
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2018

Authorized function homomorphic signature Authorized function homomorphic signature

Qingwen GUO

Qiong HUANG

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the OS and Networks Commons

Citation Citation
GUO, Qingwen; HUANG, Qiong; and YANG, Guomin. Authorized function homomorphic signature. (2018).
Computer Journal. 61, (12), 1897-1908.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7325

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

© The British Computer Society 2018. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

Advance Access publication on 3 November 2018 doi:10.1093/comjnl/bxy114

Authorized Function Homomorphic
Signature

QINGWEN GUO
1, QIONG HUANG

1*
AND GUOMIN YANG

2

1College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642,
China

2School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522,
Australia

*Corresponding author: qhuang@scau.edu.cn

Homomorphic signature (HS) is a novel primitive that allows an agency to carry out arbitrary
(polynomial time) computation f on the signed datam and accordingly gain a signature sh for the
computation result ()f m with respect to f on behalf of the data owner (DO). However, since DO
lacks control of the agency’s behavior, receivers would believe that DO did authenticate the com-
putation result even if the agency misbehaves and applies a function that the DO does not want.
To address the problem above, in this paper we introduce a new primitive called authorized func-
tion homomorphic signature (AFHS). In AFHS, the agency has to obtain a confidence key skf from
DO in order to evaluate a function f on the data m and to obtain a signature with which one can
check whether the agency acts in accordance with DO’s instructions. A black-box construction of
AFHS based on HS is given in this paper, and we show that if the underlying primitives are secure,
so is our construction under the given security model. Moreover, we provide a somewhat concrete

construction that offers stronger security guarantee.

Keywords: digital signature; homomorphic signature; functional signature; zk-SNARKs; cloud
computing

Received 5 April 2018; revised 5 August 2018; editorial decision 7 October 2018
Handling Editor: Joseph Liu

1. INTRODUCTION

Nowadays public and private organizations would like to
upload their data to the cloud server  in order to mitigate the
burden of the local computation and storage and to make good
use of  ’s cloud computing capacity. Cloud computing entails
that the computational process must be delegated to  , while a
disruptive server may behave dishonestly [1]. In modern crypt-
ography, digital signature (DS) is a significant primitive and
unforgeability of DS ensures that only with knowledge of the
secret signing key can one generate a valid signature on mes-
sages. Homomorphic signature (HS) [2] is a handy tool for
cloud computing security, and extends the functionality of DS
in a way that one can do arbitrary (polynomial) computations f
over DO’s data m and meanwhile gain a new signature sh

which authenticates the computation result ˆ = ()m f m . The sig-
nature sh gives the receiver a reason to believe that the resulting
pair (())f f m, was approved by DO. In this paper, we intro-
duce a new primitive called authorized function homomorphic
signature (AFHS), to support a new emerging application.

Suppose that Alice is a project manager in a company, and
she has signed some arguments = (¼)m m m, , k1 , which meas-
ure the quality of an important project (e.g. in a transnational
agricultural product supply chain, m1 denotes the environmental
risks and m2 denotes the requirements risk). We assume that the
project arguments are kept secret to the public (e.g. the competi-
tors). Then Alice transmits her data and the corresponding signa-
tures to an assistant  (e.g. a leased cloud server) via a secure
channel, and asks it to compute an assessment score ()f m
using an assigned estimation method f (e.g. multiple attribute
decision making method based on triangular fuzzy numbers).
Later,  passes the pair (())f f m, to Bob (e.g. the boss who is
on a business trip) to help him make critical decisions. Since 
is semi-trusted and Bob may lack the necessary expertise to
scrutinize the estimation method effectively, he requires Alice’s
signature on (())f f m, to ensure that the claim value ()f m is
indeed the result of applying f on Alice’s datam and that Alice
did choose the estimation method f (e.g. an inappropriate and
low-quality estimation method f * may mislead Bob fatally).

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

AFHS provides the following capabilities. First, Alice can dele-
gate the computation f to  and enable it to sign the result
()f m on behalf of her. Second, only when the function f

appointed by Alice is applied can  obtain a valid signature w.r.t.
f . What’s more,  can generate a valid signature if and only if
the computation is carried out on Alice’s datam correctly.
Figure 1 shows the system architecture of AFHS.

Compared with HS, DO in this new notion can control the
signing behavior of the agency, and enables it to provide a
signature that proves the legitimacy of the message(s) from it.
Our basic motivations are to prevent an agency from acquir-
ing unlimited signing ability and to protect against the threat
of disputes simultaneously. Concretely, the main contribu-
tions of our work are twofold.

(1) In this paper, we introduce a new notion called author-
ized function homomorphic signature (AFHS). Since
the agency must ask for a confidential key skf from
DO in order to evaluate the function f , it is appropriate
to restrict the signing ability of the agency.

(2) We present the formal definition of AFHS as well as
its security models. To demonstrate the new notion, we
propose a generic construction taking advantages of HS
and functional signature (FS) [3], and prove it to satisfy
weak unforgeability (c.f. Definition 4.2). To enhance
the security guarantee, we give another somewhat con-
crete construction of AFHS based on zk-SNARKs,
which is inspired by Boyle et al’s work on FS [3] and
is proved to satisfy unforgeability (c.f. Definition 4.3).

To achieve the functionality of AFHS, a trivial way is that
DO creates a certificate cf for the prescribed function f and
sends it to the agency. The agency calls the evaluation algo-
rithm of HS, Eval. , to obtain a HS sh and submits

s(())f f m c, , ,h f to Bob. Bob checks the validity of f

according to cf and runs the verification algorithm of HS,
Verify. , to verify the tuple (())f f m, . However, this solu-

tion will raise another security concern. Consider the following
example.
The tuples s( )m , , s(¢ ¢)m , are sent to 1, 2, respectively.

At some later point, DO issues a certificate cf of function f for
1 so that it can generate a signature on (())f f m, from

s( )m , . Due to the publicity of cf , 2 can also maliciously
compute a signature on ((¢))f f m, which is not desired for
DO. Therefore, we need a better way to implement AFHS.

Paper Organization. Section 2 reviews the outline of
some related works in the literature. In Section 3, we recall
some necessary notions which will be used in our construc-
tions. We present the definition of AFHS as well as its corre-
sponding security models in Section 4. In Section 5, we
propose a generic construction of AFHS which is based on FS
and HS, and prove its security. Section 6 describes another
somewhat concrete AFHS scheme in details, which is followed
by a section discussing about the instantiation of the two
AFHS schemes. Finally, this work is concluded in Section 8.

2. RELATED WORKS

2.1. Homomorphic signature

HS [2] allows any entity to combine the authenticated data
and generate a signature for the new data without knowing
the signer’s private key. More precisely, given DO’s data m
and the signatures s on m , an assistant can invoke the algo-
rithm Evalˆ ·s s()  ()m f, . pk, , ,h to show that the
claimed value m̂ is exactly the result of applying f to m . In
recently, Schabhüser et al. [4] have come up with an unforge-
able linearly HS scheme which is secure under the DL and
CDH assumption and allows for constant time verification. In

FIGURE 1. System architecture of AFHS.

