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Subversion of cryptography has received wide attentions especially after the Snowden Revelations
in 2013. Most of the currently proposed subversion attacks essentially rely on the freedom of ran-
domness choosing in the cryptographic protocol to hide backdoors embedded in the cryptosystems.
Despite the fact that significant progresses in this line of research have been made, most of them
mainly considered the classical setting, while the research gap regarding subversion attacks against
post-quantum cryptography remains tremendous. Inspired by this observation, we investigate a
subversion attack against existing protocol that is proved post-quantum secure. Particularly, we
show an efficient way to undetectably subvert the well-known lattice-based encryption scheme
proposed by Regev (STOC 2005). Our subversion enables the subverted algorithm to stealthily
leak arbitrary messages to the outsider who knows the backdoor. Through theoretical analysis and
experimental observations, we demonstrate that the subversion attack against the LWE encryption

scheme is feasible and practical.
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1. INTRODUCTION

The revelations of Edward Snowden in 2013 indicated
[1–3] that, in practice, cryptosystems may be insecure as
they could be possibly embedded with backdoors. Precisely,
cryptographic backdoors could make the system far less
reliable as thought and even completely broken. The subverted
cryptosystems may still behave normally while in fact it could
undetectably leak secret information via the public channel
to the outside world. The attacker who plants the backdoor
into the system could recover the secret by simply collecting
and analysing all public communication transcripts of the
cryptosystems.

Since modern cryptographic implementations are usually of
extreme complexities, even cryptographic experts cannot easily
detect these backdoors and thus let alone typical users. Even
if such code is proved to be safe, the compiler or interpreter
may also be subverted which makes that code less “clean”.

To formalize such strong attacks, in 1996, Young and Yung
[4, 5] introduced the concept of Kleptography which mod-
els the cryptographic subversion in the reality. Since then
on, subversion attacks (SAs) against cryptographic systems
have received wide attentions and particularly the Snowden
revelations reemphasized the need to further explore the power
of subverting cryptographic systems and effective countermea-
sures in practice [6–9].

With the development of quantum technology, most of the
current public-key encryption schemes, especially those rely on
the hardness of discrete logarithms or big integer factorization
problems, are insecure any more when facing quantum
computers. Thus, post-quantum cryptography algorithms
have received lots of attentions recently. Among them,
lattice-based cryptography is regarded as the most promising
candidate because of its great performance and strong
security guarantee. NTRU and LWE (learning with errors)
cryptosystems are two of the most famous types of lattice-based
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cryptographies. As one of the most well-known lattice-based
schemes, NTRU cryptosystems [10] has been standardized
by the IEEE, and its security originally relies on the NTRU
problem [11] which is a heuristic argument. Moreover, some
other provably secure NTRU variants [12–14] suffer from low
efficiency. The LWE cryptography was introduced by Regev
in [15]. For some suitable parameters, its security relies on
the hardness of the GapSVP (decisional approximate shortest
vector problems; SVP) on arbitrary random lattices; it is also
believed to be post-quantum secure.

Most recently, National Institute of Standards and Technol-
ogy (NIST) decided to standardize the post-quantum cryp-
tography and analyse lattice-based cryptosystems for better
understanding. By now, people have proposed various attacks
to analyse the security of lattice-based cryptosystems. Some are
mathematical, e.g. combinatorial attacks [16, 17], while some
are based on algorithmic methods, such as lattice-reduction
attacks [18, 19]. Though these cryptanalysis results can be
used as a somewhat systematical methodology to estimate
the security of lattice-based cryptography, few works have
been done to explore the SA on post-quantum cryptography.
In [20], a class of possible backdoors has been proposed to
subvert the NewHope system. However, those backdoors are
only applicable to fixed public parameters and can be trivially
disabled via changing the fixed parameter to a hash value of a
common reference string. Kwant and Thissen [21] designed a
backdoor for NTRU such that each ciphertext contains some
underlying message which can only be recovered efficiently
by the backdoor owner. For NTRU and LWE based signature
schemes, the backdoor owner can also get some information
about the signing key. Most recently, Xiao and Yu [22] showed
how to subvert the classical Ring-LWE scheme. As the security
of the proposed backdoor also relies on the Ring-LWE problem,
the whole scheme is post-quantum secure.

Our Contributions. In this paper, we show how to perform SA
on a classical LWE encryption scheme proposed by Regev [15].
Similarly, the backdoor we design is based on a post-quantum
cryptographic scheme, and the whole scheme is considered
under the post-quantum setting. We insist that the SA in NTRU
[21] relies on an ECC-based backdoor and thus cannot resist
quantum-computation analysis. Our technical idea is to select
a random vector x carefully in the process of the LWE encryp-
tion, such that the ciphertext of LWE scheme will contain
some other information which can be recovered by the attacker.
Compared with the other lattice-based SA [22], the vector x
in our new subverted encryption can be calculated in advance;
thus our embedded backdoor will not slow down the modified
encryption algorithm, and we demonstrate via experiment that
our proposed new SA is practical when the related parameters
are not too large.

