
yVi u1,i )−(viγ2b+t1,i )

= g
− ab

2cy
vi yVi (γ1u2,i −γ2u1,i ) · (K ′

1,i)
−t1,i · (K ′

2,i )
−t2,i

· g
a

2cy
yVi (u1,i t2,i −u2,i t1,i )

= g
− ab�

2cy
vi yVi g

a
2cy

yVi (u1,i t2,i −u2,i t1,i ) ·(K ′
1,i)

−t1,i ·(K ′
2,i )

−t2,i .

Similarly, we can compute:

K
−z1,i
3,i K

−z2,i
4,i = g

− ab�
2cy

vi yZi g
a

2cy
yZi (w1,i z2,i −w2,i z1,i )

· (K ′
3,i )

−z1,i · (K ′
4,i )

−z2,i ·
Since g2 = gab�gλ then K A can be computed as:

K A = gλ
∏n

i=1

× g
a

2cy
yVi (u1,i t2,i −u2,i t1,i )g

a
2cy

yZi (w1,i z2,i −w2,i z1,i )

· (K ′
1,i )

−t1,i · (K ′
2,i )

−t2,i · (K ′
3,i )

−z1,i · (K ′
4,i )

−z2,i .

B gives A the private key: SK = (K A, K B , {K1,i , K2,i ,
K3,i , K4,i }n

i=1) for the queried vector �y.
• Challenge Ciphertext: To generate a challenge ciphertext,
B picks random s′

1, α
′, β ′ ∈ Zp . B implicitly sets:

s1 = s′
1, s2 = c, α = −bc + α′, β = −bc + β ′.

Then B sets A = gc = gs2, B = g�s1 = gs1
1 . For i from

1 to n, B computes:

C1,i = (gu1,i )s1((gb)viγ1 gt1,i )cgviγ1(−bc+α′) =Us1
1,i T

s2
1,i V

viα
1

C2,i = (gu2,i )s1((gb)viγ2 gt2,i )cgviγ2(−bc+α′) =Us1
2,i T

s2
2,i V

viα
2

C3,i = (gw1,i )s1((gb)viθ1 gz1,i )cgviθ1(−bc+β ′)

= W s1
1,i Z s2

1,i Xvi β
1

C4,i = (gw2,i )s1((gb)viθ2 gz2,i )cgviθ2(−bc+β ′)

= W s1
2,i Z s2

2,i Xvi β
2

Next B computes Cm = Z� · e(g, gc)λ · M0. If
Z = e(g, g)abc the challenge ciphertext is distributed in

Game0, otherwise if Z is randomly chosen in GT , then
the challenge ciphertext is distributed in Game1. Hence,
if A can distinguish these two games, B can solve the
DBDH problem.

E. Indistinguishability Between Game1 and Game2

Suppose that there exists an adversary A which can dis-
tinguish these two games with non-negligible advantage ε,
we construct another algorithm B which uses A to solve
the Decision Linear problem with advantage ε. On input
(g, ga, gb, gac, gd , Z) ∈ G6, B simulates the game for A as
follows.

• Setup: B selects random elements γ1, γ2, θ1, θ2, λ,
{u1,i }n

i=1, {t1,i }n
i=1, {t2,i }n

i=1, {w1,i }n
i=1, {z1,i }n

i=1, {z2,i }n
i=1

in Zp . Then it selects a random � ∈ Zp to obtain
{u2,i }n

i=1, {w2,i }n
i=1, w2, u2 under the condition:

� = γ1u2,i − γ2u1,i , � = θ1w2,i − θ2w1,i ,

Then for i = 1 to n, B sets:

U1,i = (ga)u1,i , U2,i = (ga)u2,i ,

T1,i = gt1,i , T2,i = gt2,i ,

W1,i = (ga)w1,i (gb)θ1vi , W2,i = (ga)w2,i (gb)θ2vi ,

Z1,i = gz1,i (gb)θ1vi , Z2,i = gz2,i (gb)θ2vi , .

V1 = gγ1, V2 = gγ2, X1 = gθ1,

X2 = gθ2, g1(ga)�, g2 = gλ.

