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Dual-Server Public-Key Encryption With Keyword
Search for Secure Cloud Storage

Rongmao Chen, Yi Mu, Senior Member, IEEE, Guomin Yang, Member, IEEE, Fuchun Guo, and Xiaofen Wang

Abstract— Searchable encryption is of increasing interest for
protecting the data privacy in secure searchable cloud storage.
In this paper, we investigate the security of a well-known crypto-
graphic primitive, namely, public key encryption with keyword
search (PEKS) which is very useful in many applications of cloud
storage. Unfortunately, it has been shown that the traditional
PEKS framework suffers from an inherent insecurity called
inside keyword guessing attack (KGA) launched by the malicious
server. To address this security vulnerability, we propose a
new PEKS framework named dual-server PEKS (DS-PEKS).
As another main contribution, we define a new variant of
the smooth projective hash functions (SPHFs) referred to as
linear and homomorphic SPHF (LH-SPHF). We then show
a generic construction of secure DS-PEKS from LH-SPHF.
To illustrate the feasibility of our new framework, we provide an
efficient instantiation of the general framework from a Decision
Diffie–Hellman-based LH-SPHF and show that it can achieve the
strong security against inside the KGA.

Index Terms— Keyword search, secure cloud storage,
encryption, inside keyword guessing attack, smooth projective
hash function, Diffie-Hellman language.

I. INTRODUCTION

CLOUD storage outsourcing has become a popular
application for enterprises and organizations to reduce

the burden of maintaining big data in recent years. However,
in reality, end users may not entirely trust the cloud storage
servers and may prefer to encrypt their data before uploading
them to the cloud server in order to protect the data privacy.
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This usually makes the data utilization more difficult than
the traditional storage where data is kept in the absence of
encryption. One of the typical solutions is the searchable
encryption which allows the user to retrieve the encrypted
documents that contain the user-specified keywords, where
given the keyword trapdoor, the server can find the data
required by the user without decryption.

Searchable encryption can be realized in either symmetric
or asymmetric encryption setting. In [2], Song et al. proposed
keyword search on ciphertext, known as Searchable Symmetric
Encryption (SSE) and afterwards several SSE schemes [3], [4]
were designed for improvements. Although SSE schemes
enjoy high efficiency, they suffer from complicated secret key
distribution. Precisely, users have to securely share secret keys
which are used for data encryption. Otherwise they are not
able to share the encrypted data outsourced to the cloud.
To resolve this problem, Boneh et al. [5] introduced a
more flexible primitive, namely Public Key Encryption with
Keyword Search (PEKS) that enables a user to search
encrypted data in the asymmetric encryption setting.
In a PEKS system, using the receiver’s public key, the
sender attaches some encrypted keywords (referred to as
PEKS ciphertexts) with the encrypted data. The receiver then
sends the trapdoor of a to-be-searched keyword to the server
for data searching. Given the trapdoor and the PEKS cipher-
text, the server can test whether the keyword underlying the
PEKS ciphertxt is equal to the one selected by the receiver.
If so, the server sends the matching encrypted data to the
receiver.

A. Motivation of This Work

Despite of being free from secret key distribution,
PEKS schemes suffer from an inherent insecurity regarding the
trapdoor keyword privacy, namely inside Keyword Guessing
Attack (KGA). The reason leading to such a security vulner-
ability is that anyone who knows receiver’s public key can
generate the PEKS ciphertext of arbitrary keyword himself.
Specifically, given a trapdoor, the adversarial server can choose
a guessing keyword from the keyword space and then use the
keyword to generate a PEKS ciphertext. The server then can
test whether the guessing keyword is the one underlying the
trapdoor. This guessing-then-testing procedure can be repeated
until the correct keyword is found. Such a guessing attack
has also been considered in many password-based systems.
However, the attack can be launched more efficiently against
PEKS schemes since the keyword space is roughly the same as
a normal dictionary (e.g., all the meaningful English words),

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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which has a much smaller size than a password dictionary
(e.g., all the words containing 6 alphanumeric characters).
It is worth noting that in SSE schemes, only secret key holders
can generate the keyword ciphertext and hence the adversarial
server is not able to launch the inside KGA. As the keyword
always indicates the privacy of the user data, it is therefore
of practical importance to overcome this security threat for
secure searchable encrypted data outsourcing.

B. Our Contributions

The contributions of this paper are four-fold.
• We formalize a new PEKS framework named

Dual-Server Public Key Encryption with Keyword
Search (DS-PEKS) to address the security vulnerability
of PEKS.

• A new variant of Smooth Projective Hash Func-
tion (SPHF), referred to as linear and homomorphic
SPHF, is introduced for a generic construction of
DS-PEKS.

• We show a generic construction of DS-PEKS using the
proposed Lin-Hom SPHF.

• To illustrate the feasibility of our new framework,
an efficient instantiation of our SPHF based on the
Diffie-Hellman language is presented in this paper.

