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Criteria-Based Encryption
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We present a new type of public-key encryption called Criteria-based Encryption (or CE, for
short). Different from Attribute-based Encryption, in CE, we consider the access policies as cri-
teria carrying different weights. A user must hold some cases (or answers) satisfying the criteria
and have sufficient weights in order to successfully decrypt a message. We then propose two CE
Schemes under different settings: the first scheme requires a user to have at least one case for
a criterion specified by the encryptor in the access structure, while the second scheme requires
a user to have all the cases for each criterion. We prove that both schemes are secure under the
Decisional q-Bilinear Diffie Hellman Exponent assumption without random oracles. In addition,
we also present two special CE schemes for the above two settings without considering the
weight requirement. We show that under this special case CE schemes can be constructed much

more efficiently.
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1. INTRODUCTION

Fine-grained access control is very important to protect sen-
sitive information in current and future information sys-
tems. Attribute-based encryption (ABE) [8, 19, 30] has
provided an elegant solution for the problem by embedding
the access control policy inside the encryption key. The
access policy in an ABE is defined over the Universe of
user attributes, and a user can decrypt the message if and
only if his/her attributes can satisfy the access policy. In
this paper, we consider a different way to formulate access
policies via ‘criteria’. A criterion is a principle or standard
by which something may be judged or decided,1 which
makes it suitable for defining an access structure. We illus-
trate this idea via the following example.
Suppose the NSA is announcing an inaugural grant appli-

cation to help them combatting cyber-terrorism in the US.
However, in order to avoid the leakage of the project infor-
mation to the general public, the NSA encrypts the details of
the grant application based on some default selection cri-
teria: ‘the person must be born in the US’ AND (‘the per-
son must be a faculty member in a US-based University’
OR ‘the person must hold a PhD that is awarded by one of
the universities in the US’). In addition, the importance of

each criterion could be different, e.g. the first criterion may
have higher weight/credit (e.g. 3) than the remaining two
(e.g. 2 and 1, respectively) in this scenario due to the sensi-
tivity of the application. NSA may require an applicant to
possess sufficient credits (e.g. 5) in order to become eligible
to apply for the grant.
Now consider the following potential applicants (Table 1).

Alice is a Professor in the University of Minnesota; she was
born in the Massachusetts State, and acquired her PhD from
Stanford University. Bob is an Associate Professor in Royal
Holloway, UK; he was born in New York, and acquired his
PhD from the New York University. Charlie is an Assistant
Professor in MIT; he graduated from MIT, and was born in
Canada. In this example, Professor Alice satisfies all the cri-
teria and will be able to decrypt the call for application. On
the other hand, neither Bob nor Charlie could decrypt the
message. Although Bob satisfies the first and the third cri-
teria, the total weight is below the threshold. Similar to ABE,
a secure CE should also ensure that Bob cannot collude with
Charlie to decrypt the message.
From the above example, we can see that a CE scheme dif-

fers from an ABE scheme in two aspects: first, ABE uses the
same set of attributes to define access structures and to derive
user secret keys, while in a CE scheme, a criterion and its sat-
isfying cases are two different entities and they can have a
one-to-many relationship; second, the existing ABE schemes1Oxford dictionary.
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have not considered the weight of an attribute when defining
the access policy, and it is also an interesting problem to
design an ABE supporting weight.
Our contributions: In this paper, we formalize the notion of

Criteria-based Encryption (CE) and propose two concrete CE
schemes under different settings. As demonstrated in the
example, in a CE scheme, every criterion will have a weight
and a set of cases (or answers) satisfying it. In our first CE
scheme, we require the decryptor to have at least one case for
each criterion specified in the access structure as well as suffi-
cient accumulated weight in order to successfully decrypt the
message, while in the second construction, we require the
decryptor to possess all the cases for each criterion in addition
to the weight requirement. To make our schemes expressive,
we apply the Linear Secret Sharing Scheme (LSSS) over the
criteria to define a monotone access structure. The main tech-
nical challenge is to allow successful decryption if the decryp-
tor has only one case (or all the cases in the second scenario)
for one criterion. Our solution for this problem is to represent
a criterion as a polynomial and the corresponding cases satis-
fying the criteria as the roots of the polynomial. In the first
scenario, we require that the root hold by the decryptor can
satisfy the polynomial, while for the second scenario where
the decryptor is required to have all the cases of a criterion,
we apply the Viète’s formula to ask the decryptor to recon-
struct the polynomial if he/she possesses all the roots, and the
decryption will be successful if and only if the reconstructed
polynomial is identical to the one used in the encryption.
Another challenge in constructing CE schemes is to imple-

ment the weight condition. One option is to fix the weight for
each criterion in the setup. This will simplify the construction.
However, to make the CE scheme more useful, it is desirable
to let the encryptor decide the weight of each criterion. In the
example we give above, the second or the third criterion may
have more weight than the first one if this is a grant application
announced by the NSF instead of NSA. In our proposed CE
schemes, we allow the encryptor to specify the weight of each
criterion and the threshold for the accumulated weight. Since
there are different combinations that can meet the threshold,
we put all the valid cases in the ciphertext, and the decryptor
can decrypt the message if he/she can meet one of these cases.
In addition, we also consider the special setting of CE without
weight. We show that under this special case CE schemes can
be constructed much more efficiently.

1.1. Related work

Embedding policy-based access control into modern encryption
schemes is an interesting but challenging task that has
been intensively studied by the cryptologic research com-
munity in recent years. Attribute-based Encryption (ABE)
[7, 8, 19, 22, 25, 30], which is an extension of Identity-based
Encryption [9, 10, 28, 27], provided an elegant solution to
achieve this task. The idea was proposed by Sahai and Waters
[27] when they presented their Fuzzy IBE scheme which can
be treated as the first Key Policy (KP) ABE based on a thresh-
old access policy. The notion of ABE was later formalized by
Goyal et al. [19]. There are two types of ABE schemes: in a
KP ABE, the user attributes serve as the encryption key, and
the access structure is embedded in the decryption key; in a
Ciphertext Policy (CP) ABE, the access structure is used in the
encryption process, and each user obtains secret keys based on
his/her attributes. The Criteria-based Encryption schemes pro-
posed in this paper are similar to CP-ABE schemes in the
sense that we also put the access structure (defined over criteria
rather than attributes) in the encryption process.
There are two main steams on the design of ABE schemes,

those based on the LSSS (e.g. [8, 18, 19, 21, 22, 30]), and those
based on the AND-gates with/without Wildcard [15, 23, 31].
LSSS-based ABE schemes are in general more expressive than
other types of ABE schemes. In this paper, we will also focus
on LSSS-based access structures.
It is worth noting that functional encryption [6, 11] is an

emerging paradigm for public-key encryption that enables fine-
grained control of access to encrypted data. We also stick to
indistinguishability-based security due to the strong impossibility
results from simulation-security for functional encryption [13, 14].
An interesting work of study indistinguishability obfuscation
and functional encryption for general circuits [16] opens a new
security approach for public-key encryption. Recently, a new
notion of multi-input functional encryption has been proposed
[2, 17], which is a generalization to the case of n-ary functions.
Criteria-based encryption is a special type of Functional

Encryption. The later is a general term for a range of emer-
ging public-key encryption systems including ABE,
Predicate Encryption [12, 20, 29], Inner-Product Encryption
[1, 3, 5, 4, 26, 24], etc. The functions underlying our criteria-based
encryption are root verification for polynomials, and weight
evaluation.

TABLE 1. An example of CE (threshold 5= ).

Name Birth place Work place Alumni Decryption
weight 3= weight 2= weight 1=

Alice Massachusetts Minnesota University Stanford University. ✓

Bob New York Royal Holloway NYU ×
Charlie Canada MIT MIT ×
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1.2. Organization

In Section 2, we present some basics related to polynomials
and roots that play an important role in our schemes. Then we
give the background and assumptions in Section 3 and present
the definitions and security models of criteria-based encryption
in Section 4. We present our CE schemes in Section 5, and
prove their security in Section 6. Then we make a comparison
between the two proposed schemes in Section 7. The paper is
concluded in Section 8. We put the special CE without weight
scheme and additional security proof in A.