1898 Q. GUO et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

addition, their scheme can be combined with homomorphic
encryption to achieve context hiding. Tsabary [5] has pro-
posed a concrete construction of attribute-based signature
whose security relies on a worst-case lattice assumption, and
shown that there exists an equivalence between context hid-
ing HS and attribute-based signature. An amount of studies
have been done on HS, notably from supporting linear functions
[6–8, 4], to polynomial functions [9, 10] and fully homomorphic
operations [11], and even to multi-key HS [12]. However, in
most of the state-of-the-art HS schemes the agency has the abil-
ity to freely evaluate arbitrary functions. How to limit the sign-
ing ability of the agency is the focus of our work in this paper.
Compared with HS, AFHS provides DO with more flexibility
and reduces the possibility of dispute and loss. Our scheme
guarantees that no one can persuade the third party to accept the
result pair ˆ()f m,* * while f * is not assigned by DO or m̂* is
not the result of apply f * to DO’s datam .

2.2. Functional signature

Another related notion is FS [3], in which DO hands out a sec-
ondary key skf to allow a specified agency to sign messages m̂
which satisfy that ˆ Î ()m frange . The work of Boyle et al. [3]
enlightens us and it is an important utility used in our first con-
struction. The authors of [12] point out a new way of how to
achieve FS through two-key HS (2-key HS). Besides, recently
Backes et al. [13] introduced a new primitive called delegata-
ble functional signature (DFS) which is closely related to FS.
DFS considers not only the delegation of signing process but
also a controlled form of malleability (i.e. DO delegates
allowed functions  to an agency and the agency can further
delegate the computations ¢ Í  to its sub-contractors).

2.3. Computation security and privacy

Due to the resource virtualization of cloud computing, the
computation result from  cannot be fully trusted. Wei et al.
[1] summarized three kinds of security problems in cloud
computing: (i) storage-cheating attack, (ii) computation-
cheating attack and (iii) privacy-cheating attack, of which
the last two models are taken into consideration in our work.
Lots of researchers studying verifiable computation (VC)

devote themselves to secure cloud computation [14–17]. In a
VC scheme, DO is able to delegate the computation of a pre-
scribed function to a powerful agency who can later output
the computation result as well as a proof to prove that the
computation was applied correctly to the data. There exist
some differences between VC and AFHS, although they share
certain similarity. In general, in VC it just requires that a
spiteful agency cannot misguide the verification algorithm to
accept ¹ ()y f x* and unforgeability is not mandatory.
Furthermore, a VC scheme providing input privacy w.r.t. the
verifier (e.g. Bob) can be built from AFHS but the converse

is not necessarily right. More details and further works about
VC can be found in [15].
In the cloud computing applications, we should pay more

attention to privacy protection in view of the potential risk of
misuse of sensitive data. Recently, Li et al. [18] have put for-
ward a creative protocol called scalable and privacy-preserving
friend matching protocol (SPFM), which provides a friend
matching solution in mobile cloud (that can be viewed as a spe-
cial kind of computation) without compromising users’ privacy.
The principle is that each user in SPFM executes XOR opera-
tions to obfuscate every bit of the sensitive data. As for the priv-
acy of DS in cloud computing, there are numerous works in the
literature which have considered similar notions, e.g. completely
context hiding, strongly context hiding, weakly context hiding
for HS [19, 6], and unlinkability, transparency for sanitizable
signature [20]. Overall, their goals are to assure that a new sig-
nature on the result message does not lead to disclosure of infor-
mation about the original data. In AFHS, we demand that it is
difficult for a greedy (but limited) competitor to infer which
space the intercepted tuple ˆ ŝ()m, comes from.

3. PRELIMINARIES

3.1. Notations

In this paper, the security parameter is represented by the notation
l, and we use ·()negl to denote a negligible function and label a
polynomial as ·()poly . The notation y x merely means that
variable y is assigned the value x, and the notation ¬ Wy
denotes assigning to y an element uniformly chosen from a finite
set W. Let the notation º 

c
1 2 denote that no probabilistic

polynomial time (PPT) adversary  can distinguish
between 1 and 2.

3.2. Functional signature

DEFINITION 3.1 (Functional signature, FS [3]). A functional
signature scheme consists of four PPT algorithms =
Setup KGen Sign Verify(), , , , as follows.

• Setup()  ()l1 msk, mvk : The setup algorithm cre-
ates a pair of keys ()msk, mvk .

• KGen() fmsk, skf : Given msk and a function
Î f , where  is the space of functions, this algo-

rithm returns a key skf for f .
• Sign ˆ s()  ()f m m, sk , ,f f : Taking as input a func-

tion f , a key skf issued for f and a bunch of messages
m , the signing algorithm outputs the computation
result ˆ = ()m f m and a signature sf .

• Verify ˆ s() m bmvk, , f : Given a signature sf on m̂,
this algorithm outputs either 1 (accept) or 0 (reject).

1899AUTHORIZED FUNCTION HOMOMORPHIC SIGNATURE

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

A functionality of FS is to guarantee that only appointed
computation was performed (Refer to [3] for details). For
completeness, below we recall its security modele. Consider
the following game within which  is a PPT adversary and
Î i .

(1)  is given mvk and has access to oracles
Key ·() . and Sign ·() . which work as follows:

• Key()  f i. , :

• If there is an entry for the key ()f i, in the data-
base, output the corresponding value sk f

i .
• Otherwise, return a fresh key  sk .f

i

KGen()fmsk, , and save ()f i, , sk f
i to the

database.

• Sign(
)  f i m. , , :

• If there is an entry ()f i, , sk f
i in the database,

output a functional signature with this corre-
sponding key, i.e. Signs  () f m. , sk ,f f

i .
• Otherwise, generate a fresh key  sk .f

i

KGen()fmsk, , store ()f i, , sk f
i to the database,

and work as above.

(2) The adversary  wins the game if it is able to pro-
duce a forgery ˆ s()m , f* * such that

(a) Verify ˆ s() = m. mvk, , 1f* * ; and
(b) Keyˆ ·() = ()  ()   m m f m f, sk s.t. . ,f *

Signˆ s ()  ()m f msk , . , sk ,f f f* * ; and
(c) Signˆ ·() = ()  ()   f m m f m f m, s.t. . , ,*

sf*.

DEFINITION 3.2 (Unforgeability [3]). A FS scheme is
unforgeable if for any PPT adversary , it holds that

l[] £ () winsPr negl .

