
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2022

Real world projects, real faults: Evaluating spectrum based fault Real world projects, real faults: Evaluating spectrum based fault

localization techniques on Python projects localization techniques on Python projects

RATNADIRA WIDYASARI
Singapore Management University, ratnadiraw.2020@phdcs.smu.edu.sg

Gede Artha Azriadi PRANA
Singapore Management University, arthaprana.2016@phdis.smu.edu.sg

Stefanus AGUS HARYONO
Singapore Management University, stefanusah@smu.edu.sg

Shaowei WANG

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
RATNADIRA WIDYASARI; PRANA, Gede Artha Azriadi; AGUS HARYONO, Stefanus; WANG, Shaowei; and
LO, David. Real world projects, real faults: Evaluating spectrum based fault localization techniques on
Python projects. (2022). Empirical Software Engineering. 27, (6), 1-50.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7321

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

https://doi.org/10.1007/s10664-022-10189-4

Real world projects, real faults: evaluating spectrum
based fault localization techniques on Python projects

Ratnadira Widyasari1 ·Gede Artha Azriadi Prana1 · Stefanus Agus Haryono1 ·
Shaowei Wang2 ·David Lo1

Accepted: 26 May 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Spectrum Based Fault Localization (SBFL) is a statistical approach to identify faulty code
within a program given a program spectra (i.e., records of program elements executed by
passing and failing test cases). Several SBFL techniques have been proposed over the years,
but most evaluations of those techniques were done only on Java and C programs, and fre-
quently involve artificial faults. Considering the current popularity of Python, indicated by
the results of the Stack Overflow survey among developers in 2020, it becomes increas-
ingly important to understand how SBFL techniques perform on Python projects. However,
this remains an understudied topic. In this work, our objective is to analyze the effective-
ness of popular SBFL techniques in real-world Python projects. We also aim to compare
our observed performance on Python to previously-reported performance on Java. Using the
recently-built bug benchmark BugsInPy as our fault dataset, we apply five popular SBFL
techniques (Tarantula, Ochiai, OP, Barinel, and DStar) and analyze their performances. We
subsequently compare our results with results from Java and C projects reported in earlier
related works. We find that 1) the real faults in BugsInPy are harder to identify using SBFL
techniques compared to the real faults in Defects4J, indicated by the lower performance
of the evaluated SBFL techniques on BugsInPy; 2) older techniques such as Tarantula,
Barinel, and Ochiai consistently outperform newer techniques (i.e., OP and DStar) in a
variety of metrics and debugging scenarios; 3) claims in preceding studies done on arti-
ficial faults in C and Java (such as “OP outperforms Tarantula”) do not hold on Python
real faults; 4) lower-performing techniques can outperform higher-performing techniques in
some cases, emphasizing the potential benefit of combining SBFL techniques. Our results
yield insight into how popular SBFL techniques perform in real Python faults and emphasize
the importance of conducting SBFL evaluations on real faults.

Keywords Spectrum-based fault localization · Python · testing and debugging ·
empirical study

Communicated by: Martin Monperrus

� Ratnadira Widyasari
ratnadiraw.2020@smu.edu.sg

Extended author information available on the last page of the article.

Published online: 6 August 2022

Empirical Software Engineering (2022) 27: 147
Published in Empirical Software Engineering (2022) 27(6), 147
DOI: 10.1007/s10664-022-10189-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10189-4&domain=pdf
http://orcid.org/0000-0001-8190-5458
mailto: ratnadiraw.2020@smu.edu.sg

1 Introduction

Software debugging is an important but expensive part of software evolution (Planning
2002; Wright and Zia 2011). It becomes both more challenging and indispensable as mod-
ern software becomes increasingly complex and ubiquitous, with faults potentially incurring
large economic cost1 or even loss of human life (Wong et al. 2010). In the debugging pro-
cess, developers often spend significant time and effort to discover the parts of source code
responsible for a fault (Vessey 1985), i.e. fault localization. This has motivated the creation
of various automated techniques and tools to aid fault localization over the past few decades.
Automated fault localization techniques use a program’s passing and failing test cases to
narrow down the set of most suspicious locations in the program, which the developers can
then manually inspect. By enabling developers to focus their efforts on a small portion of
the program code, such techniques can save developers’ time and increase the efficiency of
the overall software development process (Xia et al. 2016). The automated fault localization
technique especially the spectrum-based fault localization also usually use by automated
program repair tools to identify the potential fault location. For example, Ochiai (Abreu
et al. 2006) SBFL technique have been used in several automated program repair tool such
as SimFix(Jiang et al. 2018), PraPR(Ghanbari et al. 2019), and CapGen(Wen et al. 2018).

Several types of approaches have been proposed for automated fault localization, such as
spectrum-based (Abreu et al. 2006; Jones et al. 2001; Koca et al. 2013; Renieres and Reiss
2003; Wong et al. 2013), model-based (Abreu and Van Gemund 2009; Baah et al. 2010;
Chaki et al. 2004; Könighofer and Bloem 2011), machine learning-based (Briand et al.
2007; Wong et al. 2011), and many others (Bouillon et al. 2007; Gouveia et al. 2013; Hao
et al. 2009). In this work, we focus on Spectrum-Based Fault Localization (SBFL), which
uses statistical formulas to measure the suspiciousness of program units based on the pro-
gram’s execution traces. Execution traces, also called program spectra, contain details on
failing and passing test cases, along with some information regarding parts of the program
executed by these test cases such as executed statements. The suspiciousness scores com-
puted from program spectra are then used to generate a ranked list of program elements that
are most likely to be responsible for the fault.

Spectrum-Based Fault Localization techniques have been gaining research attention in
the past decade (Wong et al. 2016), and a number of studies have also evaluated the effec-
tiveness of various techniques in this category (Lo et al. 2010; Renieres and Reiss 2003;
Xie et al. 2013; Le et al. 2013). However, the issue regarding many existing evaluations
stems from the common usage of artificial faults. Many existing studies use a dataset that
comprises entirely or mostly of artificial faults. In view of this, (Pearson et al. 2017a) con-
ducted a study that uses two sets of data related to 6 real-world projects (one set comprising
artificial faults and another comprising real faults) to evaluate claims made by a number
of earlier works. They found that a fault localization technique’s performance on artificial
faults is not a useful predictor of its performance on real faults.

Beyond common usage of artificial faults in existing studies, there is also a knowledge
gap stemming from the evolving landscape of software development. As of the time of
writing, evaluations on fault localization techniques’ effectiveness are typically done on
Java or C projects. However, other languages have gained popularity in recent years. As an
example, the StackOverflow 2020 survey2 ranks Python above Java and C in popularity, and

1http://www.abeacha.com/NIST press release bugs cost.htm
2https://insights.stackoverflow.com/survey/2020

147 Page 2 of 50 Empir Software Eng (2022) 27: 147

http://www.abeacha.com/NIST_press_release_bugs_cost.htm
https://insights.stackoverflow.com/survey/2020

Python is also used in a wide range of software including scientific computing libraries, web
applications, and software engineering tools. However, to the best of our knowledge, there
has been no study on the effectiveness of various fault localization techniques in Python
programs.

The inconsistency between SBFL evaluation results from studies done on artificial faults
versus that done on real-world Java faults, and the lack of evaluation of SBFL on currently
popular languages beyond Java and C, poses an issue that needs to be addressed to provide
researchers and practitioners alike with a more accurate view of the techniques’ effec-
tiveness. One way to address this is through replication studies, which can help increase
accuracy and confidence in the original experiment’s findings (Santos et al. 2020; Chen et al.
2019). Lindsay and Ehrenberg argue that in addition to validating the findings, replications
are also needed to identify the range under which the findings hold as well as the excep-
tions (Lindsay and Ehrenberg 1993). In particular, an independent replication which only
shares prior experiments’ research objectives but varies one or more major aspects (Shull
et al. 2008) will help in providing researchers and practitioners a more realistic assessment
of the findings since such replications can demonstrate if “an effect is robust to changes
with subjects, settings, and materials” (Kitchenham 2008).

In view of the above, we believe it is important to conduct an independent replication
of the evaluation of SBFL techniques’ effectiveness using real faults in real-world Python
projects. We perform an evaluation on 5 popular SBFL techniques (Tarantula, Ochiai, OP,
Barinel, and DStar) (Wong et al. 2016; Pearson et al. 2017a) on a recent Python benchmark
BugsInPy dataset by (Widyasari et al. 2020), containing 17 real-world Python projects that
comprise of 493 real faults. We aim to answer the following research questions:

– RQ-1: Does the effectiveness of SBFL techniques on Python projects (in BugsInPy)
differ from that on Java projects (in Defects4J)?

We compare the performance of five popular SBFL techniques (Pearson et al. 2017a;
Wong et al. 2016) on Defects4J (Just et al. 2014a) that were evaluated by (Pearson
et al. 2017a) with the results on BugsInPy (Widyasari et al. 2020). We use EXAM
score (Wong et al. 2008) and Top-k (Pearson et al. 2017a) to compare the performance
of the techniques, and find that faults in BugsInPy are harder to identify using SBFL
than faults in Defects4J, indicated by the lower performance result.

– RQ-2:How effective are popular SBFL techniques on real faults of Python projects
(in BugsInPy)?

To answer RQ-2, we run five popular SBFL techniques on BugsInPy dataset and
evaluate the techniques’ performance on several metrics including EXAM score (Wong
et al. 2008), FLT rank (Pearson et al. 2017a), and improvement (Horváth et al. 2020).
We subsequently conduct a statistical analysis on the result. For the EXAM score and
FLT ranking, we find Tarantula to be the best-performing technique, but with a statis-
tically insignificant difference from Barinel and Ochiai. We also find that the results
of Top-K and improvement metrics are inline with the results on metrics EXAM score
and FLT rank. Compared to the result of (Pearson et al. 2017a) where DStar, Ochiai,
Barinel, and Tarantula do not have significant differences, our results show that DStar
is significantly different with Ochiai, Barinel, and Tarantula.

– RQ-3: Are the findings of previous studies applicable to Python projects (in
BugsInPy)?

We examine the relative performance of different pairs of SBFL techniques and com-
pare our result with claims of the preceding studies (such as “OP outperforms Tarantula”
and “Barinel outperforms Ochiai”). We use 7 finding statements from previous studies

Page 3 of 50 147Empir Software Eng (2022) 27: 147

that are checked by (Pearson et al. 2017a). We want to know whether these statements
hold on Python real faults. Our findings are in line with findings of prior study by (Pear-
son et al. 2017a), where the performance differences between pairs of examined SBFL
techniques on real faults do not match the findings of preceding studies done using arti-
ficial faults (Le et al. 2013; Abreu et al. 2009b; Le et al. 2015b; Naish et al. 2011a;
Wong et al. 2016; Xuan and Monperrus 2014b; Moon et al. 2014; Ju et al. 2014).

In summary, our contributions are as follows:

1. We investigate the effectiveness of 5 popular SBFL techniques on real faults
in Python projects (in BugsInPy). Our results yield insight into these techniques’
effectiveness on real Python faults, which can aid both researchers and practitioners
considering Python’s popularity.

2. We examine the generalizability of findings of previous studies on Python real-
world fault dataset. Our analysis of the findings, many of which are based on
experiments on artificial faults, emphasizes the importance of conducting SBFL eval-
uations on real faults. Further, it can also motivate further research into the difference
between the characteristics of artificial faults and that of real faults, which will be useful
to aid the generation of better artificial faults.

3. We examine how different the performance of SBFL techniques on Python real
faults (in BugsInPy) compares to the Java real faults (in Defects4J). Our results
from this aspect of our work highlight the importance of more research into differences
between characteristics of common faults in popular languages.

4. We take into account real-world problems such as types of debugging scenarios
and types of faults in the evaluation. Debugging scenario types refer to situations
where there can be more than one statement associated with a fault (i.e. multi-statement
faults). We have three different debugging scenarios, which are worst-case, average-
case, and best-case scenarios. Our results demonstrate that while rankings of the
techniques are generally consistent across scenarios, even techniques with lower overall
performance can outperform “better” techniques in some cases, indicating the need for
additional research into the interaction between fault characteristics and performance
of different SBFL techniques.

The rest of this paper is organized as follows: Section 2 summarizes previous works
related to this study. Section 3 provides more details on the dataset we use as well as our
empirical study methodology. Section 4 reports the result of our analyses. Section 5 pro-
vides discussion as well as implications of our results for practitioners and researchers. In
Section 5 we also discusses the threats to our study’s validity. Finally, Section 6 concludes
this paper and presents future work.

2 RelatedWork

2.1 Spectrum-Based Fault Localization

Fault localization has been a hot research topic for several decades. Among the categories of
approaches, Spectrum-Based Fault Localization (SBFL) has been one of the most popular
and actively researched (Wong et al. 2016). Over the past decades, numerous variants of
SBFL techniques have been proposed (Debroy et al. 2010; Renieres and Reiss 2003; Jones
et al. 2001; Abreu et al. 2006; Naish et al. 2011b; Abreu et al. 2009b; Wong et al. 2013).

147 Page 4 of 50 Empir Software Eng (2022) 27: 147

There has also been attempts to combine SBFL with other approaches, such as by (Ju et al.
2014).

Beyond proposed techniques, multiple studies have been conducted to investigate and
compare the effectiveness of various SBFL techniques under different settings. For exam-
ple, (Jones and Harrold 2005) evaluated the performance of Tarantula by comparing it
against four other techniques. (Kim and Lee 2014) evaluated 32 SBFL techniques using
Siemens Test Suite and a fault localization tool they developed (SKKU-FL). Another exam-
ple is a study by (Le et al. 2013) that attempts to evaluate SBFL methods using a dataset
comprising real world 199 faulty versions of Java and C projects, including 164 versions
with artificial faults and 35 with real faults. A limitation of Le et al.’s work, as well as many
other evaluations of SBFL techniques, is their usage of datasets that comprise mostly or
entirely of artificial faults. This common limitation means evaluation of fault localization
techniques’ ability to find real faults is not sufficiently studied. In view of this, (Pearson
et al. 2017a) conducted an evaluation of a range of fault localization techniques, including
SBFL, using 310 real faults from Defects4J (Just et al. 2014b) in addition to 2,995 artificial
faults generated using Major mutation framework tool (Just 2014). By comparing 7 SBFL
technique pairs (e.g., Ochiai better than Tarantula, Barinel better than Ochiai, etc.) from
previous studies, they found that, unlike results of prior evaluations that were done using
artificial faults, the results from an evaluation using real faults differ.

Pearson et al. focus on real world projects written in Java and C. As the Python language
becomes increasingly popular, there is a need to evaluate the effectiveness of SBFL on real
faults of Python projects. To fill this gap, we select 5 popular SBFL techniques that have also
been examined by (Pearson et al. 2017a) on real faults in Java projects and investigate their
effectiveness on real faults in Python projects. We then examine whether the techniques’
effectiveness of SBFL on Python projects differs from that on C/Java projects (see details in
Section 3). Using the same Python dataset, we also investigate the validity of 7 comparisons
SBFL techniques that were investigated by (Pearson et al. 2017a) on Java.

2.2 Faults Benchmark

There have been a number of attempts to build faults benchmark datasets. One of the ear-
liest is the Siemens test suite (Hutchins et al. 1994), which contains 130 faulty versions
of 7 C programs generated by manually seeding them with bugs. Other efforts include
BugBench (Lu et al. 2005) that contains faults from 17 open-source C and C++ projects,
BegBunch (Cifuentes et al. 2009) that comprises “Accuracy” and “Scalability” suite of
faults obtained from several open-source C and C++ projects, ManyBugs (Le Goues et al.
2015) that contains 185 defects from 9 large open-source C projects, and Bugs.jar (Saha
et al. 2018) that contains 1,158 faults from 8 popular open-source Java projects. Currently,
one of the most popular faults benchmark is Defects4J (Just et al. 2014b); its initial ver-
sion contains 357 real faults from 5 real-world Java projects. There are some appealing
aspects of Defects4J that make it popular, such as 1) it is constructed from real-world
projects; 2) its faults are reproducible, and each is accompanied with a failing test case that
passes once the fault is fixed; 3) the faults are isolated, and the code changes that fix the
faults do not contain irrelevant changes; 4) it includes a set of scripts that help the devel-
oper to get each fault from a project. This dataset has been popularly used for controlled
testing and debugging studies (Sobreira et al. 2018; Pearson et al. 2017a). There has also
been Bugswarm by (Tomassi et al. 2019) that contains pairs of failing and passing builds
of Java and Python projects encapsulated in Docker images. However, an evaluation by

Page 5 of 50 147Empir Software Eng (2022) 27: 147

(Durieux and Abreu 2019) concluded that only a small percentage of its content is suit-
able for evaluating automated program repair and fault localization techniques due to issues
such as the fault not being isolated. They also cited the need to download Docker con-
tainers for individual faults as another downside since it incurs high execution and storage
cost on consumer-grade hardware. More recently, there is a faults benchmark on Python
called BugsInPy (Widyasari et al. 2020), which is inspired by Defects4J. BugsInPy dataset
is curated by hand to ensure that the faults are reproducible and isolated. BugsInPy com-
prises 493 faults from 17 real-world GitHub projects that have at least 10,000 stars, and like
Defects4J, require relatively low overhead to retrieve each fault. Therefore, for this work,
we choose BugsInPy to evaluate the SBFL techniques.

3 Dataset andMethodology

3.1 Fault Dataset

For this study, we use the BugsInPy dataset from (Widyasari et al. 2020). BugsInPy is a
dataset comprising 493 real faults from 17 real-world Python projects, with each faulty
program version comes together with the fixed version. Compared to Defects4J which has
been used as the baseline dataset in many studies, BugsInPy is collected from a higher
number of projects (i.e., 17 projects in BugsInPy compared to 6 projects in Defects4J).
Moreover, the projects that are used in BugsInPy are popular GitHub projects with a high
number of stars (i.e., more than 10,000 stars). Note that a project with a high number of starts
usually corresponds to a high quality project (Ren et al. 2020). The projects in BugsInPy also
span multiple domains including web framework, developer tool, and machine learning tool,
which we believe will improve the generalizability of our results. As BugsInPy contains
real faults, the erroneous portion of the program code may span multiple statements. Table 1
shows the statistics of the dataset.