2. POLYNOMIAL AND THE VIÈTE’S FORMULA

Consider a polynomial Pi with degree n:

P a x a x a x a . 1i n
n

n
n

1
1

1 0= + + + + ( )-
- 

We use a vector v to represent the coefficients of Pi

v a a a a, , , , .n n 1 1 0
 = ( ¼ )-

For any integer x, define

x x x x x x x, , , , 1 .
n n 1

 = ( ¼ )
-
   ·

If v x 0( ) =· , then x is a root of Pi.
In our CE schemes, we represent a criterion by a polyno-

mial Pi, and the cases satisfying the criterion as the roots of
the polynomial. Figure 1 is an example of the above idea.
The database system is encrypted under an access policy
Criteria P Criteria P Criteria PAND OR1 2 3( ) . Alice has the
roots of P1 and P2, while Bob has a root of P3. So both of
them can satisfy the access policy. In the above example, we
only require one root of a polynomial.
Another possible setting is that we require the user to have

all the roots of a polynomial. Figure 2 shows an example
under this setting where Alice have all the roots of P2, which
allow her to access the database encrypted under the access
policy Criteria P Criteria POR2 3.
To implement such a CE scheme, we will use the Viète’s

formula. Consider the polynomial Pi given above. Assume
a 0n ¹ , we create a new coefficient vector v as

v
a

a

a

a
1, , , .n

n n

1 0 =
æ

è
ççç

¼
ö

ø
÷÷÷÷

-

Let xi{ } denote the roots of the Pi, then the Viète’s formula
describes a way to reconstruct v from xi{ } as follows:

x x x
a

a

x x x x x x

x x x x x x

x x
a

a

x x x
a

a
1

.

n
n

n

n

n

n n
n

n

n
n

n

1 2
1

1 2 1 3 1

2 3 3 4 2

1
2

1 2
0

ì

í

ïïïïïïïïïïïï

î

ïïïïïïïïïïïï

+ + + =
æ

è
ççç
-

ö

ø
÷÷÷÷

( + + + )
+ ( + + + )

+ + =
æ

è
ççç

ö

ø
÷÷÷÷

¼

= (- )

-

-
-










Equivalently, we can write

x x x
a

a
1 , 2

i i i n
i i i

k n k

n1 k

k

1 2

1 2å = (- ) ( )
£ < < < £

-


for k n1, 2, ,= ¼ .

3. BACKGROUND

3.1. Access structures

Let P P P, , , n1 2{ ¼ } be a set of parties. A collection
2 P P P, , , n1 2 Í { ¼ } is monotone if B C," : if B Î and B CÍ ,

then C Î . An access structure is a collection  of non-
empty subsets of P P P, , , n1 2{ ¼ }, i.e. 2 P P P, , , n1 2 Í {Æ}{ ¼ }⧹ .
The sets in  are called the authorized sets, and the sets not
in  are called the unauthorized sets.

3.2. Linear secret sharing scheme

A secret sharing scheme II over a set of parties  is called
linear over p if

FIGURE 1. The single root example.

FIGURE 2. The full root set example.

514 T. V. X. PHUONG et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 4, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/4/512/4430306 by U
niversity of W

ollongong user on 18 O
ctober 2022



(1) The shares of each party form a vector over p .
(2) There exists a matrix M with l rows and n columns

called the share-generating matrix for II. For all
i l1, ,= ¼ , the i¢ the row of M we let the function ρ

defined the party labeling row i as ir ( ). When we
consider the column vector v s r r, , , n2= ( ¼ ), where
s pÎ is the secret to be shared, and r r, , n p2 ¼ Î
and randomly chosen. Then Mv is the vector of l
shares of the secret s according to II. The share Mv i( )
belongs to party ir ( ).

Linear reconstruction: Suppose that II is an LSSS for the
access structure . Let S Î be any authorized set, and let
I l1, 2, ,Ì { ¼ } be defined as I i i S: r= { ( ) Î }. Then there
exist constants i p i Iw{ Î } Î such that if il{ } are valid shared
of any secret s according to II. then si I i iw lå =Î .

3.3. Bilinear map on prime order groups

Let  and  be two multiplicative cyclic groups of same
prime order p, and g a generator of . Let e: T  ´ 
be a bilinear map with the following properties:

(1) Bilinearity: e u v e u v e u v, , ,a b b a ab( ) = ( ) = ( ) for all
u v, Î and a b, pÎ .

(2) Non-degeneracy: e g g, 1( ) ¹ .

Notice that the map e is symmetric since e g g,a b( ) =
e g g e g g, ,ab b a( ) = ( ).

3.4. Decision q-Bilinear Diffie–Hellman exponent
(q-BDHE) assumption

The Decision q-BDHE problem in  is defined as follows:
let  be a bilinear group of prime order p. Given a vector

g h g g g g g T, , , , , , , , , ,q q q1 2 2 2( ¼ ¼ )+

where g gi
ai = Î for shorthand. Let y g g g, , , ,g a q, , 1 2

 = ( ¼
g g g, , ,q q q2 2¼ )+ . We say that the q-BDHE assumption holds
in  if for any probabilistic polynomial-time algorithm A

A g h y e g h

A g h y T n

Pr , , , , 1

Pr , , , 1 ,

g a q q

g a q

, , 1

, , 

[ (  ( )) = ]

- [ (  ) = ] £ ( )
+∣

∣

where T is a random element of T , and n ( ) is negligible in
the security parameter n.

4. CRITERIA-BASED ENCRYPTION (CE)

In this section, we present the formal definition and security
model for Criteria-based Encryption.

4.1. Functional definition

• Setup( d1 ,n ): The setup algorithm takes two inputs:
the security parameter 1n and degree d of the polyno-
mials that represent the criteria. It outputs the public
parameter PK and a master key MSK.

• Encryption(M PK Pol, , , ,n t ): The encryption algo-
rithm takes as an input the public parameters PK, a
message M, an access structure Pol over a set of cri-
teria, a vector n indicating the weight of each criter-
ion and a threshold value τ. It outputs a ciphertext CT.

• Key Gen(MSK , ): The key generation algorithm takes
input the master secret key MSK and the set of cases 
a user possesses. It outputs a user secret key SK.

• Decrypt(CT SK, ): The decryption algorithm takes as
an input a ciphertext CT and a user secret SK, and out-
puts a message M or a special symbol ⊥.

4.2. IND-CPA security of CE

Similar to other public-key encryption schemes, we define the
IND-CPA security of a CE scheme via the following game:

• Setup: The challenger runs the Setup algorithm and
gives the public parameters PK to the adversary.

• Phase 1: The adversary adaptively makes private key
generation queries for any case set  .

• Challenge: The adversary submits two equal length
messages M0 and M1, a challenge access structure
Pol*, a weight vector *n

¾
, and a threshold value *t .

The restriction is that Pol* cannot be satisfied by any
case set { } appeared in Phase 1. The challenger then
flips a random coin β, and encrypts Mb . The resulting
ciphertext CT* is given to the adversary.

• Phase 2: Phase 1 is repeated with the restriction that
Pol* cannot be satisfied by any case set appeared in
the private key generation queries.

• Guess: The adversary outputs a guess b¢ of β.

We say a CE scheme is IND-CPA secure if for any probabil-
istic polynomial-time adversary 

kAdv Pr
1

2
IND CPA
 b b( ) = [ ¢ = ] --

is negligible in the security parameter k.
Selective security: In the selective IND-CPA model, the

adversary has to provide Pol , ,* * *n t


at the beginning of the
game (i.e. before Setup).

5. CONSTRUCTIONS

In this section, we present two CE scheme based on the two
scenarios (i.e. verify root of polynomial and check equal
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coefficients). As general type as functional encryption, our CE
has the similar generation as log N public-key size and R
ciphertext size, where N is the size of Universe and R is the
number of recipients. We illustrate our proposed scheme by
the example in Table 1 by the criteria policy (‘the person must
be born in the US’ AND ‘the person must be a faculty mem-
ber in a US-based University’) OR (‘the person must hold a
PhD that is awarded by one of the universities in the US’).
Suppose that P ‘ ’1 the person must be born in the US=
weighted three, P ‘2 the person must be a faculty member=
in a US based- ’University weighted two, P ‘3 the person=
must hold a PhDthat is awarded by one of the universities in

’the US weighted one. Then the threshold τ is given by three.
In this case, we consider the criterion set with accumulated
weight larger than three as P P P P P P P, ,1 2 1 3 1 2 3.
Then the ciphertext is generated by the policy and the

accumulated weight criterion set as

Pol P P P TAND OR ; 12, 13, 123 .1 2 3= ( ) = { }

In the generation of each user’s key, Alice is a Professor in
the University of Minnesota; she was born in the
Massachusetts State, and acquired her PhD from Stanford
University. Then Alice’s key is

C c c c S, , ; 1, 2, 3, 12, 13, 123 .Alice 1 2 3 Alice= ( ) = { }

Alice can decrypt the message. Since C PolAlice  , and
S 1, 2, 3, 12, 13, 123C PolAlice  = { }. Then J T SC PolAlice = Ç =∣ ∣
12, 13, 123{ }.
In Bob’s case, he is an Associate Professor in Royal

Holloway, UK; he was born in New York, and acquired his
PhD from the New York University. Then Bob’s key is

C c c c S, , ; 1, 2, 3, 12, 13, 123 .Bob 1 2 3 Bob= ( ¢ ¢ ¢) = { }

Bob cannot decrypt the messages, since the set of Bob’s
cases is not satisfied the Policy Pol as C PolBob  .
Another case, Charlie is an Assistant Professor in MIT; he

graduated from MIT, and was born in Canada. The key is
generated by

C c c c S, , ; 1, 2, 3, 12, 13, 123 .Charlie 1 2 3 Charlie= (   ) = { }

Even though the case of Charlie is satisfied the selected criteria,
the weighted case of criterion is less than give threshold tau.
C PolCharlie  , and S 3C PolCharlie  = { }. Then J T SC PolCharlie = Ç =∣ ∣
Æ, then he cannot decrypt the message.