Organizations. We organize the rest of the paper as follows.
Section 2 describes some useful notations and concepts. The
description of NTRU cryptosystems and the LWE cryptosys-

tem will be given in Section 3. After some definitions in
Section 4, our LWE encryption backdoor will be introduced in
Section 5. In Section 6, experiments have been done to evaluate
the backdoor. Section 7 presents some countermeasures.
Finally, Section 8 concludes this paper.

2. NOTATIONS AND DEFINITION

We denote Z be the integer ring, and Zq is defined by Z/qZ
where q is a positive parameter. We suppose that a bold letter v
represents vector in row notation and vi is the i-th component
of v. The capital letter A denotes a matrix.

For any constant c, a function f (n) = o(n−c) is said to be
negligible. Generally, if ε is a negligible function then
1 − ε is overwhelming. The notion z ←$ D means that
the variable z is sampled from the distribution D, and the
probability of z = x is denoted by D (x). log (·) is the base
2 logarithms, respectively.

2.1 Background on Lattices

2.1.1 Lattice
A lattice L is a discrete subgroup in Rn generated by several
linear independent vectors b1, · · · , bm ∈ Zn over the integer
ring, and m ≤ n,

L = {a1b1 + · · · + ambm : a1 ∈ Z, · · · , am ∈ Z}.

The volume vol (L) of this lattice is
√

det(B · BT), where BT =(
bT

1 , · · · , bT
m

)
is a basis of this lattice. The dual lattice L∗ is

defined as follows:

L∗ = {x ∈ Rn : ∀v ∈ L, 〈x, v〉 ∈ Z}.
The length of the shortest non-zero vectors in L is repre-

sented by λ1 (L). The famous shortest vector problem (SVP)
is to find a shortest vector in a random lattice L [23]. The ap-
proximating SVP, GapSVPf (m) is to find some lattice vectors of
length within f (m)λ1 (L), where f (m) is a function of m and an
approximating factor. A breakthrough result of Ajtai [24]
proved that the SVP is NP-hard. Another proof by Micciancio
[23] asserts that, under the randomized reduction, approxi-
mating SVP within a constant factor is NP-hard. For the latest
development we refer to Khot [25], under the same assumption,
approximating SVP within a quasi-polynomial factor is also
NP-hard.

2.1.2 Gaussian Measures
The gaussian distribution over Z is represented by Ds, and
the parameter s is called deviation. Given a function ρs (x) =
exp

(
− x2

s

)
, the value of Ds (x) is equal to

Ds (x) = ρs (x) /ρs (Z) ,

where ρs (Z) = ∑
x∈Z ρs (x).
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Lemma 2.1. Suppose n > 0 belongs to Z, and for any
parameter s ≥ ω(

√
log n), the following inequations will hold:

Prx ←$ DZn ,s[||x|| > s
√

n] ≤ 2−n+1.

The smoothing parameter ηε [26] is defined as the smallest
positive parameter s such that ρ1/s (L∗ \ {0}) ≤ ε, for any
ε > 0.

Lemma 2.2. L denotes an arbitrary n-dimensional lattice, and
λ1 (L∗) is the length of the shortest vector in the dual latticeL∗;
the smoothing parameter will satisfy

ηε (L) ≤ √
n/λ1

(
L∗) ,

where ε = 2−m.

We say that a real variable X follows subgaussian distribu-
tion with a parameter s if

Pr[|X| > t] ≤ 2 exp
( − π t2/s2),

for every t ≤ 0. That means the distribution of X is dominated
by a Gaussian.

2.2 Public Key Encryption

Firstly, the syntax of public-key encryption is given below.

Definition 2.1. There are three probabilistic polynomial-
time (PPT) algorithms

(
KGen, Enc, Dec

)
in the public-key

encryption scheme � which satisfy the following:

• KGen(1n): It begins with a security parameter 1n and
returns (pk, sk). We refer to pk as the public key
and sk as the private key.

• Enc(m, pk): Enc takes a message m and the public key
pk as input, output c ←$ Enc(m, pk) as ciphertext.

• Dec(c, sk): The inputs of Dec are cipertext c and pri-
vate key sk. Dec returns a symbol ⊥ denoting failure
or outputting the message m. In the later case, m =
Dec(c, sk).

