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ABSTRACT
The accurate and robust prediction of short-term solar power gen-
eration is significant for the management of modern smart grids,
where solar power has become a major energy source due to its
green and economical nature. However, the solar yield prediction
can be difficult to conduct in the real world where hardware and net-
work issues can make the sensors unreachable. Such data missing
problem is so prevalent that it degrades the performance of deployed
prediction models and even fails the model execution. In this paper,
we propose a novel temporal multi-modal variational auto-encoder
(TMMVAE) model, to enhance the robustness of short-term solar
power yield prediction with missing data. It can impute the missing
values in time-series sensor data, and reconstruct them by consoli-
dating multi-modality data, which then facilitates more accurate
solar power yield prediction. TMMVAE can be deployed efficiently
with an end-to-end framework. The framework is verified at our
real-world testbed on campus. The results of extensive experiments
show that our proposed framework can significantly improve the
imputation accuracy when the inference data is severely corrupted,
and can hence dramatically improve the robustness of short-term
solar energy yield forecasting.

CCS CONCEPTS
• Computing methodologies → Learning latent representations.
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Figure 1: Data Missing and Mismatch among Multiple
Modalities. Dashed lines represent the missing data.

1 INTRODUCTION
Solar power has emerged as one of the most attractive renewable
energy sources for achieving carbon neutrality across the globe.
According to the analytics provided by the IRENA (International
Renewable Energy Agency) [7], solar power is popular in modern
energy architecture due to three reasons: zero carbon emission, de-
creasing installation cost, and increasing capacity. Benefiting from
the mature photo-voltaic technology, the electricity cost for utility-
scale solar panels reached 0.068 USD per Kilowatt-hour(kWh) in
2019, with a remarkable 13% yearly reduction. Meanwhile, solar
power took up nearly a quarter of the total installed renewable
energy capacity in 2019 and the share continues to grow. However,
the yield volatility of solar energy incurs substantial challenges for
power grid operation and management. By nature, solar power gen-
eration is unstable and uncontrollable since it is mainly dominated
by weather conditions. For instance, solar power yield can drop
dramatically when rainstorms take place or cumulus clouds float
above solar panels, blocking the solar radiation [18]. The growing
penetration of unstable solar power supply in our modern elec-
tricity grids may invoke serious disequilibrium between energy
supply and demand, by stressing the power grids, increasing their
operational cost, and challenging their reliability.

To tackle the problem, solar yield prediction methods have been
proposed as a mitigation measure for curbing yield volatility. These
methods fall into two classes, short-term and long-term forecasts. In
this paper, we mainly focus on the former (hours or minutes ahead
prediction). Currently, the common methodologies in this category
include: 1) building physical models of weather conditions and solar
panels [2, 22], 2) employing ground-based sky cameras to capture
hemispherical sky images [23, 25, 32], and 3) developing statistical
models that analyze the historical trends of power generation and
meteorological information [16, 17, 21]. These approaches could be
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generally categorized as single-modality methods, analyzing either
the graphic info of the sky or the numerical data of the environment.
Recently, the emerging multi-modal learning scheme applied in
other cross-domain modelings [3, 29, 30], such as language-vision,
has been attempted in the solar yield prediction field [31] and
achieved higher accuracy than the single-modality approaches.

Despite the progress made through these methods, problems
remain for real-world solar yield prediction. One of the critical
issues is that data of certain modalities can become missing in real-
ity, leading to incomplete inference dataset. The aforementioned
methods all assume that the data used for inference shares the same
dimensions and completeness as the training data. However, in
real-world scenarios, certain data input for deployed models could
be easily lost due to network disconnection, insufficient bandwidth,
hardware failure, battery constraints, or other unknown accidents.
Such data missing is so prevalent that it can damage the predic-
tion performance or even fail the model execution (as discussed in
Section 5).

In this paper, we propose a novel TemporalMulti-ModalVariati-
onal Auto-Encoder (TMMVAE) for solar power yield prediction,
which highlights a more practical setting when input data is incom-
plete. For robustness to incomplete data, TMMVAE can impute the
missing values in time-series sensor data and reconstruct them by
consolidating multi-modality data. In specific, it incorporates 1) a
mixture-of-experts variational auto-encodermodule that synergizes
different modalities of data for knowledge fusion and transfer, and
2) a temporal module that implements the temporal relationship
within each modality to further enhance the imputation quality by
considering the contexts. The results of extensive experiments on
the real-world dataset show that our proposed network performs
better than other multi-modality models across various levels of
data incompleteness, including the scenario when one modality
is completely missing. By leveraging the temporal multi-modal
generative model, our system significantly improves the accuracy
of missing data reconstruction. In consequence, it enhances the
performance of downstream tasks for solar yield forecasting in both
accuracy and robustness.

In summary, our main contributions could be listed as below:
• We propose a novel model with capability of imputing im-
perfect multi-modality time-series data. This model could
perform better under various data missing settings.

• We build a dataset from our testbed, including solar energy
yields, sky images, and meteorological data.

