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Abstract

Multi-hop reasoning has been widely studied
in recent years to obtain more interpretable
link prediction. However, we find in exper-
iments that many paths given by these mod-
els are actually unreasonable, while little work
has been done on interpretability evaluation
for them. In this paper, we propose a unified
framework to quantitatively evaluate the inter-
pretability of multi-hop reasoning models so
as to advance their development. In specific,
we define three metrics, including path recall,
local interpretability, and global interpretabil-
ity for evaluation, and design an approximate
strategy to calculate these metrics using the in-
terpretability scores of rules. Furthermore, we
manually annotate all possible rules and estab-
lish a Benchmark to detect the Interpretability
of Multi-hop Reasoning (BIMR). In exper-
iments, we verify the effectiveness of our
benchmark. Besides, we run nine representa-
tive baselines on our benchmark, and the ex-
perimental results show that the interpretabil-
ity of current multi-hop reasoning models is
less satisfactory and is 51.7% lower than the
upper bound given by our benchmark. More-
over, the rule-based models outperform the
multi-hop reasoning models in terms of perfor-
mance and interpretability, which points to a
direction for future research, i.e., how to bet-
ter incorporate rule information into the multi-
hop reasoning model. Our codes and datasets
can be obtained from https://github.
com/THU-KEG/BIMR.

1 Introduction

Multi-hop reasoning for knowledge graphs (KGs)
has been extensively studied in recent years. It
not only infers new knowledge but also provides
reasoning paths that can explain the prediction re-
sults and make the model trustable. For example,
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Bob Seger Pianist Beethoven Piano

occupation

P106

occupation

P106

instrument

P1303

instrument

P1303

Triple Query: (Bob Seger, instrument, ? )

Chuck Connors Los Angeles Jack Kemp Natural Causes

place of death

P20

place of birth

P19

manner of death

P1196

manner of death

P1196

Triple Query: ( Chuck Connors, manner of death, ? )

Figure 1: Illustration of reasoning paths for link predic-
tion. Although both paths succeed in finding the cor-
rect tail entity, only the upper path is reasonable and
the lower one is unreasonable.

Figure 1 shows two inferred triples and their rea-
soning paths. Conventional KG embedding mod-
els (e.g., TransE (Bordes et al., 2013)) implicitly
find the target entity piano given the query (Bob
Seger, instrument, ?), while multi-hop reasoning
models complete the triple and explicitly output the
reasoning path (the purple solid arrows). Hence,
multi-hop reasoning is expected to be more reliable
in real systems, as we can safely add an inferred
triple to KG by justifying if the path is reasonable.

Most existing multi-hop reasoning models as-
sume that the output paths are reasonable and put
much attention on the performance of link predic-
tion. For example, MultiHop (Lin et al., 2018) uses
reinforcement learning to train an agent to search
over knowledge graphs. The path found by the
agent is considered as a reasonable explanation for
the predicted result. However, after manually label-
ing, we find that more than 60% of the paths are
unreasonable. As shown in the lower part of Figure
1, given a triple query (Chuck Connors, manner

https:// github.com/THU-KEG/BIMR
https:// github.com/THU-KEG/BIMR
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of death, ?), the multi-hop reasoning model finds
the correct tail entity Natural Causes via a reason-
ing path (the purple solid arrows). Although the
model completes the missing triple correctly, this
reasoning path is questionable, as the manner of
death is not related to one’s birth or death city. The
reason for failed interpretability is mainly because
many people are born and died in the same place
Los Angeles, and natural causes are the dominant
death manner. Thus, the path is only statistically
related to the query triple and fails to provide in-
terpretability. In experiments, we find that such
unreasonable paths are ubiquitous in multi-hop rea-
soning models, suggesting an urgent need for an
interpretability evaluation.

In this paper, we propose a unified framework to
automatically evaluate the interpretability of multi-
hop reasoning models. Different from previous
works, which mostly rely on case study (Wan et al.,
2020) to showcase model interpretability, we aim at
quantitative evaluation by calculating interpretabil-
ity scores of all paths generated by models. In
specific, we define three metrics: path recall, local
interpretability, and global interpretability for eval-
uation (see Section 4.2 for details). However, it is
time-consuming to give each path an interpretabil-
ity score since the number of possible paths that
multi-hop reasoning can give is extremely large. To
address this issue, we propose an approximate strat-
egy that abstracts reasoning paths into limited rules
by ignoring entities with only relations left (see
Equation 6 and 7 for details). The total number of
rules obtained in this way is much smaller than the
number of paths, and we assign the interpretability
score of the rule to its corresponding paths.