Each public key component is distributed properly
following the random exponents:

u1,i = au1,i , u2,i = au2,i ,

w1,i = aw1,i + θ1bvi , w2,i = aw2,i + θ2bvi ,

z1,i = viθ1b + z1,i , z2,i = viθ2b + z2,i .

• Key Generation Phase 1 & 2: A issues private key
queries for the attribute list L. Consider a query will
be created two vectors �yV = (yV1, . . . , yVn) and
�yZ = (yZ1, . . . , yZn ) following (5). B picks random expo-

nents {r ′
1,i }n

i=1, {r ′
2,i }n

i=1, and f1, f2. Then B computes:

K1,i = g−γ2(−vi yVi b+r ′
1,i )g f1 yVi u2,i

= gγ2vi yVi bg−γ2r ′
1,i g f1 yVi u2,i

= gγ2vi yVi b · K ′
1,i .

K2,i = gγ1(−vi yVi b+r ′
1,i )g− f1 yVi u1,i

= g−γ1vi yVi bgγ2r ′
1,i g− f1 yVi u1,i

= g−γ1vi yVi b · K ′
2,i .

which implicitly sets: r1,i = −yVi vi b + r ′
1,i . Next B

computes:

K3,i = g−θ2(vi yZi b+ar ′
2,i )g f2 yZi w2,i

= g−θ2vi yZi bg−γ2r ′
2,i ag f2 yZi u2,i

= g−θ2vi yZi b · K ′
3,i .

K4,i = gθ1(vi yZi b+ar ′
2,i )g− f2 yZi w1,i

= gθ1vi yZi bgθ2ar ′
2,i g− f2 yZi w1,i

= gθ1vi yZi b · K ′
4,i .
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which implicitly sets: r2,i = yZi vi b + ar ′
2,i .

Then K B and K A are computed as:

K B =
∏n

i=1
g−(r1,i +r2,i )

×
∏n

i=1
g−(−yVi vi b+r ′

1,i +yZi vi b+ar ′
2,i )

= g−(r ′
1+ar ′

2)
∏n

i=1
g−(r ′

1,i +ar ′
2,i ).

K A = g2

∏n

i=1
K

−t1,i
1,i K

t2,i
2,i K

−z1,i
3,i K

−z2,i
4,i .

For K A, we can compute:

K
−t1,i
1,i K

t2,i
2,i

= g−γ2vi yVi bt1,i gγ1vi yVi bt2,i · (K ′
1,i )

−t1,i · (K ′
2,i )

−t2,i .

K
−z1,i
3,i K

−z2,i
4,i

= g−θ2(vi yZi b)(−z1,i−θ1bvi )g(−θ2ar ′
2,i )(−z1,i−θ1bvi )

× g( f2 yZi w2,i )(−z1,i−θ1bvi )g(− f2 yZi w1,i )(−z2,i −θ2bvi )

× gθ1(vi yZi b)(−z2,i−θ2bvi )g(θ1ar ′
2,i )(−z2,i −θ2bvi )

= g−(vi yZi b+ar ′
2,i )�g( f2 yZi w2,i )(−z1,i −θ1bvi )

× g(− f2 yZi w1,i )(−z2,i−θ2bvi ).

Since g2 = gλ then K A is computed as:

K A = gλ
n∏

i=1

g−γ2vi yVi bt1,i gγ1vi yVi bt2,i

· (K ′
1,i)

−t1,i · (K ′
2,i )

−t2,i

× g−(vi yZi b+ar ′
2,i )�g( f2 yZi w2,i )(−z1,i−θ1bvi )

× g(− f2 yZi w1,i )(−z2,i −θ2bvi ).