C. Related Work

In this subsection, we describe a classification of
PEKS schemes based on their security.

1) Traditional PEKS: Following Boneh et al.’s seminal
work [5], Abdalla et al. [8] formalized anonymous IBE (AIBE)
and presented a generic construction of searchable encryption
from AIBE. They also showed how to transfer a hierarchi-
cal IBE (HIBE) scheme into a public key encryption with
temporary keyword search (PETKS) where the trapdoor is
only valid in a specific time interval. Waters et al. [7]
showed that the PEKS schemes based on bilinear map could
be applied to build encrypted and searchable auditing logs.
In order to construct a PEKS secure in the standard model,
Khader [9] proposed a scheme based on the k-resilient IBE and
also gave a construction supporting multiple-keyword search.
The first PEKS scheme without pairings was introduced by
Di Crescenzo and Saraswat [11]. The construction is derived
from Cock’s IBE scheme [12] which is not very practical.

2) Secure Channel Free PEKS: The original PEKS
scheme [5] requires a secure channel to transmit the trapdoors.
To overcome this limitation, Baek et al. [13] proposed a
new PEKS scheme without requiring a secure channel, which
is referred to as a secure channel-free PEKS (SCF-PEKS).
The idea is to add the server’s public/private key pair into
a PEKS system. The keyword ciphertext and trapdoor are
generated using the server’s public key and hence only the
server (designated tester) is able to perform the search.
Rhee et al. [14] later enhanced Baek et al.’s security
model [13] for SCF-PEKS where the attacker is allowed to
obtain the relationship between the non-challenge ciphertexts
and the trapdoor. They also presented an SCF-PEKS scheme
secure under the enhanced security model in the random

oracle model. Another extension on SCF-PEKS is by
Emura et al. [15]. They enhanced the security model by
introducing the adaptively secure SCF-PEKS, wherein an
adversary is allowed to issue test queries adaptively.

3) Against Outside KGA: Byun et al. [16] introduced
the off-line keyword guessing attack against PEKS as key-
words are chosen from a much smaller space than passwords
and users usually use well-known keywords for searching
documents. They also pointed out that the scheme proposed in
Boneh et al. [5] was susceptible to keyword guessing attack.
Inspired by the work of Byun et al. [16], Yau et al. [17]
demonstrated that outside adversaries that capture the trap-
doors sent in a public channel can reveal the encrypted
keywords through off-line keyword guessing attacks and they
also showed off-line keyword guessing attacks against the
(SCF-)PEKS schemes in [13] and [18]. The first PEKS scheme
secure against outside keyword guessing attacks was pro-
posed by Rhee et al. [19]. In [20], the notion of trapdoor
indistinguishability was proposed and the authors showed
that trapdoor indistinguishability is a sufficient condition for
preventing outside keyword-guessing attacks. Fang et al. [21]
proposed a concrete SCF-PEKS scheme with (outside)
KGA resilience. Similar to the work in [15], they also con-
sidered the adaptive test oracle in their proposed security
definition.

4) Against Inside KGA: Nevertheless, all the schemes
mentioned above are found to be vulnerable to keyword
guessing attacks from a malicious server (i.e., inside KGA).
Jeong et al. [22] showed a negative result that the con-
sistency/correctness of PEKS implies insecurity to inside
KGA in PEKS. Their result indicates that constructing secure
and consistent PEKS schemes against inside KGA is impos-
sible under the original framework. A potential solution is
to propose a new framework of PEKS. In [10], Peng et al.
proposed the notion of Public-key Encryption with Fuzzy
Keyword Search (PEFKS) where each keyword corresponds
to an exact trapdoor and a fuzzy trapdoor. The server is only
provided with the fuzzy trapdoor and thus can no longer
learn the exact keyword since two or more keywords share
the same fuzzy keyword trapdoor. However, their scheme
suffers from several limitations regarding the security and
efficiency. On one hand, although the server cannot exactly
guess the keyword, it is still able to know which small set the
underlying keyword belongs to and thus the keyword privacy
is not well preserved from the server. On the other hand, their
scheme is impractical as the receiver has to locally find the
matching ciphertext by using the exact trapdoor to filter out the
non-matching ones from the set returned from the server.

5) Differences Between This Work and Its Preliminary
Version [1]: Portions of the work presented in this paper have
previously appeared as an extended abstract [1]. Compared
to [1], we have revised and enriched the work substantially in
the following aspects. First, in the preliminary work [1] where
our generic DS-PEKS construction was presented, we showed
neither a concrete construction of the linear and homomorphic
SPHF nor a practical instantiation of the DS-PEKS framework.
To fill this gap and illustrate the feasibility of the framework,
in this paper (Section 5), we first show that a linear and
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homomorphic language LD H can be derived from the
Diffie-Hellman assumption and then construct a concrete
linear and homomorphic SPHF, referred to as SPHFD H ,
from LD H . We provide a formal proof that SPHFD H is
correct, smooth and pseudo-random and hence can be used for
the instantiation of our generic construction. We then present
a concrete DS-PEKS scheme from SPHFD H . To analyze
its performance, we first give a comparison between existing
schemes and our scheme and then evaluate its performance
in experiments. We also revised the preliminary version [1]
to enhance the presentation and readability. In the related
work part, compared to the preliminary version, we add more
literatures and give a clearer classification of the existing
schemes based on their security. We present the security
models of DS-PESK as experiments to make them more
readable. Moreover, to make the concepts of SPHF and our
newly defined variant clearer, we add Fig. 4 and Fig. 5 to
highlight their key properties.