We explore two methods to give each rule an
interpretability score, namely manual annotation
and automatic generation by rule mining methods.
The former is the focus of this paper. Specifically,
we invite annotators to manually annotate inter-
pretability scores for all possible rules to establish
a manually-annotated benchmark (A-benchmark).
This labeling process also faces a challenge, i.e.,
interpretability is highly subjective and hard to an-
notate. Different annotators may give various ex-
planations. To reduce the variations, we provide
the annotators with a number of interpretable op-
tions rather than asking them to give a direct score.
Besides, for each sample, we ask ten annotators to
annotate and take their average score as the final re-
sult. In addition to A-benchmark, we also provide

benchmarks (R-benchmark) based on rule mining
methods (Meilicke et al., 2019). These benchmarks
use the confidence of the mined rule as the rule’s
interpretability score. This approach is not as accu-
rate as manual annotation but can be generalized to
most KGs automatically.

In experiments, we verify the effectiveness of
our benchmark BIMR. Specifically, we obtain the
interpretability of each model using the sampling
annotation method and compare it with the results
generated by our A-benchmark. The experimental
results show that the gap between them is small,
which indicates the approximate strategy has little
effect on the results. Furthermore, we run nine
representative baselines on our benchmarks. The
experimental results show that the interpretability
of existing multi-hop reasoning models is less sat-
isfactory and is still far from the upper bound given
by our A-benchmark. Specifically, even the best
multi-hop reasoning model is still 51.7% lower
in interpretability than the upper bound. This re-
minds us that in the study of multi-hop reasoning,
we should not only care about performance but
also about interpretability. Moreover, we find that
the best rule-based reasoning method AnyBURL
(Meilicke et al., 2019) significantly outperforms
existing multi-hop reasoning models in terms of
performance and interpretability, which points us
to a possible future research direction, i.e., how to
better incorporate rules into multi-hop reasoning.

2 Related Work

2.1 Multi-Hop Reasoning

Multi-hop reasoning models can give interpretable
paths while performing triple completion. Most of
the existing multi-hop reasoning models are based
on the reinforcement learning (RL) framework.
Among them, DeepPath (Xiong et al., 2017) is the
first work to formally propose and solve the task
of multi-hop reasoning using RL, which inspires
much later work, e.g., DIVA (Chen et al., 2018),
and AttnPath (Wang et al., 2019). MINERVA (Das
et al., 2018) is an end-to-end model with a wide
impact that solves multi-hop reasoning task. On
the basis of this model, M-Walk (Shen et al., 2018)
and MultiHop (Lin et al., 2018) solve the problem
of reward sparsity through off-policy learning and
reward shaping, respectively. In addition, there
are some other models such as the DIVINE (Li
and Cheng, 2019), R2D2 (Hildebrandt et al., 2020),
RLH (Wan et al., 2020) and RuleGuider (Lei et al.,
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Dataset # Entity # Relation # Triple

WD15K 15,817 182 176,524

Table 1: Statistics of WD15K. The three columns de-
note the number of entities, relations and triples, respec-
tively.

2020) models that improve multi-hop reasoning
from the four directions of imitation learning, de-
bate dynamics, hierarchical RL, and rule guidance,
respectively. CPL (Fu et al., 2019) and DacKGR
(Lv et al., 2020) enhance the effect of models by
adding additional triples to KG.

2.2 Rule-based Reasoning

Similar to multi-hop reasoning, rule-based reason-
ing can also perform interpretable triple comple-
tion, except that they give the corresponding rules
instead of specific paths. Rule-based reasoning
can be divided into two categories, namely, neural-
based models and rule mining models. Among
them, neural-based models (Yang et al., 2017;
Rocktäschel and Riedel, 2017; Sadeghian et al.,
2019; Minervini et al., 2020) give the correspond-
ing rules while performing triple completion, while
rule mining models (Galárraga et al., 2015; Om-
ran et al., 2018; Ho et al., 2018; Meilicke et al.,
2019) first mine the rules and then use them for
completion.

2.3 Interpretability Evaluation

Few research work targets interpretability evalua-
tion, although they admit the importance. Most
multi-hop reasoning models rely on case study
(Hildebrandt et al., 2020; Wan et al., 2020)
to present the interpretability quality, while
RuleGuider(Lei et al., 2020) samples tests and com-
putes their differences for evaluation. There are
some works in other areas (Gilpin et al., 2018; Yang
and Kim, 2019; Jhamtani and Clark, 2020) to test
interpretability, but they cannot be directly applied
to multi-hop reasoning tasks for knowledge graphs.