• We conduct extensive experiments on short-term forecasting
of solar power generation to verify our proposed model and
achieve more accurate and robust prediction results.

The remainder of the paper is organized as follows: Section 2
introduces the related works; Section 3 provides the overview and
details of TMMVAE; Section 4 shows the data collection; Section 5
presents the evaluation results; and Section 6 summarizes the work
and discusses the future research.

2 RELATEDWORKS
In this section, we describe both physical and data-driven models
applied in solar power forecasting, followed by an overview of the
recent research works on data imputation techniques.

2.1 Solar Power Forecasting
There has been plenty of research works focusing on how to fore-
cast short-term solar power generation. One group uses physical
models [2, 13, 22] that employ the environmental monitoring data
and the statistical information of solar panels, such as the power
conversion efficiency and panel areas. However, these methods are
found unreliable for short-term solar energy prediction [14, 20].

The other approach uses models driven by the numerical and
visual data as shown in Figure 1. Numerical modality includes
meteorological data collected fromweather stations and solar power
generation data acquired from solar panels. Statistical models are
commonly used [16, 17, 21] on numerical modality to capture the
relationship between historical and future solar generation. Visual
modality consists of hemispherical sky images captured by ground-
based fish-eye cameras to depict cloud floating direction, coverage,
and other sky characteristics that can affect solar energy output.
Deep learning-based techniques are often applied here to directly
capture the relationship between visual information and trends of
solar generation [23, 25, 32].

2.2 Data Imputation
The inference data can be missing from time to time due to vari-
ous network or hardware accidents as illustrated in Figure 1. To
strengthen the performance of solar power forecasting, it is neces-
sary to impute the missing values first before we feed them into the
prediction models. Existing solutions of data imputation could be
roughly categorized as matrix factorization, variants of recurrent
neural network (RNN), and generative models.

Temporal regularized matrix factorization [28] decomposes the
multivariate time-series matrix into two smaller ones: the feature
matrix and the latent matrix, for prediction tasks. The standard
matrix completion technique is adopted to impute the missing
values within the matrix.

Variants of RNNs are popular for imputing the missing values in
time-series data [4, 5, 10, 27]. BRITS [4] directly uses a bi-directional
RNN to predict incomplete data without particular assumptions or
weight tuning. To fit with irregularly sampled data, the time decay
factor proposed at [5] is incorporated into hidden state calculation.
However, these methods are only applied on numerical time-series
data imputation.

Another way to treat the data imputation problem is to make use
of generative models. GAIN [26], a generative adversarial network-
based method, uses a generator to recover the missing pieces of
data and a discriminator to identify between imputed and true val-
ues. A hint mechanism is introduced, revealing partial information
to the discriminator to reinforce the adversarial learning process.
An alternative generative model, named variational auto-encoder
(VAE), has also been applied to impute missing data. MIWAE [12]
is a modification over importance-weighted auto-encoder (IWAE)
to fit with missing-at-random data training and can thus impute
incomplete data. HI-VAE [15] is a general framework of VAE to
recover heterogeneous randomly missing observations by analyz-
ing different continuous and discrete data distributions. To avoid
Kullback-Leibler (KL) divergence loss dominating the whole evi-
dence lower bound (ELBO) loss with incomplete training data, the
ELBO loss is modified to solely depend on available observations.
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Figure 2: Architecture overview. The inference data could be randomly missing. We use dashed lines to represent the missing
sky images or sensor data. To tackle this problem, we randomly delete training data and use a temporal mixture-of-experts
of VAEs to encode image modality and numerical modality into their own latent spaces 𝑧𝑚𝑖 and 𝑧𝑚𝑛 , respectively in the first
step. The numerical modality can then be self-reconstructed from 𝑧𝑚𝑛 and cross-reconstructed form 𝑧𝑚𝑖 . The same applies
to the image modality. Next, we calculate KL loss and reconstruction loss to jointly optimize two experts. After training, we
combine the self and cross reconstructed results into the final imputation depending on each modalities’ completeness.

3 FRAMEWORK DESIGN
In this section, we first present the overview of the proposed archi-
tecture (as illustrated in Figure 2), and then describe each of the
main parts in detail.

3.1 Problem Formulation
Mathematically, we define 𝑋 = {𝑥𝑡,𝑚}𝑇,𝑀 as the𝑀 modality time-
series input within a time window size of 𝑇 . In our case, there are
two different modalities: 1) a numerical modality consisting of solar
power generation data and meteorological information, as well as
2) a visual modality containing ground-based sky images.

We assume that our data is randomly missing without any spe-
cific patterns. We use 𝑋𝑂 and 𝑋𝑈 to represent observed and lost
data, respectively, where 𝑋𝑂 ⋂

𝑋𝑈 = ∅ and 𝑋 = 𝑋𝑂 ⋃
𝑋𝑈 . Our

goal is to reconstruct the missing values 𝑋𝑈 as close to the true
values as possible. We then combine it with the observed raw data
𝑋𝑂 to form a new complete input set𝑋 = 𝑋𝑈 ∪𝑋𝑂 . This recovered
input will be fed into the forecasting model for short-term solar
energy yield prediction.