D. Organization

In Section 2, We propose a new framework, namely
DS-PEKS, and present its formal definition and security
models. We then define a new variant of smooth projective
hash function (SPHF)in In Section 3. A generic construction of
DS-PEKS from LH-SPHF is shown in Section 4 with formal
correctness analysis and security proofs. Finally, we present
an efficient instantiation of DS-PEKS from SPHF based on a
language defined by the Diffie-Hellman problem in Section 5.
We also analyze the performance of our scheme through
comparisons with existing works and experimental evaluation.

II. A NEW FRAMEWORK FOR PEKS

In this section, we formally define the Dual-Server Public
Key Encryption with Keyword Search (DS-PEKS) and its
security model.

A. Definition of DS-PEKS

A DS-PEKS scheme mainly consists of (KeyGen,
DS− PEKS, DS− Trapdoor, FrontTest, BackTest). To be
more precise, the KeyGen algorithm generates the public/
private key pairs of the front and back servers instead of that
of the receiver. Moreover, the trapdoor generation algorithm
DS− Trapdoor defined here is public while in the traditional
PEKS definition [5], [13], the algorithm Trapdoor takes as
input the receiver’s private key. Such a difference is due to the
different structures used by the two systems. In the traditional
PEKS, since there is only one server, if the trapdoor generation
algorithm is public, then the server can launch a guessing
attack against a keyword ciphertext to recover the encrypted
keyword. As a result, it is impossible to achieve the semantic
security as defined in [5] and [13]. However, as we will show
later, under the DS-PEKS framework, we can still achieve
semantic security when the trapdoor generation algorithm is
public. Another difference between the traditional PEKS and
our proposed DS-PEKS is that the test algorithm is divided
into two algorithms, FrontTest and BackTest run by two

independent servers. This is essential for achieving security
against the inside keyword guessing attack.

In the DS-PEKS system, upon receiving a query from the
receiver, the front server pre-processes the trapdoor and all the
PEKS ciphertexts using its private key, and then sends some
internal testing-states to the back server with the correspond-
ing trapdoor and PEKS ciphertexts hidden. The back server
can then decide which documents are queried by the receiver
using its private key and the received internal testing-states
from the front server. The formal definition of DS-PEKS is as
follows.

Definition 1 (DS-PEKS): A DS-PEKS scheme is defined by
the following algorithms.
• Setup(1λ). Takes as input the security parameter λ,

generates the system parameters P;
• KeyGen(P). Takes as input the systems parameters P,

outputs the public/secret key pairs (pkF S, skF S), and
(pkBS, skBS) for the front server, and the back server
respectively;

• DS− PEKS(P, pkF S, pkBS, kw1). Takes as input P,
the front server’s public key pkF S, the back server’s
public key pkBS and the keyword kw1, outputs the PEKS
ciphertext CTkw1 of kw1;

• DS− Trapdoor(P, pkF S, pkBS, kw2). Takes as input P,
the front server’s public key pkF S, the back server’s pub-
lic key pkBS and the keyword kw2, outputs the trapdoor
Tkw2 ;

• FrontTest(P, skF S , CTkw1 , Tkw2 ). Takes as input P, the
front server’s secret key skF S, the PEKS ciphertext
CTkw1 and the trapdoor Tkw2 , outputs the internal
testing-state CI T S;

• BackTest(P, skBS, CI T S). Takes as input P, the back
server’s secret key skBS and the internal testing-state
CI T S, outputs the testing result 0 or 1;

Correctness. It is required that for any keyword kw1, kw2,
and CTkw1 ← DS− PEKS(P, pkF S, pkBS, kw1), Tkw2 ←
DS− Trapdoor(P, pkF S, pkBS, kw2), we have

BackTest(P, skBS, CI T S) =
{

1 kw1 = kw2,

0 kw1 �= kw2.

where CI T S ← FrontTest(P, skF S , CTkw1 , Tkw2 ).

B. Security Models

In this subsection, we formalise the following security
models for a DS-PEKS scheme against the adversarial front
and back servers, respectively.

One should note that both the front server and the back
server here are supposed to be “honest but curious” and will
not collude with each other. More precisely, both the servers
perform the testing strictly following the scheme procedures
but may be curious about the underlying keyword. We should
note that the following security models also imply the security
guarantees against the outside adversaries which have less
capability compared to the servers.