3.2 Experiments Design

3.2.1 Research Questions

In this study, we seek to answer the following research questions:

– RQ-1: Does the effectiveness of SBFL techniques on Python projects (in BugsInPy)
differ from that on Java projects (in Defects4J)?

Previous study by (Pearson et al. 2017a) has evaluated several popular SBFL tech-
niques on a dataset of Java projects. We want to investigate whether the performance
of SBFL techniques on Python projects aligns with their findings on Java. This is nec-
essary since no previous study has evaluated SBFL techniques on Python fault dataset
even though Python is currently one of the most popular languages3. Identifying the
potential differences in SBFL techniques’ performance on BugsInPy versus Defects4J
can shed more light into this unexplored research problem.

– RQ-2: How effective are popular SBFL techniques on real faults of Python
projects (in BugsInPy)?

3https://insights.stackoverflow.com/survey/2020##technology-most-loved-dreaded-and-wanted-languages-
wanted

147 Page 6 of 50 Empir Software Eng (2022) 27: 147

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

Table 1 Projects and number of real faults available in a version of BugsInPy as of 19 June 2021

Project Faults LoC Test LoC # Tests # Stars

ansible/ansible 18 207.3K 128.8K 20,434 43.6K

cookiecutter/cookiecutter 4 4.7K 3.4K 300 12.2K

cool-RR/PySnooper 3 4.3K 3.6K 73 13.5K

explosion/spaCy 10 102K 13K 1,732 16.6K

huge-success/sanic 5 14.1K 8.1K 643 13.9K

jakubroztocil/httpie 5 5.6K 2.2K 309 47K

keras-team/keras 45 48.2K 17.9K 841 48.6K

matplotlib/matplotlib 30 213.2K 23.2K 7,498 11.6K

nvbn/thefuck 32 11.4K 6.9K 1,741 53.9K

pandas-dev/pandas 169 292.2K 196.7K 70,333 25.4K

psf/black 15 96K 5.8K 142 16.4K

scrapy/scrapy 40 30.7K 18.6K 2,381 37.4K

spotify/luigi 33 41.5K 20.7K 1,718 13.4K

tiangolo/fastapi 16 25.3K 16.7K 842 15.3K

tornadoweb/tornado 16 27.7K 12.9K 1,160 19.2K

tqdm/tqdm 9 4.8K 2.3K 88 14.9K

ytdl-org/youtube-dl 43 124.5K 5.2K 2,367 67.3K

Total 493 1253.5K 486K 112,602 470.2K

Currently, the effectiveness of SBFL techniques in Python is still unknown as there
has been no attempt to evaluate the performance of SBFL techniques in Python. We
analyze how popular SBFL techniques perform in the BugsInPy dataset, and whether
there is a “best” technique for use on real Python faults. Answering this question will
help researchers and practitioners to characterize SBFL techniques’ effectiveness in
Python and identify potential areas of improvement.

– RQ-3: Are the findings of previous studies applicable to Python projects (in
BugsInPy)?

The 7 finding statements from prior works that were checked by (Pearson et al.
2017a) (for example, “OP outperforms Tarantula” and “Barinel outperforms Ochiai”)
are mostly made through experiments that use artificial faults to evaluate the SBFL
techniques’ performance. These finding statements are also made using Java or C
projects. In this RQ-3, we use Python’s real faults to evaluate these statements. Validat-
ing these statements is important as the previous study by (Pearson et al. 2017a) found
that the results of artificial faults on Java do not portray the results of the real faults.
Whether the same applies to Python projects is still unknown. As the Python language
becomes more and more popular, there is an increasing need to investigate the validity
of these statements on Python projects.

3.2.2 SBFL techniques

SBFL techniques exploit a program’s test case results as well as their corresponding code
coverage information to identify program units (e.g., statements, functions, etc.) that are
most likely to be responsible for a failure. Many variants of SBFL techniques have been

Page 7 of 50 147Empir Software Eng (2022) 27: 147

Fixed
version

Buggy
version

BugsinPy Dataset

Running
test cases

Test
Results

SBFL
techniques

Evaluating
SBFL

techniques

Ranked
Statements

Evaluation Metrics
EXAM Score (Wong, 2008) [RQ-1;2]
Top-k Rank. (Le et al., 2015a) [RQ-1;2]
Wasted Effort (Zhang et al., 2017) [RQ-1]
Tournament Rank. (Pearson, 2016) [RQ-2]
FLT Rank. (Pearson, 2016) [RQ-2]
Improvement (Horvath, 2020) [RQ-2]

Fig. 1 Workflow of RQ-1 and RQ-2

proposed, and 5 of the most well-studied techniques (Wong et al. 2016) are Tarantula (Jones
et al. 2001), Ochiai (Abreu et al. 2006), OP (Naish et al. 2011b), BARINEL (Abreu et al.
2009b), and DStar (Wong et al. 2013). In this study, we investigate whether the findings
found by (Pearson et al. 2017a) for Java can be replicated for other programming languages.
For this purpose, we choose to evaluate these 5 SBFL techniques as well on Python projects
(BugsInPy). These techniques are popular and also used in the previous study by (Pearson
et al. 2017a) to evaluate SBFL on real faults of Java projects.

The formulas for the techniques are explained below, using the following notations: nf

denotes the number of total failing test cases, nf (s) denotes the number of failing test
cases that execute statement s, np denotes the number of total passing test cases, and np(s)

denotes the number of passing test cases that execute statement s.

T arantula(s) =
nf (s)

nf

nf (s)

nf
+ np(s)

np

Ochiai(s) = nf (s)
√

nf .(np(s) + nf (s))

OP (s) = nf (s) − np(s)

np + 1

BARINEL(s) = 1 − np(s)

np(s) + nf (s)

DStar(s) = nf (s)2

np(s) + (nf − nf (s))

3.2.3 Methodology

RQ-1. The overview of our methodology to answer RQ-1 is shown in Figure 1. We first
obtain the statement coverage from the buggy version in the BugsInPy dataset using cov-
erage.py4, which is one of the most popular third-party coverage tools according to the
official Python Developer’s Guide5. From the coverage and test results, we obtain informa-
tion required to apply SBFL, such as numbers of failing and passing test cases that execute
a given statement, and obtain suspiciousness score for the statement.

In the scenario when some statements share the same suspiciousness score, we assign
the average rank (Steimann et al. 2013; Pearson et al. 2017a) to these statements which are

4https://coverage.readthedocs.io/en/coverage-5.1/
5https://devguide.python.org/coverage/

147 Page 8 of 50 Empir Software Eng (2022) 27: 147

https://coverage.readthedocs.io/en/coverage-5.1/
https://devguide.python.org/coverage/

calculated by
(

n
2

)+ (k − 1) where n is the number of statements that have same suspicious-
ness score and k is the best rank of the statement (e.g., if the statement a, b, and c have the

suspiciousness score 1, statements a, b, c will have rank
(
3
2

)
+ (1− 1) = 1.5). Since in our

dataset it is possible to have a multi-statement fault, we evaluate the fault localization tech-
niques using three debugging scenarios following the settings considered by (Pearson et al.
2017a):

– Best-case: Find any one of the faulty statements.
– Worst-case: Find all faulty statements.
– Average-case: Find 50% (half) of the faulty statements. In case of where the number

of faulty statements is odd, we round it down, i.e. if the number of faulty statements is
7, this scenario requires 3 of them to be found.

We ran all test cases for every project in the dataset, with the exception of pandas. This
is because pandas has a clear division of unit tests by component, which means localization
can be performed by running a set of tests related to a specific component, instead of running
the entire pandas test suite. For example, if failure occurs in a test for component io, we run
tests only for component io.

Metrics that we used to get performance of SBFL techniques for this RQ-1 are mean
EXAM score (Wong et al. 2008), Top-k (Le et al. 2015a), and wasted effort (Xuan and
Monperrus 2014b). These metrics are used in all three debugging scenarios we consider,
i.e., best-case, worst-case, and average-case. EXAM score (Wong et al. 2008) is one of the
most popular metrics used to evaluate the effectiveness of fault localization techniques. The
EXAM score shows the percentage of executable statements that need to be inspected until
it reaches the first faulty statement. The formula of EXAM score is defined as follows:

EXAMScore = Rankof thef aultystatement

T otalnumberof statement

EXAM score ranges from 0 to 1 (inclusive), with smaller score indicating the better perfor-
mance of a SBFL technique. As an illustration of the EXAM score computation, consider
the following suspiciousness score from five code statements (s1, s2, s3, s4, and s5), which
are 0.6, 0.7, 1.0, 0.5, and 0.8. Assume that s2 is the faulty statement, the EXAM score will
be 2

5 = 40%, since the developer needs to inspect three statements (40% of the code base)
to reach the faulty one.

As the EXAM score relies on the number of total statements in the program under study,
a good EXAM score can still be achieved even if the faulty statement is not listed among the
top results for cases where the total number statements are high. To mitigate this limitation
of the EXAM score metric, we also use the top-k metric to compare the result from the SBFL
techniques in Defects4J with the result of the best SBFL techniques in BugsInPy. This met-
ric choice is also motivated by findings of (Parnin and Orso 2011) where the absolute rank is
more important than the percentage ranking. Top-k measures how often the faulty statement
is included in the highest-ranking k results, and for this part of the analysis, we use k values
of 5, 10, and 200. We choose to include k=5 and k=10, since a survey with 386 practitioners
done by (Kochhar et al. 2016) found that 73.58% and 98% of the practitioners only consider
a fault localization instance to be successful if the faulty statement appears in the top 5 and
10 positions respectively. This is also supported by findings of (Parnin and Orso 2011) that
highlight most programmers will move to traditional debugging when the faulty statements

Page 9 of 50 147Empir Software Eng (2022) 27: 147

are not found in the first few statements. We also utilized k=200 following the previous
studies (Pearson et al. 2017b; Just et al. 2018) that also reported it for completeness-sake.
Another study (Long and Rinard 2016) also found that automatic program repair methods
work best when the program only includes the top-200 suspicious statements.

We also use wasted effort (Zhang et al. 2017) as one of the metrics. The wasted effort
represents the number of statements that need to be checked before getting to the faulty
statement. The smaller number of wasted effort indicates a better performance of an SBFL
technique. We use wasted effort as it indicates how much effort that has been wasted as
a consequence of the inaccurate fault localization (He et al. 2020). Several previous stud-
ies (Xuan and Monperrus 2014a; He et al. 2020; Zhang et al. 2017) also used wasted effort
as their evaluation metrics.

After we obtain the results for both Defects4J and BugsInPy, we compare their perfor-
mance using Wilcoxon rank-sum test (Wilcoxon 1992) to identify statistically significant
differences following previous work by (Le et al. 2015a). We use this statistical test for Top-
k, wasted effort, and EXAM score metrics for each considered SBFL technique. Following
the work by (Le et al. 2015a), we also compute the effect size using Cliff’s d effect size (Cliff
1993), with the following interpretation: negligible if d<0.147; small if d>=0.147, medium
if d>=0.33, and large if d>=0.474 (Romano et al. 2006).

RQ-2. In RQ-2, we measure the effectiveness of popular SBFL techniques on real faults
in Python projects. While on RQ-1 we focus on the comparison between datasets, our focus
in RQ-2 is the comparison between SBFL techniques. Following the work of (Pearson et al.
2017a), which uses code changes in the fixed program version and suspiciousness ranking
of the different statements in the buggy version, we use the following metrics to rank the
SBFL techniques:

1. Mean EXAM Score
2. Mean FLT (Fault Localization Technique) Ranking (Pearson et al. 2017a): As we

are examining 5 SBFL techniques, for every fault we rank the SBFL techniques from
1 to 5 where 1 indicates the best technique while 5 indicates the worst technique. The
FLT rank value is based on the rank of fault for each technique. As an example, if fault
X is ranked as number 1 in Tarantula, number 30 in Ochiai, number 2 in OP, number
20 in DStar, and number 5 in Barinel, then, for fault X, the FLT rank for Tarantula, OP,
Barinel, DStar, and Ochiai is 1, 2, 3, 4, and 5 respectively. Afterward, we calculate the
average rank for each technique.

3. Tournament Ranking (Pearson et al. 2017a): This ranking is computed by comparing
pairs of SBFL techniques to determine whether one of the SBFL techniques gives a
better result than the other. This is run for both EXAM score and FLT ranking, using the
following approach: For each pair of SBFL techniques whose difference is statistically
significant, as examined using Wilcoxon rank-sum test (Wilcoxon 1992), we assign 1
point to the winner. We subsequently rank the techniques based on the number of points.

Beyond this, we further analyze the result of SBFL techniques using two additional met-
rics: top-k and improvement. For the top-k metric, we use the same k values as in RQ-1, i.e.
5, 10, and 200. The improvement metric is designed based on the study by (Horváth et al.
2020). We consider 6 cases of improvement:

– [201,∞]→ [11,200]: SBFL technique A ranks a faulty statement at a position larger than
200 and SBFL technique B ranks a faulty statement in a position between 11 to 200.

147 Page 10 of 50 Empir Software Eng (2022) 27: 147

– [201,∞]→ [6,10]: SBFL technique A ranks a faulty statement at a position larger than
200 and SBFL technique B ranks a faulty statement in a position between 6 to 10.

– [201,∞]→ [1,5]: SBFL technique A ranks a faulty statement at a position larger than
200 and SBFL technique B ranks a faulty statement in top-5.

– [11,200]→ [6,10]: SBFL technique A ranks a faulty statement at a position between 11
to 200 and SBFL technique B ranks the faulty statement in a position between 6 to 10.

– [11,200]→ [1,5]: SBFL technique A ranks a faulty statement at a position between 11
to 200 and SBFL technique B ranks a faulty statement in top-5.

– [6,10]→ [1,5]: SBFL technique A ranks a faulty statement at a position between 6 to
10 and SBFL technique B ranks a faulty statement in top-5.

For this improvement metric, we only consider the faulty statement in the last position. For
example, if in the average-case scenario there are 2 faulty statements in positions 5 and 20 of
the result, we use the fault in position 20 to compute the improvement metric. From these 6
cases of improvement, we formulate a new metric we call “total improvement count”, which
is the total count of the 6 cases above. We present our results using this total improvement
count. For a detailed breakdown of improvements based on the 6 cases, please refer to the
Appendix. All metrics we use in RQ-2 are measured in the same three debugging scenarios
we use in RQ-1, i.e., best-case, worst-case, and average-case.

Following previous work by (Le et al. 2015a), we use Wilcoxon rank-sum test (Wilcoxon
1992) to identify statistically significant differences between each pair of SBFL techniques.
We apply this test to both the EXAM score and FLT ranking. This test is chosen as the
data is not normally distributed, with d’Agostino-Pearson normality test (D’Agostino 1971;
D’Agostino and Pearson 1973) rejecting the hypothesis of normality with a p-value less
than 0.05. As the Wilcoxon rank-sum test is also able to handle the ranking data, which is
ordinal (i.e. categorical data with set order), we also use it for the top-k and improvement
metrics.

RQ-3. There have been many studies that evaluated and compared SBFL techniques.
Summary of the previous studies on SBFL techniques is shown in Table 2. We choose the
same set of previous studies whose claims were examined by (Pearson et al. 2017a). These
claims that were examined are claims regarding the effectiveness of five different SBFL
techniques. We summarize claims regarding the effectiveness between the pair of SBFL
techniques that were evaluated by the set of studies. As an example, from the studies of arti-
ficial and real faults by (Naish et al. 2011b), artificial and real faults by (Moon et al. 2014),
and artificial faults by (Pearson et al. 2017a), we retrieve the evaluations between OP and
Ochiai technique pair, where all three studies highlight that OP performs better than Ochiai.
Using real Python faults from BugsInPy, we subsequently examine the relative performance
of each pair of SBFL techniques in best-case, worst-case, and average-case debugging sce-
narios. In other words, we compare the performance of 1) Ochiai versus Tarantula, 2)
Barinel versus Ochiai, 3) Barinel versus Tarantula, 4) OP versus Ochiai, 5) OP versus Taran-
tula, 6) DStar versus Ochiai, and 7) DStar versus Tarantula. Then, we determine whether
the distribution of EXAM scores between the two techniques is statistically significant. We
use Wilcoxon rank-sum test (Wilcoxon 1992) with a significance threshold of 0.05 for sta-
tistical comparison and Cliff’s d to compute effect size (Cliff 1993) following Le et al.’s
study (2015a) since the results of normal distribution test show that the data comes from a
non-normal distribution. Afterward, we compare the results on the real Python faults against
claims made by the previous studies.

Page 11 of 50 147Empir Software Eng (2022) 27: 147

Ta
bl
e
2

Su
m
m
ar
y
of

th
e
pr
ev
io
us

st
ud
ie
s
on

SB
FL

te
ch
ni
qu
es

R
ef
er
en
ce

L
an
g.

SB
FL

R
an
k

Pr
oj
ec
ts

A
rt
if
.