3.2 Architecture Overview
Our proposed framework aims to recover the missing inference data
in order to strengthen the model for the downstream yield predic-
tion task. Our network for data reconstruction utilizes information
from all modalities and captures the temporal relationship within
each modality for better data imputation quality. The imputation
network consists of a mixture-of-experts variational auto-encoder
with the temporal module that imputes the missing data within a

time window. Using data retrieved from the imputation network,
we employ a multi-modality model to finish the task of solar energy
output prediction.

During training, we randomly delete half of observations in
training data samples. The imputation network then generates
the observations and the unseen parts through multiple VAEs. We
calculate the KL loss of latent variables and the reconstruction loss
of both self-reconstructed and cross-reconstructed data with ground
truth. During inference, the model combines two imputation results
over each modalities’ completeness.

In the following subsections, we explain the design of each com-
ponent and how we integrate them into the TMMVAE.

3.3 VAE for Mismatched Data Processing
In the first step, we modify the classical VAE and its training strat-
egy to fit our scenario with missing data. In the classical VAE [8], we
learn the distribution of input data 𝑝 (𝑥) with the help of the latent
variable 𝑧. To do so, we jointly train an inference model 𝑞𝜙 (𝑧 |𝑥)
to approximate the intractable posterior 𝑝 (𝑧 |𝑥) and a generative
model 𝑝𝜃 (𝑧, 𝑥) = 𝑝𝜃 (𝑥 |𝑧)𝑝𝜃 (𝑧) to map the sampled 𝑧 to the corre-
sponding 𝑥 . To train a VAE model, we minimize the negative ELBO
by applying gradient ascent with stochastic back-propagation on
the parameters 𝜃 and 𝜙 :

L(𝑥) = 𝐾𝐿[𝑞𝜙 (𝑧 |𝑥)∥𝑝𝜃 (𝑧)] − E𝑧∼𝑞𝜙 (𝑧 |𝑥) [𝑙𝑜𝑔𝑝𝜃 (𝑥 |𝑧)] . (1)

To tackle the missing data issue, i.e. 𝑥 = {𝑥𝑜 , 𝑥𝑢 }, we factorize our
generative model and inference model accordingly. Our genera-
tive model 𝑝𝜃 (𝑧, 𝑥) = 𝑝𝜃 (𝑥𝑜 |𝑧)𝑝𝜃 (𝑥𝑢 |𝑧)𝑝𝜃 (𝑧) gives both observed
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𝑧!!
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𝑆𝑒𝑙𝑓 𝑅𝑒𝑐𝑜𝑛𝐼𝑚𝑎𝑔𝑒
𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦

𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙
𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦

𝐶𝑟𝑜𝑠𝑠 𝑅𝑒𝑐𝑜𝑛

𝑆𝑒𝑙𝑓 𝑅𝑒𝑐𝑜𝑛

𝐶𝑟𝑜𝑠𝑠 𝑅𝑒𝑐𝑜𝑛

Figure 3:Mixture-of-Experts of VAEs. The 𝑧𝑚𝑖 represents the
latent space of image modality, and 𝑧𝑚𝑛 represents the la-
tent space of numerical modality. Dashed lines depict cross-
reconstruction where data of one modality is generated
from the latent space of the others. Solid lines on the right
side represent the self-reconstruction of one modality from
its own latent space.

and unobserved data. To ensure the generative model learns how
to generate the unobserved information from observed data, we
randomly delete parts of observations in the training stage and
force the generative model to estimate the deleted values. For the
inference model, the latent variable 𝑧 is made to depend only on the
observed attributes 𝑥𝑜 since unobserved environmental variables
will bring unavoidable noises. Following this intuition, we construct
the inference model as 𝑞𝜙 (𝑧 |𝑥) = 𝑞𝜙 (𝑧 |𝑥𝑜 ). We then rewrite the
objective function as follows:

L(𝑥) = 𝐾𝐿[𝑞𝜙 (𝑧 |𝑥𝑜 )∥𝑝𝜃 (𝑧)]−E𝑧∼𝑞𝜙 (𝑧 |𝑥𝑜 ) [𝑙𝑜𝑔𝑝𝜃 (𝑥𝑜 |𝑧)𝑝𝜃 (𝑥𝑢 |𝑧)] .
(2)

The first term forces the inference model 𝑞𝜙 to make the poste-
rior given observed inputs 𝑞𝜙 (𝑧 |𝑥𝑜 ) close to the regular Gaussian
prior 𝑝𝜃 (𝑧). Meanwhile the second term encourages the generative
model to reconstruct our observed and unobserved attributes which
usually requires a richer posterior. This design confers the network
the capability of missing value recovery.

3.4 Enhance VAE with Multi-Modal Learning
In the second step, we use the mixture-of-experts of VAEs to fuse
multiple modalities. Mixture-of-experts variational auto-encoder
[19] uses multiple VAE experts on multiple modalities where each
expert learns the representation of its corresponding modality and
maps it into the latent space. Figure 3 illustrates the structure.