1) Adversarial Front Server: In this part, we define the
security against an adversarial front server. We introduce
two games, namely semantic-security against chosen keyword
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Fig. 1. SS-CKA experiment for adversarial front server.

attack and indistinguishability against keyword guessing
attack1 to capture the security of PEKS ciphertext and
trapdoor, respectively.

I. Semantic-Security Against Chosen Keyword Attack. In the
following, we define the semantic-security against chosen
keyword attack which guarantees that no adversary is able
to distinguish a keyword from another one given the corre-
sponding PEKS ciphertext. That is, the PEKS ciphertext does
not reveal any information about the underlying keyword to
any adversary.

Formally, we introduce an experiment in Fig. 1 for the
SS-CKA security definition against the adversarial front server.
In the experiment, the adversary A is given the public/private
key pair of the front server and the public key of the back
server. In the find phase, A can test any pair of PEKS cipher-
text and keyword by querying the oracle OT and eventually
output two challenging keywords (kw0, kw1) with the hint
information “state.” With a random bit b ∈ {0, 1} as input,
the experiment generates and then sends the PEKS ciphertext
CT ∗kw of keyword kwb to A. During the guess phase, A can
continue the query to OT and finally output its guess b′. The
guess b′ is a valid output of the experiment if and only if that
A has never queried OT with the challenge keywords. We refer
to such an adversarial front server A in the above experiment
as an SS-CKA adversary and define its advantage as

AdvSS−CKA
FS,A (λ) = Pr[b = b′] − 1/2.

II. Indistinguishability Against Keyword Guessing Attack. This
security model captures that the trapdoor reveals no infor-
mation about the underlying keyword to the adversarial front
server. We define the security experiment as shown in Fig. 2.
The experiment is similar to that of SS-CKA experiment
except that in the challenge phase, the adversary is given the
trapdoor instead of the PEKS ciphertext.

We refer to such an adversarial front server A in the
above experiment as an IND− KGA adversary and define its

1In this paper, we use two different terms, namely semantic security and
indistinguishability, to define the security for the keyword ciphertext and the
trapdoor, respectively. However, as for normal public key encryption, these
two terms are equivalent.

Fig. 2. IND-KGA experiment for adversarial front server.

advantage as

AdvIND−KGA
FS,A (λ) = Pr[b = b′] − 1/2.

2) Adversarial Back Server: The security models of
SS− CKA and IND− KGA in terms of an adversarial back
server are similar to those against an adversarial front server.

III. Semantic-Security Against Chosen Keyword Attack. Here
the SS− CKA experiment against an adversarial back server
is the same as the one against an adversarial front server except
that the adversary is given the private key of the back server
instead of that of the front server. We omit the details here
for simplicity. We refer to the adversarial back server A in
the SS − CKA experiment as an SS− CKA adversary and
define its advantage as

AdvSS−CKA
BS,A (λ) = Pr[b = b′] − 1/2.

IV. Indistinguishability Against Keyword Guessing Attack.
Similarly, this security model aims to capture that the trapdoor
does not reveal any information to the back server and hence
is the same as that against the front server except that the
adversary owns the private key of the back server instead
of that of the front server. Therefore, we also omit the
details here. We refer to the adversarial back server A in
the IND− KGA experiment as an IND− KGA adversary and
define its advantage as

AdvIND−KGA
BS,A (λ) = Pr[b = b′] − 1/2.

V. Indistinguishability Against Keyword Guessing Attack-II.
In our defined security notion of IND-KGA-II, as shown
in Fig. 3, it is required that a malicious back server cannot
learn any information about the underlying two keywords
involved in the internal testing-state. First of all, we should
note that both keywords involved in the internal-testing state
plays the same role regardless of their initial source (i.e., from
the PEKS ciphertext or the trapdoor). Therefore, the task of
the adversary is to guess the two underlying keywords in the
internal testing state as a whole, instead of each one in the
initial PEKS ciphertext and the initial trapdoor. Therefore, it is
insufficient for the adversary to submit only two challenge
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Fig. 3. IND-KGA-II experiment for adversarial back server.

keywords and hence we require the adversary to submit three
different keywords in the challenge stage and guess which
two keywords are chosen given the challenge internal-testing
state.

Formally, in the experiment, the adversary A is given the
public key of the front server and the public/private key pair
of the back server. In the challenge phase, the adversary
outputs three challenging keywords (kw0, kw1, kw2). With
two random bits b1 ∈ {0, 1, 2}, b2 ∈ {0, 1, 2} as input, the
experiment first generates the PEKS ciphertext CT ∗kw of kwb1

and the trapdoor T ∗kw of kwb2 , it finally generates and sends the
internal-testing state C∗I T S to A. In the guess phase, A finally
output its guess {b′1, b′2}. We refer to such an adversary A in
the above experiment as an IND− KGA − II adversary and
define its advantage as,

AdvIND−KGA−II
BS,A (λ) = Pr[{b′1, b′2} = {b1, b2}] − 1/3.