On the other side, it is required that a functional signature
should reveal neither f nor m in the view of . More pre-
cisely, the privacy of FS is defined via the following game
where  plays the role of challenger and  plays the part of
PPT adversary.

(1)  obtains the key pair Setup()  ()lmsk, mvk . 1
and runs () msk, mvk .

(2) During the training phase,  can choose two functions
f f,0 1 on its own terms, and ask for the corresponding
keys sk , skf f0 1

from  . Then  adaptively chooses
 m m,0 1 and refers them to  . If () ¹ ()f m f m0 0 1 1 , 
aborts the game.

(3)  flips a coin ¬ { }b 0, 1 to computes a challenge
signature Signs  () f m. , sk ,f b f bb

, and gives it to
. Finally,  outputs its guess ¢b , and wins a victory
if ¢ =b b.

DEFINITION 3.3 (Function privacy [3]). A FS scheme satis-
fies function privacy if for any PPT adversary , it holds that
∣ ∣ l[] - / £ () winsPr 1 2 negl .

3.3. Homomorphic signature

DEFINITION 3.4 (Homomorphic signature, HS [7, 9]). A HS
scheme consists of a tuple of four PPT algorithms =
Setup Sign Verify Eval(), , , , as follows.

• Setup()  ()l k1 , hsk, hpk : Taking as input a security
parameter and a variable k, the setup algorithm creates
a pair of keys ()hsk, hpk .

• Sign t s() m ihsk, , , i: The signing algorithm gets
as input hsk, a tag t which is the class label of m, and
an indicator i for which £ £i k1 , and outputs a sig-
nature si.

• Verify ˆt s() m f bhpk, , , ,h : This algorithm takes as
input hpk, a tag t , a result message m̂, a signature sh

that verifies the message ˆ = ()m f m for a vector of mes-
sagesm , and a function f , and outputs a bit b indicating
whether the verifier accepts the tuple ˆt()m f, , .

• Eval t s s() fhpk, , , h: The evaluation algorithm
gets as input hpk, a tag t , a function f , and a tuple of
signatures s that verifiesm , and outputs a HS sh.

An immediate application of HS is to certify that the
alleged value is indeed the computation result of applying f
over the client’s data (please refer to [7, 9] for details). The
unforgeability of HS is defined via the following game in
which  is a PPT adversary and  denotes the message
space.

(1)  is given hpk and access to oracle Sign t()  m. ,j
which works as follows:

• If Ïm , output^.
• If m is the first query for tag tj, set =i 1j , output

Signs t () m i. hsk, , ,i j jj
and initialize  =mj

()m .
• If =i kj , output^.
• Otherwise, set  +i i 1j j , output sij as above and

set = (¼)-m m m m, , ,j i1 1j
.

1900 Q. GUO et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

(2) Finally,  returns its forgery ˆt s()m f, , ,h* * * * , and
wins a victory if

Verify ˆt s() = m f. hpk, , , , 1h* * * * and either (a)
t tÏ { }j* , or (b) t t= j* for some j but
ˆ ¹ ()m f mj* * .

DEFINITION 3.5 (Unforgeability [7, 9]). An HS scheme is
unforgeable if for any PPT adversary , it holds that

l[] £ () winsPr negl .

The privacy notion of HS captures the idea that even
though hsk is leaked,  cannot deduce valuable information
about client’s data. Consider the following game played
between a challenger  and a PPT adversary .

(1)  gets the key pair Setup()  ()l khsk, hpk . 1 , ,
and later on it gives both keys to .

(2) Then  adaptively submits a tuple ( )f m m, ,0 1 which
satisfies that () = ()f m f m0 1 . In response,  chooses a
random bit ¬ { }b 0, 1 and a random tag
t ¬ { }l0, 1 to get a challenge signature. In details,
 generates a bunch of signatures sb on mb using
tag t , i.e. Signs t () m i. hsk, , ,bi bi and
s s s = (¼), ,b b bk1 , and outputs

Evals t s () f. hpk, , ,h b .
(3) Finally,  outputs its guess ¢b , and wins the game if

¢ =b b.

DEFINITION 3.6 (Weakly context hiding [7, 9]). An HS
scheme satisfies weakly context hiding if for any PPT adver-
sary , it holds that ∣ ∣ l[] - / £ () winsPr 1 2 negl .

3.4. Zero-knowledge SNARK

DEFINITION 3.7 (Zero-Knowledge Succinct Non-Interactive
Argument of Knowledge, zk-SNARK [3]). A zk-SNARK sys-
tem for a language Î L with witness relation  consists
of a tuple of PPT algorithms Setup Prove-P = (, ,zk SNARK

Verify Prove= () = ())   E E E, , , ,P P P
crs 1 2* * * and satisfies

the following properties: completeness, adaptive soundness,
adaptive zero-knowledge, succinctness and argument of
knowledge.

• Setup() l1 crs: Given a security parameter, the
setup algorithm generates a common reference string
crs.

• Prove i w p() crs, , : Holding a witness w, the pro-
ver algorithm will output a proof p in order to prove
that the given statement i is true, i.e. i Î L where

i w i w= { $ () = }L : s.t. , 1
def

.

• Verify i p()  bcrs, , : This algorithm returns a bit
Î { }b 0, 1 which indicates whether the receiver

accepts the statement.
Completeness: If Setup i w ()  () =l crs 1 , 1,
it holds that

Verify Provei i w l[(()) ] £ ()Pr crs, , crs, , 0 negl .

Adaptive Soundness: It demands that a PPT adver-
sary is unable to convince the verifier about a wrong
statement, i.e.

Verify Setupi p
i p i l

[()   () 
()  ()  Ï] £ ()

l

 L

Pr crs, , 1: crs 1

crs , negl .

*

* *

Adaptive Zero-Knowledge: It means that  cannot
learn any more other than the fact that i Î L since
whatever can be observed after the interaction with
the prover can also be efficiently simulated by the
adversary itself, i.e.

Setup Prove

Prove

é
ë  () ()  ù

û

- é
ëê ()  () ()  ù

ûú

£ ()

l i w

l i

l

()

()



 

Pr crs 1 : crs 1

Pr crs, td 1 : crs 1

negl 1 .

crs, ,

crs crs,td,

Succinctness: It requires that the size of the proof is
much smaller than the length of the actual computa-
tion, i.e.

Setup

Prove ∣ ∣
i w i w

p i w p l
"() () =  ()
 () £ (+)

l



, s.t. , 1, crs 1 ,

crs, , , poly log .

Argument of Knowledge: It requests that a mali-
cious prover is unable to output a valid proof with-
out knowing a certain witness, i.e.

Setupéë  () ()  ùû

- [()  () ()  ù
ûú £ ()

l

l l



E

Pr crs 1 : crs 1

Pr crs, td 1 : crs 1 negl 1
P
1
*

and

Verify

i p

i p w i p

i w

é
ëê ()  () ()  () ùûú
()  ()  

() =] £ ()

l

l





E

E

Pr crs, td 1 , crs , ,

crs, td, , : crs, , 1

, 0 negl 1 .