We first construct the inference model for modality𝑚 whose
mission is to take 𝑥𝑚 as its feeds and map them into the latent
space, as in 𝑞𝜙 (𝑧𝑚 |𝑥𝑚). We then modify the generative model into
𝑝𝜃𝑚 (𝑧𝑚, 𝑥1:𝑀 ) = 𝑝𝜃𝑚 (𝑥1:𝑀 |𝑧𝑚)𝑝𝜃𝑚 (𝑧𝑚), where 𝑝𝜃𝑚 (𝑥1:𝑀 |𝑧𝑚) en-
ables the generative model to reconstruct data from not only its own
modality but also others’. This capability of both self- and cross-
reconstruction is especially helpful when data of one modality is
completely lost. We could use other experts to cross-reconstruct the
entire missing modality. The objective function is obtained under
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𝑚
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Figure 4: Temporal Module in VAE. (a) The structure of tran-
sition layer 𝑝𝜃 (𝑧𝑡 |𝑧𝑡−1) which computes the prior latent dis-
tribution recursively. (b) Our inferencemodel 𝑞𝜙 (®𝒛 |®𝒙) which
approximates the posterior latent distribution recursively.

missing data condition following equation 2:

L(𝑥) = 1
𝑀

𝑀∑
𝑚=1

[
𝐾𝐿[𝑞𝜙𝑚 (𝑧𝑚 |𝑥𝑜𝑚)∥𝑝𝜃 (𝑧𝑚)]

− E𝑧𝑚∼𝑞𝜙𝑚 (𝑧𝑚 |𝑥𝑜𝑚) [𝑙𝑜𝑔𝑝𝜃 (𝑥𝑜1:𝑀 |𝑧𝑚)𝑝𝜃 (𝑥𝑢1:𝑀 |𝑧𝑚)]
] . (3)

We average the loss among all the experts with the same assumption
that each modality is comparable to others as in [19].

3.5 Leverage Temporal Information in VAE
In the third step, we leverage the temporal information in time-
series data to improve data regeneration performance. Note that our
observation 𝑥 is a time sequence: ®𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }. To make use
of temporal relations within observation sequences and simplify
the temporal dependency structure, we take the concepts from
state-space model [6, 9] and assume that our latent variable 𝑧 is a
sequence ®𝑧 = {𝑧1, 𝑧2, . . . , 𝑧𝑇 } that follows Markov property and our
observation 𝑥𝑡 at a given time is conditioned only on the state 𝑧𝑡 .
Thus we could derive our generative model as:

𝑝𝜃 (®𝒙, ®𝒛) =
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡 |𝑧𝑡 )𝑝𝜃 (𝑧𝑡 |𝑧𝑡−1) . (4)

The decoders 𝑝𝜃 (𝑥𝑡 |𝑧𝑡 ) of numerical modality and image modality
are project layers and inverse convolution layers, respectively. To
build the transition layer of latent variable 𝑝𝜃 (𝑧𝑡 |𝑧𝑡−1) in the gener-
ative model, we follow the design of gated transition layer in [9]. As
shown in Figure 4a, the transition layer computes the distribution
parameters of the next latent variable conditioned on the current
latent variable and produces a gate component to control the weight
of linearity. The mean of the next prior latent distribution is the
weighted sum of linear and non-linear outputs and the standard
deviation is non-linear output. By doing so, the generative model
can capture both linear and non-linear transition relations in the
latent space.

For inference model, we again follow the Markov property of
latent sequence and decompose the approximated posterior. We
then derive our inference model as:

𝑞𝜙 (®𝒛 |®𝒙) =
𝑇∏
𝑡=1

𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, ®𝑥) . (5)
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To build such an inference model 𝑞𝜙 (®𝑧 | ®𝑥), we follow the mature
design of posterior approximation in [9]. We use a bi-directional
LSTM network and feature extractor to transform the input se-
quence ®𝑥 into forward and backward hidden features ®ℎ𝑓 , ®ℎ𝑏 . Next,
we use a projection layer followed by a Tanh activation layer to
transform the last latent variable into feature 𝑓𝑧𝑡−1 . We take the av-
erage of three features 1

3 (ℎ𝑡,𝑓 +ℎ𝑡,𝑏 + 𝑓𝑧𝑡−1 ) as the combined feature,
and feed it into two projection layers which generates the mean
and scale of posterior latent variables 𝑧𝑡 . Figure 4b illustrates the
module structure.

Following the aforementioned steps, we obtain our temporal
variational auto-encoder that encodes the whole observation se-
quences first, and recursively computes the smoothing posterior
𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, ®𝑥) subsequently, before reconstructing the observation
sequences over the approximated posterior. Its objective function
could be written as:

L =

𝑇∑
𝑡=1

[
𝐾𝐿[𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, ®𝑥)∥𝑝𝜃 (𝑧𝑡 |𝑧𝑡−1)]

− E𝑧∼𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1,®𝑥) [𝑙𝑜𝑔𝑝𝜃 (𝑥𝑡 |𝑧𝑡 )]
] . (6)

3.6 Temporal Multi-Modal Variational
Auto-Encoder (TMMVAE)

In the last step, we develop our final model that fits with incomplete
data and utilizes multi-modality and temporal information.