Based on the security models defined above, we give the
following security definition for a DS-PEKS scheme.

Definition 2 (Security of DS-PEKS): We say that a
DS-PEKS is secure if for any polynomial time attacker Ai

(i = 1, . . . , 5), we have that AdvSS−CKA
BS,A1

(λ),AdvSS−CKA
BS,A2

(λ),

AdvIND−KGA
FS,A3

(λ), AdvIND−KGA
BS,A4

(λ) and AdvIND−KGA−II
BS,A5

(λ) are
all negligible functions of the security parameter λ.

III. SMOOTH PROJECTIVE HASH FUNCTIONS

A central element of our construction for dual-server
public key encryption with keyword search is smooth
projective hash function (SPHF), a notion introduced by
Cramer and Shoup [23]. We start with the original definition
of an SPHF.

A. Original Definition of SPHFs

As illustrated in Fig. 4, an SPHF is defined based on a
domain X and an NP language L, where L contains a subset
of the elements of the domain X , i.e., L ⊂ X . Formally,
an SPHF system over a language L ⊂ X , onto
a set Y , is defined by the following five algorithms
(SPHFSetup, HashKG, ProjKG, Hash, ProjHash):

• SPHFSetup(1λ): generates the global parameters param
and the description of an NP language instance L;

• HashKG(L, param): generates a hashing key hk for L;

Fig. 4. Smooth projective hash function.

• ProjKG(hk, (L, param)): derives the projection key hp
from the hashing key hk;

• Hash(hk, (L, param), W ): outputs the hash value
hv ∈ Y for the word W from the hashing key hk;

• ProjHash(hp, (L, param), W, w): outputs the hash
value hv′ ∈ Y for the word W from the projection key
hp and the witness w for the fact that W ∈ L.

The correctness of an SPHF requires that for a word W ∈ L
with w the witness,

Hash(hk, (L, param), W ) = ProjHash(hp, (L, param),

W, w).

Another property of SPHFs is smoothness, which means that
for any W ∈ X\L, the following two distributions are
statistically indistinguishable:

V1={(L, param,W, hp,hv)|hv=Hash(hk, (L, param),W )},
V2={(L, param,W, hp,hv)|hv

$← Y},
In summary, an SPHF has the property that the projection

key uniquely determines the hash value of any word in the
language L but gives almost no information about the hash
value for any point in X \ L.

In this paper, we require another important property of
smooth projective hash functions that was introduced in [6].
Precisely, we require the SPHF to be pseudo-random. That is,
if a word W ∈ L, then without the corresponding witness w,
the distribution of the hash output is computationally indis-
tinguishable from a uniform distribution in the view of any
polynomial-time adversary.

B. A New Variant–Linear and Homomorphic SPHFs

In this paper, we introduce a new variant of smooth pro-
jective hash function. In addition to the original properties,
we consider two new properties – linear and homomorphic,
which are defined below.

Let W be the witness space of L. We first describe the
operations on the sets < L,Y,W > as follows.

1) � : L× L→ L. ∀ W1, W2 ∈ L, W1 � W2 ∈ L;
2) � : Y × Y → Y . ∀ y1, y2 ∈ Y , y1 � y2 ∈ Y;
3) 
,⊕ :W ×W →W . ∀w1, w2 ∈W , w1
w2 ∈W and

w1 ⊕ w2 ∈W ;
4) ⊗ :W × L→ L. ∀ w ∈W,∀ W ∈ L, w ⊗W ∈ L;
5) • :W × Y → Y . ∀ w ∈W,∀ y ∈ Y , w • y ∈ Y .
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Fig. 5. Linear and Homomorphic SPHF.

Moreover, for any element y ∈ Y , we define y � y−1 = 1Y
which is the identity element of Y .

As shown in Fig. 5, our new SPHF requires the underlying
language to be also linear and homomorphic language, which
is defined below.

Definition 3 (Linear and Homomorphic Language): A lan-
guage L is linear and homomorphic if it satisfies the following
properties.
• For any word W ∈ L with witness w and �w ∈W , there

exists a word W∗ ∈ L such that �w⊗W = W∗ with the
witness w∗ = �w 
 w.

• For any two words W1, W2 ∈ L with the witness w1,
w2 ∈ W respectively, there exists a word W ′ ∈ L such
that W1 � W2 = W ′ with the witness w′ = w1 ⊕ w2.

We then define the Lin-Hom SPHF as follows.
Definition 4 [Lin-Hom SPHF (LH-SPHF)]: We say an SPHF

is a Lin-Hom SPHF (LH-SPHF) if the underlying language L
is a linear and homomorphic language and it satisfies the
following properties.
• For any word W ∈ L with the witness w ∈ W and

�w ∈W , we have2

Hash(hk,�w ⊗W ) = �w • Hash(hk, W ).