The correctness of a public key encryption scheme requires
that for any parameter 1n, (pk, sk) ←$ KGen(1n) and appro-
priate message m, we have

Dec (Enc (m, pk) , sk) = m.

In this paper, we mainly consider the security under the
indistinguishability from random ‘bits/strings’ under chosen-
plaintext attack (IND$-CPA) security [27] which is defined by
a game between an adversary A and a challenger C.

FIGURE 1. Game used to define IND$-CPA security.

As shown in the Fig. 1, C samples a random coin b and
generates a key pair (pk, sk). A selects messages and issues
queries on the encryption oracle. Enc returns a ciphertext of
m when b = 1, returns a random string otherwise. Finally, A
takes c and pk as inputs and outputs a gauss b′.

Definition 2.2. � = (
KGen, Enc, Dec

)
is a public-key

scheme, and ε denotes a negligible function; the scheme is
IND$-CPA secure if for arbitrary PPT adversaries A

Pr[IND$-CPAAEnc (n) = 1] ≤ 1

2
+ ε,

where the probability depends on both coins used by A and the
experiment.

3. LATTICE-BASED CRYPTOSYSTEMS

3.1 NTRU Cryptosystems

We give a brief introduction about a NTRUEncrypt cryptosys-
tems which is sometimes referred to as SVES-3, and it is also
a candidate in NIST-round 1 [28]. The NTRU cryptosystems
are determined by some sets of polynomials and three positive
integer parameters p, q and N, where N is set to be prime. The
parameter q is much bigger than p and satisfies gcd(p, q) = 1.
Three sets

BN = {binary polynomials}

TN = {trinary polynomials}
and TN (r, s) contain polynomials in TN with r ones and s
minus ones. All of them are subsets of the polynomial ring
R = Z[X]/(XN − 1).

The multiplication in R is denoted by ∗, and in NTRU
cryptosystems it is performed modulo parameter q or p.
The hash function H used in NTRU cryptosystems is to
map arbitrary messages to a binary string with arbitrary
length, and the sampling algorithms are determined by some
random seeds. For simplicity, we assume that the message
space is R2 and no padding method is used. Let �ntru =(
KGenntru, Encntru, Decntru

)
be the NTRU encryption

scheme which is constructed as followings
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KGenntru(1N) : It begins with two small polynomials g ∈ TN
and f ∈ TN (d + 1, d), f is invertible. We generate the public
key h by

h ≡ g/ (pf + 1) mod q,

and the private key is (pf , g).

Encntru (m, h) : To encrypt the message m with the public key
h, one takes a seed rseed as input and samples a polynomial
r from TN , where rseed = H (m, h) and computes

t = r ∗ h.

Then, he samples mmask from TN based on seed tseed =
H (t) and calculates m′ = m − mmask mod p. Finally, output
ciphertext as

e = t + m′

Decntru (e, f ) : To decrypt e with the private key f , one
recovers m′ by

m′ = f ∗ e mod p,

and gets t = e − m. One recovers mmask from TN on tseed =
H(t) and obtains m = m′ + mmask mod p; the parameter r can
also be sampled with rseed = H (m, h). Finally, outputs m if
the equation

pr ∗ h = t

holds, otherwise outputs ⊥.

3.1.1 Security
As a well-known lattice-based public key scheme, redthe
NTRU cryptosystem is efficient and standardized but lacks
a solid security guarantee. The first provably secure variant of
NTRUEncrypt was proposed by Stehlé and Steinfeld [12] in
2011, which is defined over power-of-2 cyclotomic rings and
usually denoted by pNE. The pNE scheme is IND-CPA secure
if some classical problems over ideal lattices are hard. Recently,
a new variant is constructed by Yu, Xu and Wang [13]. They
changed the ring into prime cyclotomic rings at the cost of using
rather large parameters. Later, they [14] generalized cyclotomic
ring by modifying the key generation algorithm.

Our work is mainly based on the pNE scheme and assumes
that the scheme has IND$-CPA security, which means that the
c outputted by algorithm Encntru is indistinguishable from
vector randomly chosen from ZN

q and it is a little different
from the IND-CPA security. Because in the IND-CPA secure
model, the adversary is asked to judge the output ciphertext
comes from which message and no random vector is consid-
ered. We believe that our assumption is reasonable; otherwise
a distinguisher can be used to attack the NTRU scheme.

3.2 Learning With Errors Cryptosystems

3.2.1 Learning With Errors (LWE)
Regev [15] first proposed the average-case learning with
errors problem in 2005. n and q are arbitrary positive inte-
gers, and χ denotes the error distribution over Z; the LWE
distribution is defined as follows.