3 Preliminary

Knowledge graph (KG) is defined as a directed
graph KG = {E ,R, T }, where E is the set of enti-
ties,R is the set of relations and T = {(h, r, t)} ⊆
E ×R× E is the set of triples.
Multi-hop reasoning aims to complete KGs
through interpretable link prediction. Formally,
given a triple query (h, r, ?), it needs to not only

predict the correct tail entity t, but also give a
path (h, r, t) ← (h, r1, e1) ∧ (e1, r2, e2) ∧ · · · ∧
(en−1, rn, t) as an explanation.
Rule-based reasoning can be considered as gen-
eralized multi-hop reasoning and can also be eval-
uated on our benchmark. Given a triple query
(h, r, ?), it needs to predict the tail entity t and
give some Horn rules with confidence as an expla-
nation, where the rule f is of the following form:

r(X,Y )← r1(X,A1) ∧ · · · ∧ rn(An−1, Y ). (1)

where capital letters denote variables, r(...)
is the head of the rule, the conjunction of
r1(...), · · · , rn(...) is the body of the rule, and
r(h, r) is equivalent to a triple (h, r, t). In order
to get the same path as the multi-hop reasoning
task, we sort these rules in descending order of
confidence and match them on KG.

4 Benchmark

In order to quantitatively evaluate the interpretabil-
ity of multi-hop reasoning models, we first con-
struct a dataset based on Wikidata (Section 4.1).
After that, we propose a general evaluation frame-
work (Section 4.2). Based on this framework, we
apply an approximation strategy (Section 4.3) and
build benchmarks with manual annotation (Section
4.4) and mined rules (Section 4.5).

4.1 Dataset Construction

We curate an interpretable dataset WD15K based
on Wikidata (Vrandečić and Krötzsch, 2014) as
well as the widely-used FB15K-237 (Toutanova
et al., 2015). We aim to utilize the read friendly
relations in Wikidata, meanwhile remain the enti-
ties from FB15K-237 unchanged. We rely on the
Freebase ID property of each entity in Wikidata to
bridge the two sources and the final statistics of our
dataset WD15K are listed in Table 1. We shuffle it
and use 90%/5%/5% as our training/validation/test
set. Due to space limitations, we put the detailed
steps of dataset construction in supplementary ma-
terials (Appendix A).

4.2 Evaluation Framework

We propose a general framework for quantitatively
evaluating the interpretability of multi-hop reason-
ing models. Formally, each triple (h, r, t) in the
test set is converted into a triple query (h, r, ?).
The model is required to predict t and possible rea-
soning paths. We thus compute an interpretability
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score for the model, which is defined based on three
metrics: Path Recall (PR), Local Interpretability
(LI) and Global Interpretability (GI).

Path Recall (PR) represents the proportion of
triples in the test set that can be found by the model
with at least one path from the head entity to the
tail entity. It is formally defined as

PR =

∑
(h,r,t)∈T test Cnt(h, r, t)

|T test|
, (2)

where Cnt(h, r, t) is an indicator function to denote
whether the model can find a path from h to t. The
function value is 1 if at least one path can be found,
otherwise, it is 0. PR is necessary because, for
most models, not every triple can be found a path
from the head entity to the tail entity. For RL-based
multi-hop reasoning models (e.g., MINERVA), the
beam size is a critical hyper-parameter that has
direct impacts on PR. The larger the beam size is,
the more paths the model can find. In realistic, it,
however, cannot be set to infinite. That is, there
is an upper limit on the number of paths for each
triple query (h, r, ?). On the other hand, there may
not be a path from h to t, or we may not be able to
match a real path on the KG for every rule. This
leads to Cnt(h, r, t) = 0.

Local Interpretability (LI) is used to evaluate
the reasonableness of paths found by the model. It
is defined as

LI =

∑
(h,r,t)∈T test Cnt(h, r, t)S(p)∑

(h,r,t)∈T test Cnt(h, r, t)
, (3)

where p is the best path from h to t found by the
model (the path with the highest score), and S(p)
is the interpretability score of this path which will
be introduced in the following section.

Global Interpretability (GI) evaluates the over-
all interpretability of the model, as LI can only
express the reasonable degree of the path found by
the model, but it fails to consider how many paths
can be found. We define GI as follows:

GI = PR · LI. (4)

We summarize and compare LI and GI. Specifi-
cally, LI can reflect the interpretability of all paths
that can be found, while GI evaluates the overall
interpretability of the model.

4.3 Approximate Interpretability Score
Based on WD15K and the above evaluation frame-
work, we can construct benchmarks to evaluate

the interpretability quantitatively. However, S(p)
in the evaluation framework is difficult to obtain
due to the huge number of paths. Thus, before
the specific construction, some preparation work
is needed, i.e., path collection and approximation
strategy.

Path Collection. This step aims to collect all
possible paths from h to t, so that our evaluation
framework can cover the various outputs of multi-
hop reasoning models. In specific, we first add
reverse triple (t, r−1, h) for each triple (h, r, t) in
the training set. Then, for each test triple (h, r, t)
in WD15K, we use the breadth-first search (BFS)
to search all paths from h to t on the training set
within the length of 3, i.e., there are at most three
relations in the path, which is widely used in multi-
hop reasoning models (e.g., MultiHop). Because
too many hops will greatly increase the search
space and decrease the interpretability. After dedu-
plication, we achieve the final path setP containing
about 16 million paths, which covers all paths that
may be discovered by multi-hop reasoning models.