R
ea
l

(f
ro
m

be
st
to

w
or
st
)

Fa
ul
ts

Fa
ul
ts

Jo
ne
s
20
05

C
Ta
ra
nt
ul
a

Si
em

en
s

12
2

-

(A
br
eu

et
al
.2
00
7)

C
O
ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s

12
0

-

(A
br
eu

et
al
.2
00
9a
)

C
O
ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s,
sp
ac
e

12
8

34

(A
br
eu

et
al
.2
00
9b
)

C
B
ar
in
el
,O

ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s,
sp
ac
e,
gz
ip
,s
ed

14
1

38

(A
li
et
al
.2
00
9)

C
Ta
ra
nt
ul
a

C
on
co
rd
an
ce

20
0

13

(N
ai
sh

et
al
.2
01
1b
)

C
O
P
,O

ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s,
sp
ac
e

13
2

32

(L
e
et
al
.2

01
3)

C
O
ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s,
sp
ac
e,
N
an
oX

M
L
,X

M
L
-S
ec
ur
ity

16
4

35

(W
on
g
et
al
.2
01
3)

C
D
St
ar
,O

ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s,
sp
ac
e,
an
t,
fl
ex
,g
re
p,

gz
ip
,m

ak
e,
se
d,
U
ni
x

43
6

34

(M
oo
n
et
al
.2
01
4)

C
O
P
,O

ch
ia
i

sp
ac
e,
fl
ex
,g

re
p,

gz
ip
,s
ed

11
3

X
ua
n
(2
01
4b
)

Ja
va

O
ch
ia
i,
Ta
ra
nt
ul
a

JE
xe
l,
JP
ar
se
c,

Ja
xe
n,

C
om

m
on
s
C
od
ec
,
C
om

m
on
s

L
an
g,

Jo
da
-T
im

e
18
00

-

(J
u
et
al
.2

01
4)

C
,J
av
a

D
St
ar
,T

ar
an
tu
la

pr
in
tto

ke
ns
,
pr
in
tto

ke
ns
2,

sc
he
du
le
,
sc
he
du
le
2,

to
t-

in
fo
,J
tc
as
,S

or
tin

g,
N
an
oX

M
L
,X

M
L
-S
ec
ur
ity

10
4

-

(L
e
et
al
.2

01
5b
)

C
D
St
ar
,O

ch
ia
i,
Ta
ra
nt
ul
a

Si
em

en
s,
sp
ac
e,
N
an
oX

M
L
,X

M
L
-S
ec
ur
ity

16
5

35

(P
ea
rs
on

et
al
.2

01
7a
)

Ja
va

O
P
,D

St
ar
,O

ch
ia
i,
B
ar
in
el
,T

ar
an
tu
la

JF
re
eC

ha
rt
,
C
lo
su
re
,
C
om

m
on
s

L
an
g,

C
om

m
on
s

M
at
h,
Jo
da
-T
im

e
32
42

{D
St
ar

≈O
ch
ia
i≈

B
ar
in
el

≈T
ar
an
tu
la

},O
P

32
3

147 Page 12 of 50 Empir Software Eng (2022) 27: 147

4 Results

4.1 RQ-1

Top-k: To answer RQ-1, we compare the performance of the SBFL techniques on
Defects4J (Just et al. 2014a) with their performance on BugsInPy (Widyasari et al. 2020).
The top-k results for all the scenarios (i.e., best-case, average-case, worst-case scenarios)
are shown in Table 3. For all the debugging scenarios, results on BugsInPy are lower for
the same SBFL techniques (i.e., there is a smaller percentage of faults included in top-k).
The percentage difference in top-k metric between BugsInPy and Defects4J results ranges
from 11% to 44%, with all SBFL techniques localizing more faults in Defects4J within best-
case, average-case, worst-case scenarios. Even though BugsInPy has a higher number of
faults (493) than Defects4J (395), the absolute number of BugsInPy faults in Top-k is lower
than Defects4J. We subsequently investigate whether this difference is statistically signif-
icant using the Wilcoxon rank-sum test. To use the Wilcoxon rank-sum in this setting, we
compare the distribution of absolute ranks from faults in BugsInPy and Defects4J. The null
hypothesis that we use for the statistical test is H0 :the results come from the same distribu-
tion. We use a 5% significance level which means if the p-value is lower than 0.05, we can
reject the null hypothesis and conclude that there is a statistically significant difference. We
find that the result is statistically significant as shown in Table 3, indicating that the faults
in BugsInPy are harder to localize using SBFL techniques than those in Defects4J.

Wasted effort: The wasted effort results from BugsInPy and Defects4J are shown in
Table 4. The results show that for all the debugging scenarios (i.e., best-case, average-case,
and worst-case), Defects4J has a lower value of wasted effort compared to BugsInPy. This
indicates that the efforts that are wasted when localizing the fault using the recommendation
from SBFL techniques are higher in BugsInPy. The differences between the BugsInPy and
Defects4J results are statistically significant with medium to large effect size. These results
indicate that the faults in BugsInPy are harder to localize using SBFL techniques compared
to Defects4J, which is inline with the Top-k results.

EXAM: Table 5 shows the comparison of EXAM scores between Pearson et al.’s result
that used Defects4J real faults and our results from BugsInPy for different types of sce-
narios. Our EXAM scores result shows an improvement compared to several previous
studies (Le et al. 2013; Le et al. 2015a) that use artificial faults. However, compared to Pear-
son et al.’s result on Defects4J, the EXAM scores of the BugsInPy dataset on the best-case
scenario are higher, By using Wilcoxon rank-sum statistical test, the result of the best-
case scenario shows that the difference between EXAM scores of the evaluated techniques
(Tarantula, Barinel, Ochiai, DStar, and OP) are statistically significantly different compared
to the results in the previous study. Moreover, the effect sizes are small for all the techniques,
except for Tarantula and Barinel which have negligible effect sizes. For the average-case,
the difference between the performance results of Tarantula, Barinel, and Ochiai is not sta-
tistically significant with negligible effect size. Meanwhile, for the OP and DStar, both
techniques have statistically significantly better performance in BugsInPy, compared to the
Defects4J where the effect sizes are negligible and small, respectively. For the worst-case
debugging scenario, all the techniques performance on BugsInPy are statistically signifi-
cantly higher than Defects4J with negligible effect size except for DStar which has a small
effect size. This shows that the scenarios affect the performance of the techniques with
respect to the percentage of statements that need to be checked (i.e., the number of checked
statements divided by the total number of statements).

Page 13 of 50 147Empir Software Eng (2022) 27: 147

Ta
bl
e
3

To
p-
k
of

B
ug
sI
nP

y
an
d
D
ef
ec
ts
4J
,w

he
re

hi
gh
er

pe
rc
en
ta
ge

of
fa
ul
tt
ha
ti
nc
lu
de

in
to
p-
k
in
di
ca
te
be
tte
r
pe
rf
or
m
an
ce

Te
ch
ni
qu
e

To
p-
5

To
p-
10

To
p-
20
0

p-
va
lu
e

d

B
ug
sI
nP

y
D
ef
ec
ts
4J

B
ug
sI
nP

y
D
ef
ec
ts
4J

B
ug
sI
nP

y
D
ef
ec
ts
4J

B
es
t-
ca
se

D
eb
ug
gi
ng

Sc
en
ar
io

Ta
ra
nt
ul
a

12
.9
8%

31
.1
4%

19
.8
7%

42
.0
3%

55
.7
8%

80
.5
1%

6.
1E

−
21
*

0.
36

(M
)

B
ar
in
el

12
.5
7%

31
.1
4%

19
.8
7%

42
.0
3%

55
.7
8%

80
.5
1%

3.
4E

−
21
*

0.
37

(M
)

O
ch
ia
i

14
.1
9%

32
.4
1%

19
.8
7%

42
.5
3%

50
.3
0%

81
.7
7%

8.
6E

−
26
*

0.
41

(M
)

D
St
ar

9.
53
%

32
.1
5%

14
.1
9%

42
.0
3%

38
.7
4%

82
.5
3%

1.
4E

−
43
*

0.
54

(L
)

O
P

6.
89
%

30
.1
3%

11
.9
6%

39
.7
5%

38
.9
4%

80
.5
1%

2.
6E

−
42
*

0.
53

(L
)

A
ve
ra
ge
-c
as
e
D
eb
ug
gi
ng

Sc
en
ar
io

Ta
ra
nt
ul
a

5.
68
%

16
.9
6%

9.
74
%

25
.3
2%

33
.2
7%

67
.3
4%

1.
5E

−
30
*

0.
44

(M
)

B
ar
in
el

5.
27
%

16
.9
6%

9.
74
%

25
.3
2%

33
.2
7%

67
.0
9%

8.
8E

−
31
*

0.
45

(M
)

O
ch
ia
i

6.
29
%

18
.2
3%

9.
33
%

25
.8
2%

30
.0
2%

69
.1
1%

4.
1E

−
35
*

0.
48

(L
)

D
St
ar

4.
46
%

18
.2
3%

7.
51
%

26
.0
8%

23
.9
4%

69
.3
7%

1.
5E

−
46
*

0.
56

(L
)

O
P

3.
45
%

17
.9
7%

5.
88
%

26
.0
8%

24
.1
4%

66
.3
3%

2.
5E

−
43
*

0.
53

(L
)

W
or
st
-c
as
e
D
eb
ug
gi
ng

Sc
en
ar
io

Ta
ra
nt
ul
a

4.
87
%

15
.7
0%

7.
51
%

23
.0
4%

24
.7
5%

54
.9
4%

2.
2E

−
27
*

0.
42

(M
)

B
ar
in
el

4.
46
%

15
.7
0%

7.
51
%

23
.0
4%

24
.7
5%

54
.9
4%

1.
6E

−
27
*

0.
42

(M
)

O
ch
ia
i

5.
27
%

16
.7
1%

7.
10
%

23
.0
4%

22
.7
2%

56
.2
0%

7.
0E

−
30
*

0.
44

(M
)

D
St
ar

3.
85
%

16
.7
1%

5.
68
%

23
.2
9%

17
.8
5%

56
.7
1%

6.
8E

−
37
*

0.
49

(L
)

O
P

3.
04
%

16
.2
0%

4.
87
%

22
.5
3%

18
.0
5%

54
.1
8%

3.
3E

−
34
*

0.
48

(L
)

R
es
ul
ti
n
bo

ld
in
di
ca
te
s
da
ta
se
tt
ha
th

as
hi
gh
er

pe
rc
en
ta
ge

of
fa
ul
ts
th
at
ar
e
lo
ca
liz
ed

in
to
p-
k
us
in
g
th
e
pa
rt
ic
ul
ar

SB
FL

te
ch
ni
qu
e

“*
”
in
di
ca
te
s
th
e
di
ff
er
en
tb

et
w
ee
n
th
e
ab
so
lu
te
ra
nk

is
st
at
is
tic
al
ly

si
gn
if
ic
an
ta
t5

%
le
ve
l

C
lif
f’
s
d
in
di
ca
te
s
ef
fe
ct
si
ze
:l
ar
ge

(L
),
m
ed
iu
m

(M
),
sm

al
l(
S)
,n

eg
lig

ib
le
(N

)

147 Page 14 of 50 Empir Software Eng (2022) 27: 147

Table 4 Wasted effort of BugsInPy and Defects4J, where the smaller wasted effort indicate better
performance

Technique BugsInPy Defects4J p-value d

Best-case Debugging Scenario

Tarantula 2158.47 429.03 1.77E − 20* 0.36 (M)

Barinel 2158.47 429.05 9.75E − 21* 0.36 (M)

Ochiai 2274.7 418.9 2.64E − 25* 0.40 (M)

Dstar 2503.51 417.31 5.03E − 43* 0.53 (L)

OP 2445.99 481.02 9.14E − 42* 0.53 (L)

Average-case Debugging Scenario

Tarantula 5123.17 1038.62 7.47E − 29* 0.44 (M)

Barinel 5122.98 1037.62 4.49E − 29* 0.44 (M)

Ochiai 5184.69 1023.32 2.35E − 33* 0.47 (M)

Dstar 5303.46 1023.79 1.12E − 44* 0.55 (L)

OP 5247.37 1156.53 1.10E − 41* 0.52 (L)

Worst-case Debugging Scenario

Tarantula 7321.33 2386.64 7.15E − 26* 0.41 (M)

Barinel 7321.17 2386.64 1.57E − 27* 0.42 (M)

Ochiai 7355.53 2377.35 3.47E − 28* 0.43 (M)

Dstar 7433.58 2376.85 4.09E − 35* 0.48 (L)

OP 7454.21 2538.31 2.78E − 32* 0.46 (M)

“*” indicates the different between the wasted effort is statistically significant (at significance level of 5%).

Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N).

The worst-case EXAM score in BugsInPy shows higher performance compared to
Defects4J, which suggests that BugsInPy has a lower percentage of statements that need
to be checked. However, we note that the average of the total statements in the Defects4J
is 14,322, while the average in BugsInPy is 34,098. As BugsInPy has a much higher num-
ber of statements, the overall number of statements that need to be checked in BugsInPy is
higher compared to Defects4J, which indicates that the SBFL techniques perform worse on
BugsInPy. We also compare the number of failed statements and failed test cases between
BugsInPy and Defects4J. The number of statements that need to be fixed in BugsInPy aver-
ages 13.96 statements with a median of 2. Meanwhile, the number of fault statements in
Defects4J has an average value of 3.56 with a median of 2. The average number of failed
test cases that exist in Defects4J is 2.21 test cases with a median of 1. Comparatively, the
number of failed statements of failed test cases in BugsInPy is much higher, with an average
of 39 and a median of 4.

The lower result in BugsInPy may be affected by the trait of SBFL which oversimplifies
the coverage information into the number of covering tests for each of the statements (Xie
et al. 2016). As mentioned previously, the number of failed statements, total statements,
and failed test cases are higher in BugsInPy compared to Defects4J. The oversimplifica-
tion of coverage information may have bigger effects on more complex faults. In addition,
SBFL techniques only consider coverage as the sole input, which means it cannot distin-
guish between program spectra with similar coverage (Xie et al. 2016). We observe that this

Page 15 of 50 147Empir Software Eng (2022) 27: 147

Table 5 EXAM scores of BugsInPy and Defects4J, where the smaller EXAM score indicate better
performance

Technique BugsInPy Defects4J p-value d

Best-case Debugging Scenario

Tarantula 0.064112 0.042541 0.04* 0.08 (N)

Barinel 0.064123 0.041179 0.03* 0.08 (N)

Ochiai 0.069589 0.040171 9.3E − 5* 0.15 (S)

OP 0.077843 0.047095 5.5E − 14* 0.29 (S)

DStar 0.080444 0.040031 3.9E − 16* 0.32 (S)

Average-case Debugging Scenario

Tarantula 0.083056 0.089446 0.80 -0.01 (N)

Barinel 0.083065 0.088084 0.84 -0.01 (N)

Ochiai 0.089152 0.087853 0.22 0.05 (N)

OP 0.096655 0.100237 4.2E − 4* 0.14 (N)

DStar 0.099188 0.128669 1.9E − 5* 0.17 (S)

Worst-case Debugging Scenario

Tarantula 0.143346 0.192170 0.02* 0.08 (N)

Barinel 0.143353 0.190808 0.02* 0.09 (N)

Ochiai 0.148211 0.191270 4.7E − 3* 0.11 (N)

OP 0.153765 0.205877 3.7E − 4* 0.14 (N)

DStar 0.156084 0.196445 2.4E − 5* 0.16 (S)

“*” indicates the different between the EXAM scores is statistically significant (at significance level of 5%).

Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N).

situation where multiple program spectra have similar coverage (i.e., same number of fail
and pass) comes up frequently in BugsInPy. This shows that BugsInPy has a different trait
than Defects4J, making it an interesting aspect to analyze further. In RQ-2 and RQ-3 we
analyze deeper the results of SBFL techniques in BugsInPy.

4.2 RQ-2

Top-k in best-case scenario: First, we discuss the results for the best-case scenario as
introduced in Section 3.2.3. We use top-k metrics to measure the performance of each SBFL
technique, i.e. we measure how frequent each SBFL technique is able to rank the fault
statement within top-5, top-10, and top-200. The result, shown in Table 6, is in line with

147 Page 16 of 50 Empir Software Eng (2022) 27: 147

the other metrics, except for Ochiai’s performance. Ochiai performs better than Tarantula
and Barinel on top-5, even though it has a lower percentage than both on top-200. Applying
statistical tests on the set of output fault statement ranks for every pair of techniques being
compared (e.g., Tarantula versus Barinel, Barinel versus Ochiai), we find that Tarantula,
Barinel, and Ochiai perform better (with p<0.05) than DStar and OP for all Top-5, Top-
10, and Top-200. The detailed comparison of Top-k metrics is shown in Table 20 of the
Appendix.

EXAM scores, tournament ranking, and FLT ranking in best-case scenario: The
effectiveness of the SBFL techniques on the Python faults in terms of EXAM scores, tour-
nament ranking, and FLT ranking is shown in Table 7. The lower EXAM score and the
FLT rank, the better the technique performance. Based on the EXAM score and FLT rank-
ing, we found that Tarantula performs best with an EXAM score of 0.06411 and an FLT
ranking of 1.88. However, the differences between Tarantula and Barinel, as well as the dif-
ferences between Tarantula and Ochiai, are not statistically significant. The three techniques
are shown to perform better compared to DStar and OP (p < 0.05). This result is in line
with the previous finding where we use other metrics (i.e., EXAM score, FLT ranking, and
tournament ranking) in which Tarantula, Barinel, and Ochiai are superior to DStar and OP.

The result of the SBFL technique ranking in terms of the mean EXAM score shows
consistency with the FLT ranking, except for OP, which has a lower EXAM score compared
to DStar. However, we note that the difference between OP and DStar’s EXAM scores is
not statistically significant (p = 0.76477) and both techniques have the same ranking on
the tournament ranking for EXAM score. Moreover, for FLT ranking, DStar is significantly
better than OP (p = 1.06E − 5).

Improvement in best-case scenario: In addition to previous evaluations, we also inves-
tigate the improvement for each pair of SBFL techniques. The total improvement count is
shown in Table 8, while the detailed improvements (i.e., 6 cases improvement) are reported
in Table 21 in the Appendix. The number of improvement from Table 8 presents the num-
ber of faults in which technique A perform better than another technique B. For example,
Tarantula improves a total of 123 faults over DStar. To examine the statistical significance of
each reported improvement, we apply the Wilcoxon rank-sum test. The Wilcoxon rank-sum
test produces a statistically significant difference for all comparisons except for improve-
ments of Barinel against Tarantula and OP against DStar. The total improvement count of
Barinel against Tarantula is zero while the total improvement count of OP against DStar is
3. Even though the total improvement count of Tarantula against Barinel is also small, the
improvement is statistically significant, with the faults ranked lower than 5 in Barinel being
improved to top-5 in Tarantula. Based on Table 8, we can see that Tarantula provides the best
result, with a slight improvement compared to Barinel and Ochiai. Tarantula and Barinel
produce the biggest improvements over DStar and OP, with both techniques improve 142
faults compared to OP and 123 faults compared to DStar. While Ochiai outperforms DStar

Table 6 Percentage of fault
statements that appear within
Top-5, Top-10, and Top-200 in
best-case debugging scenario

Technique Top-5 Top-10 Top-200

Tarantula 12.98% 19.87% 55.78%

Barinel 12.57% 19.87% 55.78%

Ochiai 14.19% 19.87% 50.30%

DStar 9.53% 14.19% 38.74%

OP 6.89% 11.96% 38.94%Result in bold is the best for the
category

Page 17 of 50 147Empir Software Eng (2022) 27: 147

Table 7 SBFL techniques sorted by various metrics (i.e., EXAM score, FLT ranking, tournament ranking for
EXAM score, and tournament ranking for FLT ranking respectively) in best-case debugging scenario

Technique EXAM Score FLT Ranking #Better #Better

(EXAM Score) (FLT Ranking)

Tarantula 0.06411 1.8874 2 3

Barinel 0.06412 1.9006 2 3

Ochiai 0.06958 2.5993 2 2

DStar 0.08044 3.1622 0 1

OP 0.07784 3.4391 0 0

A smaller value in EXAM score and FLT ranking indicates a better performance. While higher value on tour-
nament ranking (i.e., # Better) indicates better performance or how many the technique perform statistically
significantly better than other techniques

and OP, there is a smaller improvement than Tarantula and Barinel. An interesting point is
that there are a few faults on which DStar and OP outperform Tarantula, Barinel, and Ochiai.
In summary, each technique outperforms other techniques with respect to some bugs, with
the exception of Tarantula that does not outperform Barinel on any fault. This suggests
the value of combining SBFL techniques to improve fault localization performance on the
BugsInPy dataset.