Definition 3.1. A vector s ∈ Zn
q is called secret and the LWE

distribution As,χ overZn
q×Zq are pairs with the following form:

(a, b = 〈s, a〉 + e mod q) ,

where e ←$ χ and a is sampled from Zn
q uniformly at random.

In practical applications, χ is usually taken as a dis-
crete Gaussian distribution of width αq, and the parameter
α < 1 is called “error rate”. For m independent samples
(a1, b1) , . . . , (am, bm) from As,α , we represent them in matrix
form (A, bt) ∈ Zm×n

q × Zm×1
q , where At = (

at
1, . . . , at

m

)
and

b = (b1, . . . , bm). Given matrix (A, bt), LWE problem is to
calculate the secret s, and Regev [15] proved the hardness of
this problem as below.

Theorem 3.1. Let q ≤ 2poly(n) and m = poly(n). The error
rate satisfies αq ≥ 2

√
n; the LWEn,q,χ ,m problem is at least

hard as GapSVPγ problem on arbitrary n-dimension lattices,
where γ = Õ(n/α).

3.2.2 LWE Cryptosystems
Regev also proposed an LWE-based public-key cryptosystems
in [15]. With the parameter α = �̃

(
1/

√
n
)
, the new scheme has

semantic security if the LWEn,q,χ ,m problem is hard. Suppose n
is the degree of the related LWE problem, both of the secret
keys and ciphertexts will have the same size: Õ (n) and the
size of the public key is Õ

(
n2

)
. A single message bit will be

encrypted each time.
For security and correct decryption, the parameters n, q, the

number of samples m and the error distribution χ should satisfy
various conditions. The LWE scheme � = (

KGen, Enc, Dec
)

is described as follows:

KGen(1n): The secret key is the secret vector s ∈ Zn
q in

LWE problem. Take m ≈ (n + 1) log q samples from the LWE
distribution As,χ and construct the public key A by collecting
those samples as the rows of a matrix

A = [Ā, bt] ∈ Zm×(n+1)
q .

Since bt = Āst + et mod q, we have

A · (−s, 1)t = et ≈ 0 mod q.
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Enc (μ, pk): Take a bit message μ ∈ Z2 and a public key A
as input, one first calculates the sum of an arbitrary subset of
the LWE samples and then encodes μ in the last coordinate.
Formally, one samples a binary vector x from {0, 1}m uniformly
and outputs the ciphertext as

c = x · A +
(

0, μ · �q

2
�
)

∈ Zn+1
q .

Dec (c, sk): Given the secret key s, we can recover the message
μ form c by computing

c · (−s, 1)t ≡ x · A · (−s, 1)t + μ · �q

2
� mod q

= x · e + μ · �q

2
� mod q

≈ μ · �q

2
� mod q,

and output 1 when the result is closer to � q
2�, otherwise 0. The

approximation based on the fact that the norm of vectors e, x ∈
Zm is small.

Correctness: [29] The decryption is always correct when the
absolute value of the inner product 〈e, x〉 ∈ Z is less than q/4; it
will hold easily when the error vector e and the parameter m are
sufficiently small compared with the parameter q. Specifically,
when χ is set to be a discrete Gaussian distribution DZ,r with
parameter r, the inner product 〈e, x〉 will follow subgaussian
distribution with parameter less than r

√
m. Section 2 indicates

that the value of 〈e, x〉 will less than r
√

m ln (1/ε) /π except
a small probability 2ε2. Thus, correct decryption comes from
small parameters r = 


(√
n
)
, q = Õ (n), and rate α = r/q =

1/Õ
(√

n
)
.

Security: Relied on the worst-case hardness of lattice
problems, the decision-LWEn,q,χ ,m is supposed to be hard for
appropriate parameters. Based on those results, the LWE-based
cryptosystems has semantical security. Moreover, Lindner and
Peikert [30] gave a more compact LWE-based scheme in which
the random vector x is taken from set Zn with coordinates being
drawn from the error distribution. Also, they proved that, under
the same assumption, the changed scheme is semantically
secure against passive eavesdroppers. In this paper, we suppose
that the random vector x belongs to set Zm.

4. MODELING SUBVERSION OF PUBLIC KEY
ENCRYPTION

In the next section, we formalize the concept of SA and the
subversion model for public key encryption scheme. We first
give an overview of the SA and then formally describe its
two key properties, one is called post-quantum secret
undetectability (PQSU) and the other is arbitrary
message recoverability.

FIGURE 2. Game used to define detection security.