B gives A the private key SK = (K A, K B , {K1,i ,
K2,i , K3,i , K4,i }n

i=1, ) for the queried vector �y.
• Challenge Ciphertext: To generate a challenge ciphertext,
B picks random s′

1, α
′ ∈ Zp . B implicitly sets:

s1 = c, s2 = d, α = α′

Then B sets: A = gd = gs2, B = (gac)� = gs1
1 . For i

from 1 to n, B computes:

C1,i = (gau1,i )c(gd)t1,i gviγ1(α
′) = Us1

1,i T
s2

1,i V
viα
1

C2,i = (gau2,i )c(gd)t2,i gviγ2(α
′) = Us1

2,i T
s2

2,i V
viα
2

Next B computes for i from 1 to n:

C3,i = (gaw1,i )c(gd)z1,i Z θ1vi ,

C4,i = (gaw2,i )c(gd)z2,i Z θ2vi

If Z = gb(c+d)gr
for r chosen randomly in Zp , then B is

simulating Game1 with β = r :

C3,i = (gaw1,i )c(gd)z1,i (gb(c+d)gr
)θ1vi = W s1

1,i Z s2
1,i Xviβ

1

C4,i = (gaw2,i )c(gd)z2,i (gb(c+d)gr )θ2vi = W s1
2,i Z s2

2,i Xvi β
2

If Z = gb(c+d), then B is simulating Game2

C3,i = (gaw1,i )c(gd)z1,i (gb(c+d))θ1vi = W s1
1,i Z s2

1,i

C4,i = (gaw2,i )c(gd)z2,i (gb(c+d))θ2vi = W s1
2,i Z s2

2,i .

Therefore, if A can distinguish the two games, B can solve
the DLIN problem.

F. Indistinguishability of Game2 and Game3

Suppose that there exists an adversary A which can dis-
tinguish these two games with a non-negligible advantage ε,
we construct another algorithm B that uses A to solve
the Decision Linear problem with advantage ε. On input
(g, ga, gb, gac, gd , Z) ∈ G6, B simulates the game for A as
follows.

• Setup: B selects random elements γ1, γ2, θ1, θ2,
λ, {u1,i }n

i=1, {t1,i}n
i=1, {t2,i }n

i=1, {w1,i }n
i=1, {z1,i}n

i=1,
{z2,i }n

i=1, in Zp . Then it selects a random � ∈ Zp to
obtain {u2,i }n

i=1, {w2,i }n
i=1, w2, u2 under the condition:

� = γ1u2,i − γ2u1,i , � = θ1w2,i − θ2w1,i .

Then for i = 1 to n, B sets:

U1,i = (ga)u1,i , U2,i = (ga)u2,i ,

T1,i = gt1,i , T2,i = gt2,i ,

W1,i = (ga)w1,i (gb)θ1vi , W2,i = (ga)w2,i (gb)θ2vi ,

Z1,i = gz1,i (gb)θ1vi , Z2,i = gz2,i (gb)θ2xi ,

V1 = gγ1, V2 = gγ2, X1 = gθ1, X2 = gθ2,

g1 = (ga)�, g2 = gλ.

Each public key component is distributed properly fol-
lowing the random exponents:

u1,i = au1,i , u2,i = au2,i

w1,i = aw1,i + θ1bvi , w2,i = aw2,i + θ2bxi ,

z1,i = viθ1b + z1,i , z2,i = viθ2b + z2,i .

• Key Generation Phase 1 & 2: A issues private key
queries for the attribute list L. Consider a query will
be created two vectors �yV = (yV1, . . . , yVn) and
�yZ = (yZ1, . . . , yZn ) following (5). Notice that A obey

the restrictions defined in the model. That is (�v, �yV ) =
(�v, �yZ ) = 0 mod p if and only if (�x, �yV ) mod p and
(�x, �yZ ) mod p. There are two cases we need to consider.

◦ Case 1: (�v, �yV ) = 0 = (�x, �yZ ) mod p. In this case,
B picks random exponents {r ′

1,i }n
i=1, {r ′

2,i }n
i=1, and

f1, f2. Then B computes:

K1,i = g−γ2(−vi (yVi )b+r ′
1,i )g f1(yVi )u2,i

= gγ2vi (yVi )bg−γ2r ′
1,i g f1(yVi )u2,i

= gγ2vi (yVi )b · K ′
1,i .

K2,i = gγ1(−vi (yVi )b+r ′
1,i )g f1(yVi )u1,i

= g−γ1vi (yVi )bgγ2r ′
1,i g f1(yVi )u1,i

= g−γ1vi (yVi )b · K ′
2,i .

which implicitly sets: r1,i = −yVi vi b + r ′
1,i . Next B

computes:

K3,i = g−θ2(xi (yZi )b+ar ′
2,i )g f2(yZi )w2,i

= g−θ2xi (yZi )bg−γ2r ′
2,i a g f2(yZi )u2,i

= g−θ2xi (yZi )b · K ′
3,i .