In this model, we have two modalities: image modality and nu-
merical modality, referred to as𝑚𝑖 and𝑚𝑛 , respectively. At time
index of 𝑡 , the inference model 𝑞𝜙𝑚 (®𝑧 | ®𝑥) absorbs the encoded fea-
ture of the whole observed sequences ®𝑥𝑜𝑚 and the latent variable
from the last step 𝑧𝑚,𝑡−1 to generate the posterior of latent variables.
Then the generative model 𝑝𝜃𝑚 computes the prior of 𝑧𝑚,𝑡 from the
last step 𝑧𝑚,𝑡−1 for KL divergence loss computation. Now we have
two latent spaces, 𝑧𝑚𝑖

for image modality and 𝑧𝑚𝑛
for numerical

modality. We sample from each of the two spaces and pass results to
𝑝𝜃𝑚𝑖

(𝑥𝑚𝑖 ,𝑡 |𝑧𝑚𝑖 ,𝑡 ) for reconstructing the observed and unobserved
images. We then pass the same samples to 𝑝𝜃𝑚𝑛

(𝑥𝑚𝑛,𝑡 |𝑧𝑚𝑛,𝑡 ) for
reconstructing the observed and unobserved numerical data. Note
that if the modality of reconstructed data is the same as that of the
latent space derived from the corresponding inference model, we
call this regeneration process self-reconstruction; Otherwise, we
call it cross-reconstruction. The objective function can be written
according to equations (2,3,6):

L =
1
𝑀

𝑀∑
𝑚=1

𝑇∑
𝑡=1

[
𝐾𝐿[𝑞𝜙𝑚 (𝑧𝑚,𝑡 |𝑧𝑚,𝑡−1, ®𝑥𝑜𝑚)∥𝑝𝜃𝑚 (𝑧𝑚,𝑡 |𝑧𝑚,𝑡−1)]

− E𝑧𝑚,𝑡∼𝑞𝜙𝑚 (𝑧𝑚,𝑡 |𝑧𝑚,𝑡−1,®𝑥𝑜𝑚) [𝑙𝑜𝑔𝑝𝜃 (𝑥𝑜1:𝑀,𝑡 |𝑧𝑚,𝑡 )𝑝𝜃 (𝑥𝑢1:𝑀,𝑡 |𝑧𝑚,𝑡 )]
] .
(7)

During the training process, we randomly mask out parts of train-
ing data to mimic data missing but with ground truth so that we
could calculate the reconstruction error for unobserved data. This
masking technique also helps generalize the model to work well
under different degrees of data incompleteness by capturing the
pattern of both observed and unobserved information. The whole
training process is described by Algorithm 1.

Algorithm 1: Training Process of TMMVAE
Input: Training dataset 𝑋 including numerical data 𝑥𝑚𝑛

and visual data 𝑥𝑚𝑖
, hyper-parameters: learning rate,

weight decay, time window size 𝑇 ;
Output: Model parameters 𝜙, 𝜃 ;
while epoch < MaxEpochs do

Sample ®𝑥𝑚𝑖
, ®𝑥𝑚𝑛

of time length 𝑇 from dataset ;
Randomly mask half of data points and images ;
Generate 𝑧𝑚𝑛

from 𝑞𝜙𝑚𝑛
;

for𝑚 in [𝑚𝑖 ,𝑚𝑛] do
Sample ®𝑧𝑚 from 𝑞𝜙𝑚 (𝑧𝑡 |𝑧𝑡−1, ®𝑥𝑜𝑚) recursively;
Sample ®𝑧′𝑚 from 𝑝𝜃𝑚 (𝑧𝑡 |𝑧𝑡−1) recursively;
Compute KL loss of ®𝑧𝑚 and ®𝑧′𝑚 ;
Reconstruct ®̂𝑥𝑚 from 𝑝𝜃𝑚 and ®𝑧𝑚 ;
Compute NLL self reconstruction loss ;
if 𝑚 ==𝑚𝑖 then

Cross reconstruct ®̂𝑥𝑚 from 𝑝𝜃𝑚 and ®𝑧𝑚𝑛
;

else
Cross reconstruct ®̂𝑥𝑚 from 𝑝𝜃𝑚 and ®𝑧𝑚𝑖

;
end
Compute NLL cross reconstruction loss ;

end
Accumulate loss and update parameters 𝜙, 𝜃 ;
epoch += 1;

end

3.7 Reconstruct the Missing Modality
To recover the lost data in the inference stage, we adopt the pro-
posed TMMVAE. Take numerical data as an example. First, we
embed our captured image data and numerical sensor data into
their own latent spaces. We then derive two samples 𝑧𝑖 and 𝑧𝑛
from the latent spaces of image and numerical modalities, respec-
tively. We can both self-reconstruct the missing numerical data
from samples 𝑧𝑛 of the same modality and cross-reconstruct them
from samples 𝑧𝑖 of the image modality. These two reconstructed
outputs are combined as final imputation results.