5.1. CE-Verify Root of Polynomial

• Setup( d1 ,n ): The key generation authority first chooses a
group of prime order p and a generator g. It also defines
the criterion Universe U, which is expressed by a set of
d-degree polynomials: P P P, , , n1 2{ ¼ }. Each criterion is

labeled by a random number tagi R pÎ . Every poly-
nomial has a set of coefficients a a a, , ,d d 1 0¼- , which
are used to generate the following vectors:

P a a a
tag

P a a a

P a a a
tag

P a a a

P a a a
tag

P a a a

, , , ,
1

, , , , 1

, , , ,
1

, , , , 1

, , , ,
1

, , , , 1

n n n n
n

n n n n

1 1 1 1
1

1 1 1 1

2 2 2 2
2

2 2 2 2

d d

d d

d d

d d

d d

d d

1 0

1 0

1 0

1 0

1 0

1 0

ì

í

ïïïïïïïïïïïïïïïïïï

î

ïïïïïïïïïïïïïïïïïï


=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¢
¾

= ( ¼ )

¾
=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¢
¾

= ( ¼ )

¼


=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¢
¾

= ( ¼ )

-

-

-

-

-

-

Then we choose h h, , n1 ¼ Î randomly, pick
y a, R pÎ , and create the public parameters and mas-
ter key as

PK g e g g g g g

g g h h

MSK g g g

, , , , , , ,

, , , , , .

, , , .

y a tag P tag P

P P
n

y tag tag

1

n n

n

n

1 1

1

1

= ( ( ) ¼

¼ ¼ )
= ( ¼ )

 

¢
¾

¢


• Encryption(M PK Pol w, , , ,m m n1, ,n t = { } Î{ ¼ } ): It
takes as input a message M TÎ , an access structure
Pol , r= ( ), a vector n which indicates the weight
of each criterion, and a given threshold τ. The function
ρ associates each row of  to one criterion.
The algorithm then chooses a random vector
x s y y, , , n p

n
2  = ( ¼ ) Î . These values will be used to

share the encryption exponent s. For i 1= to l, where
l denotes the number of rows in , it calculates

xi il =  · , where i is the vector corresponding to
the ith row of .
Next, the encryptor identifies all the criterion set with
accumulated weight larger than τ. Let
T k k k, , ,i i i

1 2 i
= {( ¼ )}m with im is the maximum number

combination of criteria i, which denotes such a set,
where k n1, 2, ,j

i Î { ¼ } denotes a position in the cri-
terion Universe.
Finally, compute

C M e g g C g

C g g C g g

C h

, , ,

, ,

.

ys s

i
a tag P s

i
a P s

i l

i
j

k
s

i len T

1 2

1, ,

1 1, ,

i i i i i

i

j
i

= ( ) =

{ = ¢ = }
ì
í
ïï

î
ïï

=
ü
ý
ïï

þ
ïï

l l

m

-
 - ¢



= ¼

= = ¼ ( )

r r r( ) ( ) ( )

·

ˆ

The ciphertext is set as
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CT Pol C C C C

C T

, , , , , ,

, .

i i i l

i i len T

1 2 1, ,

1, ,

t= ( { ¢}

{ } )
= ¼

= ¼ ( )ˆ

• KeyGen(MSK , ): Let Cx x n1, , Í { } Î{ ¼ } denote a set
of cases held by a user, and tagx the tag for criterion x
chosen in the setup. We use ztagx

to denote a root of
the polynomial corresponding to x. For each ztagx

pos-
sessed by the user, the key generation authority first
computes a vector

z z z z, , , , 1 .tag tag
d

tag
d

tag
1

x x x x
= ( ¼ )

¾ ¾ -

For set  , let P P P, , len1 = { ¼ }( ) denote the position
of each corresponding criterion in the criterion
Universe U. Also, let S P P P P, , , , , ,1 2 1 2= {( ) ( ) ¼ ( ) ¼

P P P k k i, , , , , 1 2len
i i len

1 2 1 i
( ¼ )} = {( ¼ )}( £ £ )n( )
( )

denote all the combinations of the elements in P. Next
the authority chooses a random t pÎ , and computes

L g C K g K g

K g g h

, and ,

.

t
x x

tag z t
x

P t

i
y at

j
k

t

i len S1 1, ,

x tagx x

i

j
i





= " Î = ( ) ¢ =
ì
í
ïï

î
ïï

= ( )
ü
ý
ïï

þ
ïï

n

¢
¾

= = ¼ ( )

¾ ¾

ˆ

The user secret key is set as

SK L K K K S, , , , .x x C i i len S1, ,x = ( { ¢} { } )Î{ } = ¼ ( )ˆ

• Decryption(CT SK, ): Given a ciphertext CT for an
access structure( , r), and a secret key SK for a set of
cases  , let I l1, 2, ,Ì { ¼ } be defined as I =
i i: contains a case for r{ ( )}. Then, let i p i Iw{ Î } Î
be a set of constants such that if il{ } are valid shares of
any secret s according to , then si I i iw lå =Î .
Then it computes

e L C
e K C e K C

e K C

e g g g

e g g g e g g

e g g g

e g g e g g e g g

e g g e g g

,
, ,

,

,

, ,

,

, , ,

, , .

i I
i

i i i

i i

i I

t a P s

tag z t a tag P s P t s

tag z t a P s

i I

t a t P s P t s

i I

a t ast

2
i

i i

i tag i i i i i

i tag i i i

i

i i i

i

i i









æ

è

çççç
( ¢)

( ) ( ¢ )

( ¢)

ö

ø

÷÷÷÷÷

=
æ

è
çççç

(
ö

ø
÷÷÷÷÷

(( ) ) ( )

(( ) )

ö

ø

÷÷÷÷÷÷÷

=
æ

è
çççç

( ) ( ) ( )
ö

ø
÷÷÷÷÷

= ( ) = ( )

r r

r

w

l

l

l

w

l

w

l w

Î

( ) ( )

( )

Î

-
¾


-

 

 -
¾

Î

-
¾ ¾

Î

¢

¢

¢

¢ ¢

r

r r r r r

r r r

r r

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

·

·

·

Let J T SC Pol= { }⋂ , for each i JÎ , let iT denote the
position of i in T, iS denote the position of i in S

e C K

e L C

e g g g h

e g h

e g g g

e g g e g g e g g e g g

,

,

,

,

,

, , , , .

i J

i

i

J

i J

s y at
j

len i
i

t

t
j

len i
i

s

J

i J

s y at

J

ys ast J J ys ast

2
1

1

1

1

1

S

T

j

j










æ

è
çççç

( )

( )

ö

ø
÷÷÷÷÷

=
æ

è

çççççç

( ( ) )

( ( ) )

ö

ø

÷÷÷÷÷÷÷÷

=
æ

è
çççç

( )
ö

ø
÷÷÷÷

= (( ( ) ( ) ) = ( ) ( )

Î

/

Î

=
( )

=
( )

/

Î

/

/

ˆ
ˆ

∣ ∣

∣ ∣

∣ ∣

∣ ∣ ∣ ∣

Finally, compute e g g e g g e g g, , ,ys ast ast( ) ( ) / ( ) =
e g g, ys( ) and recover message M as C e g g, ys

1/ ( ) .

5.2. CE-Equal Coefficients

In this section, we present another CE scheme which requires
the decryptor to hold all the roots (or cases) for each polyno-
mial (or criterion).
As mentioned earlier, the idea behind our construction is to

apply the Viète’s formula which allows us to reconstruct a
polynomial given all the roots of that polynomial.