4.1 Subversion Attack (SA)

An SA on public key cryptosystems requires a public/private
subversion key pair. Particularly, the public subversion key is
embedded in the encryption algorithms, and the secret subver-
sion key is hold by the attacker for recovering the underlying
message. Formally, let � = (

KGen, Enc, Dec
)

be a public

key cryptosystems, and three algorithms K̃Gen, Ẽnc and Recv
are used to subversion attack it. The attack is performed as
followings

Key Generation: The subversion attacker gets a subversion
key pair (spk, ssk) by running the subversion key generation

algorithm K̃Gen.

Subverted Encryption: To embed a backdoor in scheme �, the
attacker replaces its encryption algorithm Enc to an algorithm
Ẽnc. Ẽnc takes the public key pk, the public subversion key
spk, a message M and an underlying message M′ as input and
outputs a ciphertext c. This algorithm also ensures that with
ciphertext c, the user can obtain the message M through its
decryption algorithm Dec but has no idea about the underlying
message M′.
Recovery: Given the ciphertext c and the subversion private
key ssk, the backdoor owner is able to recover the underlying
message M′ via running algorithm Recv.

4.2 Post-Quantum Secret Undetectability (PQSU)

In this paper, we assume that the ordinary user knows their
secret keys but has no idea about the subversion private key.
Moreover, he/she can access to a quantum computer. As for
detectability, a detector D is asked to judge whether the algo-
rithm Enc has been replaced with Ẽnc from some given cipher-
texts. Suppose that � = (

KGen, Enc, Dec
)

is a public key
encryption scheme. We consider the game given in the Fig. 2
where D has the quantum computation ability. In the game, D
samples messages M and M′ randomly and sends them to the
challenging encryption oracle Enc.

Let

Advdet
�,�̃ (D) = 2Pr[b = b′] − 1

be the advantage of D in detecting the subversion.

Section D: Security in Computer Systems and Networks
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500 Z.C. Yang et al.

FIGURE 3. Game used to define arbitrary message recovery security.

Definition 4.1. (PQSU).
The SA on public key cryptosystems scheme � = (

KGen,
Enc, Dec

)
is of ε-PQSU under chosen-plaintext attacks if

detection adversary with quantum computation ability satisfies
the inequality below:

Pr[b = b′] ≤ 1

2
+ ε

2
,

that is Advdet
�,�̃

(D) ≤ ε. In particular, we denote that SA on �

is of PQSU if ε is a negligible function.

One can note that compared with a general SA, our defined
SA captures stronger undetectability. Precisely, the quantum
computer would not help the adversary to detect, and nobody
can break the subverted public key scheme with the help of
quantum computer. Moreover, a reverse analyst manages to get
the embedded subversion key spk; he is still unable to detect
other subverted system embedded with the same subversion
key in a black-box manner.

4.3 Arbitrary Message Recovery

In this work, it is similar to the notion of key recovery consid-
ered by Bellare et al. [7], we slightly generalize their notion to
arbitrary message recovery as the strong goal of SAs. To model
this notion, we define a game as depicted in the Fig. 3.

We remark that in the game the message M is sampled via
running the algorithm M in the Fig. 3. This reflects the fact
that in reality the to-be-encrypted message is independently
chosen by the sender. M′ is an arbitrary underlying message
that the attacker wants to leak to the outside world. Given
the ciphertext c ←$ Ẽnc

(
pk, spk, M, M′), the attacker wins

the game if A recovers the underlying message M′ success-
fully. The advantage of A to recover an arbitrary message is
measured by

Advmr
�,�̃ (A) = Pr[AMRA

�,�̃ = 1].

Definition 4.2. (Arbitrary Message Recoverability).
A SA on public key scheme � = (

KGen, Enc, Dec
)

is
(1 − ε)-recoverable for an arbitrary underlying message if for

all PPT subversion attacker adversaries satisfying

Advmr
�,�̃ (A) ≥ 1 − ε.

In particular, we say that the SA on � is arbitrary message
recoverable if ε is negligible.

5. SUBVERSION ATTACK ON LWE
CRYPTOSYSTEMS

5.1 SA on LWE Cryptosystems

The SA on Regev’s LWE cryptosystems is presented in the
Fig. 4 and it has the following properties: (i) the subverted
encryption is efficient and also quantum computation resistant.
(ii) It is proven post-quantum undetectable. (iii) The attack
here is to recover an underlying message for any sampling
algorithm.

5.1.1 Parameters
There are some parameters involved in our attack which are
defined below:

• N, q′, p are positive integers used in NTRU cryptosys-
tems.

• Parameters n, q, m, α are involved in LWE problems.
• Polynomial ring is set to be R = Z[x]/(xN′ − 1).

Those LWE parameters satisfy q = Õ (n), m ≈ (n + 1) log q
and α = 1/Õ

(√
n
)
.