Approximation Optimization. We propose an
approximate strategy to avoid the impractical an-
notation or computation on the large set of paths
P (i.e., 16 million). Based on observation, we find
that the interpretability of a path mostly comes
from the rules instead of specific entities. We thus
abstract each path p ∈ P into its corresponding
rule f , and use the rule interpretability score S(f)
as the path interpretability score S(p), i.e.,

S(p) ≈ S(f). (5)

Formally, for a path p

(h, r, t)← (h, r1, e1) ∧ (e1, r2, e2) ∧ (e2, r3, t), (6)

we convert it to the following rule f

r(X,Y )← r1(X,A1) ∧ r2(A1, A2) ∧ r3(A2, Y ). (7)

After this conversion, we convert P into a set of
rules F . Because the rules are entity-independent,
the size of F is greatly reduced to 96,019, and we
only need to give each rule f ∈ F an interpretable
score S(f) to build the benchmark.

Next, we will introduce two types of methods to
obtain the rule interpretability score.

4.4 Benchmark with Manual Annotation
We manually label each rule in F with an in-
terpretability score to form a manually-annotated
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benchmark (A-benchmark). The specific build pro-
cess of this benchmark can be divided into two
steps, namely pruning optimization and manual an-
notation. We will detail these two parts separately.

Pruning Optimization. We propose a pruning
strategy in order to save the annotation cost with-
out causing a large impact on the final result. Rule
mining methods can automatically mine rules on
the knowledge graph and give each obtained rule
a confidence score. Our pruning strategy is based
on the assumption that those rules that are not in
the list of rules mined by the rule mining meth-
ods, or those rules with very low confidence, have
much lower interpretability scores. Below we show
confirmatory experiments to verify our assumption.

In our specific implementation, we use Any-
BURL (Meilicke et al., 2019) to mine rules on
our training set and get 36,065 rules FA, where
AnyBURL is one of the best rule mining methods,
achieving the SOTA performance on many datasets.
Based on rules in FA and their confidence scores,
we divide the entire rule set F into three groups,
i.e., high confidence rules (H rules), low confidence
rules (L rules), and other rules (O rules). We ran-
domly sample 500 rules from each group and invite
experts to manually label them with interpretability
scores. The classification criteria of the rules and
the labeling results are shown in Table 2.

From Table 2, we can find that the average inter-
pretability score of L rules is much lower than that
of H rules. Although the average score of O rules
is not as small as that of L rules, they correspond
to too few paths (0.8M), while the number of rules
is relatively large (75,027). Therefore, O rules can
be considered as “long-tail" rules.

In order to save the cost of labeling, and as far
as possible not to affect the final evaluation results,
we only manually label the interpretability score
of H rules. For the rest rules, we use the average
score of this type of rule as their interpretability
score. Specifically, referring to the results in Table
2, we uniformly consider the interpretability score
as 0.005 for all L rules and 0.069 for all O rules

Manual Annotation. Because it is difficult for
annotators to directly annotate the interpretability
score of rules, for every H rule in F , we randomly
sample up to ten corresponding real paths in P for
labeling. Here ten is a trade-off between the evalua-
tion effect and the labeling cost. If some rules have
less than ten real paths in P , we will take all the

H Rules L Rules O Rules

Criteria f ∈ FA ∧ c(f) ≥ 0.01 f ∈ FA ∧ c(f) < 0.01 f /∈ FA

# Rules 15,458 5,534 75,027
# Paths 14.8M 0.7M 0.8M

Avg Score 0.216 0.005 0.069

Table 2: Classification criteria and statistics of the
three types of rules in F , where c(f) is the confidence
score of rule f , # Rules denotes the number of rules, #
Paths denotes the number of paths corresponding to this
type of rule in P and Avg Score denotes the average in-
terpretability score of such rules. 0.01 is the threshold
value used to select rules with low confidence, which is
widely adopted by rule mining methods.

paths for labeling. After that, we use the average
interpretability scores of the paths corresponding
to the rule as the score for this rule. Formally, for a
rule f , its interpretability score is defined as

S(f) =
1

|Pc(f)|
∑

p∈Pc(f)

SA(p), (8)

where Pc(f) are all sampling paths for rule f and
SA(p) is the interpretability score of the path p ob-
tained by manual annotation. It is worth noting that
we cannot annotate the interpretability scores of all
paths in P . For the few paths annotated in Equa-
tion 8, we can directly obtain their S(p) = SA(p),
while for most of the other paths, we use Equation
5 to obtain their approximate interpretability scores.
For the 15,458 H rules in F , we finally get 102,694
relevant real paths. Each rule corresponds to 6.65
real paths on average.