In other words, suppose �w ⊗W = W∗, we have,

ProjHash(hp, W∗, w∗) = �w • ProjHash(hp, W, w),

where w∗ = �w 
 w.
• For any two words W1, W2 ∈ L with the witness w1,

w2 ∈W , we have

Hash(hk, W1 � W2) = Hash(hk, W1) � Hash(hk, W2).

In other words, suppose W1 � W2 = W ′, we have,

ProjHash(hp, W ′, w′) = ProjHash(hp, W1, w1)

� ProjHash(hp, W2, w2),

where w′ = w1 ⊕ w2.
In this paper, we also assume that the LH-SPHF has the

following property: for any y ∈ Y , W ∈ L and the witness
w ∈ W of W , there exists a projection key hp such that
ProjHash(hp, W, w) = y. In Section 6.1, we will present
a concrete LH-SPHF scheme based on the Diffie-Hellman
problem, which has all these properties.

2For simplicity, we omit the input of (L,param) for the algorithm in the
rest of paper.

IV. GENERIC CONSTRUCTION OF DS-PEKS

A. Generic Construction

Let SPHF = (SPHFSetup, HashKG, ProjKG, Hash,
ProjHash) be a LH-SPHF over the language L onto the set Y .
Let W be the witness space of the language L and KW be the
keyword space. Our generic construction DS − PEKS works
as shown in Fig. 6.

Correctness Analysis: One can see that the correctness
of this construction is guaranteed by the properties of the
LH-SPHF. We give the analysis as follows.

For the algorithm FrontTest, we have

x = Hash(P, skF S, W )

= Hash(P, skF S, W1 
W2)

= Hash(P, skF S, W1) � Hash(P, skF S , W2)

= x1 � x2.

Therefore,

C = C1 � C2 � x−1

= x1 � y1 � �(kw1) � x2 � y2 � �(kw2)
−1 � (x1 � x2)

−1

= y1 � y2 � �(kw1) � �(kw2)
−1.

For the algorithm BackTest, we have

Hash(P, skBS, W∗)
= Hash(P, skBS,�w ⊗W )

= �w • Hash(P, skBS, W1 � W2).

= �w • (Hash(P, skBS, W1) � Hash(P, skBS, W2))

= �w • (y1 � y2).

It is easy to see that if kw1 = kw2, then
Hash(P, skBS, W∗) = �w • C = C∗. Otherwise,
Hash(P, skBS, W∗) �= C∗ due to the collision-resistant
property of the hash function �.

B. Security of DS − PEKS
In this subsection, we analyse the security of the above

generic construction DS − PEKS . Due to the space limita-
tion, we omit the proof details here and refer readers to [1]
for a full security proof.

Theorem 1: The generic construction DS − PEKS is
semantically secure under chosen keyword attacks.
This conclusion is obtained from the following two lemmas.

Lemma 1: For any polynomial-time adversary A,
AdvSS−CKA

FS,A (λ) is a negligible function.
Lemma 2: For any polynomial-time adversary A,

AdvSS−CKA
BS,A (λ) is a negligible function.

Theorem 2: The generic construction DS − PEKS is
secure against keyword guessing attack.
The above theorem can be obtained from the following
lemmas.

Lemma 3: For any polynomial-time adversary A,
AdvIND−KGA

FS,A (λ) is a negligible function.
Lemma 4: For any polynomial-time adversary A,

AdvIND−KGA
BS,A (λ) is a negligible function.

The proofs of LEMMA 3. and LEMMA 4. are similar to
those of LEMMA 1. and LEMMA 2. as the generation of a
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Fig. 6. A Generic Construction of DS-PEKS from Lin-Hom SPHF.

trapdoor is the same as that of a PEKS ciphertext, and the
security model of IND-KGA is also similar to that of
SS-CKA. For the security against the keyword guessing
attack-II, we have the following lemma.

Lemma 5: For any polynomial-time adversary A,

AdvIND−KGA−II
BS,A (λ) is a negligible function.

V. AN INSTANTIATION OF DS-PEKS

A. A Concrete LH-SPHF From DDH Assumption

We introduce the Diffie Hellman language LD H and show
how to derive an LH-SPHF. Let G be a group of primer order
p and g1, g2 ∈ G the generators of G.

1) Decision Diffie-Hellman (DDH) Assumption: The
DDH assumption says that for any a, b, r randomly chosen

from Zp , {(g1, ga
1 , gb

1, gab
1 )} is computationally indistinguish-

able from {(g1, ga
1 , gb

1, gr
1)}.

2) Diffie-Hellman Language: The Diffie-Hellman Language
is defined as follows.

LD H = {(u1, u2)|∃r ∈ Zp, s.t ., u1 = gr
1, u2 = gr

2}
One can see that the witness space of LD H is W = Zp and
LD H ⊂ G2. We have the following theorems.

Theorem 3: The Diffie-Hellman language LD H is a linear
and homomorphic language.

Proof: We show that LD H satisfies the properties of a
linear and homomorphic language.