Top-k in average-case and worst-case scenario: In addition to the best-case debugging
scenario, we also conduct an analysis for average-case and worst-case debugging scenar-
ios. The result for top-k in the different debugging scenarios is shown in Table 9. All three

Table 8 Improvement of SBFL techniques A over B, where A are the techniques in the top row and B are the
techniques in the most left row. The number in each cell presents the number of faults in which a technique
performs better than another technique. For example, Tarantula improves the ranking result of two faults
against Barinel

Tarantula Barinel Ochiai DStar OP

Tarantula 0 0 19* 17* 20*

Barinel 2* 0 21* 19* 22*

Ochiai 44* 44* 0 7* 10*

DStar 123* 123* 92* 0 3

OP 142* 142* 111* 19* 0

“*” indicates the difference between the improvement is statistically significant

147 Page 18 of 50 Empir Software Eng (2022) 27: 147

scenarios produce the same SBFL technique ranking. In line with results from the best-
case scenario, Tarantula, Barinel, and Ochiai significantly outperform DStar and OP in both
average-case and worst-case. Ochiai outperforms DStar and OP in all Top-k evaluations (i.e.,
k=5, k=10, and k=200). Table 20 of the Appendix shows the detailed results of the compar-
ison of the techniques using the top-k metric. The rank performance of SBFL techniques
using top-k metrics is consistent in different debugging scenarios.

EXAM scores, tournament ranking, and FLT ranking in average-case and worst-
case scenario: We report the resulting EXAM scores for the average-case and worst-case
scenarios in Table 10. For the average-case scenario, Tarantula ranks first, but without
significant differences to Barinel and Ochiai. Meanwhile, for the worst-case debugging sce-
nario, there are no significant differences between all techniques, although here Tarantula
also ranks first. The value of the EXAM score on the average-case and worst-case scenario
are higher than the best-case scenario showing lower performance. This indicates that for
the EXAM score, the different debugging scenarios have a significant effect on the EXAM
score result. For FLT ranking, the result is also shown in Table 10. The results on all debug-
ging scenarios for FLT ranking produce a consistent ranking. The tournament ranking also
shows the same ranking as the best-case debugging scenario. This indicates that different
debugging scenarios do not affect results for the FLT ranking.

Improvement in average-case and worst-case scenario: The total improvement count
metric in average-case and worst-case debugging scenarios are shown in Table 11, while
the detailed improvement figures are reported in Tables 22 and 23 in the Appendix. In
the best-case scenario, Tarantula and Barinel give the biggest improvement over DStar and
OP. Improvements from Ochiai over DStar and OP are bigger than the improvements from
Tarantula and Barinel over Ochiai. In the average-case and worst-case debugging scenario,
Ochiai, DStar, and OP also produce an improvement over Tarantula and Barinel. This sug-
gests the possibility of combining these techniques to achieve a better overall result. From
this result we can also infer that if a fault localization tool user already uses Tarantula,
they will not benefit from also running Barinel, however, some benefits may be obtained
by running Ochiai, DStar, or OP. For this part of the analysis, the improvement results for
almost all technique pairs in both average-case and worst-case are statistically significant.

Table 9 Top-k on average-case
and worst-case debugging
scenario

Techniques Top-5 Top-10 Top-200

Average-case Debugging Scenario

Tarantula 5.68% 9.74% 33.27%

Barinel 5.27% 9.74% 33.27%

Ochiai 6.29% 9.33% 30.02%

DStar 4.46% 7.51% 23.94%

OP 3.45% 5.88% 24.14%

Worst-case Debugging Scenario

Tarantula 4.87% 7.51% 24.75%

Barinel 4.46% 7.51% 24.75%

Ochiai 5.27% 7.10% 22.72%

DStar 3.85% 5.68% 17.85%

OP 3.04% 4.87% 18.05%Result in bold is the best for the
category

Page 19 of 50 147Empir Software Eng (2022) 27: 147

Table 10 SBFL techniques sorted by various metrics (i.e., EXAM score, FLT ranking, tournament ranking
for EXAM score, and tournament ranking for FLT ranking respectively) on average-case and worst-case
debugging scenario

Technique EXAM Score FLT Ranking #Better (EXAM Score) #Better (FLT Ranking)

Average-case Debugging Scenario

Tarantula 0.083056 2.00347 2 3

Barinel 0.083065 2.01018 2 3

Ochiai 0.089152 2.61555 2 2

DStar 0.099188 3.03839 0 1

OP 0.096655 3.27146 0 0

Worst-case Debugging Scenario

Tarantula 0.143346 2.07988 0 3

Barinel 0.143353 2.08806 0 3

Ochiai 0.148211 2.60322 0 2

DStar 0.156084 2.95583 0 1

OP 0.153765 3.16553 0 0

The exceptions are the improvement of Barinel over Tarantula in both scenarios and the
improvement of OP over DStar in the average-case scenario.

Top-k in different types of faults: There are several types of faults in BugsInPy, such
as single-line faults, multi-line faults, and faults of omission.

Table 11 Improvement on
Average-case and Worst-case
Debugging Scenario where the
top row is the improvement
against the column (e.g., in
average-case scenario Tarantula
improve 63 faults against DStar,
in worst-case scenario Ochiai
improve 6 faults against
Tarantula)

Tarantula Barinel Ochiai DStar OP

Average-case Debugging Scenario

Tarantula 0 0 8* 9* 9*

Barinel 2* 0 10* 11* 11*

Ochiai 26* 26* 0 4* 6*

DStar 63* 63* 44* 0 2

OP 71* 71* 54* 10* 0

Worst-case Debugging Scenario

Tarantula 0 0 6* 7* 9*

Barinel 2* 0 8* 9* 11*

Ochiai 18* 18* 0 4* 6*

DStar 47* 47* 35* 0 2*

OP 53* 53* 41* 6* 0

147 Page 20 of 50 Empir Software Eng (2022) 27: 147

Multi-line faults are faults where the changes to fix the fault span over more than one line.
Meanwhile, single-line faults are faults that can be fixed by modifying one line. Changes
to fix faults in real faults may consist of only code addition rather than the modification
of existing code. In BugsInPy, there are approximately 13% of faults that have a missing
statement(s) without faulty statements. We refer to these cases as the fault of omission. The
location of the changes will be complicated in the fault of omission when the developer
inserts the new code at some lines while there may be other locations that are also valid
choices to fix the fault. Consider the fault of omission in Fig. 2, we can insert the conditional
that is missing (if statement) before line 1, between line 2 and line 3, or after line 4.The
bottom part of Fig. 2 shows the valid placement of the conditional statement.

The fault localization technique’s output which includes any of the above possible state-
ments in Fig. 2 is just as useful as showing the line the developer has chosen. Thus, we
conducted manual analysis for the fault of omission and provided an alternative location
where the faults can be fixed. Figure 3 shows the distribution of the type of faults based on
the three categories on BugsInPy.

We wanted to further analyze whether the results of the SBFL technique would be dif-
ferent on these different types of faults. We find that the performance ranking of SBFL
techniques is consistent for all debugging scenarios. We also consider the finding of
(Pearson et al. 2017a) which states that “the best-case debugging scenario is the best approx-
imation of user real cases”. For the experiments involving the different types of faults (e.g.,
single-line fault, multi-line faults, and faults of omission), we only calculate the metrics
in the best-case debugging scenario. We subsequently measure the top-k metrics for each
SBFL technique using different types of faults. The result of these measurements are shown
at Table 12. We find that the ranking of techniques on top-k measurement is consistent for
each type of fault. Moreover, we also find that the ranking of techniques is in line with
our findings using previous metrics. As with the previous statistical test result on all faults,
the test result on different types of faults shows the statistically significant difference on
Tarantula, Barinel, and Ochiai compared to DStar and OP, where the three techniques are
outperforming DStar and OP.

EXAM scores, tournament ranking, and FLT ranking in different types of faults:
Table 13 show the experiment results on different types of faults using EXAM scores, FLT
ranking, and tournament ranking. We note that the ranking of SBFL techniques on all

Fig. 2 Example of fault omission (top) with the valid placement of the fixing statements (bottom)

Page 21 of 50 147Empir Software Eng (2022) 27: 147

Fig. 3 Distribution of faults following Pearson et al. (2017) in BugsInPy

metrics is consistent among different types of faults, with the best scores achieved on a
multi-line fault without fault of omission. This finding is expected as it is easier to determine
the location of any of the multiple buggy lines (i.e., multi-line fault) compared to finding
the exact location of a single buggy line (i.e., single-line fault). In case of fault of omis-
sion, SBFL may produce worse results as the buggy program itself do not actually contain
faulty statements and good candidate locations for insertion of needed statement may not
be considered by the SBFL technique. Overall, these results are in line with results reported
by (Pearson et al. 2017a), where they found that the best EXAM score is achieved for the
multi-line faults (excluding faults of omission), followed by all multi-line faults (including
faults of omission), and single-line faults.

4.3 RQ-3

Check the claim of SBFL effectiveness from 7 prior studies in Python real faults: For
RQ-3, we investigate the 7 finding statements from prior studies that have also been checked
by (Pearson et al. 2017a). The comparison of SBFL techniques obtained from our experi-
ments on Python faults, as well as the results reported by Pearson et al. on Java faults and
other preceding studies, are shown in Table 14. The second columns of Table 14 show prior
comparison results using Java and C artificial faults, while the third and fourth columns
show the prior comparison result from (Pearson et al. 2017a) using real faults. The right-
most two columns of Table 14 show the result of our study. The BugsInPy result shows

147 Page 22 of 50 Empir Software Eng (2022) 27: 147

Table 12 Percentage of fault
statements that appear within
Top-5, Top-10, and Top-200 on
different type of faults

Technique Top-5 Top-10 Top-200

Single-line without omission

Tarantula 12% 18% 52%

Barinel 11% 18% 52%

Ochiai 14% 18% 49%

DStar 9% 12% 39%

OP 8% 11% 40%

Multi-line without omission

Tarantula 18% 24% 66%

Barinel 18% 24% 66%

Ochiai 20% 24% 58%

DStar 14% 18% 42%

OP 11% 16% 42%

Multi-line with omission

Tarantula 13% 20% 57%

Barinel 13% 20% 57%

Ochiai 14% 20% 51%

DStar 10% 15% 39%

OP 6% 12% 39%

disagreements with results of previous comparisons on Java and C artificial faults. The
differences are found in the relative performances between OP and DStar compared with
Ochiai and Tarantula (rows 4, 5, 6, and 7 in Table 14). Based on BugsInPy results, OP and
DStar have worse performance (differences which are also statistically significant) com-
pared to Ochiai and Tarantula respectively. However, the effect sizes of the differences are
small, except for the comparison between DStar and Ochiai which has a negligible effect
size. This finding refutes the previous finding on Java and C artificial faults where OP

and DStar perform better compared to Ochiai and Tarantula. Comparisons between Ochiai,
Tarantula, and Barinel in rows 1, 2, and 3 Table 14 show that the Wilcoxon test results are
not statistically significant. We also found the effect sizes to be negligible.

Check the claim of SBFL effectiveness from Pearson et al. (2016) that used Java
real faults (Defects4J):We further compare the agreement of the 7 key statements between
Python real faults (BugsInPy) and Java real faults (Defects4J). In Java real faults all 7 key
statements are refuted by having insignificant differences for all comparisons of SBFL tech-
niques in the key statements. On the contrary, based on our result in Python’s real faults, we
find that there are key statements that are refuted with statistically significant differences.
These cases are found on the key statements which compare OP and DStar with Ochiai and
Tarantula. Results for the average-case and worst-case scenarios, shown in Table 24 and 25
in the Appendix, also refuted the 7 key statements in prior works.

Page 23 of 50 147Empir Software Eng (2022) 27: 147

Table 13 SBFL techniques sorted by various metrics (i.e., EXAM score, FLT ranking, tournament ranking
for EXAM score, and tournament ranking for FLT ranking respectively) on different type of faults

Technique EXAM Score FLT Ranking #Better
(EXAM Score)

#Better
(FLT Ranking)

Single-line fault that were not fault of omission

Tarantula 0.0732 1.9508 2 3

Barinel 0.0733 1.9877 2 3

Ochiai 0.0764 2.6352 2 2

DStar 0.0915 3.0861 0 1

OP 0.0882 3.3361 0 0

Multi-line faults that were not fault of omission

Tarantula 0.030513 1.7312 2 3

Barinel 0.030516 1.7448 2 3

Ochiai 0.035092 2.5782 2 2

DStar 0.046242 3.3299 0 1

OP 0.045512 3.6292 0 0

Multi-line faults that included fault of omission

Tarantula 0.061101 1.8665 2 3

Barinel 0.061102 1.8719 2 3

Ochiai 0.067339 2.5876 2 2

DStar 0.076799 3.1873 0 1

OP 0.074429 3.4730 0 0

The average-case scenario results of BugsInPy also produce statistical differences on key
statements that compare OP and DStar with Ochiai and Tarantula with small and negligi-
ble effect sizes. Meanwhile, in the worst-case scenario, the key statements are all refuted
by having statistically insignificant differences between key statements with a negligible
effect size for all comparisons. Our results show a consistency of SBFL technique rank (i.e.,
the rank of SBFL technique by mean EXAM score) for all the scenarios. Compared to the
Defects4J results, the SBFL techniques that perform better (i.e., having a lower mean EXAM
score) are different, and at the same time, the differences are insignificant for all statements
in different scenarios. For example, for the best-case scenario, the mean EXAM score of
DStar is lower than Ochiai while for the average-case DStar has a higher mean EXAM score
than Ochiai.

In our experiments, the relative performances of the different techniques on real Python
faults do not match with the results on artificial faults reported by previous studies (Le
et al. 2013; Abreu et al. 2009b; Le et al. 2015b; Naish et al. 2011a; Wong et al. 2016;

147 Page 24 of 50 Empir Software Eng (2022) 27: 147

Table 14 Comparison results of preceding studies using Java/C artificial faults (second column), Defects4J
Java real faults (third and fourth columns), and BugsInPy Python real faults (fifth and sixth columns) in
best-case debugging scenario

No. Previous comparisons on
Java or C artificial faults

Defects4J Results (2017a) BugsInPy Results

Winner > Loser Agree? Effect size Agree? Effect size

1. Ochiai > Tarantula∗ (insig.) -0.02 (N) (insig.) 0.04 (N)

2. Barinel > Ochiai (insig.) 0.02 (N) (insig.) -0.04 (N)

(Abreu et al. 2009b)

3. Barinel > Tarantula (insig.) 1.9E−5 (N) (insig.) 0.002 (N)

(Abreu et al. 2009b)

4. OP > Ochiai (insig.) 0.04 (N) no 0.15 (S)

(Naish et al. 2011a)

5. OP > Tarantula † (insig.) 0.02 (N) no 0.21 (S)

6. DStar > Ochiai‡ (insig.) -0.03 (N) no 0.14 (N)

7. DStar > Tarantula∗∗ (insig.) -0.02 (N) no 0.19 (S)

∗(Le et al. 2013; Le et al. 2015b; Naish et al. 2011a; Wong et al. 2016; Xuan and Monperrus 2014b)

†(Naish et al. 2011a; Moon et al. 2014) ‡(Le et al. 2015b; Wong et al. 2016)

∗∗(Le et al. 2015b; Wong et al. 2016; Ju et al. 2014)

Whether the results agrees indicates p-value: p<0.05, (p ≥ 0.05).

Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

Xuan and Monperrus 2014b; Moon et al. 2014; Ju et al. 2014), except for Barinel having
a lower EXAM score than Ochiai. On the other hand, our results agree with Pearson et.
al.’s observations on Java’s real faults, namely, the performance of SBFL techniques on
artificial faults is different from the real faults. This further corroborates their observation
that the SBFL techniques’ performances on artificial faults are not useful predictors for their
performance on real faults.

5 Discussion and Implications

5.1 On the fairness of comparison between BugsInPy and Defects4J

There are no significant differences between the distribution of faults in BugsInPy and
Defects4J (except for Type, Object Instantiation, and Assignment categories). Follow-
ing the categorization of faults that are described in Section 5.2, we would like to investigate
the fairness of comparison between BugsInPy and Defects4J. For this purpose, we collect
the distribution of the fault categories from the labeled faults. The distribution of the cate-
gory of faults in Defects4J and BugsInPy can be found in Fig. 4. Based on the distribution,

Page 25 of 50 147Empir Software Eng (2022) 27: 147

Fig. 4 Distribution of fault category in (a) Defects4J and (b) BugsInPy

we observe that for both BugsInPy and Defects4J, the fault category with the highest occur-
rences is the Method Call, occurring in 76.27% and 75.95% of the datasets, respectively. We
also find that many of the fault categories in BugsInPy have similar distribution with those
in Defects4J, such as the Variable category (40.51% in Defects4J and 38.34% in BugsInPy)
and Return category (37.47% in Defects4J and 33.67% in BugsInPy). The differences in
the distribution of faults category are found in the Type and Assignment category, which is

147 Page 26 of 50 Empir Software Eng (2022) 27: 147

more prevalent in BugsInPy which has 64 faults (16.20%) and 306 faults (62.07%) respec-
tively, compared to the Defects4J which only has 3 faults (0.61%) and 184 faults (46.58%)
respectively. Another difference is from the Object Instantiation category where Defects4J
has a higher number of faults which is 85 (21.52%), compared to BugsInPy which has 48
faults (9.74%). Nevertheless, the difference between the number of faults in Defects4J and
BugsInPy for each category is small, ranging from 0.3 to 15%.