It is a subjective and difficult thing to give an in-
terpretability score for each path directly. In order
to eliminate the influence of subjectivity and make
labeling simple, for every true path, we let the an-
notator choose one of the following three options,
namely reasonable, partially reasonable, and unrea-
sonable. These three options correspond to 1, 0.5,
and 0 points of the interpretability score, respec-
tively. We also try to set the number of options to
2 (reasonable and unreasonable) or 4 (reasonable,
most reasonable, few reasonable, and unreason-
able), but the final labeling accuracy will decrease.
Therefore, we finally adopt the current three-level
interpretability score division. To further reduces
the difficulty of annotation, we use the Graphviz1

tool to convert the abstract path into a picture. An
annotation example is given in Appendix C.

Table 3 shows some cases from our labeled
dataset, where the interpretability score of a rule is

1https://graphviz.org

https://graphviz.org
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Rule: cast member(X,Y )← producer(X,A1) ∧ spouse(A1, Y ) score: 0.0

1 (Veer-Zaara, cast member, Rani Mukherjee)← (Veer-Zaara, producer, Aditya Chopra) ∧ (Aditya Chopra, spouse, Rani Mukherjee) score: 0.0
2 (Victor Victoria, cast member, Julie Andrews)← (Victor Victoria, producer, Blake Edwards) ∧ (Blake Edwards, spouse, Julie Andrews) score: 0.0
3 (The Two Tower, cast member, Peter Jackson)← (The Two Tower, producer, Fran Walsh) ∧ (Fran Walsh, spouse, Peter Jackson) score: 0.0
4 (10, cast member, Julie Andrews)← (10, producer, Blake Edwards) ∧ (Blake Edwards, pouse, Julie Andrews) score: 0.0

Rule: instrument(X,Y )← occupation(X,A1) ∧ uses(A1, Y ) score: 0.9

1 (Sheryl Crow, instrument, guitar)← (Sheryl Crow, occupation, guitarist) ∧ (guitarist, uses, guitar) score: 1.0
2 (Tom Waits, instrument, piano)← (Tom Waits, occupation, pianist) ∧ (pianist, uses, piano) score: 1.0
... ... ...
9 (Carly Simon, instrument, guitar)← (Carly Simon, occupation, guitarist) ∧ (guitarist, uses, guitar) score: 0.5

10 (Bruce Hornsby, instrument, piano)← (Bruce Hornsby, occupation, pianist) ∧ (pianist, uses, piano) score: 1.0

Table 3: Some cases in our labeled dataset (A-benchmark). Every rule corresponds to up to ten paths, each of
which has a manually labeled interpretability score. Each rule also has an interpretability score, which is obtained
by averaging the interpretability scores of the paths it corresponds to.

the average of the scores of the paths it samples.

4.5 Benchmarks with Mined Rules

In addition to A-benchmark, we also build bench-
marks with mined rules (R-benchmarks). Specif-
ically, we use rule mining methods to mine rules
on the training set. These mined rules form a rule
set F∗ (F∗ is FA for AnyBURL). We can use the
confidence of the rule as the interpretability score.
But this will introduce another problem, i.e., there
is no calibration between the rule’s confidence and
interpretability score.

To solve this problem, similar to manual anno-
tation in Section 4.4, we need to use 3 classifica-
tions (reasonable, partially reasonable, and unrea-
sonable) to label the interpretability score of some
rules. We define two thresholds h1 and h2, and the
classification Type(f) of a rule f is defined as:

Type(f) =


unreasonable, c(f) < h1

partially reasonable, h1 ≤ c(f) < h2

reasonable, c(f) ≥ h2

(9)

where c(f) is the confidence score of rule f . We
can regard it as a three-classification task, where the
type of prediction is Type(f), and the golden type
is the annotation result. We use Micro-F1 score
to find the best h1 and h2, i.e., we search the best
h1 and h2 that can get the highest Micro-F1 score.
Finally, for every rules f ∈ F , if f /∈ F∗, S(f) =
0. Otherwise, we can obtain Type(f) according
to the Equation 9, and then get the interpretability
score S(f). Specifically, unreasonable, partially
reasonable and reasonable correspond to 0, 0.5 and
1, respectively.

Discussion The above two types of benchmark-
ing methods target different situations in terms of
accuracy and generalization. On the one hand,
manually annotations bring reliable evaluation but

are costly and limited in specific datasets (i.e.,
WD15K). On the other hand, the automatic rule
mining method can apply to arbitrary KG comple-
tion datasets, while may suffer from inaccurate in-
terpretability scores, as there is no absolute correla-
tion between the confidence and the interpretability
score of the rule.

After obtaining the benchmarks mentioned
above, we perform statistical analysis on them.
For example, we give the distribution of the in-
terpretability scores and the 20 relations with the
highest and lowest interpretability scores. Besides,
we also analyze the relation between interpretabil-
ity scores and confidence scores. Due to space
constraints, we put these contents in Appendix B.