P

P

1

2 *

*

*

*

A zk-SNARK system enables the receiver to verify the cor-
rectness of a specific computation efficiently while it cannot
learn any more. More details about the construction of zk-
SNARK can be found in [21].

1901AUTHORIZED FUNCTION HOMOMORPHIC SIGNATURE

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

4. AUTHORIZED FUNCTION HS

4.1. Formal definition

DEFINITION 4.1 (Authorized Function Homomorphic
Signature, AFHS). An AFHS scheme consists of five PPT
algorithms Setup Sign Verify KGen HEval(), , , , , as follows.

• Setup()  ()l k1 , sk, pk : Taking as input a variable k
(i.e. the maximal data size), this algorithm creates a
pair of keys ()sk, pk . The secret key sk is kept by DO
and the public key pk is published.

• Sign t s() m isk, , ,i i: DO runs this algorithm to
sign the tuple t()m i, ,i , where t is the class tag of mi

and £ £i k1 . Note that = (¼)m m m, , k1 .
• Verify ˆ ˆt s() m f bpk, , , , : Given the computation

result ˆt()m f, , with the corresponding signature ŝ, the
verifier calls this algorithm to determine whether to
accept the computation result.

• KGen t()  tfsk, , skf , : The algorithm is executed by
DO to obtain a function key tskf , for f associated
with t .

• HEval ˆt s s( )  (())t f m f mpk, sk , , , , ,f , : The
cloud server runs this algorithm to gain an evaluated
signature ŝ.

Correctness. Let  p :i
k be a function which projects

the input onto its i th component, i.e. (¼) =p m m m, ,i k i1 .
We require that " Î [] Î i k p, i . An AFHS scheme satisfies
correctness if for any Î f , Îm and () Îsk, pk
Setup()l k1 , , it holds that

Signing. " Î []i k , if Signs t ()m isk, , ,i i , Verify(pk,
t s) =m p, , , 1i i i ;
Evaluation. If KGen t ()t fsk sk, ,f , , ˆ ˆs() m,
HEval t s( )t f mpk, sk , , , ,f , ,
Verify ˆ ˆt s() =m fpk, , , , 1.

4.2. Security models

In our work, we ask that the proposed scheme must satisfy
both unforgeability and privacy. Informally, unforgeability
requires that (i) a malicious (but computationally bounded)
adversary cannot do any illegal processing on the data on
behalf of DO and (ii) if being allowed to evaluate a function
f on the datam , the adversary is incapable of forging a valid
signature on ˆ ¹ ()m f m* . Basically, the privacy demands that
no one can deduce valuable information about DO’s data
from an honestly created pair ˆ ŝ()m, in polynomial time.
Below we describe the two security properties in details.

Unforgeability. Consider the following game played
between a challenger  and an adversary  (i.e. the malicious
agency).

(1) The challenger  initializes Setup() ¬ ()l ksk, pk 1 ,
and calls () pk .

(2) Within this game  is allowed to adaptively query a
signing oracle Sign ·() , a key generation oracle

KGen ·() , and an evaluation oracle HEval ·() for
polynomially many times, which are defined as fol-
lows. Here we assume that if a query was issued
before, the oracle will respond directly to  using
the previous answer.

• Sign t() m, : The signing oracle gets as input a
message m and a tag t , and returns a signature si.
This oracle is subject to the condition that at most
k messages can be queried for a tag t .

• KGen t() f , : The key generation oracle will return
a key tskf , for the function f associated with t .

• HEval t s( ) f m, , , : The evaluation oracle uses
the public key pk and a vector of signatures s to
generate an evaluated signature sh for the tuple
t(())f f m, , .

(3) Finally,  returns its forgery ˆ ˆt s()m f, , ,* * * * such
that it did not query oracle HEval ·() on input

· ·t()f, , ,* * for which the oracle outputs a signature
on ˆt()f m, ,* * * .

DEFINITION 4.2 (Weak unforgeability). We say that an AFHS
scheme is weakly unforgeable if  cannot output a forgery

ˆ ˆt s()m f, , ,* * * * such that, Verify ˆ ˆt s() =m fpk, , , , 1* * * *
and Type1

Type1  did not query oracle KGen ·() about t(¢)f , *
such that ˆ Î (¢)m frange* .

Type2 t t¹ j* for all tj queried by .
Type3 t t= j* for some j but ˆ ¹ ()m f mj* * . Namely,

the adversary authenticates an incorrect value
of a function on the previously seen messages.

DEFINITION 4.3 (Unforgeability). We say that an AFHS
scheme is unforgeable if  cannot output a forgery

ˆ ˆt s()m f, , ,* * * * such that, Verify ˆ ˆt s() =m fpk, , , , 1* * * *
and either of the following holds:

Type1  did not query oracle KGen ·() about t()f ,* * .
Type2 t t¹ j* for all tj queried by .
Type3 t t= j* for some j but ˆ ¹ ()m f mj* * .

The latter security model (w.r.t. Definition 4.2) is
defined as the former one (w.r.t. Definition 4.3) except
for the first condition. More concretely, in the former
model a signature s* on ˆt()m f, ,* * * is not considered as
a Type1 forgery if  possesses a function key with regard
to t(¢)f , * and ˆ Î (¢) Ç ()m f frange range* * . In contrast, 
in the latter model is granted more power since it has no such

1902 Q. GUO et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

limitations, i.e. we only ask that  cannot hold a function key
with regard to t()f ,* * when it chooses to commit a Type1
forgery.
Privacy. The privacy notion we consider in AFHS is

called weakly context hiding, defined via the following
game.

(1)  runs Setup()l k1 , to get a key pair ()sk, pk , and
invokes the adversary  on input ()pk, sk .

(2)  outputs two vectors of messages   Îm m, k
0 1

and a function f such that () = ()f m f m0 1 .  selects
a random bit ¬ { }b 0, 1 , signs t()m ,b where
t ¬ { }l0, 1 and outputs s. Then  generates a
key KGen t ()t fsk sk, ,f , and computes
ŝ(())f m, HEval t s( )t f mpk, sk , , , ,f , . Finally,
 sends ˆ ˆt s()m, , to .

(3) Finally,  outputs a bit ¢b and wins the game if
¢ =b b.

The advantage of  in the game above is defined to be the
difference between the probability that  wins and /1 2.

DEFINITION 4.4 (Weak context hiding). An AFHS scheme is
weakly context hiding if for any PPT adversary , its advan-
tage in the game above is negligible.

Notice that the word ‘weak’ refers to the fact that the ori-
ginal signatures on messagesmb are kept secret to .