• Setup( d1 ,n ): The setup algorithm is similar to that of
the first scheme, except that we new represent the
polynomials using the following coefficient vectors:

P
a

a

a

a

P
a

a

a

a

P
a

a

a

a

1, , ,

1, , ,

1, , , .n
n

n

n

n

1
1

1

1

1

2
2

2

2

2

d

d d

d

d d

d

d d

1 0

1 0

1 0

ì

í

ïïïïïïïïïï

î

ïïïïïïïïïï


=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¾
=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¼


=
æ

è
çççç

¼
ö

ø
÷÷÷÷

-

-

-

Then we choose h h, , n1 ¼ Î randomly, pick
y a, R pÎ and create the public parameters and mas-
ter key as

PK g e g g g g g

h h

MSK g g g

, , , , , , ,

, ,

, , , .

y a tag P tag P

n
y tag tag

1

n n

n

1 1

1

= ( ( ) ¼
¼ )
= ¼

 

• Encryption
(M PK Pol w U, , , ,m m n1, ,n t = { } ÌÎ{ ¼ } ): Similar
to the Encryption of the first scheme, for the access
policy Pol , r= ( ) and a vector n which indicates
the weight of each criterion, the algorithm chooses a
random vector x s y y, , , n p

n
2  = ( ¼ ) Î , which share

the encryption exponent s. For i 1= to l, it calculates
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xi il =  · , where i is the vector corresponding to
the ith row of .
Next, the encryptor will set the weight to every criteria
in n. Then the encryptor identifies all the criterion set
with accumulated weight larger than τ. Let T =

k k k, , ,i i i
1 2 i

{( ¼ )}m with im being the maximum number
combination of criteria i, which denotes such a set,
where k n1, 2, ,j

i Î { ¼ } denotes a position in the cri-
terion Universe and computes

C M e g g C g

C g g

C h

, , ,

,

.

ys s

i
a tag P s

i l

i
j

k
s

i len T

1 2

1, ,

1 1, ,

i i i

i

j
i

= ( ) =

= { ( ) }
ì
í
ïï

î
ïï

=
ü
ý
ïï

þ
ïï

l

m

¾
-

= ¼

= = ¼ ( )

r r( ) ( )

·

ˆ

The ciphertext is set as

CT Pol C C C

C T

, , , , ,

, .

i i l

i i len T

1 1 2 1, ,

1, ,

t= ( { }

{ } )
= ¼

= ¼ ( )ˆ

• KeyGen(MSK , ): Let Cx = { }, where Cx denotes the
full case set for criterion x. Let root x x x, , ,x d1 2= { ¼ }
be the full root set for the polynomial corresponding to
x. The key generation authority applies the Viète’s for-
mula on rootx to produce the following vector:

z z z z1, , , , .tag x x xx d d1 2 0= ( ¼ )
¾ ¾

- -

For set  , let P P P, , len1 = { ¼ }( ) denote the position
of each corresponding criterion in the criterion
Universe U. Also, let S P P P P, , , , , ,1 2 1 2= {( ) ( ) ¼ ( ) ¼

P P P k k i, , , , , 1 2len
i i len

1 2 1 i
( ¼ )} = {( ¼ )}( £ £ )n( )
( )

denote all the combinations of the elements in P. Next
the authority chooses a random t pÎ , and computes

L g K g

K g g h

, ,t
x

tag z t
C

i
y at

j
k

t

i len S1 1, ,

x tagx
x

i

j
i





= { = ( ) }
ì
í
ïï

î
ïï

= ( )
ü
ý
ïï

þ
ïï

n

Î

= = ¼ ( )

¾ ¾

ˆ

The user secret key is set as

SK L K K S, , , .x C i i len S1, ,x = ( { } { } )Î = ¼ ( )ˆ

• Decryption(CT SK, ): Similar to the decryption algo-
rithm of the first scheme, the user first identifies the set
I and computes i p i Iw{ Î } Î based on the access
structure( , r). Then the user computes

e L C e K C

e g g g

e g g

e g g

e g g e g g

, ,

,

,

,

, , .

i I
i i

i I

t a tag P s

tag z t s

i I

t a

i I

a t ast

2 i

i i i

i tag i i

i i

i i









( ( ) ( ( ))

=
æ

è
çççç

( ( )

(( ) ))

=
æ

è
çççç

( ( )

= ( ) = ( )

r
w

l

w

l w

w l

Î
( )

Î

-


Î

Î

r r

r r

( ) ( )

( ) ( )

¾ ¾¾

·

·

Let J T SC Pol= { }⋂ , for each i JÎ , let iT denote the
position of i in T, and iS denote the position of i in S.
The user also computes

e C K

e L C

e g g g h

e g h

e g g g

e g g e g g

e g g e g g

,

,

,

,

,

, ,

, , .

i J

i

i i J

s y at
j

len i
i

t

t
j

len i
i

s

J

i J

s y at

J

ys ast J J

ys ast

2 1

1

1

1

S

T

J
j

j

1

 






æ

è
çççç

( )

( )

ö

ø

÷÷÷÷÷
=

æ

è

ççççççç

( ( ) )

( ( ) )

ö

ø

÷÷÷÷÷÷÷÷

=
æ

è
çççç

( )
ö

ø
÷÷÷÷÷

= ( ( ) ( ) )
= ( ) ( )

Î Î

=
( )

=
( )

/

Î

/

/

ˆ
ˆ

∣ ∣

∣ ∣

∣ ∣ ∣ ∣

∣ ∣

Finally, compute e g g e g g e g g e g g, , , ,ys ast ast ys( ) ( ) / ( ) = ( )
and recover message M by C e g g, ys

1/ ( ) .

6. SECURITY PROOF

THEOREM 6.1. Assume that the decisional q-Bilinear Diffie–
Hellman Exponent assumption holds in , then no poly-time
adversary can break the selective IND-CPA security of our

Root of PolynomialCE Verify- scheme with a non-
negligible advantage.

Proof of Theorem 1. Suppose that there exists an adversary
 who can win the Selective IND-CPA game with a non-
negligible advantage  . We present another algorithm 
which can solve the decisional q-BDHE problem.

• Init:  takes an instance y T, of the q-BDHE problem
as an input. As required in the selective model,  first
submits a challenge access structure Pol M ,* * *r= ( ),
where M* has n* columns, a set of weight every cho-

sen criteria w w w, , , m m n1 2 1, ,*n
¾

= { ¼ } Î{ ¼ }, and a
threshold *t to .

• Setup:  simulates the public parameter

PK g e g g g h h, , , , , , , , , , , ,y a
n n n1 1 1a a b b= ( ( ) ¼ ¼ ¼ )

and the master secret key MSK g , , ,y
n1g g= ( ¼ ) as

follows:

518 T. V. X. PHUONG et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 4, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/4/512/4430306 by U
niversity of W

ollongong user on 18 O
ctober 2022



 chooses random y p¢ Î , and sets e g g, y( ) =
e g g e g g, ,a a yq( ) ( )

¢· , which implicitly sets y y= ¢ +
aq 1+ . For each d-degree polynomial Px (representing a
criterion) for x n1 £ £ ,  chooses a random tag tagx.
Let X denote the set of indices i, such that i Px*r ( ) = .
 then sets

g g g g ,x
tag P

i X

a a ax x i i
n

i n,1
2

,2 ,* * **
*  a =



Î

·

g g g g ,x
P

i X

a a ax i i
n

i n,1
2

,2 ,* * **
*  b = ¢



Î

·

g g g g .x
tag

i X

a a ax i i
n

i n,1
2

,2 ,* * **
*  g =

Î

·

If X = Æ, then simply set g g, ,x
tag

x
tag Px x xg a= =



gx
P xb = ¢
¾

,  then picks randomly u u, , n p1 ¼ Î and

sets

h g P

g

if has combination

otherwise,
,j

j
u

uj

j

*t=
ì
í
ïï

î
ïï

£d

with w w wm1 2d = + + + .
• Phase 1:  submits a private key query for

ztagx
 = { }, where  does not satisfy * . For each
ztagx

denote z z z z, , , , 1tag tag
d

tag
d

tag
1

x x x x

¾ = ( ¼ )- . 
answers the query as follows.
First  chooses r R pÎ . Then by the definition of
LSSS  can find a vector w w w, , n p

n
1 *

* = ( ¼ ) Î
such that w 11 = - and for all i, where i*r ( ) has a root
in  we have w 0i*

 =· .  then sets

L g g g g g

g g ,

t r a w a w a w

r

i n

a w

1, ,

q q q n
n

q i
i

1
1

2
1

1

*

*
*


= = ¼

= ( )
= ¼

- - +

+ -

· ·

which implicitly sets t r w a w aq q
1 2

1= + + + +- 
w an

q n 1
*

*- + .
For each ztagx

Î , if there is no i such that ztagx
is a

root of i*r ( ), then  can simply let K Lx
tag zx tagx=

¾¾
and

K Lx
P x¢ = ¢
¾

. Otherwise,  computes

K g g

g g ,

x
tag

i X

a

a a z t

x i

i
n

i n tagx

,1

2
,2 ,

*

* **
*



 