We also run a Chi-Square test (Tallarida and Murray 1987) with a 1% significance
level (Rayson et al. 2004; Martinez and Monperrus 2015; Ruthruff et al. 2005) to determine
whether the differences between the distribution for every fault category are significant. The
p-value results of the Chi-Square test are higher than 0.01 for 7 fault categories, which are
Loop (p-value = 0.036), Method Definition (p-value = 0.076), Exception (p-value = 0.138),
Return (p-value = 0.221), Variable (p-value = 0.431), Conditional (p-value = 0.019), and
Method Call (p-value = 0.736). The p-value of more than 0.01 indicates that there are no sig-
nificant differences between the faults in BugsInPy and Defects4J for the 7 fault categories.
Meanwhile, for Object Instantiation, Type, and Assignment fault categories, the p-value
results from Chi-Square test are smaller than 0.01. Specifically, the p-values are 2.43E−06,
1.25E − 10, and 0.003 respectively. Through these observations, we find that the faults in
BugsInPy and Defects4J have similar distributions except for the Object Instantiation, Type,
and Assignment categories.

The SBFL performance on the subset of fault categories are inline with the whole
dataset. Furthermore, we run additional experiments using the subset of fault categories
for a fair comparison. In these additional experiments, we compare the performance of the
SBFL techniques for each subset of the dataset based on the category of faults (e.g., com-
paring evaluation results from Defects4J Method Call faults against BugsInPy Method Call
faults, etc.). Table 15 shows the results in the Top-k metric for the three most frequent fault
categories in both datasets (i.e., Method call, Assignment, and Conditional). From these
additional experiments on the subset of the dataset, we find that the results are inline with
our previous results on the whole dataset. Specifically, we find that the differences between
the fault localization evaluation results are statistically significantly higher in Defects4J
(except for the Type category where we found to have higher results in Top-5 and Top-10 in
BugsInPy compared to Defects4J).

5.2 On the potential factors that affect the SBFL results

We analyze the faults in BugsInPy to determine the factors that affect the SBFL results.
We find that there are several factors that may lead to changes in the performance of SBFL
techniques, including (1) the faults nature, (2) the quality of the test cases, and (3) the
programming language nature.

The fault’s nature in the dataset may affect the performance of the SBFL tech-
nique. Based on the RQ-1 results, we found that the number of failed test cases and the
number of statements that need to be fixed are higher on the BugsInPy compared to the
Defects4J. These may indicate that the faults in BugsInPy are more complicated than those
in Defects4J, as the effort required to fix the fault (i.e., in terms of the number of statements
that need to be changed) is higher. This may be one of the reasons that make the SBFL
techniques perform better in Defects4J compared to the BugsInPy.

High code coverage (i.e., the absolute ratio of covered code) does not always corre-
late with good SBFL results. One of the ways to measure the quality of the test cases is by
using code coverage. Code coverage determines whether the test cases are covering the code
and howmuch of the code is covered by the test cases. For example, if we have 10 statements

Page 27 of 50 147Empir Software Eng (2022) 27: 147

Ta
bl
e
15

To
p-
k
of

B
ug
sI
nP

y
an
d
D
ef
ec
ts
4J

fo
r
th
re
e
hi
gh
es
t
fa
ul
ts

ty
pe

(i
.e
.,
M
et
ho
d
C
al
l,
A
ss
ig
nm

en
t,
an
d
C
on
di
tio

na
l)
in

be
st

ca
se

de
bu
gg
in
g
sc
en
ar
io
,
w
he
re

hi
gh
er

pe
rc
en
ta
ge

of
fa
ul
tt
ha
ti
nc
lu
de

in
to
p-
k
in
di
ca
te
be
tte
r
pe
rf
or
m
an
ce

Te
ch
ni
qu
e

To
p-
5

To
p-
10

To
p-
20
0

p-
va
lu
e

d

B
ug
sI
nP

y
D
ef
ec
ts
4J

B
ug
sI
nP

y
D
ef
ec
ts
4J

B
ug
sI
nP

y
D
ef
ec
ts
4J

M
et
ho
d
C
al
l

Ta
ra
nt
ul
a

15
.1
6%

31
.3
3%

22
.0
7%

41
.3
3%

56
.1
2%

80
.6
7%

1.
39
E
-1
4*

0.
34

(M
)

B
ar
in
el

14
.6
3%

31
.3
3%

22
.0
7%

41
.3
3%

56
.1
2%

80
.6
7%

7.
92
E
-1
5*

0.
35

(M
)

O
ch
ia
i

16
.2
2%

32
.3
3%

22
.0
7%

41
.6
7%

50
.5
3%

81
.6
7%

3.
59
E
-1
8*

0.
39

(M
)

D
st
ar

10
.3
7%

32
.0
%

15
.4
3%

41
.0
%

39
.6
3%

82
.3
3%

1.
96
E
-3
2*

0.
53

(L
)

O
P

7.
71
%

31
.0
%

13
.0
3%

39
.6
7%

39
.8
9%

80
.3
3%

4.
17
E
-3
2*

0.
53

(L
)

A
ss
ig
nm

en
t

Ta
ra
nt
ul
a

12
.7
5%

30
.4
3%

20
.5
9%

41
.3
%

55
.8
8%

82
.6
1%

1.
72
E
-1
2*

0.
38

(M
)

B
ar
in
el

12
.4
2%

30
.4
3%

20
.5
9%

41
.3
%

55
.8
8%

82
.6
1%

1.
31
E
-1
2*

0.
38

(M
)

O
ch
ia
i

14
.0
5%

32
.0
7%

20
.9
2%

41
.8
5%

50
.3
3%

83
.7
%

1.
69
E
-1
5*

0.
43

(M
)

D
st
ar

9.
15
%

31
.5
2%

14
.7
1%

41
.8
5%

39
.2
2%

84
.7
8%

2.
52
E
-2
5*

0.
56

(L
)

O
P

6.
21
%

29
.3
5%

12
.0
9%

39
.1
3%

39
.5
4%

83
.7
%

1.
47
E
-2
5*

0.
56

(L
)

C
on
di
tio

na
l

Ta
ra
nt
ul
a

11
.5
%

29
.4
8%

18
.1
2%

40
.6
7%

54
.7
%

79
.4
8%

3.
25
E
-1
4*

0.
37

(M
)

B
ar
in
el

11
.1
5%

29
.4
8%

18
.1
2%

40
.6
7%

54
.7
%

79
.4
8%

2.
28
E
-1
4*

0.
37

(M
)

O
ch
ia
i

11
.8
5%

30
.9
7%

18
.1
2%

41
.0
4%

50
.5
2%

80
.6
%

2.
30
E
-1
7*

0.
42

(M
)

D
st
ar

7.
67
%

30
.6
%

12
.5
4%

39
.9
3%

37
.2
8%

81
.7
2%

4.
35
E
-2
9*

0.
55

(L
)

O
P

5.
57
%

29
.1
%

10
.1
%

38
.0
6%

37
.2
8%

80
.2
2%

3.
69
E
-2
8*

0.
54

(L
)

R
es
ul
ti
n
bo

ld
in
di
ca
te
s
da
ta
se
tt
ha
th

as
hi
gh
er

pe
rc
en
ta
ge

of
fa
ul
ts
th
at
ar
e
lo
ca
liz
ed

in
to
p-
k
us
in
g
th
e
pa
rt
ic
ul
ar

SB
F
te
ch
ni
qu
e

*
in
di
ca
te
s
th
e
di
ff
er
en
tb

et
w
ee
n
th
e
ab
so
lu
te
ra
nk

is
st
at
is
tic
al
ly

si
gn
if
ic
an
ta
t5

%
le
ve
l

C
lif
f’
s
d
in
di
ca
te
s
ef
fe
ct
si
ze
:l
ar
ge

(L
),
m
ed
iu
m

(M
),
sm

al
l(
S)
,n

eg
lig

ib
le
(N

)

147 Page 28 of 50 Empir Software Eng (2022) 27: 147

in file A, with test case B executing/covering 7 statements from file A, then the statement
coverage is 70%. We calculate the statement coverage of both datasets (i.e., BugsInPy and
Defects4J). For projects in BugsInPy, we use coverage.py to calculate the statement cover-
age. Meanwhile, we use GZoltar to calculate the coverage of Java code in Defects4J. We
measure statement coverage as we evaluate the SBFL on the statement granularity.

Table 16 shows the statement coverage from projects in Defects4J, while Table 17 shows
the statement coverage from projects in BugsInPy. The average value of statement cover-
ages for Defects4J is 66%while BugsInPy has 71% statement coverage. Both measurements
show comparatively high statement coverage. However, the SBFL performance metrics
for BugsInPy are lower compared to those in Defects4J. This indicates that good cover-
age calculated by the absolute ratio of covered code does not always correlate with good
SBFL results. For example, we can see that the Math project from Defects4J has the lowest
statement coverage while having the highest percentage of faults that are localized in the
Top-200. Meanwhile, the Mockito project has the highest statement coverage but has the
highest EXAM score, which indicates a lower performance of the SBFL technique. These
occurrences are also found in BugsInPy, where the black project has a high coverage but the
EXAM score is comparatively high compared to the other projects.

Language nature has some impacts toward the SBFL performance. We found that
some characteristics of the programming language affect the SBFL performance. For exam-
ple, in Java, each variable is associated with a fixed data type (as Java employs static type
checking). If the variable is an integer type, then only the integer can be assigned to the vari-
able throughout the execution of the program. Each variable in Java also needs to be declared
before being used, which means that the variable is bound to its data type. Meanwhile, in
Python, it is not possible to declare a variable. Rather, values are directly assigned to the
variable through assignment, without the need of indicating the variable’s type. The type
of variables may also change during the program execution in Python (as Python employs
dynamic type checking). For example, we can assign a string to the variable, use the variable
as a string, and then assign an integer to the same variable.

During the analysis of the changes that fix the fault, we found that many faults occurred
because the type of variable is not the one expected in the test case. To fix this type of fault,
developers need to convert the type of the variable to the expected type. The conversion of
variable type when fixing the fault is usually done using a method call that does explicit
type conversion. This can be done using the built-in functions of Python such as str(), int(),
float(), etc. For example, we can convert a string to an integer by calling the function int().
This will also check whether the string that is being converted to an integer only contains
a numerical value. If it detects otherwise, it will raise an error. We found that this type of

Table 16 Statement coverage of Defects4J with the Top-K and EXAM score for each project using Tarantula

Project Statement Coverage Top-5 Top-10 Top-200 EXAM

Chart 61.10% 26.92% 57.69% 88.46% 0.048

Closure 71.64% 15.79% 24.81% 67.67% 0.023

Lang 73.69% 46.15% 60% 90.77% 0.059

Math 48.99% 36.79% 46.23% 91.51% 0.036

Mockito 79.41% 34.21% 42.11% 76.32% 0.071

Time 77.83% 48.15% 51.85% 74.07% 0.01

Page 29 of 50 147Empir Software Eng (2022) 27: 147

Table 17 Statement coverage of BugsInPy with the Top-K and EXAM score for each project using Tarantula

Project Statement Coverage Top-5 Top-10 Top-200 EXAM

ansible 51% 0.00% 0.00% 11.11% 0.062

black 91% 13.33% 20.00% 53.33% 0.133

cookiecutter 79% 0.00% 0.00% 75.00% 0.107

fastapi 65% 18.75% 18.75% 43.75% 0.049

httpie 84% 0.00% 0.00% 60.00% 0.163

keras 69% 0.00% 0.00% 46.67% 0.055

luigi 64% 0.00% 0.00% 39.39% 0.035

matplotlib 71% 0.00% 0.00% 23.33% 0.106

pandas 69% 12.43% 18.93% 63.31% 0.048

PySnooper 43% 0.00% 0.00% 66.67% 0.23

sanic 90% 0.00% 0.00% 60.00% 0.077

scrapy 78% 45.00% 60.00% 92.50% 0.033

spacy 64% 10.00% 30.00% 60.00% 0.156

thefuck 81% 56.25% 87.50% 93.75% 0.011

tornado 82% 0.00% 0.00% 37.50% 0.112

tqdm 78% 11.11% 44.44% 88.89% 0.128

youtube-dl 51% 0.00% 2.33% 27.91% 0.099

change to fix the fault involving explicit type conversion is unique in Python (BugsInPy)
and is not found in Defects4J.

To further determine the impact of this fault characteristic, we analyzed the faults in
BugsInPy and categorized them. Specifically, we followed the previous study (Sobreira
et al. 2018; Vancsics et al. 2020; Pan et al. 2009) that investigated how specific faults were
fixed by the developers. In other words, we categorized the faults based on the repair action
of a developer. We used a classification scheme from (Sobreira et al. 2018) that was previ-
ously used to categorize faults in Defects4J. (Sobreira et al. 2018) proposed the following
categories: Assignment, Conditional, Loop, Method Call, Method Definition, Object Instan-
tiation, Exception, Return, Variable, and Type. Their definitions adjusted for the context of
Python programs are provided in Table 18. As an example, considering the code changes
shown in Figure 5, we find that the changes to fix the fault are related to the following
categories:

– Conditional: line 9, Conditional Branch Addition (addition of a simple if)
– Exception: line 10, Exception Addition (addition of raise statement)
– Method Call: line 9, Method Call Addition (addition of method call inside if statement)

We analyze the changes that fix the fault to have a better understanding of the changes
that were done by the developer. For every changed file, the two authors label the data
independently to prevent bias in the labeling process. If there are differences in the label,
the authors conduct a discussion to resolve the differences. The inter-rater agreement value
calculated using Cohen’s kappa (Cantor 1996) is 0.76, which is interpreted as excellent
agreement (DeVellis 2005). Note that one fault can have multiple labels as it may need
multiple repair actions to fix it.

147 Page 30 of 50 Empir Software Eng (2022) 27: 147

Ta
bl
e
18

Fa
ul
tC

at
eg
or
ie
s
ba
se
d
on

R
ep
ai
r
Pa
tte
rn
s
an
d
T
he
ir
D
es
cr
ip
tio

ns

C
at
eg
or
y

D
es
cr
ip
tio

n

A
ss
ig
nm

en
t

T
hi
s
ca
te
go
ry

in
cl
ud
es

ch
an
ge
s
m
ad
e
on

si
m
pl
e
as
si
gn
m
en
to

pe
ra
to
r,
un
ar
y
in
cr
em

en
t,
de
cr
em

en
to

pe
ra
to
r,
an
d
as
si
gn
m
en
tc
om

po
un
d
of

an
ar
ith

m
et
ic

op
er
at
or
.T

he
ch
an
ge
s
ca
n
be

de
ri
ve
d
fr
om

th
e
ad
di
tio

n,
m
od
if
ic
at
io
n,
an
d
re
m
ov
al
of

as
si
gn
m
en
ts
.F
or

ex
am

pl
e,
m
od
if
ic
at
io
n
of

in
cr
em

en
tt
o
de
cr
em

en
t.

C
on
di
tio

na
l

T
hi
s
ca
te
go
ry

in
cl
ud
es

th
e
ch
an
ge
s
th
at
ar
e
m
ad
e
on

th
e
co
nd
iti
on
al
st
at
em

en
ts
uc
h
as

if
,i
f-
el
se
,i
f-
el
if
-e
ls
e,
an
d
el
se
.T

he
ch
an
ge
s
ca
n
be

in
th
e
fo
rm

of
co
nd
iti
on
al
br
an
ch

ad
di
tio

n
or

re
m
ov
al
.I
tc
an

al
so

be
th
e
m
od
if
ic
at
io
n
of

th
e
co
nd
iti
on
al
ex
pr
es
si
on
.

L
oo
p

T
he

lo
op
s
co
ns
id
er
ed

in
Py

th
on

ar
e
fo
r
an
d
w
hi
le
.T

he
ch
an
ge
s
th
at
ar
e
re
la
te
d
to

th
is
ca
te
go
ry

ar
e
lo
op

ad
di
tio

n,
re
m
ov
al
,a
nd

m
od
if
ic
at
io
n.

M
et
ho
d
C
al
l

T
he

ch
an
ge
s
in
cl
ud
ed

in
th
is
ca
te
go
ry

ar
e
th
e
on
es

re
la
te
d
to

th
e
m
et
ho
d
ca
ll.

T
hi
s
in
cl
ud
es

ca
se
s
co
nt
ai
ni
ng

m
od
if
ic
at
io
n
of

a
m
et
ho
d
ca
ll
(e
.g
.,
m
ov
in
g

m
et
ho
d
ca
ll,

ch
an
gi
ng

a
pa
ra
m
et
er

in
a
m
et
ho
d
ca
ll,

et
c.
),
ad
di
ng

an
in
vo
ca
tio

n
of

a
m
et
ho
d
ca
ll,

an
d
re
m
ov
in
g
an

ex
is
tin

g
m
et
ho
d
ca
ll.

M
et
ho
d
D
ef
in
iti
on

T
he

ch
an
ge
s
re
la
te
d
to

th
e
m
et
ho
d
de
fi
ni
tio

ns
(M

D
)
ar
e
M
D

ad
di
tio

n,
M
D

re
m
ov
al
,
M
D

m
od
if
ic
at
io
n
(e
.g
.,
ch
an
ge

m
et
ho
d
pa
ra
m
et
er
s,

m
et
ho
d

re
na
m
in
g,
et
c.
)

O
bj
ec
t

In
st
an
tia
tio

n
In

Ja
va

th
is
ca
te
go
ry

is
ob
se
rv
ed

by
th
e
ke
yw

or
d
ne
w
.
M
ea
nw

hi
le
,
Py

th
on

do
es

no
t
ut
ili
ze

th
e
ne
w

ke
yw

or
d.

R
at
he
r,
th
e
ob
je
ct

in
st
an
tia
tio

n
pa
tte
rn

in
Py

th
on

is
si
m
ila
r
to

a
m
et
ho
d
ca
ll.