K4,i = gθ1(xi (yZi )b+ar ′
2,i )g f2(yZi )w1,i

= gθ1xi (yZi )bgθ2ar ′
2,i g f2(yZi )w1,i

= gθ1xi (yZi )b · K ′
4,i .
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which implicitly sets: r2,i = xi yZi b + ar ′
2,i B also

compute K A and K B as follows.

K B =
∏n

i=1
g−(r1,i+r2,i ) =

∏n

i=1
g−(r ′

1,i +ar ′
2,i ).

K A = g2

∏n

i=1
K

−t1,i
1,i K

t2,i
2,i K

−z1,i
3,i K

−z2,i
4,i .

For K A, its components are computed as follows:

K
−t1,i
1,i K

−t2,i
2,i

= g−γ2vi yVi bt1,i g−γ1vi yVi bt2,i · (K ′
1,i )

−t1,i · (K ′
2,i )

−t2,i.

K
−z1,i
3,i K

−z2,i
4,i

= g−θ2(xi yZi b)(−z1,i−θ1bxi )g(−θ2ar ′
2,i )(−z1,i−θ1bxi )

× g( f2 yZi w2,i )(−z1,i−θ1bxi )g(− f2 yZi w1,i )(−z2,i −θ2bxi )

× gθ1(xi yZi b)(−z2,i−θ2bxi )g(θ1ar ′
2,i )(−z2,i −θ2bxi )

= g−(vi yZi b+ar ′
2,i )�g( f2 yZi w2,i )(−z1,i−θ1bxi )

× g(− f2 yZi w1,i )(−z2,i−θ2bxi ).

Since g2 = gλ then K A can be computed as:

K A = gλ
∏n

i=1
g−γ2vi yVi bt1,i gγ1vi yVi bt2,i

· (K ′
1,i)

−t1,i · (K ′
2,i )

−t2,i

· g−(xi yZi b+ar ′
2,i )�g( f2 yZi w2,i )(−z1,i −θ1bxi )

· g(− f2 yZi w1,i )(−z2,i−θ2bxi ).

B gives A the private key SK = (K A, K B , {K1,i ,
K2,i , K3,i , K4,i }n

i=1 for the queried vector �y.
◦ Case 2: (�v, �yV ) = cv �= 0 and (�x, �yZ ) =

cx �= 0. In this case, B picks random exponents
{r ′

1,i }n
i=1, {r ′

2,i }n
i=1, and f1, f2. Then B computes:

K1,i = g−γ2(−cx vi yVi b+r ′
1,i )g f1 yVi u2,i

= gγ2cx vi yVi bg−γ2r ′
1,i g f1 yVi u2,i

= gγ2cx vi yVi b · K ′
1,i .

K2,i = gγ1(cx −vi yVi b+r ′
1,i )g− f1 yVi u1,i

= g−γ1cx vi yVi bgγ2r ′
1,i g− f1 yVi u1,i

= g−γ1cx vi yVi b · K ′
2,i .

which implicitly sets: r1,i = −cx xi yVi b + r ′
1,i . Next

B computes:

K3,i = g−θ2cv (xi yZi b+ar ′
2,i )g f2 yZi w2,i

= g−θ2cv xi yZi bg−γ2r ′
2,i a g f2 yZi u2,i

= g−θ2cv xi yZi b · K ′
3,i .

K4,i = gθ1cv (xi yZi b+ar ′
2,i )g− f2 yZi w1,i

= gθ1cv xi yZi bgθ2ar ′
2,i g− f2 yZi w1,i

= gθ1cv xi yZi b · K ′
4,i .

which implicitly sets: r2,i = cv xi yZi b + ar ′
2,i , r2.

Then K B and K A are computed as follows:

K B = g−(r1+r2)
∏n

i=1
g−(r1,i+r2,i )

=
∏n

i=1
g−(r ′

1,i +ar ′
2,i ).

K A = g2

∏n

i=1
K

−t1,i
1,i K

t2,i
2,i K

−z1,i
3,i K

−z2,i
4,i .