=(

)

Î
¾ ¾



·

where t r w a w a w aq q
n

q n
1 2

1 1
*

*= + + + +- - + .
Since w 0i*

 =· meaning wi i,1 1 ,2* * +· ·
w w 0i n n2 ,* * *+ + = · , then we can cancel the
term of gaq 1+

, and express Kx as

K L g

g .

x
tag z

i X j n

a r

k n k j

a w

z

1, ,

1, , ,

x tagx
j

q j k
k

i j tagx
1

,

*

*

*

 



=
æ

è
çççç

( )
ö

ø

÷÷÷÷÷

Î = ¼

( /)

={ ¼ } ¹

¾ ¾

+ + -

¾ ¾

To compute Ki
ˆ from  , let P P P, , len1 = { ¼ }( ) denote

the position of each corresponding criterion in the cri-
terion Universe U. Also, let S P P, , ,1 2= {( ) ( ) ¼

P P P P P k k i, , , , , , , , 1len
i i

1 2 1 2 1 i( ) ¼ ( ¼ )} = {( ¼ )}( £n( )
2len £ )( ) denote all the combinations of the elements

in P.
For i1 2len £ £ ( )

K g g g

g g g g

g g L

g g g g L

g g g L .

i
y at

j

u t

y a ar a w

a w a w u

y ar a w a w u

y ar

i n

a w u

1

2, ,

i

kj

q q

q q n
n j

i kj

q q n
n j

i kj

q i
i j

i kj

1 1
1

2
2

1

2
2

1

2
1

*

*
*

*
*





=

=

=

= ( )

n

=

¢

å

¢ å

¢

= ¼

å

n

n

n

+ +

- +
=

- +
=

+ -
=





ˆ

· · · ·

· ·

·

Otherwise, set

K g g g

g g g g

g g L

g g g g L

g g g L .

i
y at

j

y a ar a w

a w a w

y ar a w a w

y ar

i n

a w

1

2, ,

i ukj t

q q

q q n
n

j
i ukj

q q n
n

j
i ukj

q i
i

j

i
ukj

1 1
1

2
2 1

2
2 1

2 1

*

*
*

*
*





=

=

=

= ( )

n

=

¢

¢

¢

= ¼

å

å

å

d

n

d

n

d

n

d

+ +

- + =

- + =

+ - =





ˆ

· · · ·

· ·

·

• Challenge: The adversary gives two messages M0 and
M1 to the simulator. Write h gs= for some unknown
s, the simulator  flips a coin β, then it chooses ran-
dom y y, , n2 *¢ ¼ ¢ and share the secret s using the vector

v s sa y sa y sa y, , , , .n
n p

n
2

2
3

1
*

* = ( + ¢ + ¢ ¼ + ¢ ) Î-

From *n ,  chooses all the criterion set with accumu-
lated weight larger than *t . Let T k k k, , ,i i i

1 2 i
= {( ¼ )}m

denote such a set, where k n1, 2, ,j
i Î { ¼ } denotes a

position in the criterion Universe. Then  creates the
challenge ciphertext as
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C M T e h g C h

C g g

g g g

g g

g g

g g

C g g

g g g

g g g g

g g

C h

, ,

.

y

i
a v tag P s

as sa y a s y

s tag P a

a a s

s tag P

j n

a y

i
a v P s

as sa y a s y

s P a a a s

s P

j n

a y

i
j

k
s

i len T

1 2

1, ,

1, ,

1
1, ,

i i i

j j
n

n j n

i i i

i
n

i n

i i i j j

i i

j j
n

n j n

i i i
n

i n

i i j j

i

j
i

,1
2

2 ,2 ,

,1

2
,2 ,

,

,1
2

2 ,2 ,

,1
2

,2 ,

,

*

* * *

*

* *

*

*

*

* * *

* * *

*

*

*
* *

*
*

*
* *

*
*



  



 





  

  









= ( ) =

=

=

( )

)

= ( )
æ

è

çççç
( )

ö

ø

÷÷÷÷÷

¢ =

=

( ) )

= ( )
æ

è

çççç
( )

ö

ø

÷÷÷÷÷

ì
í
ïï

î
ïï

=
ü
ý
ïï

þ
ïï

b

m

¢

 -


( + ¢) ( + ¢ )

-


-

-


= ¼

¢

 - ¢


( + ¢) ( + ¢ )

- ¢


-

- ¢


= ¼

¢

=
= ¼ ( )









·

·

· ·

·

·

· · ·

ˆ

If T e g g, sq 1= ( )a +
, the challenge ciphertext is a valid

encryption of Mb. On the other hand, if T is uniformly
distributed in T , the challenge ciphertext is independ-
ent of β.

• Phase 2: This phase is simulated as in Phase1.
• Guess:  output 0, 1b¢ Î { }. If b b¢ = then B outputs

1, otherwise outputs 0.
If 0b¢ = , then the simulation is the same as in the
real game. Hence,  will have the probability 1

2
+

to guess β correctly.
If 1b¢ = , then T is random in, then will have prob-
ability 1

2
to guess β correctly. Therefore,  can solve the

decision q-BDHE assumption also with advantage  . □

THEOREM 6.2. Assume that the decisional q-Bilinear Diffie–
Hellman Exponent assumption holds in , then no poly-time
adversary can break the selective IND-CPA security of our CE-
Equal Coefficients scheme with a non-negligible advantage.

Proof of Theorem 2. Suppose that there exists an adversary
 who can win the Selective IND-CPA game with a non-
negligible advantage  . We present another algorithm 
which can solve the decisional q-BDHE problem:

• Init:  takes an instance y T, of the q-BDHE prob-
lem as an input. As required in the selective model, 
first submits a challenge access structure Pol* =
M ,* *r( ), where M* has n* columns, a set of weight

every chosen criteria w w w, , , m m n1 2 1, ,*n
¾

= { ¼ } Î{ ¼ },

and a threshold *t to .
• Setup:  simulates the public parameter

PK g e g g g h h, , , , , , , , ,y a
n n1 1a a= ( ( ) ¼ ¼ )

and the master secret key MSK g , , ,y
n1g g= ( ¼ ) as

follows:
 chooses random y p¢ Î , and sets e g g, y( ) =
e g g e g g, ,a a yq( ) ( )

¢· , which implicitly sets y =
y aq 1¢ + + . For each d-degree polynomial Px (repre-
senting a criterion) for x n1 £ £ ,  chooses a ran-
dom tag tagx. LetX denote the set of indices i, such
that i Px*r ( ) = .  then sets

g g g g ,x
tag P

i X

a a ax x i i
n

i n,1
2

,2 ,* * **
*  a =



Î

·

g g g g .x
tag

i X

a a ax i i
n

i n,1
2

,2 ,* * **
*  g =

Î

·

If X = Æ then simply set g g, ,x
tag

x
tag Px x xg a= =



gx
P xb = ¢
¾

.  then picks randomly u u, , n p1 ¼ Î and

sets

h g P

g

if has combination

otherwise.
,j

j
u

uj

j

*t=
ì
í
ïï

î
ïï

£d

with w w wm1 2d = + + + .
• Phase 1:  submits a private key query for

ztagx
 = { }, where  does not satisfy * . For each
ztagx

include a full set root as x x x, , , d1 2{ ¼ }, then
applying the Viète’s formula on this set to produce the
following vector z z z z1, , , ,tag x x xx d d1 2 0

¾ ¾ = ( ¼ )- - . 
answers the query as follows:
First  chooses r R pÎ . Then by the definition of
LSSS  can find a vector w w w, , n p

n
1 *

* = ( ¼ ) Î
such that w 11 = - and for all i, where i*r ( ) has a root
in  we have w 0i*

 =· .  then sets

L g g g g g

g g ,

t r a w a w a w

r

i n

a w

1, ,

q q q n
n

q i
i

1
1

2
1

1

*

*
*


= =

= ( )
= ¼

- - +

+ -

· ·

which implicitly sets t r w a w aq q
1 2

1= + + + +- 
w an

q n 1
*

*- + .
For each ztagx

Î , if there is no i such that ztagx
is a

root of i*r ( ), then  can simply let K Lx
tag zx tagx=

¾¾
and

K Lx
P x¢ = ¢
¾

. Otherwise,  computes

K g g g g ,x
tag

i X

a a a

z t

x i i
n

i n

tagx

,1
2

,2 ,* * **
*  =

æ

è
çççç

ö

ø

÷÷÷÷÷Î

¾ ¾

·

where t r w a w a w aq q
n

q n
1 2

1 1
*

*= + + + +- - + .
Since w 0i*

 =· meaning w wi i,1 1 ,2 2* * + +· ·
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w 0i n n,* * *+ = · , then we can cancel the term of
gaq 1+