T
he
re
fo
re
,t
o
de
te
rm

in
e
w
he
th
er

th
e
st
at
em

en
t
is
an

ob
je
ct

in
st
an
tia
tio

n,
w
e
ne
ed

to
ch
ec
k
w
he
th
er

th
e
in
vo
ke
d

m
et
ho
d
ca
ll
is
th
e
na
m
e
of

a
cl
as
s
or

no
t.
T
he

fo
llo

w
in
g
ar
e
so
m
e
ex
am

pl
es

of
ob
je
ct
in
st
an
tia
tio

n
in

Py
th
on
:

E
xc
ep
tio

n
T
he

ch
an
ge
s
th
at
ar
e
in
cl
ud
ed

in
th
is
ca
te
go
ry

ar
e
re
la
te
d
to

th
e
ex
ce
pt
io
n
ha
nd
lin

g,
su
ch

as
ad
di
tio

n
or

re
m
ov
al
of

a
tr
y-
ca
tc
h
bl
oc
k
or

ra
is
e
st
at
em

en
t.

R
et
ur
n

T
he

ch
an
ge
s
th
at
ar
e
in
cl
ud
ed

in
th
is
ca
te
go
ry

ar
e
th
os
e
w
ho
se

ch
an
ge
s
ar
e
re
la
te
d
to

th
e
re
tu
rn

st
at
em

en
t.

V
ar
ia
bl
e

C
ha
ng
es

th
at
ch
an
ge

th
e
va
ri
ab
le
de
cl
ar
at
io
n
an
d
m
od
if
ic
at
io
n
in

th
e
us
ag
e
of

va
ri
ab
le
s
ar
e
in
cl
ud
ed

in
th
is
ca
te
go
ry
.F

or
ex
am

pl
e,
ad
di
ng

ne
w
va
ri
ab
le

de
cl
ar
at
io
ns
,r
ep
la
ci
ng

th
e
us
ag
e
of

a
va
ri
ab
le
w
ith

an
ot
he
r
va
ri
ab
le
,r
ep
la
ci
ng

th
e
us
ag
e
of

a
m
et
ho
d
ca
ll
w
ith

a
va
ri
ab
le
,e
tc
.I
n
Py

th
on
,t
he

pa
tte
rn

fo
r

va
ri
ab
le
de
cl
ar
at
io
ns

is
th
e
sa
m
e
as

as
si
gn

m
en
ts
.T

hu
s,
w
e
ne
ed

to
ch
ec
k
w
he
th
er

th
e
va
ri
ab
le
al
re
ad
y
ex
is
te
d
(i
.e
.,
al
re
ad
y
de
cl
ar
ed
)
be
fo
re

in
th
e
co
de

to
de
te
rm

in
e
w
he
th
er

it
is
co
ns
id
er
ed

as
an

as
si
gn
m
en
to

r
va
ri
ab
le
de
cl
ar
at
io
n.

Ty
pe

C
ha
ng
es

th
at
ut
ili
ze

ex
pl
ic
it
ty
pe

co
nv
er
si
on
.T

he
ex
pl
ic
it
ty
pe

co
nv
er
si
on

is
do
ne

by
us
in
g
a
m
et
ho
d
ca
ll
to

co
nv
er
tv

ar
ia
bl
e
ty
pe
s
su
ch

as
st
r(
),
in
t(
),

lo
ng
()
,e
tc
.F

or
ex
am

pl
e,
st
r(
)
ca
n
be

us
ed

to
ch
an
ge

th
e
va
ri
ab
le
ty
pe

fr
om

in
te
ge
r
to

st
ri
ng
.T

he
fa
ul
t-
fi
xe
s
th
at
ar
e
in
cl
ud
ed

in
th
is
ca
te
go
ry

ar
e
re
la
te
d

to
th
e
ex
pl
ic
it
ty
pe

co
nv
er
si
on
,s
uc
h
as

ad
di
tio

n,
re
m
ov
al
,o
r
m
od
if
ic
at
io
n.

Page 31 of 50 147Empir Software Eng (2022) 27: 147

Fig. 5 Example of code changes from Pandas 101 (https://github.com/pandas-dev/pandas/commit/
27b713ba677869893552cbeff6bc98a5dd231950)

Then, following the categorization, we run SBFL techniques on the subset of faults
category for both BugsInPy and Defects4J. We counted faults that are localized into non-
overlapping intervals of [1; 5], (5; 10], (10; 200], or (200;...]. For example, [1;5] means
that the fault is localized in between 1 to 5 position, (5;10] mean that the fault is localized
between 6 to 10 position, and so on. This interval statistic is shown in Figure 6. The color
of the bar in Fig. 6 indicates the faults that are localized at a specific interval. For example,
from the figure we can observe that for BugsInPy, using Tarantula, there are 22% of faults
that are localized in the Top-5 for the Return category.

Based on the analysis of the subset of faults category, we find that some differences
are due to the language nature. Specifically, we find differences in the Type and Object
Instantiation categories. Our analysis found that the three faults in the Type category from
Defects4J are different from the one on BugsInPy. Specifically, we found the following
Type faults in Defects4J:

– Type addition: shown in Fig. 7.
– Type implemented interface modification: shown in Fig. 8 and 9.

Meanwhile, in BugsInPy there are 64 faults out of 493 (13%) which are fixed by explic-
itly changing the variable type into another type using the built-in type conversion function
in Python. We compare the evaluation results of SBFL techniques for faults of the Type
category to those of the other categories. We found that the Type category has the highest
percentage of faults that are localized in the Top-5 and Top-10 by SBFL techniques. Mean-
while, the performance of SBFL techniques for the Type category subset in Defects4J does
not localize any of the faults in Top-5 and Top-10. This highlights that Type category faults
are localized better using the SBFL techniques in BugsInPy (i.e., Top-5 and Top-10).

Another difference based on the language nature is found in the object instantiation pat-
tern. Object instantiation in Python does not utilize the “new” keyword. Rather, it is done
similarly to a method call. Comparing the performance of the Object Instantiation category
between Defects4J and BugsInPy, we find that BugsInPy has much worse performance.
Specifically, Object Instantiation is the second-best performing category in terms of Top-5
and Top-10 in Defects4J. Meanwhile, in BugsInPy, the Object Instantiation category per-
forms the worst, far different from the category’s performance in Defects4J. It is possible
that the different pattern in the object instantiation between Python and Java results in the
worse performance in BugsInPy.

147 Page 32 of 50 Empir Software Eng (2022) 27: 147

https://github.com/pandas-dev/pandas/commit/27b713ba677869893552cbeff6bc98a5dd231950
https://github.com/pandas-dev/pandas/commit/27b713ba677869893552cbeff6bc98a5dd231950

Fig. 6 Interval statistic for every subset fault category in (a) Defects4J and (b) BugsInPy using Tarantula.
The color of the bar indicate the faults that are localized on the specific interval. For example, there are 16%
of faults that are localized in Top-5 for the Loop category in BugsInPy

Fig. 7 Changes to fix fault in Mockito 23, type addition

Page 33 of 50 147Empir Software Eng (2022) 27: 147

Fig. 8 Changes to fix fault in Closure 112, type implemented interface modification

5.3 On the impact of potential biases toward SBFL techniques

The set of faults in BugsInPy does not bias the results toward a particular SBFL tech-
nique. We also investigate whether the set of faults in BugsInPy bias the results towards a
particular technique. To analyze the impact of this potential bias, we conduct an additional
evaluation to check this hypothesis. For this purpose, we apply the five SBFL techniques
for each category of fault subset in BugsInPy (e.g., Method Call, Conditional, Assignment,
etc.). Table 19 shows the results in the three most commonly found categories of faults (i.e.,
Method Call, Assignment, and Conditional). We find that the results of the evaluation on
each fault category are inline with the previous finding, where we found that the Tarantula
SBFL technique performs the best but does not have a statistically significant difference
compared to Barinel and Ochiai. Considering that we have the same findings in the evalu-
ation using the whole dataset and using the subset of the dataset, we believe that the set of
faults in BugsInPy does not bias the results towards a particular technique.

5.4 On the effect of fault categories toward SBFL performance

The category of faults in BugsInPy affects the performance of SBFL technique. We
are also interested in whether the different category of faults in BugsInPy has any effect
on the performance of the SBFL technique. To analyze this, we conduct an evaluation by
applying the SBFL techniques on the subset of faults based on the categories described in
Section 5.2. Figure 10 shows the results from Ochiai and DStar SBFL techniques. It shows
the number of faults that are localized into non-overlapping intervals of [1; 5], (5; 10], (10;
200], or (200;...]. For example, [1;5] means that the fault is localized in between 1 to 5
position, (200,...] means that the fault is localized in the position higher than 200, and so
on. We find that in the Type category, followed by the Return, Exception, and Variable,
SBFL techniques localize the highest percentage of faults in top-5 and Top-10 compared to
the other fault categories. We also find that for Object Instantiation and Method Definition
categories, it is more likely that the faults are not localized in the top-5 and top-10 positions.

Fig. 9 Changes to fix fault in Math 12, type implemented interface modification

147 Page 34 of 50 Empir Software Eng (2022) 27: 147

Table 19 Percentage of fault
statements that appear within
Top-5, Top-10, and Top-200 on
different type of faults (repair
action) in best case debugging
scenario

Technique Top-5 Top-10 Top-200

Method Call

Tarantula 15% 22% 56%

Barinel 15% 22% 56%

Ochiai 16% 22% 51%

Dstar 10% 15% 40%

OP 8% 13% 40%

Assignment

Tarantula 13% 21% 56%

Barinel 12% 21% 56%

Ochiai 14% 21% 50%

Dstar 9% 15% 39%

OP 6% 12% 40%

Conditional

Tarantula 11% 18% 55%

Barinel 11% 18% 55%

Ochiai 12% 18% 51%

Dstar 8% 13% 37%

OP 6% 10% 37%
Result in bold indicates dataset
that has higher percentage of
faults that are localized in top-k

These findings indicate that there is a relationship between the category of faults and the
effectiveness of fault localization.

5.5 Implications of Our Findings

Our study corroborates Pearson et al.’s findings on Java real faults, where the relative perfor-
mances of examined SBFL techniques on Python real faults either do not match the findings
of preceding studies on artificial faults or have statistically insignificant differences. This
has several implications for practitioners and researchers:

Seeking the “absolute best” SBFL technique is not so important in practice. For
practitioners, the lack of significant difference in effectiveness between the top 3 popular
SBFL techniques (Tarantula, Barinel, and Ochiai) on real-world Python faults implies that
the selection of SBFL tools should not be overly focused on the technique used, at least for
Python projects. As long as the tools being considered to use one of the top three techniques,
selection efforts should be focused on other factors such as ease-of-use, ability to integrate
with a currently-used development environment, or quality of documentation.

Investigation of other features in addition to code coverage may prove to be ben-
eficial. From our evaluation, we find that the faults in BugsInPy are harder to identify
compared to faults in Defects4J. A cause of this is the occurrences of faults that are dif-
ficult to localize due to different program spectra having the same coverage. Such faults
occur with high enough frequency to cause statistically significant differences between the

Page 35 of 50 147Empir Software Eng (2022) 27: 147

Fig. 10 Interval statistic for every subset fault category in BugsInPy using (a) DStar and (b) Ochiai. The
color of the bar indicate the faults that are localized on the specific interval. For example, there are 23% of
faults that are localized in Top-10 for the Loop category using DStar

147 Page 36 of 50 Empir Software Eng (2022) 27: 147

examined SBFL techniques’ effectiveness on BugsInPy faults and their effectiveness on
Defects4J faults. This highlights a practical issue with the application of these SBFL tech-
niques on real-world projects, and emphasizes the need to research ways to mitigate this
issue. For example, work by (Sohn and Yoo 2017) extend SBFL with code and change
metrics, such as size, age, and code churn. They use machine learning to process SBFL sus-
piciousness values from existing SBFL formulas with code and change metrics as features.
In addition, this also emphasizes the need to examine the prevalence of similar issues in
other popular languages, such as JavaScript, Ruby, or C#. An empirical study of real-world
projects written in those languages will enable researchers and practitioners alike to gain a
more realistic view of the general level of performance that can be expected from current
popular SBFL techniques, particularly in their language of choice.

Appropriate metrics are important when evaluating SBFL techniques. Our exper-
imental results measured using different metrics highlight how the choice of metrics can
affect the ranking of a technique. For example, DStar produces a better result than OP

on top-k and improvement metrics. However, OP EXAM score is lower than DStar, which
indicates that OP performs better. The discrepancy highlights the value of studying the suit-
ability of existing metrics for different use cases to facilitate the usage of consistent metrics
across different studies. This investigation may be conducted with help of practitioners, for
example as with a recent study by (Parnin and Orso 2011) which finds that practitioners
value the absolute ranking of the fault localization result rather than the percentage.

Evaluations of SBFL techniques should be done on real faults.Our finding that newer
techniques do not translate to better performance on real Python faults (and may even be
outperformed by old technique) emphasizes that researchers should evaluate future SBFL
technique developments on real faults, to ensure that the new techniques will indeed per-
form significantly better in real-world situations. This echoes observations in (Pearson et al.
2017a). Since there may be situations in which the collection of a large amount of real faults
is not feasible, it is also important for researchers to gain a better understanding of the char-
acteristics of real faults and ways to generate more realistic artificial faults (along the lines
of works by (Patra and Pradel 2021) and (Tufano et al. 2020)). These will enable researchers
to use artificial faults in SBFL experiments while getting results that more closely mirror
how the techniques will perform on real faults.

There is value in investigating effective SBFL technique combination. Our study
shows that in certain cases, lower-performing SBFL techniques can still produce an
improvement over the higher-performing techniques. This highlights the benefit of allo-
cating more research effort to better ways to combine the techniques. Currently, there
have been some works proposing a combination of SBFL techniques (Xuan and Monper-
rus 2014a; Lucia et al. 2014), as well as augmentation of SBFL techniques, for example
through the addition of PageRank algorithm (Zhang et al. 2017). More broadly, there have
been works proposing combinations involving SBFL and other families of fault localization
techniques. These include a hybrid between SBFL and mutation-based fault localization
(MBFL) proposed by (Pearson et al. 2017b), and a learning-to-rank approach proposed
by (Zou et al. 2019) to combine techniques from different families of fault localization
techniques. However, while such approaches to combine techniques from different families
are reported to yield good results, a limitation of such combination is that some technique
families (particularly MBFL) can be orders of magnitude slower than SBFL, which is a
lightweight technique. Therefore, research into a more effective combination or augmen-

Page 37 of 50 147Empir Software Eng (2022) 27: 147

tation of SBFL will remain important for applications where performance is a priority.
Further, the improvements produced by lower-performing techniques also indicate a need
to better understand how specific fault characteristics benefit one SBFL technique over
another. Improved understanding of the interaction between fault characteristics and dif-
ferent techniques’ performance will also benefit practitioners, as they will be able to make
a more informed choice regarding technique based on their specific project and common
fault types.

5.6 Threats to Validity

A source of threat to construct validity is the suitability of the metrics we use for our
evaluation. A number of metrics have been proposed to measure the performance of
fault localization techniques. To ensure the suitability of the metrics we use, we include
metrics that are frequently used in prior works related to the evaluation of SBFL techniques
such as improvement (Horváth et al. 2020), EXAM score (Abreu et al. 2009b; Naish et al.
2011a; Wong et al. 2016; Pearson et al. 2017a; Le et al. 2015a), top-k (Pearson et al. 2017a;
Horváth et al. 2020; Le et al. 2015a), FLT ranking (Pearson et al. 2017a), and tournament
ranking (Pearson et al. 2017a).

A source of threat to internal validity is the possibility of faults in the SBFL score com-
putation. At the time of writing, we are not aware of any Python libraries that provide the imple-
mentation of SBFL techniques, so we use our own implementation of the techniques. We miti-
gate the risk of incorrect implementation using two approaches. First, for each of the SBFL
techniques, we follow the formula defined in prior works (Abreu et al. 2006; Jones et al.
2001; Wong et al. 2013; Naish et al. 2011b; Abreu et al. 2009b). Second, to avoid errors in
coverage calculation, we utilize coverage.py6, a popular library to compute coverage of a
Python project, before applying the different SBFL techniques to the resulting coverage. We
believe this reduces the threat of potential implementation errors. Further, we have also cre-
ated a replication package so that other researchers can validate our findings. The replication
package is available at https://github.com/soarsmu/Evaluating SBFL BugsInPy.

Another threat to internal validity relates to the construction of the Python fault dataset
(BugsInPy). In Defects4J, to make sure that the fault is isolated, the authors did a pre-
processing step to make sure that each version only contains a single fault. For example,
if version A contains two different faults F1 and F2, version A is divided into two dif-
ferent buggy versions that handle each fault individually. Similarly, in the creation of
BugsInPy, to make sure that each version is isolated, the authors of BugsInPy analyze
whether the fault fixing for every committed version is isolated (i.e., the changes do not
include other fault fixing or cosmetic changes). If the changes to fix the fault are not iso-
lated, the authors of BugsInPy remove the fault from the dataset. For each version of fault,
two authors of BugsInPy labeled the data independently to reduce bias. They only take the
fault version that is labeled as isolated by all the labelers. Considering this approach, we
believe that the threat of the versions that are not isolated for BugsInPy and Defects4J is
minimal.

6https://coverage.readthedocs.io/en/coverage-5.1/

147 Page 38 of 50 Empir Software Eng (2022) 27: 147

https://github.com/soarsmu/Evaluating_SBFL_BugsInPy
https://coverage.readthedocs.io/en/coverage-5.1/

The threat to the external validity of our study relates to the generalizability of our find-
ings. We attempt to mitigate this threat by choosing a dataset that comprises a diverse range
of software and faults. In this work we focus on Python programs and the findings here may
not generalize to other programming languages. We encourage more researchers to replicate
our findings in additional popular languages (e.g., Javascript).

In this study, we find several differences in the performance of SBFL techniques between
BugsInPy and Defects4J datasets, which may indicate that there are some differences in the
fault patterns between these two datasets written in Java and Python, respectively. However,
our findings do not indicate that the differences are only solely due to the programming
language differences. Rather, we find that there are multiple factors that contribute to the
differences (i.e., programming language, faults’ nature, etc.). Future research is encouraged
in this direction.