For K A, the components are computed as follows:

K
−t1,i
1,i K

−t2,i
2,i

= g−γ2cx vi yVi bt1,i gγ1cx vi yVi bt2,i

·(K ′
1,i )

−t1,i · (K ′
2,i )

−t2,i .

K
−z1,i
3,i K

−z2,i
4,i

= g−θ2cv (xi yZi b)(−z1,i−θ1bxi )g(−θ2ar ′
2,i )(−z1,i −θ1bxi )

× g( f2 yZi w2,i )(−z1,i−θ1bxi )

× gθ1cv (xi yZi b)(−z2,i−θ2bxi )g(θ1ar ′
2,i )(−z2,i −θ2bxi )

× g(− f2 yZi w1,i )(−z2,i −θ2bxi )

= g(−cv xi yZi b+ar ′
2,i )�g( f2 yZi w2,i )(−z1,i −θ1bxi )

× g(− f2 yZi w1,i )(−z2,i −θ2bxi )

Since g2 = gλ then K A is computed as:

K A = gλ
∏n

i=1
g−γ2cx vi yVi bt1,i gγ1cx vi yVi bt2,i

· (K ′
1,i )

−t1,i · (K ′
2,i )

−t2,i

· g−(cv xi yZi b+ar ′
2,i )�g( f2 yZi w2,i )(−z1,i −θ1bxi )

· g(− f2 yZi w1,i )(−z2,i −θ2bxi )

B gives A the private key SK = (K A, K B , {K1,i ,
K2,i , K3,i , K4,i }n

i=1) for the queried vector �y.
• Challenge Ciphertext: To generate a challenge ciphertext,
B picks random s′

1, α
′ ∈ Zp . B implicitly sets:

s1 = c, s2 = d, α = α′

Then B sets: A = gd = gs2, B = (gac)� = gs1
1 . For i

from 1 to n, B computes:

C1,i = (gau1,i )c(gd)t1,i gviγ1(α
′) = Us1

1,i T
s2
1,i V

viα
1

C2,i = (gau2,i )c(gd)t2,i gviγ2(α
′) = Us1

2,i T
s2
2,i V

vi α
2 .

Next B computes for i from 1 to n:

C3,i = (gaw1,i )c(gd)z1,i Z θ1xi

C4,i = (gaw2,i )c(gd)z2,i Z θ2xi .

If Z = gb(c+d) then, B is playing Game2 with A
C3,i = (gaw1,i )c(gd)z1,i (gb(c+d)gr

)θ1vi = W s1
1,i Z s2

1,i X xi β
1

C4,i = (gaw2,i )c(gd)z2,i (gb(c+d)gr )θ2vi = W s1
2,i Z s2

2,i X xi β
2 .

Otherwise, if Z = gb(c+d)gr
for r chosen randomly in Zp ,

then B is playing Game3 with A by setting β = r

C3,i = (gaw1,i )c(gd)z1,i (gb(c+d))θ1vi = W s1
1,i Z s2

1,i

C4,i = (gaw2,i )c(gd)z2,i (gb(c+d))θ2vi = W s1
2,i Z s2

2,i .

Therefore, if A can distinguish Game2 from Game3, then
B can solve the DLIN problem.

The rest of the proof is similar to the above proofs:
• the indistinguishability between Game3 and Game4 can

be proved in the same way as for Game2 and Game3;
• the indistinguishability between Game4 and Game5 can

be proved in the same way as for Game1 and Game2;
• the indistinguishability of Game5 and Game6 can be

proved in the same way as for Game0 and Game1.
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V. CONCLUSION

In this paper, we presented two new constructions of
Ciphertext Policy Attribute Based Encryption for the
AND-Gate with wildcard access policy. Our first scheme
achieves constant ciphertext size, but cannot hide the access
policy. On the other hand, our second scheme can even hide
the access policy against the legitimate decryptors. We proved
that our second construction is secure under the Decisional
Bilinear Diffie-Hellman and the Decision Linear assump-
tions. One shortcoming of our second construction is that its
ciphertext size is no longer constant, then proving this con-
struction in fully secure. We leave the solution for this problem
as our future work.
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