5 Experiments

5.1 Experimental Setup

Models. We choose two types of multi-hop rea-
soning models and rule-based reasoning models to
evaluate their interpretability. For multi-hop reason-
ing, we use the following five models: MINERVA
(Das et al., 2018), MultiHop (Lin et al., 2018), DI-
VINE (Li and Cheng, 2019), R2D2 (Hildebrandt
et al., 2020) and RuleGuider (Lei et al., 2020). For
rule-based reasoning, we evaluate the interpretabil-
ity on the following four models: AMIE+ (Galár-
raga et al., 2015), NeuralLP (Yang et al., 2017),
RuLES (Ho et al., 2018) and AnyBURL (Meilicke
et al., 2019). We choose them because they are
representative models and have well-documented
codes for re-implementation. In particular, Mul-
tiHop, RuleGuider, and RuLES are all based on
knowledge graph embedding models. Referring to
the original paper, we also use several variants. The
content after the model name represents the embed-
ding model used. For example, MultiHop-ConvE

represents the MultiHop model based on ConvE.
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Evaluation Protocol. We target two types of in-
vestigation: link prediction and interpretability
evaluation. Link prediction mainly tests the perfor-
mance of the model on KG completion. For every
triple (h, r, t) in the test set, we can convert it to
a triple query (h, r, ?). Models should give a de-
scending order of the probability that each entity is
the correct tail entity. We use two evaluation met-
rics MRR, and Hits@N (Dettmers et al., 2018) in
experiments. The interpretability evaluation experi-
ment is mainly used to measure the interpretability
of reasoning models. Three evaluation metrics, i.e.,
PR, LI, and GI, are used in this experiment.

Implementation Details. The distributions of
WD15K and FB15K-237 are relatively consistent,
so for all baseline models, if the model has pa-
rameters provided on FB15K-237, we use these
parameters, otherwise we use the default parame-
ters. To avoid the influence of beam size on path
recall as much as possible, for the RL-based mod-
els, we set the beam size to 512, which is four times
the commonly used default value of 128. For rule
mining methods, we set the mining threshold of
confidence and head coverage to 0.001. A lower
threshold allows the method to mine more rules,
which is beneficial to the benchmark introduced in
Chapter 4.5. Besides, we use the Max Aggrega-
tion method proposed by AnyBURL to apply the
mined rules to rule-based reasoning task. From the
original paper of AnyBURL, we can know Max
Aggregation can achieve better results than other
methods on most datasets.

5.2 Results

Table 4 show the experimental results on WD15K
using A-benchmark. For the link prediction experi-
ment, AnyBURL can achieve comparable or better
performance than multi-hop reasoning models.

In terms of interpretability that this paper is more
concerned about, AnyBURL also achieves almost
the best results. From a detailed analysis, Any-
BURL achieves the highest value of 98.9 in the
evaluation metric of PR, which shows that almost
all triples in the test set can be found a real path by
AnyBURL. For multi-hop reasoning models, there
is no big gap with AnyBURL in PR. NeuralLP
achieves the highest LI score among all models
and is much higher than the other models. But
this does not mean that NeuralLP is a highly inter-
pretable model because its PR score is only 10.2. It
achieves a high LI score because it only uses rules

Model MRR @1 @3 @10 PR LI GI

NeuralLP 22.9 19.0 24.6 30.6 10.2 80.4 8.2
AMIE+ - 30.2 40.3 48.7 77.0 42.1 32.4
RuLES-TransE - 44.2 56.3 67.5 92.6 32.9 30.5
RuLES-HolE - 43.9 55.2 66.1 91.7 34.0 31.2
AnyBURL - 45.9 58.0 70.4 98.9 38.4 38.0

MINERVA 42.6 37.5 44.7 51.6 70.7 28.1 19.8
MultiHop-DistMult 50.3 41.8 54.8 66.8 89.4 30.6 27.4
MultiHop-ConvE 37.0 24.3 43.2 63.7 91.2 27.0 24.6
MultiHop-TuckER 32.3 20.9 36.3 57.3 91.3 28.8 26.3
DIVINE 35.8 27.0 40.3 54.1 67.0 33.0 22.1
R2D2 41.6 36.1 45.9 60.8 7.10 31.5 2.2
RuleGuider-DistMult 48.0 38.8 53.0 66.1 89.3 34.3 30.6
RuleGuider-ConvE 47.8 38.0 53.2 66.7 88.7 30.2 26.8
RuleGuider-TuckER 23.4 13.8 28.0 43.2 74.3 33.3 24.7

Upper Bound - - - - 99.9 63.4 63.4

Table 4: Experimental results on WD15K. @1, @3 and
@10 denote Hits@1, Hits@3 and Hits@10 metrics, re-
spectively. All metrics are multiplied by 100. The best
score of rule-based reasoning models is in bold, and the
best score of multi-hop reasoning models is underlined.
Upper Bound denotes the upper bound interpretability
scores given by our A-benchmark.

with high confidence as an explanation. For most
triples, it cannot give rules corresponding to a real
path. This phenomenon of inconsistency between
the evaluation results and the actual interpretability
is why we have to elicit GI, which can reflect the
overall interpretability of the model.