, and express Kx as

K L g

g .

x
tag z

i X j n

a r

k n k j

a w

z

1, ,

1, , ,

x tagx
j

q j k
k

i j tagx
1

,

*

*

*

 



=
æ

è
çççç

( )
ö

ø

÷÷÷÷÷

Î = ¼

( /)

={ ¼ } ¹

¾ ¾

+ + -

¾ ¾

To compute Ki
ˆ from  , let P P P, , len1 = { ¼ }( ) denote

the position of each corresponding criterion in the cri-
terion Universe U. Also, let S P P, , ,1 2= {( ) ( ) ¼

P P P P P k k i, , , , , , , , 1len
i i

1 2 1 2 1 i( ) ¼ ( ¼ )} = {( ¼ )}( £n( )
2len £ )( ) denote all the combinations of the elements

in P.
For i1 2len £ £ ( )

K g g g

g g g g

g g L

g g g g L

g g g L .

i
y at

j

u t

y a ar a w

a w a w u

y ar a w a w u

y ar

i n

a w u

1

2, ,

i

kj

q q

q q n
n j

i kj

q q n
n j

i kj

q i
i j

i kj

1 1
1

2
2

1

2
2

1

2
1

*

*
*

*
*





=

=

= ¼

= ( )

n

=

¢

å

¢ å

¢

= ¼

å

n

n

n

+ +

- +
=

- +
=

+ -
=



ˆ

· · ·
·

· ·

·

Otherwise, set

K g g g

g g g g

g g L

g g g g L

g g g L .

i
y at

j

y a ar a w

a w a w

y ar a w a w

y ar

i n

a w

1

2, ,

i ukj t

q q

q q n
n

j
i ukj

q q n
n

j
i ukj

q i
i

j
i ukj

1 1
1

2
2 1

2
2 1

2 1

*

*
*

*
*





=

=

=

= ( )

n

=

¢

¢

¢

= ¼

å

å

å

d

n

d

n

d

n

d

+ +

- + =

- + =

+ - =





ˆ

· · ·

·

· ·

·

• Challenge: The adversary gives two messages M0 and
M1 to the simulator. Write h gs= for some unknown
s, the simulator  flips a coin β, then it chooses ran-
dom y y, , n2 *¢ ¼ ¢ and share the secret s using the vector

v s sa y sa y sa y, , , , .n
n p

n
2

2
3

1
*

* = ( + ¢ + ¢ ¼ + ¢ ) Î-

From *n ,  chooses all the criterion set with accumu-
lated weight larger than *t . Let T k k k, , ,i i i

1 2 i
= {( ¼ )}m

denote such a set, where k n1, 2, ,j
i Î { ¼ } denotes a

position in the criterion Universe. Then  creates the
challenge ciphertext as

C M T e h g C h

C g g

g g g

g g g g

g g

C h

, , ,

,

.

y

i
a v tag P s

as sa y a s y

s tag P a a a s

s tag P

j n

a y

i
j

k
s

i len T

1 2

1, ,

1 1, ,

i i i

j j
n

n j n

i i i i
n

i n

i i i j j

i

j
i

,1
2

2 ,2 ,

,1
2

,2 ,

,

*

* * *

* * *

*

*

*
* *

*
*



  

  





= ( ) =

=

=

( ) )

= ( )
æ

è

çççç
( )

ö

ø

÷÷÷÷÷

ì
í
ïï

î
ïï

=
ü
ý
ïï

þ
ïï

b

m

¢

 -


( + ¢) ( + ¢ )

-


-

-


= ¼

¢

= = ¼ ( )





·

·

· · ·

ˆ

If T e g g, sq 1= ( )a +
, the challenge ciphertext is a valid

encryption of Mb. On the other hand, if T is uniformly
distributed in T , the challenge ciphertext is independ-
ent of β.

• Phase 2: This phase is simulated as in Phase 1.
• Guess:  output 0, 1b¢ Î { }. If b b¢ = then B outputs

1, otherwise outputs 0.

If 0b¢ = , then the simulation is the same as in the real
game. Hence,  will have the probability 1

2
+ to guess β

correctly.

If 1b¢ = , then T is random in , then  will have prob-
ability 1

2
to guess β correctly. Therefore,  can solve the deci-

sion q-BDHE assumption also with advantage  . □

7. SPECIAL CASE OF CE

In this section, we consider the special case of CE where we
do not require the decryptor to satisfy the weight requirement.
We show that under this new setting, we can construct much
more efficient CE schemes. It is also worth noting that we
may use an ABE to implement a CE where a criterion can be
treated as a simple access structure containing only AND or
OR operation.

TABLE 2. Computation cost of our CE schemes.

Scheme No. of root Ciphertext size Key size Dec cost

CE-1 1 l len2 1T + ( + + )∣ ∣ ∣ ∣ n len2 1 ( ¢ + + )∣ ∣ n j3 2( ¢ + ) p
CE-2 d l len 1T + ( + + )∣ ∣ ∣ ∣ n len 1 ( ¢ + + )∣ ∣ n j2 2( ¢ + ) p
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7.1. SCE-Verify Root of Polynomial

• Setup ( d1 ,n ): The key generation authority first
chooses a group  of prime order p and a generator g.
Then it setups the system with the set of criteria,
which is express by the set of d-degree polynomials:
P P P, , , n1 2{ ¼ }. Each criterion is labeled by choosing
random numbers tag tag tag, , , n R p1 2 ¼ Î .
Every polynomial has the set of coefficients
a a a, , ,d d 1 0¼- , then it creates the vectors corresponding
to all the polynomials based on the their coefficients:

P a a a
tag

P a a a

P a a a
tag

P a a a

P a a a
tag

P a a a

, , , ,
1

, , , , 1

, , , ,
1

, , , , 1

, , , ,
1

, , , , 1 .

n n n n
n

n n n n

1 1 1 1
1

1 1 1 1

2 2 2 2
2

2 2 2 2

d d

d d

d d

d d

d d

d d

1 0

1 0

1 0

1 0

1 0

1 0

ì

í

ïïïïïïïïïïïïïïïïïï

î

ïïïïïïïïïïïïïïïïïï


=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¢
¾

= ( ¼ )

¾
=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¢
¾

= ( )

¼


=

æ

è
çççç

¼
ö

ø
÷÷÷÷

¢
¾

= ( ¼ )

-

-

-

-

-

-



Then we choose y a, R pÎ , and create the public
parameters and master key as

PK g e g g g g g

g g

MSK g g g

, , , , , , ,

, , .

, , , .

y a tag P tag P

P P

y tag tag

n n

n

n

1 1

1

1

= ( ( ) ¼

¼ )
= ( ¼ )

 

¢
¾

¢


• Encryption(M PK Pol, , ): Given a message M TÎ
and an access policy Pol , r= ( ), the algorithm
chooses a random vector v s y y, , , n p

n
2  = ( ¼ ) Î .

These values will be used to share the encryption expo-
nent s. For i = 1 to l, it calculates vi il =  · , where

i is the vector corresponding to the ith row of .
Then it computes

C M e g g C g

C g g

C g g

, , ,

,

,

ys s

i
a tag P s

i
a P s

1 2

i i i

i i

= ( ) =

= { }

¢ = { }

l

l

-


- ¢


r r

r

( ) ( )

( )

·

and output the ciphertext as

CT Pol C C C C, , , , .i i i l1 2 1, ,= ( { ¢} )= ¼

• KeyGen(MSK , ): Similar to the key Generation algo-
rithm of our first CE scheme, we create a vector for

criterion x as follows, where ztagx
denotes a root of the

polynomial corresponding to x

z z z z, , , , 1 .tag tag
d

tag
d

tag
1

x x x x
= ( ¼ )

¾ ¾ -

Next it chooses a random t pÎ , and computes

K g g L g C

K g

K g

, , ,

,

.

y at t
x

x
tag z t

x
P t

x tagx

x

= = " Î
ì
í
ïïï

î
ïïï

= ( )

¢ = ¢


¾ ¾

The secret key is set as SK K L K K, , ,x x Cx = ( { ¢} )Î{ } .
• Decryption (CT SK, ): Similar to the decryption algo-

rithm of the first CE scheme, the user first identifies
the set I and computes i p i Iw{ Î } Î based on the
access structure( , r).
Then it computes

e L C
e K C e K C

e K C

e g g g

e g g g e g g

e g g g

e g g e g g

,
, ,

,

,

, ,

,

, , .

i I
i

i i i

i i

i I

t a P s

tag z t a tag P s P t s

tag z t a P s

i I

a t ast

2
i

i i

i tag i i i i i

i tag i i i

i

i i







¢
¢

¢

æ

è

çççç
( )

( ) ( )

( )

ö

ø

÷÷÷÷÷

=
æ

è
çççç

( )

(( ) ) ( )

(( ) )

ö

ø

÷÷÷÷÷÷÷

= ( ) = ( )

r r

r

w

l

l

l

w

l w

Î

( ) ( )

( )

Î

- ¢
¾

-
 ¢

¾

- ¢
¾

Î

r

r r r r r

r r r

( )

( ) ( )
¾ ¾¾

( ) ( ) ( )

( ) ( )
¾ ¾¾

( )

·

·

After that, compute e K C e g g e g g, , ,ast ys
2( )/ ( ) = ( )

and recover message M by C e g g, ys
1/ ( ) .