A few points are worth noting. Firstly, when the missing ratio
and pattern of two modalities are the same, the accuracy of self-
reconstruction is usually higher than that of cross-reconstruction.
Secondly, when one modality of data is corrupted seriously while
other modalities are fine, we could impute the severely corrupted
modality from others, which provides better imputation quality
than the self-reconstruction process. Following these findings, we
combine the reconstruction results over the completeness of each
modality, 𝑐𝑚 , as:

𝑥𝑚,𝑡 =

{
𝑥𝑚′,𝑡 , 𝑐𝑚,𝑡 = 0
𝑥𝑚,𝑡 , 𝑐𝑚,𝑡 > 0 (𝑚′ ≠𝑚). (8)

3.8 Forecasting Tasks
We build several deep-learning-based models for short-term solar
energy prediction. To demonstrate the effectiveness of multi-modal
learning, we first build single-modality algorithms using either
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visual or numerical modality. For single visual modality methods,
we build a CNN-LSTM-based network as the predictive model. And
for numerical modality methods, we employ two networks that
are either LSTM-based or TCN-based [1]. We then build a multi-
modality model similar to the model used at [31] and we name it as
MM-Pre. MM-Pre incorporates a CNN-LSTMmodule extracting the
context of image sequence, a LSTM module extracting the context
of numerical sequence, and several projection layers transforming
the concatenated context into predictions.

4 DATA COLLECTION
We collect data from weather station sensors, solar panels and
ground-based sky cameras as described in Figure 1. Specifically,
three types of data are collected for solar power yield forecasting:

Solar power generation data. We obtain power generation
data by reading the measurements from smart meters attached to
the solar plants. Data from 32 active solar plants are used in total.
The update frequency is 30 minutes.

Meteorological data. To collect rich and accurate weather in-
formation, we set up a Davis weather station (Vantage Pro2) on
site. The obtained real-time meteorological data has 6 attributes
including temperature, humidity, dew point, rain rate, UV index,
and solar radiation. The update frequency is 1 minute.

Sky images. Ground-based wide-angle cameras could capture
hemispheric sky images that cover a large area. Compared with the
weather data, sky images have two advantages: 1) they could enable
visual analysis on cloud and sun by providing information such as
cloud coverage and sun position sun; 2) they could cover a wider
physical range than weather data which only records single-point
environment. These two strengths render sky images particularly
useful in short-term solar yield prediction.We obtain the sky images
from our collaborator and the update frequency is 1 minute.

To align these information, we average the meteorological data
within a timewindow of 30minutes, and choose the sky image taken
in the middle of the time window. The data missing percentage of
each attribute in dataset is shown in Figure 5. We collect around
five months of data with 5156 data samples in total.

5 EXPERIMENTS
In this section, we first introduce our evaluation metrics and the
compared methods for data imputation. We then describe in detail
the experiments and discuss their results. Finally, we evaluate the
performance of various models applied in forecasting tasks.
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Figure 5: Data missing percentage of each attribute in our
self-collected dataset.

5.1 Evaluation Metrics
We compare methods for data recovery with respect to the error of
data imputation. In numerical modality, there are multiple domains
of data collected, including UV index, rain rate, and power genera-
tion from solar panels. The magnitude and unit of these domains
can vary, so we compute the average relative imputation error over
all domains within each modality. We choose AvgNRMSE for error
evaluation, calculated as:

𝐴𝑣𝑔𝑁𝑅𝑀𝑆𝐸 =
1
𝐹

∑
𝑓

(√ 1
𝑛

∑
𝑛 (𝑥𝑛,𝑚𝑓

− 𝑥𝑛,𝑚𝑓
)2

𝑚𝑎𝑥 (𝑥𝑚𝑓
) −𝑚𝑖𝑛(𝑥𝑚𝑓

)

)
, (9)

where 𝐹 is the total number of features within modality𝑚 , 𝑥 is the
ground truth, and 𝑥 is the imputed value.

5.2 Compared Imputation Methods
We include the methods used for data imputation as below:

Mean. This is to simply fill in the missing data using the average
value of the remaining data within the same modality.

GAIN. This is a generative adversarial model including a discrim-
inator to identify the imputed data from the rest, and a generator
to estimate the true value of the missing data [26].

TMVAE. MVAE is a variational auto-encoder that learns the
joint posterior distribution through the product-of-experts [24].
Following the assumption that the marginal posterior distribution
is Gaussian, the product of Gaussian will be more influenced by
data with higher confidence, or in other words, with lower variance.
We add the same temporal module mentioned in section 3.5 into
MVAE to fit it for time-series data.

TVAE-Num. This is a temporal VAE network that only takes
numerical modality data as its input. We use this network for com-
parison to show that imputation accuracy could be improved by
learning from both image and numerical modalities.

MMVAE. This is a multi-modal VAEwith mixture-of-experts but
without temporalmodelling.We compare thismodel with TMMVAE
to demonstrate the effectiveness of embedded temporal module.