Among all the models, AnyBURL achieves the
highest GI score, which is considerably higher than
the second place. RuleGuider is an improved model
based on MultiHop. It adds the confidence informa-
tion of rules (mined by AnyBURL) to the reward,
which can improve the interpretability of the model.
Judging from the experimental results, such an im-
provement is indeed effective.

In summary, the current multi-hop reasoning
models do have some degree of interpretability.
However, compared with the best rule-based rea-
soning model AnyBURL, multi-hop reasoning
models still have some gaps in terms of inter-
pretability and link prediction performance. This
reveals that the current multi-hop reasoning models
have many shortcomings, and they still lag behind
the best rule-based reasoning model. In the future,
we should investigate how to better incorporate the
mined rules into the multi-hop reasoning model to
achieve better performance and interpretability.

In addition, we also have upper bound scores
given by our A-benchmark in Table 4, i.e., for each
triple, we always choose the path with the highest
interpretability score. We can see that Upper Bound
is much higher than all models, which indicates that
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Model Manual AM RT RH AB Golden

NeuralLP 8.2 8.6 8.6 8.4 9.2 9.3
AMIE+ 32.4 - 17.6 13.0 23.6 26.5
RuLES-TransE 30.5 15.6 - 19.7 22.4 30.4
RuLES-HolE 31.2 15.9 25.4 - 23.1 30.9
AnyBURL 38.0 16.4 21.7 17.1 - 35.9

MINERVA 19.8 0.4 1.8 0.7 5.4 25.3
MultiHop-DistMult 27.4 5.7 5.0 3.2 11.1 29.1
MultiHop-ConvE 24.6 3.2 3.5 1.9 8.9 24.1
MultiHop-TuckER 26.3 3.2 4.1 2.4 10.6 23.9
DIVINE 22.1 3.4 3.6 2.3 11.1 23.4
R2D2 2.2 0.2 0.3 0.2 1.0 2.5
RuleGuider-DistMult 30.6 3.3 2.8 2.1 10.8 30.1
RuleGuider-ConvE 26.8 4.0 3.5 2.8 11.4 29.1
RuleGuider-TuckER 24.7 2.1 1.7 1.2 8.3 26.2

ABS-DIFF-AVG 1.8 18.3 16.7 18.5 11.8 -

Table 5: The interpretability evaluation results using
different benchmarks. All numbers in the table are
GI scores and are multiplied by 100. Manual denotes
benchmark based on manually labeled dataset. AM,
RT, RH and AB denote benchmark with rules mined
from AMIE+, RuLES-TransE, RuLES-HolE and Any-
BURL, respectively. Golden denotes the golden inter-
pretability results. ABS-DIFF-AVG denotes the aver-
age of the absolute value between the interpretability
score of this benchmark and the golden score.

multi-hop reasoning models still have a lot of room
for improvement and needs continued research.

5.3 Manual Annotation vs. Mined Rules

In order to compare the performance between
different benchmarks, all existing models are
tested for interpretability on A-benchmark and R-
benchmarks. In addition, we have some pruning
strategies in the manual annotation. In order to
investigate how much these pruning strategies af-
fect the final evaluation performance, we also give
the golden interpretability scores of the existing
models using a direct evaluation of the sampled
paths. Specifically, for each model to be tested, we
randomly select 300 paths to the correct tail entity
found by the model. After that, we combine and
disorganize all the paths and randomly assign them
to the annotator to label the interpretability. We
use the same three-grade division for labeling as
in Section 4.4. In addition, each path is assigned
to three annotators, and only paths with consistent
results from at least two annotators are kept. If a
model ends up with less than 300 paths, we con-
tinue selection until a sufficient number is reached.

Table 5 shows the results of interpretability eval-
uation with different benchmarks on WD15K. It is
worth noting that some data in the table are miss-
ing because it is not reasonable to use the rules

mined by the rule mining model to evaluate the
model itself. We introduce the ABS-DIFF-AVG
in the last row of the table, which represents the
average of the absolute value between the inter-
pretability score of this benchmark and the golden
score. It can measure the gap between these bench-
marks and the golden truth. From the table, we
can learn that A-benchmark can reflect the real in-
terpretability of the model well, which indicates
that the approximation and pruning strategies do
not have an enormous impact on the final perfor-
mance. For R-benchmarks, they also differ from
each other. The benchmark based on AnyBURL
achieve results closer to those of golden. But they
also have some common points, i.e., the evaluation
is more accurate for rule-based reasoning models
and worse for multi-hop reasoning models.