5. A GENERIC CONSTRUCTION

5.1. The construction

Below we show a generic construction that transforms a trad-
itional HS scheme into an AFHS scheme, by employing a
functional signature scheme as a building block. Let  be a
HS scheme and  be a functional signature scheme. Our
generic construction works as below.

• Setup()l k1 , :

• Setup()  ()l khsk, hpk . 1 , ;
• Setup()  ()lmsk, mvk . 1 ;
•  ()sk hsk, msk ;
•  ()pk hpk, mvk ;
• Output ()sk, pk .

• Sign t()m isk, , ,i :

• Parse sk as ()hsk, msk ;
• Output Signs t () m i. hsk, , ,i i .

• Verify ˆ ˆt s()m fpk, , , , :

• Parse ŝ as s s(),h g ;
• Parse pk as ()hpk, mvk ;
• If Verify ˆt s() = m f. hpk, , , , 1h and

Verify(. mvk, ˆt s) =m , 1g , output 1;
• Otherwise, output 0.

• KGen t()fsk, , :

• Parse sk as ()hsk, msk ;
• Encode · · t() = ()g f ;
• Output KGen ()t  gsk . msk,f , .

• HEval t s( )t f mpk, sk , , , ,f , :

• Parse pk as ()hpk, mvk ;
• Encode · · t() = ()g f ;
• Evals t s () f. hpk, , ,h ;
• Signt s(())  ()tf m g m, . , sk ,g f , ;
• ŝ s s (),h g ;
• Output ŝ(())f m, .

Correctness of the scheme is straightforward, and we omit
it here. Below we analyze its security.

5.2. Security analysis

THEOREM 5.1. If  is an unforgeable HS scheme and 
is an unforgeable functional signature scheme, our AFHS
scheme above is weakly unforgeable.

The intuition behind is that to win the unforgeability game,
the PPT algorithm  has to forge either a signature with
respect to  or a signature with respect to  : (i) A Type1
forgery implies that the challenger didn’t issue = tsk skg f ,

which can be used to sign m̂* (i.e. ˆ Ï { () }m frange Query*),
and  must break the unforgeability of  ; (ii) A Type2 for-
gery or a Type3 forgery leads to an attack against  since
 requires that  is unable to sign ˆ t()f m, ,* * * such that
t tÏ { }Query* or ˆ Ï { ()}m f m Query* * .

Proof. Denote by Forgea the event that  outputs a Typea
forgery. We have

Forge Forge Forge

Forge Forge Forge

[]= [ ]
£ [] + [] + []

Pr wins Pr

Pr Pr Pr .
1 2 3

1 2 3

Below we show that each item in the right-hand side is
negligible.

1903AUTHORIZED FUNCTION HOMOMORPHIC SIGNATURE

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

If  outputs a valid Type1 forgery efficiently, we are able
to build another algorithm  to break the unforgeability of
 .  is given a key mvk from its own challenger, and
has access to oracles Key ·() . and Sign ·() . . It works
as below.

(1)  invokes Setup()l k. 1 , to obtain ()hsk, hpk ,
sets  ()pk hpk, mvk , and runs  on input pk.

(2) It answers ’s queries to oracles Sign KGen , and
HEval as follows.

• Sign t() m, :

• If m is the first query for t , set =ti 1, output
the signature Signs t ()t m i. hsk, , ,i .

• If =ti k, abort.
• Otherwise, increase the counter ti by 1, output

the corresponding signature si.

• KGen t() f , : Obtain tskf , from Key t()  g. ,
where · · t() = ()g f , and output tskf , .

• HEval t s( ) f m, , , :

• Compute Evals t s () f. hpk, , ,h .
• If the entry t()tf , , skf , can be found in the

database, sign ()f m using this key, i.e. (()g m ,
Signs)  ()t g m. , sk ,g f , .

• Otherwise, submit the tuple t()f , to .
Key ·() to get a key tskf , , add a new entry
t()tf , , skf , to the database, and sign ()f m as

above.
• Output ŝ s s (),h g .

(3) Finally,  outputs a forgery ˆ ˆt s()m f, , ,* * * * where
ŝ s s= (),h g* * * .  outputs ˆ t s()m , g* * * as its own
forgery.

We can see that the view of  in the game above is identi-
cally distributed to that in a real attack against our AFHS
scheme. If the output of  is a valid Type1 forgery,

ˆ t s()m , g* * * is also a valid forgery to the underlying FS
scheme. Guaranteed by the unforgeability of  , we con-
clude that Forge[]Pr 1 is negligible.
If  outputs a valid Type2 forgery or a valid Type3 for-

gery, we can use it to build another algorithm  to break
the unforgeability of  . In details,  is given as input a
key hpk, and has access to oracle Sign ·() . . It works as
below.

•  invokes Setup()l. 1 to obtain ()msk, mvk , sets
 ()pk hpk, mvk , and runs  on input pk.

• It answers ’s queries to oracles Sign KGen , , and
HEval as follows.

• Sign t() m, :

• If m is the first query for t , set =ti 1, output
Signs t ()t  m i. , ,i .

• If =ti k, abort.
• Otherwise, increase the counter ti by 1, and out-

put whatever returned by Sign t()t  m i. , , .

• KGen t() f , :

• If there is no entry t()tf , , skf , in the database,
output the key KGen ()t  gsk . msk,f , where

· · t() = ()g f , and add an entry t()tf , , skf , to
the database.

• Otherwise, directly output the corresponding key
tskf , .

• HEval t s( ) f m, , , :

• Derive Evals t s () f. hpk, , ,h .
• If the entry t()tf , , skf , can be found in the data-

base, sign ()f m using this key.
• Otherwise, execute KGen ()t  gsk . msk,f , ,

add t()tf , , skf , to the database, and sign ()f m .
• Output ŝ s s (),h g .

• Finally,  outputs ˆ ˆt s()m f, , ,* * * * where
ŝ s p= (),h f* * * .  outputs ˆt s()m f, , ,h* * * * as its own
forgery.

The view of  in the game above is identically distributed
as that in a real attack. If the output of  is a valid Type2 for-
gery or Type3 forgery, ˆt s()m f, , ,h* * * * is also a valid forgery
against the underlying HS scheme. Guaranteed by the unfor-
geability of  , it is not difficult to conclude that Forge[]Pr 2
and Forge[]Pr 3 are both negligible.
This completes the proof. □

THEOREM 5.2. If  is weakly context hiding and  satis-
fies the privacy requirement for functional signatures, our
construction above is weakly context hiding.

To prove the privacy of AFHS, we actually need to show that

()t p s t p s) º (()() () () (), , , , . 1f
f m

h
f m c

f
f m

h
f m0 0 1 1

The proof proceeds in two steps. First we prove that

()t p s t p s) º (()() () () (), , , , 2f
f m

h
f m c

f
f m

h
f m0 0 0 1

based on the fact that  is weakly context hiding. Then we
prove that

1904 Q. GUO et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

()t p s t p s) º (()() () () (), , , , 3f
f m

h
f m c

f
f m

h
f m0 1 1 1

by relying on the function privacy of  . Then we can con-
clude that equation (1) holds.