TMMVAE. Our proposed model builds two experts of VAE to-
gether with temporal module to handle numerical modality and
image modality respectively and optimizes them jointly.

5.3 Implementation Details
Our model uses time window of two and a half hours, i.e., the
input sequence length is 5 units long. For feature extractor of visual
modality, we use 5 layers of CNN where each layer is followed by
a Batch Normalization layer and a LeakyReLU activation layer. For
feature extractor of numerical modality, we use one linear layer
without bias to first encode the numerical data at each time step
followed by a LeakyReLU activation layer and a non-linear layer
with bias. The first linear layer without bias helps avoid taking
zero-imputed values as inputs. In each expert, we use a Bi-LSTM
network to encode these features. The transition layer of latent
space contains several projection layers. The Bi-LSTM output and
transition output are combined as a smoothing feature. We use
two projection layers to project this feature to mean and std of the
latent variable, respectively. We then sample z from mean and std
variables by applying the reparameterization technique.
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Input Modality Numerical Modality Missing Percentage
Models Visual Numerical 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mean ✕ ✓ 0.0405 0.0678 0.0976 0.1239 0.1546 0.1870 0.2185 0.2533 0.2889 0.3252
GAIN ✕ ✓ 0.0597 0.0580 0.0575 0.0586 0.0615 0.0661 0.0725 0.0816 0.1270 0.2969
TVAE-Num ✕ ✓ 0.0430 0.0380 0.0372 0.0469 0.0707 0.1028 0.1372 0.1744 0.2046 0.1909
TMVAE ✓ ✓ 0.0428 0.0402 0.0391 0.0385 0.0387 0.0423 0.0536 0.0807 0.1316 0.2522
MMVAE-Self ✓ ✓ 0.0360 0.0355 0.0370 0.0387 0.0421 0.0531 0.0756 0.1151 0.1724 0.2472
MMVAE-Cross ✓ ✓ 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386
MMVAE-Full ✓ ✓ 0.0360 0.0355 0.0370 0.0386 0.0420 0.0530 0.0755 0.1148 0.1688 0.1386
TMMVAE-Self ✓ ✓ 0.0312 0.0317 0.0323 0.0329 0.0340 0.0352 0.0371 0.0410 0.0523 0.2604
TMMVAE-Cross ✓ ✓ 0.1233 0.1233 0.1233 0.1233 0.1233 0.1233 0.1233 0.1233 0.1233 0.1233
TMMVAE-Full ✓ ✓ 0.0312 0.0317 0.0323 0.0330 0.0340 0.0352 0.0371 0.0421 0.0533 0.1233

Table 1: The AvgNRMSE of numerical data imputation using different methods under different data missing percentage. We
randomly remove numerical data points while preserving image data. The best results for each column are highlight in bold.

We normalize the numerical data to zero mean and unit variance.
The training batch size is 64. We use an Adam optimizer with a
learning rate of 0.001 and a step-wise learning rate scheduler to
divide the learning rate by 10 at epoch 50 and 100. The maximum
epoch of training is set as 200, and we save the top-10 models on
numerical data evaluated by the metrics of imputation error.

5.4 Overall Results
To comprehensively demonstrate the model performance on miss-
ing data recovery, we compare the performance of all approaches
across different data missing percentages. In the first experiment,
we only randomly remove parts of the numerical modality and keep
the image modality complete. Then we show the AvgNRMSE value
on all domains of numerical modality for all methods in Table1.

First, we compare the methods that only take numerical modality
as input. GAIN, one of the GAN-based methods, fails to impute
missing data well on corrupted dataset. Although there are more
advanced methods, such as GRUI [11], that could potentially outper-
form GAIN on time-series data, we argue that GAN-based methods
are more unstable and harder to train compared to VAE-based meth-
ods, especially under the unstructured multi-modality data settings.
TVAE-Num could outperform GAIN when numerical data misses
less than 50%, which reflects the potential capability of VAE on
imputation tasks.

Next, we compare the methods that take data from both nu-
merical and visual modalities. TMVAE, employing the product-of-
experts to fuse multiple modalities, fails to outperform TVAE-Num
with single modality. We attribute this performance degradation to
the mechanism of product-of-experts which leads to a latent space
dominated by visual modality when numerical modality is miss-
ing. MMVAE is the mixture-of-experts VAE without the temporal
module, and thus with massively missing data, the model loses its
ability to impute data from available information.

TMMVAE-self represents the model that reconstructs missing
numerical data from observed data of the same modality, while
TMMVAE-cross represents the model that reconstructs missing
numerical data from observed sky images. Interestingly, even if we
preserve sky images and delete only the numerical data, the cross-
reconstruction of numerical data from images still performs worse

10% 20% 30% 40% 50% 60% 70% 80% 90%
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Figure 6: Sky images reconstruction. (a) The MSE of image
reconstruction under different image missing percentages.
(b) Reconstruction of half missing sky images.

than the self-reconstruction approach. This is because only limited
information can be extracted from sky images to represent the
corresponding numerical data. However, when numerical modality
is completely missing, visual modality appears helpful to cross-
reconstruct its data. As results, TMMVAE-Full which combines
both self- and cross-reconstructed data could impute more robustly
compared to TMMVAE-Self and TMMVAE-Cross models.