In summary, A-benchmark can accurately eval-
uate the interpretability of the model. In contrast,
the R-benchmarks cannot provide accurate results.
However, it has some advantages of its own. For
example, it can be applied to other KGs, which has
more generality. In addition, it can provide a ref-
erence indicator for comparison between different
models’ interpretability.

6 Conclusion

Multi-hop reasoning for KGs has been widely stud-
ied in recent years. However, most previous works
are conducted on the assumption that the reasoning
paths are reasonable. As a result, most of them
only care about the model’s performance and ne-
glect the evaluation of path interpretability. In this
paper, we propose a framework to quantitatively
evaluate the interpretability of multi-hop reasoning
models. Based on this framework, we annotate a
dataset to form a benchmark named BIMR that can
accurately evaluate the interpretability. Besides, we
also construct benchmarks with generalization abil-
ity using mined rules. Experimental results show
that our manually-annotated benchmark achieves
similar results to the golden truth, indicating that it
can be used to evaluate the model’s interpretability
automatically. Our experimental results show that
the rule-based model AnyBURL outperforms the
current multi-hop reasoning models in terms of link
prediction performance and interpretability, which
indicates a possible future research direction, i.e.,
how to better incorporate rule information into the
multi-hop reasoning model to improve the perfor-
mance and interpretability.
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Figure 2: The distribution of interpretability scores for
rules in our manually annotated dataset.

A Dataset Construction

The detailed steps for building WD15K are:
(1) We align entities in FB15K-237 to Wikidata2

using Freebase IDs. Almost all entities (98.7%) in
FB15K-237 can be found in Wikidata and these
14,353 entities make up our initial entity set E .

(2) We use every triple (h, r, t) in Wikidata
whose h and t are in E to form a temporary triple
set T ′. For all relations r in T ′, if the number of
triples corresponding to r is greater than 5, we save
them and finally form the relation setR.

(3) For every entity that has more than 10 triples
with entities in E through relations in R, we save
them as the additional entity set E ′. We randomly
select some entities in E ′ and add them to E , which
eventually increases the number of entities in E to
15,817.

(4) We extract (h, r, t) whose h, t ∈ E and r ∈
R from Wikidata as our final triple set T .

B Statistics

B.1 Manual Annotation Dataset

In this section, we give some statistical information
about our manually annotated dataset. Specifically,
our dataset contains a total of 15,458 N rules with
interpretability score, and they are obtained from
the interpretability scores of 102,694 paths. Fig-
ure 2 shows the distribution of the interpretability
scores of these rules. Figure 3 represents the dis-
tribution of the number of paths corresponding to
each rule.

The reasonability of each relation in the knowl-
edge graph is different. For example, the rela-
tion cause of death is difficult to obtain by a

2We use the 20190506 snapshot of Wikidata.
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Figure 3: Distribution of the number of paths sampled
by each rule in our annotation process.

reasonable reasoning path. We calculate the av-
erage value of the interpretability score of the
rules corresponding to each relation. For exam-
ple, for the relation cause of death, we find all the
rules that can derive the relation cause of death
(e.g., cause of death(X,Y ) ← spouse(X,A1) ∧
cause of death(A1, B)). The average of the inter-
pretability of these rules is the value we need. To
avoid the effect of long-tail relations, we only con-
sider relations with at least 10 rules. We give the
20 relations with the highest and lowest average
interpretability scores in Figures 4 and 5, respec-
tively.

B.2 Mined Rules
For the four rule mining models, AMIE+, RuLES-
TransE, RuLES-HolE and AnyBURL, we use them
to perform rule mining on the training set of
WD15K. Figure 6 shows the distribution of the con-
fidence scores of the rules mined by these models.
In addition, we give the joint distribution between
the rule confidence of these models and our manu-
ally labeled interpretability scores in Figure 7. The
joint distribution only calculates rules that appear
in the set of 15,458 N rules we labeled.

C Annotation Example

We give some annotation examples in our annota-
tion process in Figure 8.

D Computing Infrastructure

Our experiments are run on the server with the
following configurations:

• OS: Ubuntu 16.04.6 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz
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Figure 4: The 20 relations with the highest average interpretability scores in our annotation data and their average
scores.
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Figure 5: The 20 relations with the lowest average interpretability scores in our annotation data and their average
scores.

• GPU: GeForce RTX 2080 Ti
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Figure 6: Distribution of confidence scores of rules mined by different rule mining methods on the training set of
WD15K.

Figure 7: The joint distribution between the confidence score of the rules mined by the rule mining tool and the
interpretability score in our labeled data. Specifically, the horizontal coordinate is the confidence score of the rules
mined by each rule mining tool, and the vertical coordinate is the interpretability score in our labeled data.
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Figure 8: Some annotation examples in our annotation process, the annotator needs to judge whether this reasoning
path is reasonable, and choose the correct one among the three options. The green option is the correct answer.
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