5.1.2 Preliminaries
To begin with, two maps will be given which are useful in
subverted encryption and underlying message recovering algo-
rithms. We suppose that k = log q, N = nk and q is a power of
2. The first one is defined by

φext : Zn
q → ZN

2

(v0, v1, . . . , vn−1) → (m0, m1, . . . , mN−1) ,

where (mik, mik+1, . . . , mik+k−1) is the 2-adic expansion of vi
for i = 0, 1, . . . , n − 1. The other map is described as follows:

φcom : ZN
2 → Zn

q

(m0, m1, . . . , mN−1) → (v0, v1, . . . , vn−1) .

In fact, φext extends a vector in Zn
q to a vector in ZN

2 and φcom

compresses a vector in ZN
2 into a vector in Zn

q. Furthermore, it
is worth noting that φext and φcom are inverse function of each
other and both injective.

We propose a modified LWE encryption algorithm Enc′. The
key generation algorithm KGen and the decryption algorithm
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FIGURE 4. A SA on LWE Cryptosystems.

Dec are left unchanged. For a fixed vector x′ ∈ Zm, the new
encryption performs as below:

c′ = Enc′ (M, pk, x′)
= x′A +

(
0, M · �q

2
�
)

mod q,

where the plaintext M ∈ {0, 1} and the public key A ∈
Z

m×(n+1)
q . In the original encryption algorithm, vector x is

randomly chosen.

5.1.3 Attack Description
We propose a SA on LWE encryption scheme � = (KGen,Dec, Enc).
The procedure is depicted in Fig. 4.

In the process of the subversion encryption Ẽnc, we can
verify that

c = x′A +
(

0, M · �q

2
�
)

mod q

= (
x′Ā, x′ · b

) +
(

0, M · �q

2
�
)

mod q

=
(

x′Ā, x′ · b + M · �q

2
�
)

mod q.

In fact, x′ ∈ Zm is set to be a solution of the modular
equations

x′Ā ≡ c′ mod q′, (1)

where q′ is the modulo parameter in NTRU cryptosystems and
c′ is the output of Encntru

(
M′, spk

)
. It is easy to check that c

can be represented as

c =
(

c′, x′ · b + M · �q

2
�
)

.

Hence, c′ is equal to c1 and we can recover M′ through the
NTRU decryption algorithm

M′ = Decntru (c1, f ) .

Though M is a one bit message, M′ can be any message in
R2 or arbitrary vector in Zn

q. In the later case, the subversion
attacker intends to get the vector v, that is

φext (v) = Decntru(c′, f ).
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FIGURE 5. An improved subverted encryption algorithm

Since φext and φcom are inverse function of each other, the
backdoor owner can recover v through φcom (φext (v)) .

5.1.4 Inhomogeneous Small Integer Solution problem
The Inhomogeneous Small Integer Solution (ISIS) problem
was proposed by Gentry et al. in [31]. Given parameters
(n, m, q, β), a random matrix A ∈ Zm×n

q and a fix vector y ∈ Zn,
that problem is to find a solution of the equation

xA = y mod q,

where the norm of x is bounded by β. Gentry et al. also
proved that the ISIS problem is at least hard as approximat-
ing the SIVPγ problem with γ = β · Õ

(√
n
)

when β =
poly (n) and q ≥ β · ω (n log n). In fact, finding a solution
to Eq. (1) is similar to solve an ISIS problem except that
we require less on the norm of x. Moreover, in the following
section, we use the ideal of intersection to make that process
easier.

5.1.5 Arbitrary Message Recoverability
It is obviously that finding a solution of the modular Eq.
(1) is the key point of the SA. No matter what the under-
lying message is, it can be recovered as long as a suitable
solution x is found. That makes our new scheme arbitrary
message recoverable. We will analyse those equations and pro-
pose a lattice algorithm LatticeSolve (A, c1) in the following
section.

5.2 Solving Linear Modular Equations

Finding a vector x ∈ Zm that satisfies the Eq. (1) will be hard
when n is large and in most cases, we only need to transfer a
certain part of the underlying message. Let

A = [
Am×k, Am×(n−k)

] ∈ Zm×n
q

and c = [
ck, cn−k

] ∈ Zn for an integer k < n. Experiment
results indicate that solving the modular linear equations

xAm×k ≡ ck mod q (2)

will be much easier, where Am×k ∈ Zm×k is a submatrix of A
and ck ∈ Zk

q. The improved SA is presented in the Fig. 5.
To solve the linear modula the Eq. (2), we consider a lattice

L′ spanned by the (m + k + 1) × (m + k + 1) basis

B =
⎛
⎝ Im×m 0m×1 Am×k

01×m 1 c1×k
0k×m 0k×1 qIk×k

⎞
⎠

(m+k+1)×(m+k+1).