It is easy to see that we can also modify the CE-Equal
Coefficients scheme in a similar way. The security of these
special CE schemes can be proved by following the proofs
for the original CE schemes. In A, we provide the proof for
the SCE-Verify Root of Polynomial scheme presented above.

7.2. Security model

Similar to other public-key encryption schemes, we define the
IND-CPA security of a SCE scheme via the following game:

• Setup: The challenger runs the Setup algorithm and
gives the public parameters PK to the adversary.

• Phase 1: The adversary adaptively makes private key
generation queries for any cases criteria set  of its
choice.

• Challenge: The adversary submits two equal length
messages M0 and M1 and a challenge access structure
Pol* with the restriction that Pol* cannot be satisfied
by any cases criteria set  occurred in Phase 1. The
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challenger then flips a random coin β, and encrypts
Mb under Pol*. The resulting ciphertext CT* is given
to the adversary.

• Phase2: Phase 1 is repeated with the restriction that
Pol* cannot be satisfied by any cases criteria set
appeared in the private key generation queries.

• Guess: The adversary outputs a guess b¢ of β.

We say a SCE scheme is IND-CPA secure if for any prob-
abilistic polynomial-time adversary 

kAdv Pr
1

2
IND CPA
 b b( ) = [ ¢ = ] --

is negligible in the security parameter k.

8. COMPARISONS

Table 2 gives a detailed comparison between the two pro-
posed CE schemes. The schemes are compared in terms of
the number of roots that must be held by the user for each
polynomial, the ciphertext size, the secret key size and the
decryption cost. In the table, p denotes the number of pairing
operation, l is the number of rows in the access structure
matrix, n¢ is the number of criteria a user satisfies, n is the
total number of criteria in the Universe, len 2 1n - as all
the criterion set with accumulated weight larger than τ and j
is the size of the set J.

9. DISCUSSION AND CONCLUSION

In this paper, we introduced a new type of public-key encryp-
tion named Criteria-based Encryption, which is a new crypto-
graphic primitive that allows fine-grained access control over
encrypted data. We also proposed two concrete criteria-based
encryption schemes under two different settings, and proved
their security under the decisional q-Bilinear Diffie–Hellman
Exponent problem. One limitation of our schemes is that the
criteria space cannot be too large due to the use of the frame
vector in handling the weight. An interesting research prob-
lem is to find another more efficient way to implement the
weight requirement, and we leave it as our future work.

APPENDIX A. SECURITY PROOF FOR SCE

THEOREM A.1. Assume that the decisional q-bilinear Diffie–
Hellman Exponent problem holds in , then no poly-time
adversary can selectively break our SCE-Verify Roots of
Polynomial.

Proof of Theorem 3. We prove the security of our SCE
scheme under the decisional q-bilinear Diffie–Hellman
Exponent assumption. Suppose that an adversary  with
non-negligible advantage  chooses a challenge matrix *
of size l n* *´ , where n q* £ in our proposed scheme. We
represent how to build a simulator  that solves the decisio-
nal q-BDHE problem.

• Init:  takes an instance y T, of the q-BDHE prob-
lem as an input. As required in the selective model, 
first submits a challenge access structure
Pol M ,* * *r= ( ), where M* has n* columns to .

• Setup:  simulates the public parameter

PK g e g g g

h h

, , , , , , , , , ,

, , ,

y a
n n

len

1 1

1

a a b b= ( ( ) ¼ ¼
¼ )

and the master secret key MSK g , , ,y
n1g g= ( ¼ ) as

follows:
 chooses random y p¢ Î , and sets
e g g e g g e g g, , ,y a a yq( ) = ( ) ( )

¢· , which implicitly
sets y y aq 1= ¢ + + . For each d-degree polynomial Px

(representing a criterion) for x n1 £ £ ,  chooses a
random tag tagx. Let X denote the set of indices i, such
that i Px*r ( ) = .  then sets

g g g g ,x
tag P

i X

a a ax x i i
n

i n,1
2

,2 ,* * **
*  a =



Î

·

g g g g .x
P

i X

a a ax i i
n

i n,1
2

,2 ,* * **
*  b = ¢



Î

·

g g g g .x
tag

i X

a a ax i i
n

i n,1
2

,2 ,* * **
*  g =

Î

·

If X = Æ, then simply set g g, ,x
tag

x
tag Px x xg a= =



gx
P xb = ¢
¾

.
• Phase 1:  submits a private key query for

ztagx
 = { }, where  does not satisfy * . For each
ztagx

denote z z z z, , , , 1tag tag
d

tag
d

tag
1

x x x x

¾ = ( ¼ )- .  answers
the query as follows.
First  chooses r R pÎ . Then by the definition of
LSSS  can find a vector w w w, , n p

n
1 *

* = ( ¼ ) Î such
that w 11 = - and for all i, where i*r ( ) has a root in 
we have w 0i*

 =· .  then sets

L g g g g g

g g ,

t r a w a w a w

r

i n

a w

1, ,

q q q n
n

q i
i

1
1

2
1

1

*

*
*


= =

= ( )
= ¼

- - +

+ -

· ·

which implicitly sets t r w a w aq q
1 2

1= + + +-

w an
q n 1

*
*+ - + .
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To compute K and we show how to cancel the term gaq 1+
as

K g g

g g g g g g

g g g g

g g g ,

y at

y a ar a w a w a w

y ar a w a w

y ar

i n

a w

2, ,

q q q q n
n

q q n
n

q i
i

1 1
1 2

2

2
2

2

*

*
*

*
*



=

=

=

= ( )

¢

¢

¢

= ¼

+ + - +

- +

+ -





· · · ·

· ·

·

for w 11 = - .
For each ztagx

Î , if there is no i such that ztagx
is a

root of i*r ( ), then  can simply let K Lx
tag zx tagx=

¾¾
and

K Lx
P x¢ = ¢
¾

. Otherwise,  computes:

K g g g g ,x
tag

i X

a a a

z t

x i i
n

i n

tagx

,1
2

,2 ,* * **
*  =

æ

è
çççç

ö

ø
÷÷÷÷Î

¾ ¾

·

where t r w a w a w aq q
n
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• Challenge: The adversary gives two messages M0 and
M1 to the simulator. Write h gs= for some unknown
s, the simulator  flips a coin β, then it chooses ran-
dom y y, , n2 *¢ ¼ ¢ and share the secret s using the vector:

v s sa y sa y sa y, , , , .n
n p

n
2

2
3

1
*

* = ( + ¢ + ¢ ¼ + ¢ ) Î-

 creates the challenge ciphertext as
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If T e g g, sq 1= ( )a +
, the challenge ciphertext is a valid

encryption of Mb. On the other hand, if T is uniformly
distributed in T , the challenge ciphertext is independ-
ent of β.

• Phase 2: This phase is simulated as in Phase 1.
• Guess:  output 0, 1b¢ Î { }. If b b¢ = , then B out-

puts 1, otherwise outputs 0.
If 0b¢ = , then the simulation is the same as in the
real game. Hence,  will have the probability 1

2
+

to guess β correctly.
If 1b¢ = , then T is random in , then  will have
probability 1

2
to guess β correctly. Therefore,  can

solve the decision q-BDHE assumption also with advan-
tage  . □

REFERENCES

[1] Abdalla, M., Bourse, F., De Caro, A. and Pointcheval, D. (2015)
Simple Functional Encryption Schemes for Inner Products. In
Public-Key Cryptography – PKC 2015, pp. 733–751.

[2] Abdalla, M., Gay, R., Raykova, M. and Wee, H. (2017) Multi-
input Inner-product Functional Encryption from Pairings. In
Advances in Cryptology – EUROCRYPT 2017, pp. 601–626.

[3] Agrawal, S., Agrawal, S., Badrinarayanan, S.,
Kumarasubramanian, A., Prabhakaran, M. and Sahai, A. (2015)
On the Practical Security of Inner Product Functional Encryption.
In Public-Key Cryptography – PKC 2015, pp. 777–798.