1). For a word W = (gr
1, gr

2) with the witness w = r ∈ Zp

and �r ∈ Zp , we have,

W∗ = �r ⊗W = (gr�r
1 , gr�r

2 ) ∈ LD H ,

which has the witness w∗ = r�r .

2). For any two word W1 = (gr1
1 , gr1

2 ) (witness w1 = r1),
W2 = (gr2

1 , gr2
2 ) (witness w2 = r2), we have,

W∗ = W1 � W2 = (gr1+r2
1 , gr1+r2

2 ) ∈ LD H ,

which has the witness w∗ = w1 ⊕ w2 = r1 + r2.
3) LH-SPHF on LD H : Here we show how to construct

an LH-SPHF (denoted by SPHFD H ) over the language
LD H ⊂ X = G2 onto the group Y = G. The concrete
construction is as follows.
• SPHFSetup(1λ): param = (G, p, g1, g2);

• HashKG(LD H , param): hk = (α1, α2)
$← Z2

p;
• ProjKG(hk, (LD H , param)): hp = gα1

1 gα2
2 ∈ Zp;

• Hash(hk, (LD H , param), W = (gr
1, gr

2)): hv = grα1
1

grα2
2 ∈ Zp;

• ProjHash(hp, (LD H , param), W = (gr
1, gr

2),w = r):
hv′ = hpr ∈ Zp .

As for SPHFD H , we have the following theorems.
Theorem 4: SPHFD H is a smooth projective hash

function.
Proof: We show that SPHFD H is of correctness, smooth-

ness and pseudo-randomness.

1) Correctness. With the above notations, we have

Hash(hk, (LD H , param), W ) = grα1
1 grα2

2 = hpr

= ProjHash(hp, (LD H , param), W, w).

2) Smoothness. Suppose g2 = gθ
1 . Note that hp = gα1

1 gα2
2

which constraints (α1, α2) to satisfy

logg1
hp = α1 + θα2. (1)
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Let W ′ = (gr1
1 , gr2

2 ) ∈ X\LD H where r1 �= r2, then the
hash value hv1 of W ′ is

hv1 = Hash(hk, (LD H , param), W ′) = gr1α1
1 gr2α2

2 ,

which also constraints (α1, α2) to satisfy

logg1
hv1 = r1α1 + r2θα2. (2)

For the above two equations, we have

(α1, α2) ·A = (logg1
hp, logg1

hv1),

where A is a matrix defined as

A =
[

1 r1
θ r2θ

]
.

Since the determinant of A is θ · (r2− r1) that is nonzero
(r1 �= r2), we have that the equation (1) is independent
of the equation (2). Therefore, we have that hv1 is
statistically indistinguishable from any element randomly
chosen from G.

3) Pseudo-randomness. One can easily obtain this property
from the DDH assumption. We omit the proof details due
to the space limitation. �

Theorem 5: SPHFD H is a Lin-Hom SPHF.
Proof: As shown previously, LD H is a linear and homo-

morphic language. Now we show that SPHFD H satisfies the
following properties.

1) For a word W = (gr
1, gr

2) with the witness w = r ∈ Zp

and �r ∈ Zp , we have �r ⊗ W = (gr�r
1 , gr�r

2 ).
Therefore, we have

Hash(hk, (LD H , param),�r ⊗W ) = gr�rα1
1 gr�rα2

2

= (gr1α1
1 gr2α2

2 )�r = �r • Hash(hk, (LD H , param), W )

2) For any two word W1 = (gr1
1 , gr1

2 ), W2 = (gr2
1 , gr2

2 ),
we have W1 � W2 = (gr1+r2

1 , gr1+r2
2 ) ∈ LD H . Therefore,

we have

Hash(hk, (LD H , param), W1 � W2)

= g(r1+r2)·α1
1 · g(r1+r2)·α2

2

= Hash(hk, (L, param), W1)

� Hash(hk, (L, param), W2).

This proves the theorem. �

B. The Concrete Scheme

The concrete scheme based on SPHFD H introduced above
is as follows.

Setup. Let G be a group with prime order p and
g1, g2 be two generators of G. H : {0, 1}∗ → G is a
collision-resistant hash function. The system parameter is
(p, g1, g2, G, H ).
KeyGen. Pick α1, α2, β1, β2 from Zp randomly and gener-
ate the public/secret key pair (pkF S, skF S), (pkBS, skBS)
for the front server and the back server respectively as
follows,

pkF S = h1 = gα1
1 gα2

2 , skF S = (α1, α2),

pkBS = h2 = gβ1
1 gβ2

2 , skBS = (β1, β2).