Suppose Am×k = [a1, . . . , ak], ck = [c1, . . . , ck] and x =
[x1, . . . , xk], the Eq. (2) can be rewritten as the following
k equations:

m∑
i=1

xiai,j − cj ≡ 0 mod q (1 ≤ j ≤ k) , (3)

where aj = [a1,j, . . . , ak,j]. Hence, we can conclude that the
lattice L′ contains the relatively short vector v = (x, −1, 0),
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and lattice reduction algorithms can be used to find v and solve
the linear modular equations. However, the runtime of lattice
reduction algorithms is exponential with the lattice degree, he
only work well when the degree is low.

5.2.1 The Intersection Lattice Method
In this subsection, a better method will be introduced to solve
those modular equations [32–34]. Firstly, let us review the
definition of intersection of lattice. Although it can be defined
by more general lattices, we consider only the lattices of full
rank in Zn for some integer n.

Let L and K be lattices in Zn. Then the intersection of L and
K can be given as followings

L ∩ K := {v|v ∈ L and v ∈ K}.
From [35] the intersection of L and K can be proved a lattice of
rank n in Zn, and it can be computed within O(n3) computation
if the bit size of the elements in the lattice are ignored.

Let ai be the i-th column vector of matrix A, then we define
a basic lattice for the new method. For a large constant λ with
gcd (λ, q) = 1, let Li be a lattice of degree m + 2 generated by
row vectors of the following matrix:

Mi =
⎛
⎝ Im×m 0m×1 λai

01×m 1 λci
01×m 0 λq

⎞
⎠

(m+2)×(m+2).

(4)

Since each column vector ai is uniformly distributed in Zm
q ,

every lattices Li = L (Mi) are different with overwhelming
probability for all 1 ≤ i ≤ k. With those notions, a new lattice
L can be defined as follows:

L =
k⋂

i=1

Li. (5)

It is obviously that for all 1 ≤ i ≤ k, Li contains v = (x, −1, 0)

such that

xAm×k ≡ ck mod q.

Hence, the lattice L contains vector v that satisfies the Eq. (3).
A new method is performed by Algorithm 1 below.

Remark: As shown in [36], the vector x outputted by the
reduction algorithms will become larger when m increases,
even though one has used the intersection lattice technique.
Moreover, if the inner product 〈e, x〉 is larger than q/4, the
LatticSolve will be infeasible, so does our SA. The attack
cannot be applied for large parameters.

5.3 Security Analysis

Since the security of NTRUEncrypt scheme is IND$-CPA
security, our SA can be proved to be PQSU.

Theorem 5.1. �
(
KGen, Enc, Dec

)
denotes a public encryp-

tion scheme, and the subverted scheme �′(K̃Gen, Ẽnc, Dec
)

is as defined in the Fig. 4. Suppose D is an adversary against
the PQSU of �′ that makes most k queries to its Ẽnc oracle.
We have

Adv�,�′ (D) ≤ ε,

and ε is negligible.

Proof. We now give a proof of the undetectability of SA on the
scheme � using a sequence of games. In Game i, Si denotes the
event that b = b′.

Fix a distinguishing adversary A, the game G1 − G3 is
described in the Fig. 6.

Games G1 and G2 proceed identically except that the
vector c1 is taken from Zk

q randomly. Because of the

IND$-CPA security of NTRU, the distribution c1 ←$ Zk
q

and c1 ←$ Encntru(M′, spk) are statistically close. ε1 =
|Pr[S2] − Pr[S1]| is a negligible value.

Game G3 is the same game as Game G2, except that we
change part of Ẽnc. In game G3, the vector x1 is randomly
sampled from Zm. The definition of the algorithm implies that
vector x satisfies the equation xĀ ≡ c1 mod q. Since the
vector c1 is taken from Zk randomly, it is hard to distinguish
between x1 ←$ LatticeSolve

(
Ā, c1, q

)
with x1 ←$ Zk

q when

matrix Ā is fixed. So, adversary A in game G3 will hardly note
the difference of x1 in both cases, then |Pr[S3] − Pr[S2]| = ε2
and ε2 is negligible.

Because the vector x1 is sampled from Zm randomly in
Game G3, the algorithm Ẽnc behaves the same as the original
encryption algorithm . Therefore, the probability Pr[S3] = 1

2
and

ε3 = |2Pr[S3] − 1| = 0.