6 Conclusion and FutureWork

In this work, we perform an evaluation of five popular SBFL techniques on a set of 493
real faults in 17 real-world Python projects. The results of our SBFL technique compari-
son using Python real faults (in BugsInPy) are in line with the findings of (Pearson et al.
2017a) on Java (in Defects4J), which contradicts some claims made in preceding studies
done on artificial faults. Our results suggest that the claim from the previous studies regard-
ing the performance of SBFL techniques does not hold on Python real faults (in BugsInPy).
This emphasizes that future developments of SBFL techniques should be done in conjunc-
tion with evaluations on real faults to ensure new techniques can indeed produce better
performance (as compared to classic ones like Tarantula) in real-world situations. Further,
our finding indicates the need to understand the characteristics of real faults that are cur-
rently not well-represented in artificial fault datasets. Our finding also suggests that given
the choice between tools that implement Tarantula, Barinel, or Ochiai, practitioners can
simply choose based on characteristics such as ease-of-use or documentation quality, due
to the statistically insignificant performance difference between the three techniques. Our
analysis of real faults from the BugsInPy dataset we use reveals that the faults are harder
to identify using SBFL techniques compared to Java’s real faults in Defects4J. This find-
ing (together with the fact that Python is now more popular than Java) highlights that
BugsInPy is a challenging and realistic dataset that SBFL researchers may want to consider
in the future.

We encourage future research to investigate factors and characteristics of defects and
program spectra that most significantly impact SBFL performance. Another direction for
future work is to investigate the most effective way to combine different SBFL techniques
to boost overall performance.

Page 39 of 50 147Empir Software Eng (2022) 27: 147

A
p
p
en

d
ix

Ta
bl
e
20

C
lif
f’
s
d
ef
fe
ct
si
ze

an
d
W
ilc
ox
on

ra
nk
-s
um

te
st
re
su
lts

on
to
p-
k
m
et
ri
cs

in
al
ld

eb
ug
gi
ng

sc
en
ar
io
s
(i
.e
.,
be
st
-c
as
e,
av
er
ag
e-
ca
se
,w

or
st
-c
as
e)

Te
ch
ni
qu
e

Ta
ra
nt
ul
a

B
ar
in
el

O
ch
ia
i

D
St
ar

O
P2

To
p-
5

To
p-
10

To
p-
20
0

To
p-
5

To
p-
10

To
p-
20
0

To
p-
5

To
p-
10

To
p-
20
0

To
p-
5

To
p-
10

To
p-
20
0

To
p-
5

To
p-
10

To
p-
20
0

B
es
t-
ca
se

D
eb
ug
gi
ng

Sc
en
ar
io

Ta
ra
nt
ul
a

−
(-
0.
05
)
N

(-
0.
03
)
N

(-
0.
00
4)

N
(0
.0
7)

N
(0
.0
5)

N
(-
0.
04
)
N

(-
0.
31
)*

S
(-
0.
27
)*

S
(-
0.
28
)*

S
-0
.4
9*

L
-0
.4
2*

M
-0
.3
4*

M
B
ar
in
el

(0
.0
5)

N
(0
.0
3)

N
(0
.0
04
)
N

−
(0
.1
2)

N
(0
.0
8)

N
(-
0.
04
)
N

(-
0.
28
)*

S
(-
0.
26
)*

S
(-
0.
28
)*

S
-0
.4
6*

M
-0
.4
1*

M
-0
.3
3*

M
O
ch
ai

(-
0.
07
)
N

(-
0.
05
)
N

(0
.0
4)

N
(-
0.
12
)
N

(-
0.
08
)
N

(0
.0
4)

N
−

-0
.3
8*

M
(-
0.
32
)*

S
(-
0.
26
)*

S
-0
.5
6*

L
-0
.4
7*

M
(-
0.
32
)*

S
D
St
ar

(0
.3
1)
*
S

(0
.2
7)
*
S

(0
.2
8)
*
S

(0
.2
8)
*
S

(0
.2
6)
*
S

(0
.2
8)
*
S

0.
38
*
M

(0
.3
2)
*
S

(0
.2
6)
*
S

−
(-
0.
28
)*

S
(-
0.
24
)*

S
(-
0.
08
)
N

O
P2

0.
49
*
L

0.
42
*
M

0.
34
*
M

0.
46
*
M

0.
41
*
M

0.
33
*
M

0.
56
*
L

0.
47
*
M

(0
.3
2)
*
S

(0
.2
8)
*
S

(0
.2
4)
*
S

(0
.0
8)

N
−

A
ve
ra
ge
-c
as
e
D
eb
ug
gi
ng

Sc
en
ar
io

Ta
ra
nt
ul
a

−
(-
0.
12
)
N

(-
0.
06
)
N

(-
0.
00
5)

N
(0
.1
0)

N
(0
.0
5)

N
(-
0.
05
)
N

(-
0.
23
)
S

(-
0.
22
)*

S
(-
0.
29
)*

S
-0
.4
4*

M
-0
.4
2*

M
-0
.3
5*

M
B
ar
in
el

(0
.1
2)

N
(0
.0
6)

N
(0
.0
05
)
N

−
(0
.2
1)

S
(0
.1
0)

N
(-
0.
04
)
N

(0
.1
5)

N
(0
.1
8)

S
(0
.2
8)
*
S

-0
.3
8*

M
-0
.3
8*

M
-0
.3
5*

M
O
ch
ai

(-
0.
10
)
N

(-
0.
05
)
N

(0
.0
5)

N
(-
0.
21
)
S

(-
0.
10
)
N

(0
.0
4)

N
−

(-
0.
31
)*

S
(-
0.
27
)*

S
(-
0.
26
)*

S
-0
.5
0*

L
-0
.4
5*

M
(-
0.
34
)*

S
D
St
ar

(0
.2
3)

S
(0
.2
2)
*
S

(0
.2
9)
*
S

(-
0.
15
)
N

(-
0.
18
)
S

(-
0.
28
)*

S
(0
.3
1)
*
S

(0
.2
7)
*
S

(0
.2
6)
*
S

−
(-
0.
28
)
S

(-
0.
26
)
S

(-
0.
09
)
N

O
P2

0.
44
*
M

0.
42
*
M

0.
35
*
M

0.
38
*
M

0.
38
*
M

0.
35
*
M

0.
50
*
L

0.
45
*
M

(0
.3
4)
*
S

(0
.2
8)

S
(0
.2
6)

S
(0
.0
9)

N
−

W
or
st
-c
as
e
D
eb
ug
gi
ng

Sc
en
ar
io

Ta
ra
nt
ul
a

−
(-
0.
14
)
N

(-
0.
08
)
N

(-
0.
00
7)

N
(0
.1
2)

N
(0
.0
6)

N
(-
0.
04
)
N

(-
0.
22
)
S

(-
0.
21
)
S

(-
0.
29
)*

S
-0
.4
3*

M
-0
.3
8*

M
-0
.3
4*

M
B
ar
in
el

(0
.1
4)

N
(0
.0
8)

N
(0
.0
07
)
N

−
(0
.2
4)

S
(0
.1
4)

N
(-
0.
03
)
N

(-
0.
13
)
N

(-
0.
16
)
S

(-
0.
28
)*

S
-0
.3
5*

M
-0
.3
3*

M
-0
.3
4*

M
O
ch
ai

(-
0.
12
)
N

(-
0.
06
)
N

(0
.0
4)

N
(-
0.
24
)
S

(-
0.
14
)
N

(0
.0
3)

N
−

(-
0.
31
)*

S
(-
0.
27
)*

S
(-
0.
26
)*

S
-0
.5
0*

L
-0
.4
3*

M
(-
0.
33
)*

S
D
St
ar

(0
.2
2)

S
(0
.2
1)

S
(0
.2
9)
*
S

(0
.1
3)

N
(0
.1
6)

S
(0
.2
8)
*
S

0.
38
*
M

(0
.3
2)
*
S

(0
.2
6)
*
S

−
(-
0.
29
)
S

(-
0.
23
)
S

(-
0.
08
)
N

O
P2

0.
43
*
M

0.
38
*
M

0.
34
*
M

0.
35
*
M

0.
33
*
M

0.
34
*
M

0.
50
*
L

0.
43
*
M

(0
.3
3)
*
S

(0
.2
9)

S
(0
.2
3)

S
(0
.0
8)

N
−

“*
”
In
di
ca
te
s
th
at

th
e
di
ff
er
en
ce

be
tw
ee
n
th
e
to
p-
k
di
st
ri
bu
tio

n
is
st
at
is
tic
al
ly

si
gn
if
ic
an
t
at

5%
le
ve
l,
i.e
.p

<
0.
05
.“

(n
eg
lig

ib
le
(N

)/
sm

al
l(
S)
/m

ed
iu
m
(M

)/
la
rg
e(
L
))
”
de
no
te

th
e

ca
te
go

ry
of

th
e
ef
fe
ct
si
ze
.

T
he

“-
”
sy
m
bo
l
m
ea
ns

th
at

th
e
te
ch
ni
qu
es

in
th
e
co
lu
m
n
pe
rf
or
m
s
be
tte
r
th
an

th
os
e
in

th
e
ro
w
.F

or
ex
am

pl
e,
co
m
pa
ri
so
n
on

Ta
ra
nt
ul
a
(c
ol
um

n)
w
ith

B
ar
in
el

(r
ow

)
th
at

ha
ve

va
lu
e
(-
0.
05
)
N
,m

ea
ni
ng

Ta
ra
nt
ul
a
is
th
e
w
in
ne
r
w
ith

ou
ts
ig
ni
fi
ca
nt

di
ff
er
en
ce
s
an
d
ne
gl
ig
ib
le
ef
fe
ct
si
ze

147 Page 40 of 50 Empir Software Eng (2022) 27: 147

Ta
bl
e
21

Im
pr
ov
em

en
to

n
SB

FL
Te
ch
ni
qu
es

[∞
,2
01
]→

[2
00
,1
1]

[∞
,2
01
]→

[1
0,
6]

[∞
,2
01
]→

[5
,1
]

[2
00
,1
1]

→
[1
0,
6]

[2
00
,1
1]

→
[5
,1
]

[1
0,
6]

→
[5
,1
]

To
ta
l

Ta
ra
nt
ul
a

B
ar
in
el

0
0

0
0

0
2

2

O
ch
ia
i

35
0

0
6

1
2

44

D
St
ar

85
4

5
12

12
5

12
3

O
P

86
4

5
17

11
1

11
14
2

B
ar
in
el

Ta
ra
nt
ul
a

0
0

0
0

0
0

0

O
ch
ia
i

35
0

0
6

1
2

44

D
St
ar

85
4

5
12

12
5

12
3

O
P

86
4

5
17

11
1

11
14
2

O
ch
ia
i

Ta
ra
nt
ul
a

8
0

0
2

5
4

19

B
ar
in
el

8
0

0
2

5
6

21

D
St
ar

56
1

5
11

14
5

92

O
P

57
1

5
16

21
11

11
1

D
St
ar

Ta
ra
nt
ul
a

11
1

0
2

2
3

17

B
ar
in
el

11
1

0
2

2
5

19

O
ch
ia
i

4
1

0
1

1
0

7

O
P

1
0

0
5

7
6

19

O
P

Ta
ra
nt
ul
a

11
1

0
3

2
3

20

B
ar
in
el

11
1

0
3

2
5

22

O
ch
ia
i

6
1

0
3

2
5

10

D
St
ar

2
0

0
1

0
0

3

Page 41 of 50 147Empir Software Eng (2022) 27: 147

Ta
bl
e
22

Im
pr
ov
em

en
to

n
A
ve
ra
ge
-c
as
e
D
eb
ug
gi
ng

Sc
en
ar
io

[∞
,2
01
]→

[2
00
,1
1]

[∞
,2
01
]→

[1
0,
6]

[∞
,2
01
]→

[5
,1
]

[2
00
,1
1]

→
[1
0,
6]

[2
00
,1
1]

→
[5
,1
]

[1
0,
6]

→
[5
,1
]

To
ta
l

Ta
ra
nt
ul
a

B
ar
in
el

0
0

0
0

0
2

2

O
ch
ia
i

19
0

0
6

1
0

26

D
St
ar

47
3

1
5

6
1

63

O
P

47
3

1
9

9
2

71

B
ar
in
el

Ta
ra
nt
ul
a

0
0

0
0

0
0

0

O
ch
ia
i

19
0

0
6

1
0

26

D
St
ar

47
3

1
5

6
1

63

O
P

47
3

1
9

9
2

71

O
ch
ia
i

Ta
ra
nt
ul
a

3
0

0
1

4
0

8

B
ar
in
el

3
0

0
1

4
2

10

D
St
ar

32
0

1
2

7
2

44

O
P

32
0

1
7

11
3

54

D
St
ar

Ta
ra
nt
ul
a

5
0

0
2

2
0

9

B
ar
in
el

5
0

0
2

2
2

11

O
ch
ia
i

3
0

0
0

1
0

4

O
P

0
0

0
5

4
1

10

O
P

Ta
ra
nt
ul
a

6
0

0
2

1
0

9

B
ar
in
el

6
0

0
2

1
2

11

O
ch
ia
i

4
0

0
1

1
0

6

D
St
ar

1
0

0
1

0
0

2

147 Page 42 of 50 Empir Software Eng (2022) 27: 147

Ta
bl
e
23

Im
pr
ov
em

en
to

n
W
or
st
-c
as
e
D
eb
ug
gi
ng

Sc
en
ar
io

[∞
,2
01
]→

[2
00
,1
1]

[∞
,2
01
]→

[1
0,
6]

[∞
,2
01
]→

[5
,1
]

[2
00
,1
1]

→
[1
0,
6]

[2
00
,1
1]

→
[5
,1
]

[1
0,
6]

→
[5
,1
]

To
ta
l

Ta
ra
nt
ul
a

B
ar
in
el

0
0

0
0

0
2

2

O
ch
ia
i

13
0

0
4

1
0

18

D
St
ar

36
2

1
3

5
0

47

O
P

36
2

1
5

8
1

53

B
ar
in
el

Ta
ra
nt
ul
a

0
0

0
0

0
0

0

O
ch
ia
i

13
0

0
4

1
0

18

D
St
ar

36
2

1
3

5
0

47

O
P

36
2

1
5

8
1

53

O
ch
ia
i

Ta
ra
nt
ul
a

3
0

0
0

3
0

6

B
ar
in
el

3
0

0
0

3
2

8

D
St
ar

26
0

1
1

6
1

35

O
P

26
0

1
3

9
2

41

D
St
ar

Ta
ra
nt
ul
a

5
0

0
1

1
0

7

B
ar
in
el

5
0

0
1

1
2

9

O
ch
ia
i

3
0

0
0

1
0

4

O
P

0
0

0
2

3
1

6

O
P

Ta
ra
nt
ul
a

6
0

0
2

1
0

9

B
ar
in
el

6
0

0
2

1
2

11

O
ch
ia
i

4
0

0
1

1
0

6

D
St
ar

1
0

0
1

0
0

2

Page 43 of 50 147Empir Software Eng (2022) 27: 147

Table 24 Prior Results Comparison on Average-case Scenario

No. Previous comparisons on Java or C
artificial faults

Defects4J Results 2017a BugsInPy Results

Winner > Loser Agree? Effect size Agree? Effect size

1. Ochiai > Tarantula∗ (insig.) -0.01 (N) (insig.) 0.04 (N)

2. Barinel > Ochiai (Abreu et al. 2009b) (insig.) 0.01 (N) (insig.) -0.04 (N)

3. Barinel > Tarantula (Abreu et al. 2009b) (insig.) -0.0002 (N) (insig.) 0.001 (N)

4. OP > Ochiai (Naish et al. 2011a) (insig.) 0.03 (N) no 0.11 (N)

5. OP > Tarantula† (insig.) 0.02 (N) no 0.16 (S)

6. DStar > Ochiai‡ (insig.) 0.002 (N) no 0.11 (N)

7. DStar > Tarantula∗∗ (insig.) -0.001 (N) no 0.15 (S)

∗(Le et al. 2013; Le et al. 2015b; Naish et al. 2011a; Wong et al. 2016; Xuan and Monperrus 2014b)
‡(Naish et al. 2011a; Moon et al. 2014) ‡(Le et al. 2015b; Wong et al. 2016)
∗∗(Le et al. 2015b; Wong et al. 2016; Ju et al. 2014)
1Whether the results agrees indicates p-value: p<0.05, (p ≥ 0.05).
1Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

Table 25 Prior Results Comparison on Worst-case Scenario

No. Previous comparisons on Java or C artificial faults Defects4J Results 2017a BugsInPy Results

Winner> Loser Agree? Effect size Agree? Effect size

1. Ochiai > Tarantula∗ (insig.) -0.005 (N) (insig.) 0.02 (N)

2. Barinel > Ochiai (Abreu et al. 2009b) (insig.) 0.005 (N) (insig.) -0.02 (N)

3. Barinel > Tarantula (Abreu et al. 2009b) (insig.) 6.4E−6 (N) (insig.) 0.0009 (N)

4. OP > Ochiai (Naish et al. 2011a) (insig.) 0.03 (N) (insig.) 0.04 (N)

5. OP > Tarantula† (insig.) 0.02 (N) (insig.) 0.06 (N)

6. DStar > Ochiai‡ (insig.) -0.0008 (N) (insig.) 0.04 (N)

7. DStar > Tarantula ∗∗ (insig.) -0.005 (N) (insig.) 0.07 (N)

∗(Le et al. 2013; Le et al. 2015b; Naish et al. 2011a; Wong et al. 2016; Xuan and Monperrus 2014b)
†(Naish et al. 2011a; Moon et al. 2014) ‡(Le et al. 2015b; Wong et al. 2016)
∗∗(Le et al. 2015b; Wong et al. 2016; Ju et al. 2014)

Whether the results agrees indicates p-value: p<0.05, (p ≥ 0.05).