DS− PEKS. For a keyword kw1, pick r1
$← Zp , generate

the PEKS ciphertext of kw1 as follows,

CTkw = (gr1
1 , gr1

2 , hr1
1 hr1

2 H (kw1)).

DS− Trapdoor. For a keyword kw2, pick r2
$← Zp ,

generate the trapdoor of kw2 as follows,

Tkw = (gr2
1 , gr2

2 , hr2
1 hr2

2 H (kw2)
−1).

FrontTest. Pick γ
$← Zp and compute the internal testing-

state CI T S as follows,

CTkw · Tkw′ = (C1, C2, C3)

= (gr1+r2
1 , gr1+r2

2 , hr1+r2
1 hr1+r2

2

(H (kw1)H (kw2)
−1)),

CI T S = (C∗1 , C∗2 , C∗3 ) = (Cγ
1 , Cγ

2 , (C3/(C
α1
1 Cα2

2 ))γ ).

BackTest. For an internal testing-state CI T S = (C∗1 , C∗2 ,
C∗3 ), do the testing as follows,

C∗β1
1 C∗β2

2
?= C∗3 .

If the equation holds, outputs 1, otherwise outputs 0.
Correctness. It is easy to obtain the correctness as

Cα1
1 Cα2

2 = g(r1+r2)α1
1 g(r1+r2)α2

2 = hr1+r2
1 and we have that,

C∗3 = (C3/(C
α1
1 Cα2

2 ))γ = h(r1+r2)γ
2 (H (kw1)H (kw2)

−1)γ .

Therefore, if kw1 = kw2, i.e.,C∗3 = h(r1+r2)γ
2 , then

C∗β1
1 C∗β2

2 = Cγβ1
1 Cγβ2

2 = gβ1·(r1+r2)γ
1 gβ2·(r1+r2)γ

2

= h(r1+r2)γ
2 = C∗3 .

Otherwise, the equation would hold due to the collision-
resistance of H .

Security. The following corollary can be obtained directly
from Theorem 1-5.

Corollary. The concrete construction is a secure DS-PEKS
scheme.

C. Performance Evaluation
In this section, we first give a comparison between existing

schemes and our scheme in terms of computation, size and
security. We then evaluate its performance in experiments.

1) Computation Costs: As shown in Table I, all the existing
schemes [5], [10], [20] require the pairing computation during
the generation of PEKS ciphertext and testing and hence
are less efficient than our scheme, which does not need
any pairing computation. In our scheme, the computation
cost of PEKS generation, trapdoor generation and testing are
4ExpG1

+ 1HashG1 + 2MulG1 , 4ExpG1
+ 1HashG1 + 2MulG1 ,

and 7ExpG1
+ 3MulG1 respectively, where ExpG1

denotes
the computation of one exponentiation in G1, MulG1 denotes
the costs of one multiplication in G1, MulG1 and HashG1

respectively denote the cost of one multiplication and one
hashing operation in G1.

2) Experiment Results: To evaluate the efficiency of
schemes in experiments, we also implement the scheme uti-
lizing the GNU Multiple Precision Arithmetic (GMP) library
and Pairing Based Cryptography (PBC) library. The following
experiments are based on coding language C on Linux system
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TABLE I

PERFORMANCE COMPARISONS BETWEEN EXISTING WORKS AND OUR SCHEME

Fig. 7. Computation cost of PEKS generation in different schemes.

Fig. 8. Computation cost of trapdoor generation in different schemes.

(more precise, 2.6.35-22-generic version) with an Intel(R)
Core(TM) 2 Duo CPU of 3.33 GHZ and 2.00-GB RAM. For
the elliptic curve, we choose an MNT curve with a base filed
size of 159 bits and p = 160 bits and |q| = 80 bits.

As shown in Fig. 7, our scheme is the most efficient in
terms of PEKS computation. It is because that our scheme does
not include pairing computation. Particularly, the scheme [10]
requires the most computation cost due to 2 pairing compu-
tation per PEKS generation. As for the trapdoor generation
indicated in Figure 8, as all the existing schemes do not
involve pairing computation, the computation cost is much
lower than that of PEKS generation. It is worth noting that
the trapdoor generation in our scheme is slightly higher than
those of existing schemes due to the additional exponentiation
computations. When the searching keyword number is 50, the
total computation cost of our scheme is about 0.25 seconds.
As illustrated in Fig. 9, the scheme [10] cost the most time
due to an additional pairing computation in the exact testing
stage. One should note that this additional pairing computation
is done on the user side instead of the server. Therefore, it
could be the computation burden for users who may use a

Fig. 9. Computation cost of testing in different schemes.

light device for searching data. In our scheme, although we
also require another stage for the testing, our computation cost
is actually lower than that of any existing scheme as we do not
require any pairing computation and all the searching work is
handled by the server.

VI. CONCLUSION

In this paper, we proposed a new framework, named
Dual-Server Public Key Encryption with Keyword Search
(DS-PEKS), that can prevent the inside keyword guessing
attack which is an inherent vulnerability of the traditional
PEKS framework. We also introduced a new Smooth Projec-
tive Hash Function (SPHF) and used it to construct a generic
DS-PEKS scheme. An efficient instantiation of the new SPHF
based on the Diffie-Hellman problem is also presented in
the paper, which gives an efficient DS-PEKS scheme without
pairings.
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