Let ε = ε1 + ε2 + ε3, we can conclude that

Adv�,�′ (D) ≤ ε,

the advantage of the adversary is negligible. Because the NTRU
cryptosystems and the LWE scheme are both post-quantum
cryptograph, this result will also hold even though the adver-
sary is equivalent with quantum computer. In fact, the algorithm
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FIGURE 6. The description of game G1 − G3.

may fail to output an x with negligible probability. Here, we
simply assume that will always success. �

6. EXPERIMENTAL ANALYSIS

In our SA, the property of underlying message recover-
ability relies on the performance of the lattice algorithm
LatticeSolve (A, c). The attacker can always recover the
underlying message when the lattice algorithm gives right
outputs. Then, we implement this algorithm on 2.1 GHz i3
Core PC and run experiments to observe its performance. The
set of public LWE parameters we considered is (n, q, m) =
(29, 32, 145). This tuple satisfies the conditions discussed in
Regev’s LWE cryptosystems. For each instance, we choose
matrix A ∈ Zm×n

q and a vector c from Zk
q randomly.

To reduce the matrix A, we use the BKZ-NTL algorithm
[37] of NTL package [38]. Though the BKZ 2.0 [18] algorithm
works much better than that original one, the source files of
BKZ 2.0 have not been opened yet. We still use the BKZ-
NTL algorithm here. The BKZ reduction algorithm seems
to be the best lattice reduction algorithm when applied to
stages with increasing block size. In [39], Schnorr broke the
Chor-Rivest cryptosystems successfully by using
this technique. However, its runtime is exponential with the
degree of the lattice and the blocksize parameter β. Blocksize is

an important parameter to balance runtime and output quality.
Larger β results in shorter vectors at the cost of increased
runtime, and vice versa.

All the results are presented in the Fig. 7. k is the degree
of ck which runs from 2 to 10, and the blocksize β is taken
from {2, 4, 6, 8}. For each parameters set (k, β) we generate 100
random instances. The algorithm successes when it outputs a
suitable x. The figures indicate that the success rate r (runtime
t) and the parameter k satisfy the linear equation below:

y = A · k + B,

where A and B are constants and y represents success rate or
runtime. The figures also show that A and B are related with the
blocksize β. Through linear fitting technology, we can estimate
A and B for each parameter set (k, β) more specifically. We
denote that r = Apr · k + Bpr and t = At · k + Bt. As
for different parameter set (n, β) the fitting results are listed in
the Table 1.

Based on these results we come to realize that, a larger
blocksize β results in higher succeed rate but more runtime.
Fortunately, the algorithm will succeed with high probability
when the parameter pair (k, β) is set to be (2, 6) or (2, 8). In this
case, the backdoor owner can recover the underlying message
easily and the SA is arbitrary message recoverable.
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FIGURE 7. Relationship between k and y.

TABLE 1 Constant Parameters in Different Fitting.

(n, β) Succeed Rate Runtime

(29, 8) r = −0.093k + 1.2 t = 400k − 390
(29, 6) r = −0.08k + 1.1 t = 380k − 350
(29, 4) r = −0.1k + 1.1 t = 380k − 370
(29, 2) r = −0.1k + 1.1 t = 360k − 380

7. COUNTERMEASURE

In this part, we will discuss a potential countermeasure to
defend the aforementioned SAs on LWE cryptosystems. Essen-
tially, it is similar to exiting SAs against public key cryptosys-
tems; our proposed SA also mainly relies on the randomness
vector involved in the encryption algorithm. Therefore, existing
approaches [40–42] for constructing subversion-resilient sig-
natures could also be adopted to prevent the quantum-resistance
SA in this work. Below we will introduce more details of con-

structing subversion-resilient scheme based on the reverse
firewalls.

Generally speaking, the so-called cryptographic reverse fire-
wall [40, 43, 44] is an online external party that intercepts and
modifies the ciphertext produced by the encryption algorithm
before it is sent out to the outside. Particularly, the ciphertext
c ∈ Zn+1 can be re-randomized by the following operation:

c′′ = c′ + (yA, y · b) ,

where vector y is taken formZm randomly. To make the decryp-
tion algorithm correct, the magnitude of the accumulated error
〈e, x + y〉 should be less than q/4. Thus, we ought to choose a
smaller x and y or a larger parameter q. By doing so, the attacker
can hardly recover the underlying message M′ from c′′. While
the receiver can calculate the plaintext M with almost the same
probability through the original decryption algorithm.

8 CONCLUSION

In this work, we explored a post-quantum SA against LWE
encryption scheme. The analysis and experiments indicated
that the subversion of LWE scheme is quite practical, especially
when the relative random vector can be calculated in advance.
Hence, we claimed that the implementations of LWE encryp-
tion scheme as black-box are potentially problematic and even
insecure.
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