Cliff’s d indicates effect size: large (L), medium (M), small (S), negligible (N)

References

Abreu R, Van Gemund AJ (2009) A low-cost approximate minimal hitting set algorithm and its application
to model-based diagnosis. In: SARA, vol 9, Citeseer, pp 2–9

Abreu R, Zoeteweij P, Golsteijn R, Van Gemund ArjanJC (2009a) A practical evaluation of spectrum-based
fault localization. J Syst Softw 82(11):1780–1792

Abreu R, Zoeteweij P, van Gemund AJC (2007) On the accuracy of spectrum-based fault localization. In:
Proceedings of the Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION, IEEE Computer Society, USA, TAICPART-MUTATION ’07, pp 89–98

147 Page 44 of 50 Empir Software Eng (2022) 27: 147

Abreu R, Zoeteweij P, Van Gemund AJ (2006) An evaluation of similarity coefficients for software fault
localization. In: 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC’06),
IEEE, pp 39–46

Abreu R, Zoeteweij P, Van Gemund AJ (2009b) Spectrum-based multiple fault localization. In: 2009
IEEE/ACM International Conference on Automated Software Engineering, pp 88–99, IEEE

Ali S, Andrews JH, Dhandapani T, Wang W (2009) Evaluating the accuracy of fault localization techniques.
In: 2009 IEEE/ACM International Conference on Automated Software Engineering, IEEE, PP 76–87

Baah GK, Podgurski A, Harrold MJ (2010) The probabilistic program dependence graph and its application
to fault diagnosis. IEEE Trans Softw Eng 36(4):528–545

Bouillon P, Krinke J, Meyer N, Steimann F (2007) Ezunit: A framework for associating failed unit tests
with potential programming errors. In: International Conference on Extreme Programming and Agile
Processes in Software Engineering, Springer, PP 101–104

Briand LC, Labiche Y, Liu X (2007) Using machine learning to support debugging with tarantula. In: The
18th IEEE International Symposium on Software Reliability (ISSRE’07), pp 137–146

Cantor AB (1996) Sample-size calculations for cohen’s kappa. Psychol Methods 1(2):150
Chaki S, Groce A, Strichman O (2004) Explaining abstract counterexamples. In: Proceedings of the 12th

ACM SIGSOFT twelfth international symposium on Foundations of software engineering, pp 73–82
Chen D, Stolee KT, Menzies T (2019) Replication can improve prior results: A github study of pull request

acceptance. In: 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC),
pp 179–190, IEEE

Cifuentes C, Hoermann C, Keynes N, Li L, Long S, Mealy E, Mounteney M, Scholz B (2009) Begbunch:
Benchmarking for c bug detection tools. In: Proceedings of the 2nd International Workshop on Defects
in Large Software Systems: Held in conjunction with the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2009), pp 16–20

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494
D’Agostino R, Pearson ES (1973) Tests for departure from normality. Empirical results for the distributions

of b2 and
√

b1. Biometrika 60(3):613–622
D’Agostino RB (1971) An omnibus test of normality for moderate and large sample sizes. Biometrika

58(34):1–348
Debroy V, Wong WE, Xu X, Choi B (2010) A grouping-based strategy to improve the effectiveness of fault

localization techniques. In: 2010 10th International Conference on Quality Software, IEEE, pp 13–22
DeVellis RF (2005) Inter-rater reliability. encyclopedia of social measurement. Elsevier Academic Press,

Oxford
Durieux T, Abreu R (2019) Critical review of bugswarm for fault localization and program repair. arXiv

preprint arXiv: 1905.09375
Ghanbari A, Benton S, Zhang L (2019) Practical program repair via bytecode mutation. In: Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp 19–30
Gouveia C, Campos J, Abreu R (2013) Using html5 visualizations in software fault localization. In: 2013

First IEEE Working Conference on Software Visualization (VISSOFT), pp 1–10.,
Hao D, Zhang L, Zhang L, Sun J, Mei H (2009) Vida: Visual interactive debugging. In: 2009 IEEE 31st

International Conference on Software Engineering, IEEE, pp 583–586
He H, Ren J, Zhao G, He H (2020) Enhancing spectrum-based fault localization using fault influence

propagation. IEEE Access 8:18497–18513
Horváth F, Beszédes A, Vancsics B, Balogh G, Vidács L, Gyimóthy T (2020) Experiments with interactive

fault localization using simulated and real users. In: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp 290–300

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments on the effectiveness of dataflow-and
control-flow-based test adequacy criteria. In: Proceedings of 16th International conference on Software
engineering, IEEE, pp 191–200

Jiang J, Xiong Y, Zhang H, Gao Q, Chen X (2018) Shaping program repair space with existing patches and
similar code. In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing
and analysis, pp 298–309

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique.
In: Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering,
pp 273–282

Jones JA, Harrold MJ, Stasko JT (2001) Visualization for fault localization. In: Proceedings of ICSE 2001
Workshop on Software Visualization, Citeseer

Ju X, Jiang S, Chen X, Wang X, Zhang Y, Cao H (2014) Hsfal: Effective fault localization using hybrid
spectrum of full slices and execution slices. J Syst Softw 90:3–17

Page 45 of 50 147Empir Software Eng (2022) 27: 147

http://arxiv.org/abs/1905.09375

Just R (2014) The major mutation framework: Efficient and scalable mutation analysis for java. In:
Proceedings of the 2014 international symposium on software testing and analysis, pp 433–436

Just R, Jalali D, Ernst MD (2014a) Defects4j: A database of existing faults to enable controlled testing
studies for java programs. In: Proceedings of the 2014 International Symposium on Software Testing
and Analysis, Association for Computing Machinery, New York, NY, USA, ISSTA 2014, pp 437–440,
https://doi.org/10.1145/2610384.2628055

Just R, Jalali D, Ernst MD (2014b) Defects4J: A database of existing faults to enable controlled testing
studies for java programs. In: Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pp 437–440

Just R, Parnin C, Drosos I, Ernst MD (2018) Comparing developer-provided to user-provided tests for fault
localization and automated program repair. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Association for Computing Machinery, New York, NY,
USA, ISSTA 2018, pp 287–297. https://doi.org/10.1145/3213846.3213870

Kim J, Lee E (2014) Empirical evaluation of existing algorithms of spectrum based fault localization. In: The
International Conference on Information Networking 2014 (ICOIN2014), IEEE, pp 346–351

Kitchenham B (2008) The role of replications in empirical software engineering—word of warning. Empir
Softw Eng 13(2):219–221

Koca F, Sözer H, Abreu R (2013) Spectrum-based fault localization for diagnosing concurrency faults. In:
IFIP International Conference on Testing Software and Systems, Springer, pp 239–254

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on automated fault localization. In:
Proceedings of the 25th International Symposium on Software Testing and Analysis, pp 165–176

Könighofer R, Bloem R (2011) Automated error localization and correction for imperative programs. In:
2011 Formal Methods in Computer-Aided Design (FMCAD), IEEE, pp 91–100

Le TB, Thung F, Lo D (2013) Theory and practice, do they match? a case with spectrum-based fault
localization. In: 2013 IEEE International Conference on Software Maintenance, pp 380–383.

Le T-DB, Lo D, Li M (2015a) Constrained feature selection for localizing faults. In: 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, pp 501–505

Le T-DB, Lo D, Thung F (2015b) Should i follow this fault localization tool’s output? Empirical Softw.
Engg. 20(5):1237–1274. https://doi.org/10.1007/s10664-014-9349-1

Le T-DB, Thung F, Lo D (2013) Theory and practice, do they match? a case with spectrum-based fault
localization. In: 2013 IEEE International Conference on Software Maintenance, IEEE, pp 380–383

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The manybugs and
introclass benchmarks for automated repair of c programs. IEEE Trans Softw Eng 41(12):1236–1256

Lindsay RM, Ehrenberg AS (1993) The design of replicated studies. The American Statistician 47(3):217–
228

Lo D, Jiang L, Budi A et al (2010) Comprehensive evaluation of association measures for fault localization.
In: 2010 IEEE International Conference on Software Maintenance, IEEE, pp 1–10

Long F, Rinard M (2016) An analysis of the search spaces for generate and validate patch generation systems.
In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), IEEE, pp 702–713

Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y (2005) Bugbench: Benchmarks for evaluating bug detection tools.
In: Workshop on the evaluation of software defect detection tools, vol 5

Lucia, Lo D, Xia X (2014) Fusion fault localizers. In: Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pp 127–138

Martinez M, Monperrus M (2015) Mining software repair models for reasoning on the search space of
automated program fixing. Empir Softw Eng 20(1):176–205

Moon S, Kim Y, Kim M, Yoo S (2014) Ask the mutants: Mutating faulty programs for fault localization. In:
2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, IEEE,
pp 153–162

Naish L, Lee HJ, Ramamohanarao K (2011a) A model for spectra-based software diagnosis. ACM Trans.
Softw. Eng. Methodol. 20(3)

Naish L, Lee HJ, Ramamohanarao K (2011b) A model for spectra-based software diagnosis. ACM
Transactions on software engineering and methodology (TOSEM) 20(3):1–32

Pan K, Kim S, Whitehead EJ (2009) Toward an understanding of bug fix patterns. Empirical Softw. Engg.
14(3):286–315. https://doi.org/10.1007/s10664-008-9077-5

Parnin C, Orso A (2011) Are automated debugging techniques actually helping programmers? In: Proceed-
ings of the 2011 international symposium on software testing and analysis, pp 199–209

Patra J, Pradel M (2021) Semantic bug seeding: a learning-based approach for creating realistic bugs.
In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp 906–918

147 Page 46 of 50 Empir Software Eng (2022) 27: 147

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3213846.3213870
https://doi.org/10.1007/s10664-014-9349-1
https://doi.org/10.1007/s10664-008-9077-5

Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B (2017) Evaluating and improv-
ing fault localization. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pp 609–620.

Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B (2017) Evaluating and improv-
ing fault localization. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), IEEE, pp 609–620

Planning S (2002) The economic impacts of inadequate infrastructure for software testing. National Institute
of Standards and Technology

Rayson P, Berridge D, Francis B (2004) Extending the cochran rule for the comparison of word frequencies
between corpora. In: 7th International Conference on Statistical analysis of textual data (JADT 2004),
pp 926–936

Ren L, Shan S, xu X, Liu (2020) Starin: An approach to predict the popularity of github repository, pp 258–
273. https://doi.org/10.1007/978-981-15-7984-4 20

Renieres M, Reiss SP (2003) Fault localization with nearest neighbor queries. In: 18th IEEE International
Conference on Automated Software Engineering, 2003. Proceedings., IEEE, pp 30–39

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group
differences on the nsse and other surveys: Are the t-test and cohen’sd indices the most appropriate
choices. In: annual meeting of the Southern Association for Institutional Research, Citeseer, pp 1–51

Ruthruff JR, Burnett M, Rothermel G (2005) An empirical study of fault localization for end-user pro-
grammers. In: Proceedings of the 27th International Conference on Software Engineering, pp 352–
361

Saha RK, Lyu Y, Lam W, Yoshida H, Prasad MR (2018) Bugs. jar: a large-scale, diverse dataset of real-
world java bugs. In: Proceedings of the 15th International Conference on Mining Software Repositories,
pp 10–13

Santos A, Vegas S, Uyaguari F, Dieste O, Turhan B, Juristo N (2020) Increasing validity through replication:
an illustrative tdd case. arXiv preprint arXiv: 2004.05335

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in empirical software engineering.
Empir Softw Eng 13(2):211–218

Sobreira V, Durieux T, Madeiral F, Monperrus M, de Almeida Maia M (2018) Dissection of a bug dataset:
Anatomy of 395 patches from defects4j. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, pp 130–140

Sohn J, Yoo S (2017) Fluccs: Using code and change metrics to improve fault localization. In: Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp 273–283

Steimann F, Frenkel M, Abreu R (2013) Threats to the validity and value of empirical assessments of the
accuracy of coverage-based fault locators. In: Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pp 314–324

Tallarida RJ, Murray RB (1987) Chi-square test. In: Manual of pharmacologic calculations, Springer, pp 140–
142

Tomassi DA, Dmeiri N, Wang Y, Bhowmick A, Liu Y-C, Devanbu PT, Vasilescu B, Rubio-González C
(2019) Bugswarm: Mining and continuously growing a dataset of reproducible failures and fixes. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, pp 339–349

Tufano M, Kimko J, Wang S, Watson C, Bavota G, Di Penta M, Poshyvanyk D (2020) Deepmutation: A neu-
ral mutation tool. In: 42nd ACM/IEEE International Conference on Software Engineering: Companion,
ICSE-Companion 2020, Institute of Electrical and Electronics Engineers Inc., pp 29–33

Vancsics B, Szatmári A, Beszédes A (2020) Relationship between the effectiveness of spectrum-based fault
localization and bug-fix types in javascript programs. In: 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE, pp 308–319

Vessey I (1985) Expertise in debugging computer programs: A process analysis. International Journal of
Man-Machine Studies 23(5):459–494

Wen M, Chen J, Wu R, Hao D, Cheung S-C (2018) Context-aware patch generation for better automated
program repair. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
IEEE, pp 1–11

Widyasari R, Sim SQ, Lok C, Qi H, Phan J, Tay Q, Tan C, Wee F, Tan JE, Yieh Y, et al (2020) Bugsinpy:
a database of existing bugs in python programs to enable controlled testing and debugging studies.
In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp 1556–1560

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics, Springer,
pp 196–202

Wong E, Wei T, Qi Y, Zhao L (2008) A crosstab-based statistical method for effective fault localization. In:
2008 1st international conference on software testing, verification, and validation, IEEE, pp 42–51

Page 47 of 50 147Empir Software Eng (2022) 27: 147

https://doi.org/10.1007/978-981-15-7984-4_20
http://arxiv.org/abs/2004.05335

Wong WE, Debroy V, Gao R, Li Y (2013) The dstar method for effective software fault localization. IEEE
Trans Reliab 63(1):290–308

Wong WE, Debroy V, Golden R, Xu X, Thuraisingham B (2011) Effective software fault localization using
an rbf neural network. IEEE Trans Reliab 61(1):149–169

Wong WE, Debroy V, Surampudi A, Kim H, Siok MF (2010) Recent catastrophic accidents: Investigating
how software was responsible. In: 2010 Fourth International Conference on Secure Software Integration
and Reliability Improvement, IEEE, pp 14–22

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software fault localization. IEEE Trans
Softw Eng 42(8):707–740

Wright CS, Zia TA (2011) A quantitative analysis into the economics of correcting software bugs. In:
Computational Intelligence in Security for Information Systems, Springer, pp 198–205

Xia X, Bao L, Lo D, Li S (2016) “automated debugging considered harmful” considered harmful: A user
study revisiting the usefulness of spectra-based fault localization techniques with professionals using
real bugs from large systems. In: 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp 267–278, IEEE

Xie X, Chen TY, Kuo F-C, Xu B (2013) A theoretical analysis of the risk evaluation formulas for spectrum-
based fault localization. ACM Transactions on Software Engineering and Methodology (TOSEM)
22(4):1–40

Xie X, Liu Z, Song S, Chen Z, Xuan J, Xu B (2016) Revisit of automatic debugging via human focus-tracking
analysis. In: Proceedings of the 38th International Conference on Software Engineering, pp 808–819

Xuan J, Monperrus M (2014a) Learning to combine multiple ranking metrics for fault localization. In: 2014
IEEE International Conference on Software Maintenance and Evolution, pp 191–200, IEEE

Xuan J, Monperrus M (2014b) Test case purification for improving fault localization. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 52–63

Zhang M, Li X, Zhang L, Khurshid S (2017) Boosting spectrum-based fault localization using pagerank. In:
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp 261–272

Zou D, Liang J, Xiong Y, Ernst MD, Zhang L (2019) An empirical study of fault localization families and
their combinations. IEEE Trans Softw Eng 47(2):332–347

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Ratnadira Widyasari is a Ph.D. candidate at the School of Com-
puting and Information Systems, Singapore Management University.
She received her bachelor’s degree and master’s degree in Computer
Science from Bandung Institute of Technology. Her main research
interest is automated debugging.

147 Page 48 of 50 Empir Software Eng (2022) 27: 147

David Lo is a Professor and Director of the Information Systems
and Technology Cluster, School of Computing and Information Sys-
tems, Singapore Management University. His research interest is in
the intersection of software engineering, cybersecurity and data sci-
ence, encompassing socio-technical aspects and analysis of different
kinds of software artefacts, with the goal of improving software
quality and security and developer productivity. He has won more
than 15 international research and service awards including 6 ACM
SIGSOFT Distinguished Paper Awards and the 2021 IEEE TCSE
Distinguished Service Award. He has served in more than 30 orga-
nizing committees, including serving as general/program co-chair of
ICSE 2025, ESEC/FSE 2024, MSR 2022, ASE 2020, SANER 2019,
ICSME 2018, etc. He is also serving on the editorial boards of a
number of journals including IEEE Transactions on Software Engi-
neering, Empirical Software Engineering, and IEEE Transactions of
Reliability. He is an IEEE Fellow (2022), ASE Fellow (2021), and
ACM Distinguished Member (2019).

Affiliations

Ratnadira Widyasari1 ·Gede Artha Azriadi Prana1 · Stefanus Agus Haryono1 ·
Shaowei Wang2 ·David Lo1

Gede Artha Azriadi Prana
arthaprana.2016@smu.edu.sg

Stefanus Agus Haryono
stefanusah@smu.edu.sg

Shaowei Wang
shaowei.wang@umanitoba.ca

David Lo
davidlo@smu.edu.sg

1 School of Computing and Information Systems, Singapore Management University, 80 Stamford Rd,
Stamford, 178902, Singapore

2 Department of Computer Science, University of Manitoba, Winnipeg, Canada

147 Page 50 of 50 Empir Software Eng (2022) 27: 147

http://orcid.org/0000-0001-8190-5458
mailto: arthaprana.2016@smu.edu.sg
mailto: stefanusah@smu.edu.sg
mailto: shaowei.wang@umanitoba.ca
mailto: davidlo@smu.edu.sg

	Real world projects, real faults: Evaluating spectrum based fault localization techniques on Python projects
	Citation

	Evaluating SBFL Techniques on Python Projects
	Abstract
	Introduction
	Related Work
	Spectrum-Based Fault Localization
	Faults Benchmark

	Dataset and Methodology
	Fault Dataset
	Experiments Design
	Research Questions
	SBFL techniques
	Methodology

	Results
	RQ-1
	RQ-2
	RQ-3

	Discussion and Implications
	On the fairness of comparison between BugsInPy and Defects4J
	On the potential factors that affect the SBFL results
	On the impact of potential biases toward SBFL techniques
	On the effect of fault categories toward SBFL performance
	Implications of Our Findings
	Threats to Validity*-.2pt

	Conclusion and Future Work
	Appendix
	References
	Affiliations