Proof. To prove equation (2), we reduce it to the weakly con-
text hiding property of . Assume that 1 is an efficient algo-
rithm which can break the claim. We build an efficient
algorithm  that uses 1 as a subroutine to break the weak
privacy of (c.f. Definition 3.6). The algorithm  is given
as input a key pair ()hsk, hpk , and works as below.

•  runs Setup()l. 1 to obtain ()msk, mvk , sets
 ()sk hsk, msk and  ()pk hpk, mvk , and invokes

1 on input ()sk, pk .
• 1 submits ( )m m f, ,0 1 . If () ¹ ()f m f m0 1 , 

aborts and outputs a random bit; otherwise, it submits
( )m m f, ,0 1 to its own challenger, and is returned a sig-
nature sh and a random tag t .

•  computes KGen ()t  gsk . msk,f , where
· · t() = ()g f , and generates a signature s  .g

Sign(g, )t msk ,f , 0 . It returns t s s(), ,g h to the adversary.
•  outputs the bit ¢b that is output by 1.

If =b 0, what 1 obtains is the left hand side of equa-
tion (2); otherwise, 1 is given the right-hand side of equa-
tion (2). By the assumption that  is weakly context
hiding, the advantage of 1 in distinguishing the two sides of
equation (2) is thus negligible.
To prove equation (3), we reduce it to the function privacy

property of  . Assume that 2 is an efficient algorithm
which can break the claim. We construct an efficient algo-
rithm  that uses 2 as a building block to break the func-
tion privacy of  (c.f. Definition 3.3). The algorithm  is
given as input a key pair ()msk, mvk , and works as below.

•  runs Setup()l k. 1 , to obtain ()hsk, hpk , sets
 ()sk hsk, msk and  ()pk hpk, mvk , and gives

()sk, pk to the adversary 2.
•  receives ( )m m f, ,0 1 from 2. If () ¹ ()f m f m0 1 ,

it aborts and outputs a random bit; otherwise, it sam-
ples a tag t uniformly, sets · · · t() = () = ()g g f0 1 ,
and receives =sk skg g0 1

from its own challenger.
•  submits ( )m m g g, , ,0 1 0 1 to its own challenger and

is returned a signature sg. It signs the messages in m1

using the tag t and obtains a vector s of k signatures,
and computes a signature Evals t s () f. pk, , ,h .
It returns t s s(), ,g h to the adversary.

•  outputs the bit ¢b that is output by 2.

By the assumption that  is function-private, the advan-
tage of 2 is negligible.
This completes the proof. □

6. ANOTHER CONSTRUCTION

Here we present a trivial example to better illustrate why the
first construction cannot achieve unforgeability (c.f.
Definition 4.3). Suppose that DO has sent s( )t¢m , , sk f , * to
. To get a valid signature on ˆ = ()m f m* * , all  has to do
is to find ¢m such that ¢ (¢) = ()f m f m* and run

Evals t s () f. hpk, , ,h* * * and ˆ  t s() t¢m , f* * *

Sign t(¢ ¢)t¢ f m. , sk ,f ,* * , respectively. Eventually,  out-
puts s s()t¢,h f* * as its final forgery (w.r.t. Type1). The main
reason causing such a problem is that in FS an adversary is
not permitted to sign m̂* if it has requested a key ¢sk f for
which ˆ Î (¢)m frange* . Therefore, we tailor the definition of
unforgeability to capture it, and prove the AFHS construction
above to be weakly unforgeable (c.f. Definition 4.2). In other
words, inheriting from FS our first construction also has a
restriction that  cannot send t(¢)f , * to oracle KGen ·()
such that ˆ Î (¢)m frange* . Below we provide another con-
struction of AFHS, which enhances the security guarantee
and satisfies the unforgeability (c.f. Definition 4.3).

6.1. The new construction

The new construction is inspired by Boyle et al.’s second
construction of functional signature [3]. A main idea is to
bind s tf and sh together, so that the adversary could not
replace s tf with another. Let  be a DS scheme, and

-Pzk SNARK be an adaptive zero-knowledge SNARK system
for the following  language:

Verify

Verify

ˆ

ˆ
 






t s s
t s

t s

= {() $ ( )}

" Î [] () = 

() =  () = }

t

t





L f m m

i k m i

f m m f

, , , dpk : , ,

s.t. . dpk, , 1

. dpk, , 1 .

f

i i

f

Our concrete construction works as below.

• Setup()l k1 , :

• Setup()  ()ldsk, dpk . 1 ;
• Setup- P ()lcrs . 1zk SNARK ;
• sk dsk;
•  ()pk dpk, crs ;
• Output ()sk, pk .

• Sign t()m isk, , ,i :

• Sign  s t () m i. dsk,i i ;
• Output si.

• Verify ˆt s()m fpk, , , ,h :

• Parse pk as ()dpk, crs ;
• Verify ˆ- t s P (())b f m. crs, , , , dpk , hzk SNARK ;

1905AUTHORIZED FUNCTION HOMOMORPHIC SIGNATURE

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

• Output b.

• KGen t()fsk, , :

• Sign t ()t  fsk . dsk,f , ;
• Output tskf , .

• HEval t s( )t f mpk, sk , , , ,f , :

• Parse pk as ()dpk, crs ;
• t (())x f f m, , , dpk ;
• s ( )tw m , , skf , ;
• Prove-s  P ()x w. crs, ,h zk SNARK ;
• Output sh.

REMARK 1. A zk-SNARK system can be used to verify the
correctness of a specific computation efficiently. Here we
encode this specific computation as

Verify

Verify



 

t

t

({ } { }) = ()  ()

 ()

= =

=





C x y z f x f z

x i y

, , . ,

. , ,

i i
k

i i
k

i

k

i i

1 1
def

dpk

1
dpk

where ({ } { })= =x y z, ,i i
k

i i
k

1 1 are the inputs of C and m̂ is the
output. The task of the cloud is to persuade the verifier that
there is indeed a witness w s= ({ } { })t= =m , , ski i

k
i i

k
f1 1 , such

that ˆs({ } { }) =t= =C m m, , ski i
k

i i
k

f1 1 , .

6.2. Security analysis

THEOREM 6.1. If  is an adaptively CMA-secure DS
scheme, and -Pzk SNARK is an adaptive zk-SNARK system, our
construction above is unforgeable.

The intuition behind is that a valid forgery provided by 
implies that  has never signed tf * * or m*. Since

-Pzk SNARK is an argument of knowledge, we can use the
extractor EP* to recover a valid forgery against  .

Proof. We use the adversary  to build an algorithm 
to break  .  is given dpk and has access to the oracle

Sign ·() . . It works as below.