In the second experiment, we evaluate model performance on im-
age reconstruction by randomly deleting images while preserving
numerical data. By combining the self-reconstructed images and
those cross-reconstructed from numerical modality, TMMVAE-Full
achieves lower reconstruction mean-square-error (MSE) as shown
in Figure 6a. Figure 6b illustrates the reconstruction results of
half missing sky images (deleted images are shown in grey in the
input sequence).

5.5 Sensitivity Analysis
To further analyse the model performance in other cases, we con-
duct sensitivity analysis. In the first experiment, we delete data
from the numerical modality at the block level randomly while
preserving those from the visual modality. Different from the last
experiment where the deletion of data points is completely random,
this experiment will delete all data points collected at time 𝑡 as a
block. We show the results of imputation error on numerical data
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Numerical Modality Missing Percentage
Models 10% 30% 50% 70% 90%

GAIN 0.1143 0.1813 0.2122 0.2490 0.2833
TVAE-Num 0.0904 0.1344 0.1714 0.1996 0.2341
MMVAE-Self 0.0912 0.1404 0.1789 0.2066 0.2342
MMVAE-Full 0.0600 0.0858 0.1049 0.1198 0.1329
TMMVAE-Self 0.0828 0.1299 0.1688 0.1998 0.2391
TMMVAE-Full 0.0531 0.0771 0.0954 0.1088 0.1190

Table 2: The AvgNRMSE of numerical data imputation with
various data missing percentages. We remove the numerical
data block by block randomly while preserving the image
data. The best result in each column is highlighted in bold.

Modality Missing Percentage
Models 10% 30% 50% 70% 90%

TMVAE 0.0662 0.1180 0.1626 0.2035 0.2395
MMVAE-Self 0.0912 0.1404 0.1789 0.2066 0.2342
MMVAE-Full 0.0647 0.1043 0.1455 0.1853 0.2276
TMMVAE-Self 0.0828 0.1299 0.1688 0.1998 0.2391
TMMVAE-Full 0.0538 0.0800 0.1082 0.1447 0.2139

Table 3: The AvgNRMSE of numerical data imputation with
different missing percentages. We remove both numerical
data and image data block by block randomly. The best re-
sult in each column is highlighted in bold.

in Table 2. Compared to the results in Table 1, the imputation error
under the same missing percentage increases since blocked missing
data is harder to impute. When more than half of the data blocks are
missing, GAIN and TMMVAE-self methods fail to perform well, suf-
fering from insufficient information, while TMMVAE-full achieves
better imputation quality by leveraging data from image modality.

We conduct another experiment with data deletion on both vi-
sual and numerical modalities on the block level with the same
percentage steps, and report the imputation error of numerical
data in Table 3. As shown, TMMVAE-full performs more strongly
than other multi-modal VAE-based methods when data of both
modalities are missing.

5.6 Forecasting Tasks
Herein, we first evaluate single- and multi-modality models men-
tioned at Section 3.8 on the task of predicting solar power genera-
tion in next half hour. CNN-LSTM model intakes image modality
data only, LSTM- and TCN-based models use numerical modality
data only, and MM-Pre model utilizes data from both modalities. As
shown in Table 4, the multi-modal learning-based method MM-Pre
achieves the best prediction accuracy compared to single-modality
methods, indicating that sky images are beneficial for short-term
solar energy forecasting.

We then evaluate the data imputation performance of different
models by comparing the forecasting error of short-term yields
when data is missing to various degrees. We randomly remove
both numerical data and image data. Figure 7 illustrates that the

Input Modality Prediction ErrorModels Visual Numerical

CNN-LSTM ✓ ✕ 0.1986
LSTM-based ✕ ✓ 0.0933
TCN-based ✕ ✓ 0.0861
MM-Pre ✓ ✓ 0.0826

Table 4: Four models evaluated for short-term solar yield
prediction. MM-Pre achieves the best prediction accuracy.
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Figure 7: Forecasting AvgNRMSE by different models with
various data missing percentages. Both numerical data and
image data are randomly removed.

forecasting accuracy of the three methods (we do not consider
CNN-LSTM model here since it performs much worse than others)
without any data imputation module drops dramatically. The other
three methods reconstruct the missing parts first before forecasting.
Benefiting from the imputed data, these forecasting models per-
form more robustly with severely corrupted inference data. Among
these results, TMMVAE delivers the most stable and accurate per-
formance.

6 CONCLUSION
In this paper, we propose a new method for data imputation on
multi-modality time-series data, called temporal multi-modal varia-
tional auto-encoder. In the application of short-term solar energy
yield forecasting, the sensor data may become missing from time to
time, leading to prediction performance degradation. With the pro-
posed TMMVAE network, we could recover both missing numerical
sensor data and lost sky images, hence providing more accurate and
robust short-term solar yield prediction. This will in turn enhance
the stability of the modern power grid where renewable energy
plays an increasingly significant role.
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