[4] Agrawal, S., Freeman, D. and Vaikuntanathan, V. (2011)
Functional Encryption for Inner Product Predicates from
Learning with Errors. In Advances in Cryptology –

ASIACRYPT 2011, Volume 7073 of Lecture Notes in
Computer Science, pp. 21–40.

[5] Agrawal, S., Freeman, D. M. and Vaikuntanathan, V. (2011)
Functional Encryption for Inner Product Predicates from Learning
with Errors. In Proc. 17th Int. Conf. Theory and Application of
Cryptology and Information Security, ASIACRYPT’11, pp. 21–40,
Springer-Verlag, Berlin, Heidelberg.

[6] Agrawal, S., Gorbunov, S., Vaikuntanathan, V. and Wee, H.
(2013) Functional Encryption: New Perspectives and Lower
Bounds, Advances in Cryptology – Crypto 2013. pp. 500–518.

[7] Attrapadung, N., Libert, B. and Panafieu, E. (2011) Expressive
Key-Policy Attribute-Based Encryption with Constant-size
Ciphertexts. In Public Key Cryptography – PKC 2011, Volume
6571 of Lecture Notes in Computer Science, pp. 90–108.

[8] Bethencourt, J., Sahai, A. and Waters, B. (2007) Ciphertext-
policy Attribute-based Encryption. In IEEE Symposium on
Security and Privacy, 2007. SP ‘07, pp. 321–334.

[9] Boneh, D. and Boyen, X. (2004) Efficient Selective-id Secure
Identity-Based Encryption without Random Oracles. In
Advances in Cryptology – EUROCRYPT 2004, Volume 3027
of Lecture Notes in Computer Science, pp. 223–238.

[10] Boneh, D. and Franklin, M. (2001) Identity-based Encryption
from the Weil Pairing. In Advances in Cryptology – CRYPTO
2001, Volume 2139 of Lecture Notes in Computer Science, pp.
213–229.

524 T. V. X. PHUONG et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 4, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/4/512/4430306 by U
niversity of W

ollongong user on 18 O
ctober 2022



[11] Boneh, D., Sahai, A. and Waters, B. (2011) Functional
Encryption: Definitions and Challenges. In Theory of
Cryptography: 8th Theory of Cryptography Conf., TCC, pp.
253–273.

[12] Boneh, D. and Waters, B. (2007) Conjunctive, Subset, and
Range Queries on Encrypted Data. In Proc. 4th Conf. Theory
of Cryptography, TCC’07, pp. 535–554.

[13] Caro, A. D. and Iovino, V. (2013) On the power of rewinding
simulators in functional encryption. Design, Codes and
Cryptography, 84, 373–399.

[14] Caro, A. D., Jain, V. I. A., O’Neill, A., Paneth, O. and Persiano,
G. (2013) On the achievability of simulation-based security for
functional encryption. In Advances in Cryptology – {CRYPTO}
2013 – 33rd Annual Cryptology Conference – Part II, pp. 519–
535.

[15] Cheung, L. and Newport, C. (2007) Provably Secure
Ciphertext Policy abe. In Proc. 14th ACM Conf. Computer and
Communications Security, CCS ‘07, pp. 456–465, New York,
NY, USA.

[16] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A. and
Waters, B. (2013) Candidate Indistinguishability Obfuscation
and Functional Encryption for All Circuits. In Proc. 2013
IEEE 54th Annual Symposium on Foundations of Computer
Science, FOCS ‘13, pp. 40–49, Washington, DC, USA, IEEE
Computer Society.

[17] Goldwasser, S., Gordon, S. D., Goyal, V., Jain, A., Katz, J.,
Liu, F.-H., Sahai, A., Shi, E. and Zhou, H.-S. (2014) Multi-
input Functional Encryption. In Advances in Cryptology –

EUROCRYPT 2014, pp. 578–602.

[18] Goyal, V., Jain, A., Pandey, O. and Sahai, A. (2008) Bounded
Ciphertext Policy Attribute based Encryption. In Proc. 35th Int.
Colloquium on Automata, Languages and Programming, Part II,
ICALP ‘08, pp. 579–591, Berlin, Heidelberg, Springer-Verlag.

[19] Goyal, V., Pandey, O., Sahai, A. and Waters, B. (2006)
Attribute-based Encryption for Fine-grained Access Control of
Encrypted Data. In Proc. 13th ACM Conf. Computer and
Communications Security, CCS ‘06, pp. 89–98. ACM.

[20] Katz, J., Sahai, A. and Waters, B. (2008) Predicate Encryption
Supporting Disjunctions, Polynomial Equations, and Inner
Products. In Proc. Theory and Applications of Cryptographic
Techniques 27th Annual Int. Conf. Advances in Cryptology,
EUROCRYPT’08, pp. 146–162.

[21] Lewko, A. B., Okamoto, T., Sahai, A., Takashima, K. and
Waters, B. (2010) Fully Secure Functional Encryption:
Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In EUROCRYPT, pp. 62–91.

[22] Lewko, A. B. and Waters, B. (2012) New Proof Methods for
Attribute-based Encryption: Achieving Full Security through
Selective Techniques. In CRYPTO, pp. 180–198.

[23] Nishide, T., Yoneyama, K. and Ohta, K. (2008) Attribute-
based Encryption with Partially Hidden Encryptor-specified
Access Structures. In Proc. 6th Int. Conf. Applied
Cryptography and Network Security, ACNS’08, pp.
111–129.

[24] Okamoto, T. and Takashima, K. (2012) Adaptively Attribute-
hiding (hierarchical) Inner Product Encryption. In Advances in
Cryptology – EUROCRYPT 2012, Vol. 7237. Lecture Notes in
Computer Science, pp. 591–608.

[25] Ostrovsky, R., Sahai, A. and Waters, B. (2007) Attribute-based
Encryption with Non-monotonic Access Structures. In Proc.
14th ACM Conf. Computer and Communications Security,
CCS ‘07, pp. 195–203, New York, NY, USA. ACM.

[26] Park, J. (2011) Inner product encryption under standard
assumption. Designs, Codes and Cryptography, 58, 235–257.

[27] Sahai, A. and Waters, B. (2005) Fuzzy Identity-Based
Encryption. In Proc. 24th Annual Int. Conf. Theory
Applications of Cryptographic Techniques, EUROCRYPT’05,
pp. 457–473. Springer-Verlag.

[28] Shamir, A. (1985) Identity-Based Cryptosystems and
Signature Schemes. In Proc. CRYPTO 84 on Advances in
Cryptology, pp. 47–53, New York, NY, USA, Springer-
Verlag New York, Inc.

[29] Shi, E. and Waters, B. (2008) Delegating Capabilities in
Predicate Encryption Systems. In Proc. 35th Int. Colloquium
on Automata, Languages and Programming, Part II, ICALP
‘08, pp. 560–578.

[30] Waters, B. (2011) Ciphertext-Policy Attribute-based Encryption:
An Expressive, Efficient, and Provably Secure Realization. In
Public Key Cryptography, pp. 53–70.

[31] Zhou, Z. and Huang, D. (2010) On Efficient Ciphertext-Policy
Attribute based Encryption and Broadcast Encryption: extended
abstract. In Proc. 17th ACM Conf. Computer and Communica-
tions Security, CCS ‘10, pp. 753–755, New York, NY, USA.
ACM.

525CRITERIA-BASED ENCRYPTION

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 4, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/4/512/4430306 by U
niversity of W

ollongong user on 18 O
ctober 2022


	Criteria-based encryption
	Citation

	Criteria-Based Encryption
	1. INTRODUCTION
	1.1. Related work
	1.2. Organization

	2. POLYNOMIAL AND THE VIÈTE’S FORMULA
	3. BACKGROUND
	3.1. Access structures
	3.2. Linear secret sharing scheme
	3.3. Bilinear map on prime order groups
	3.4. Decision q-Bilinear Diffie–Hellman exponent (q-BDHE) assumption

	4. CRITERIA-BASED ENCRYPTION (CE)
	4.1. Functional definition
	4.2. IND-CPA security of CE

	5. CONSTRUCTIONS
	5.1. CE-Verify Root of Polynomial
	5.2. CE-Equal Coefficients

	6. SECURITY PROOF
	7. SPECIAL CASE OF CE
	7.1. SCE-Verify Root of Polynomial
	7.2. Security model

	8. COMPARISONS
	9. DISCUSSION AND CONCLUSION
	9. DISCUSSION AND CONCLUSION
	9. DISCUSSION AND CONCLUSION
	Appendix A. SECURITY PROOF FOR SCE
	References