(1)  runs -()  P ()lEcrs, td . 1
Pzk SNARK
1
* , sets

 ()pk dpk, crs and invokes  on input pk.
(2) It answers ’s queries to oracles Sign KGen , and

HEval as follows.

• Sign t() m, :

• If m is the first query for t , set =ti 1, output
Sign  s t ()t  m i.i .

• If =ti k , abort.
• Otherwise, increase the counter ti by 1, and out-

put the corresponding signature si.

• KGen t() f , : Simply output
Sign t ()t   fsk .f , .

• HEval t s( ) f m, , , :

• If t()tf , , skf , can be found in the database,
output Proveˆ -s i w P (). crs, ,zk SNARK where
i t= (())f f m, , , dpk and w s= ( )tm , , skf , .

• Otherwise, submit the tuple t()f , to .
Key ·() to get a key tskf , , and output ŝ as

above.

(3) Finally,  outputs a forgery ˆ ˆt s()m f, , ,* * * * . Utilize
ˆ ˆ- sP ()E m. crs, td, ,

Pzk SNARK
2 * ** to extract a witness

w s s= ( )m , , f* * * * .

If  forges a valid tuple ˆ ˆt s()m f, , ,* * * * , we have
ˆ Î ()m frange* * . Otherwise, we can construct another P to
break the special soundness property of -Pzk SNARK (i.e. if
ˆ Ï ()m frange* * , ˆ Ï)m L*).
Since the crs generated by Setup-P ()l. 1zk SNARK and that

generated by -P ()lE. 1
Pzk SNARK
1
* are statistically close, the

view of  in the game above is identically distributed to that
in a real attack against our AFHS scheme. If  outputs a
Type1 forgery (i.e.  t tÏ { }f f Query* *),  outputs
t s()f , f* * * as its own forgery. If  outputs a Type2 forgery

(i.e. t tÏ { }Query*),  outputs  t s()m 1,1 1* * * as it own
forgery. If  output a Type3 forgery (i.e. ˆ Ï { ()}m f m Query*),
 can also find a forgery  t s()m i,i i* * * at some i since
 Ï {}m m Query* . Guaranteed by the unforgeability of  , we
can draw a conclusion that Forge[]Pr 1 , Forge[]Pr 2 and

Forge[]Pr 3 are all negligible and thus the probability that 
breaks the unforgeability of our AFHS scheme is negligible as
well. □

THEOREM 6.2. If -Pzk SNARK is an adaptive zk-SNARK system,
our construction above is weakly context hiding.

Proof. Consider the following two games:

Game 1. The real-world AFHS privacy challenge game.

•  generates Setup- P ()lcrs . 1zk SNARK and
Setup()  ()ldsk, dpk . 1 and invokes  on

input (())dpk, crs , dsk .

1906 Q. GUO et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

•  submits ( )m m f, ,0 1 for which ˆ = () =m f m0

()f m1 .
•  flips a coin ¬ { }b 0, 1 , computes s  .

Sign t()mdsk, ,b where t ¬ { }l0, 1 , and sets
Sign t ()t  fsk . dsk,f , . Then  calls p 

Prove- wP ()x. crs, ,zk SNARK where
ˆt= ()x f m, , , dpk and w s= ( )tm , , skb f , , and

returns ˆt p()m, , to .
•  outputs a bit ¢b and wins the game if ¢ =b b.

Denote the event that  successfully guesses the
bit b in this game by X0.

Game 2. This game is the same as Game 1, except that
the common reference string is generated as
() crs, td P ()l. 1crs , and the proof is generated as
p  Prove ˆ- tP (()) f m. crs, td, , , , dpkzk SNARK . We
use the notation X1 to represent the event that  suc-
cessfully guesses the bit b in this game.

As per the adaptive zero-knowledge property of -Pzk SNARK,
it holds that ∣ ∣ l[] - [] £ ()X XPr Pr negl0 1 . Furthermore, it is
clear that []XPr 1 is /1 2 since p is simulated by

Prove ˆ- tP (()) f m. crs, td, , , , dpkzk SNARK and is independent
of the bit b. Therefore, we conclude that ∣ [] -XPr 0

∣ l/ £ ()1 2 negl . □

6.3. Extension

In our scheme, the data owner seems to have to calculate a
new function key tskf , when she/he wants to authorize a new
function for the agency. Actually, the second construction
can be extended to support authorizing multiple functions at a
time. The extended version works almost as before expect
that -Pzk SNARK now is an adaptive zero-knowledge SNARK
system for the following new language:

Verify

Verify

ˆ

ˆ
 


 

 

 

t s s

t s

t s

= {({ ¼ }) $ ( )

" Î [] () = 

() () = 
() = }

t

t





L f f m m

i k m i

f m f m m

f f

, , , , , dpk : , ,

s.t. . dpk, , 1

. dpk, , 1 .

n f f

i i

n

n f f

1

1

1

n

n

1

1

7. INSTANTIATION DISCUSSION

Both of the two constructions of AFHS are generic. The first
construction combines a HS scheme and a function signature
scheme. There are known concrete constructions of HS, e.g. [4,
6–8, 9, 10], however, to the best of our knowledge, there is no
concrete and efficient construction of FS in the literature.

Regarding the second construction, which makes use of a
standard signature scheme and a zk-SNARK argument sys-
tem. There are plenty of efficient instantiations of standard
signature in the literature. However, the constructions of zk-
SNARK are complex. Usually, we need to transform the
statement to be proved to an arithmetic circuit satisfiability
problem instance, and then invoke the zk-SNARK system to
produce the proof. The process of proof generation is time
costly, but the verification could be very fast. To the best of
our knowledge, one of the most efficient construction of zk-
SNARK is due to Groth [22], in which a proof is only three
group elements and verification consists of checking a single
pairing product equations using three pairings in total. We
leave it as one of our future works to design concrete and effi-
cient constructions of our AFHS schemes.

8. CONCLUSION

In this paper, we introduced the notion of authorized function
HS, which enables the data owner to control the behavior of
the agency and reduces the possibility of dispute. To demon-
strate it, we proposed a generic construction of AFHS, which
is based on functional signature and traditional HS and satis-
fies weak unforgeability and weak privacy. We then provided
another construction of AFHS based on zk-SNARKs, which
strengthens the unforgeability. As another future work, we
plan to study how to enhance the privacy in AFHS and intro-
duce the delegatability into AFHS, e.g. allowing the agency
to delegate its computation privilege to another one.

FUNDING

This work was supported by the National Natural Science
Foundation of China [61472146, 61872152]; Guangdong
Natural Science Funds for Distinguished Young Scholar
[2014A030306021]; Guangdong Program for Special Support
of Top-notch Young Professionals [2015TQ01X796]; and
Pearl River Nova Program of Guangzhou [201610010037].

ACKNOWLEDGMENTS

We gratefully acknowledge the anonymous reviewers as well
as the editor of The Computer Journal for their invaluable
comments.

REFERENCES

[1] Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y. and
Vasilakos, A.V. (2014) Security and privacy for storage and
computation in cloud computing. Inf. Sci., 258, 371–386.

[2] Johnson, R., Molnar, D., Song, D. and Wagner, D. (2002)
Homomorphic signature schemes. Cryptographers Track at the

1907AUTHORIZED FUNCTION HOMOMORPHIC SIGNATURE

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

RSA Conf., San Jose, CA, USA, 18–22 February, pp. 244–262.
Springer, Berlin.

[3] Boyle, E., Goldwasser, S. and Ivan, I. (2014) Functional signa-
tures and pseudorandom functions. Int. Workshop on Public
Key Cryptography, Buenos Aires, Argentina, 26–28 March, pp.
501–519. Springer, Berlin.

[4] Schabhüser, L., Buchmann, J. and Struck, P. (2017) A linearly
homomorphic signature scheme from weaker assumptions.
IMA Int. Conf. Cryptography and Coding, Oxford, UK, 12–14
December, pp. 261–279. Springer, Berlin.

[5] Tsabary, R. (2017) An equivalence between attribute-based sig-
natures and homomorphic signatures, and new constructions
for both. Theory of Cryptography Conf., Baltimore, MD, USA,
12–15 November, pp. 489–518. Springer, Berlin.

[6] Attrapadung, N., Libert, B. and Peters, T. (2013) Efficient com-
pletely context-hiding quotable and linearly homomorphic sig-
natures. Public Key Cryptography, Nara, Japan, 26 February–1
March, pp. 386–404. Springer, Berlin.

[7] Freeman, D.M. (2012) Improved security for linearly homo-
morphic signatures: A generic framework. Public Key
Cryptography, Darmstadt, Germany, 21–23 May, pp. 697–714.
Springer, Berlin.

[8] Libert, B., Peters, T., Joye, M. and Yung, M. (2015) Linearly
homomorphic structure-preserving signatures and their applica-
tions. Designs Codes Cryptogr., 77, 441–477.

[9] Boneh, D. and Freeman, D.M. (2011) Homomorphic signatures
for polynomial functions. Annual Int. Conf. Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia,
15–19 May, pp. 149–168. Springer, Berlin.

[10] Catalano, D., Fiore, D. and Warinschi, B. (2014)
Homomorphic signatures with efficient verification for polyno-
mial functions. Int. Cryptology Conf., Santa Barbara, CA,
USA, 17–21 August, pp. 371–389. Springer, Berlin.

[11] Gorbunov, S., Vaikuntanathan, V. and Wichs, D. (2015)
Leveled fully homomorphic signatures from standard lattices.
Proc. Forty-Seventh Annual ACM Symposium on Theory of
Computing, Portland, OR, USA, 14–17 June, pp. 469–477.
ACM, New York, NY, USA.

[12] Lai, R.W., Tai, R.K., Wong, H.W. and Chow, S.S. (2016) A zoo
of homomorphic signatures: multi-key and key-homomorphism.
IACR Cryptology ePrint Archive, 2016, 834.

[13] Backes, M., Meiser, S. and Schröder, D. (2016) Delegatable
functional signatures. Public Key Cryptography, Taipei,
Taiwan, 6–9 March, pp. 357–386. Springer, Berlin.

[14] Benabbas, S., Gennaro, R. and Vahlis, Y. (2011) Verifiable
delegation of computation over large datasets. Annual
Cryptology Conf., Santa Barbara, CA, USA, 14–18 August, pp.
111–131. Springer, Berlin.

[15] Demirel, D., Schabhüser, L. and Buchmann, J.A. (2017)
Privately and Publicly Verifiable Computing Techniques-A
Survey. Springer, Berlin.

[16] Gennaro, R., Gentry, C. and Parno, B. (2010) Non-interactive
verifiable computing: Outsourcing computation to untrusted
workers. Annual Cryptology Conf., Santa Barbara, CA, USA,
15–19 August, pp. 465–482. Springer, Berlin.

[17] Parno, B., Raykova, M. and Vaikuntanathan, V. (2012) How to
delegate and verify in public: Verifiable computation from attribute-
based encryption. Theory of Cryptography Conf., Taormina, Sicily,
Italy, 19–21 March, pp. 422–439. Springer, Berlin.

[18] Li, M., Ruan, N., Qian, Q., Zhu, H., Liang, X. and Yu, L.
(2017) SPFM: scalable and privacy-preserving friend matching
in mobile cloud. IEEE Internet Things J., 4, 583–591.

[19] Attrapadung, N., Libert, B. and Peters, T. (2012) Computing
on authenticated data: New privacy definitions and construc-
tions. Int. Conf. Theory and Application of Cryptology and
Information Security, Beijing, China, 2–6 December, pp.
367–385. Springer, Berlin.

[20] Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J.,
Schröder, D. and Simkin, M. (2016) Efficient unlinkable sani-
tizable signatures from signatures with re-randomizable keys.
Public Key Cryptography, Taipei, Taiwan, 6–9 March, pp.
301–330. Springer, Berlin.

[21] Gennaro, R., Gentry, C., Parno, B. and Raykova, M. (2013)
Quadratic span programs and succinct NIZKs without PCPs. Annual
Int. Conf. Theory and Applications of Cryptographic Techniques,
Athens, Greece, 26–30 May, pp. 626–645. Springer, Berlin.

[22] Groth, J. (2016) On the size of pairing-based non-interactive
arguments. Advances in Cryptology—EUROCRYPT 2016—
35th Annual Int. Conf. Theory and Applications of
Cryptographic Techniques, Proc., Part II, Vienna, Austria,
May 8–12, Lecture Notes in Computer Science, 9666, pp.
305–326. Springer.

1908 Q. GUO et al.

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 12, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/12/1897/5158246 by U
niversity of W

ollongong user on 18 O
ctober 2022

	Authorized function homomorphic signature
	Citation

	Authorized Function Homomorphic Signature
	1. INTRODUCTION
	2. RELATED WORKS
	2.1. Homomorphic signature
	2.2. Functional signature
	2.3. Computation security and privacy

	3. PRELIMINARIES
	3.1. Notations
	3.2. Functional signature
	3.3. Homomorphic signature
	3.4. Zero-knowledge SNARK

	4. AUTHORIZED FUNCTION HS
	4.1. Formal definition
	4.2. Security models

	5. A GENERIC CONSTRUCTION
	5.1. The construction
	5.2. Security analysis

	6. ANOTHER CONSTRUCTION
	6.1. The new construction
	6.2. Security analysis
	6.3. Extension

	7. INSTANTIATION DISCUSSION
	8. CONCLUSION
	FUNDING
	Acknowledgments
	References

