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Abstract 
We propose a model to achieve human localization in indoor envi-
ronments through intelligent conversation between users and an 
agent. We investigated the feasibility of conversational localization 
by conducting two studies. First, we conducted a Wizard-of-Oz 
study with N = 7 participants and studied the feasibility of localiz-
ing users through conversation. We identifed challenges posed by 
users’ language and behavior. Second, we collected N = 800 user 
descriptions of virtual indoor locations from N = 80 Amazon Me-
chanical Turk participants to analyze user language. We explored 
the efects of conversational agent behavior and observed that peo-
ple describe indoor locations diferently based on how the agent 
presents itself. We devise “Entity Suitability Scale,” a concrete and 
scalable approach to obtain information to support localization from 
the myriad of indoor entities users mention in their descriptions. 
Through this study, we lay foundation to our proposed paradigm 
of conversational localization. 

CCS Concepts 
• Human-centered computing → Natural language interfaces; 
Empirical studies in HCI . 
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1 Introduction 
Every day, we use location-based services (e.g., Google Maps) to 
know our positions with respect to our surroundings and to search 
for routes to reach our destinations. However, these services be-
come unusable in indoor environments due to their dependency on 
localization technologies like GPS. The lack of sufcient awareness 
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about where we are within complex indoor environments is not 
just an inconvenience, but could even cause anxiety [17], especially 
because people lose orientation more easily indoors [7]. Previously 
proposed sensor-based approaches can localize people in indoor 
environments precisely, but their dependency on the sensing infras-
tructure, the high cost of deployment, incompatibility with existing 
devices, and latency in localization impede their wide adoption 
[11]. 

In this paper, we investigate the feasibility of conversational local-
ization. We ask, “Can we identify a user’s position within a complex 
indoor environment by asking them to describe their surroundings as 
if to a friend or colleague?” We aim to obviate the need for sensing 
infrastructure by delegating efort in sensing the surrounding envi-
ronment to the user; the agent could then focus on processing the 
user-provided information to compute their position. Prior research 
has studied the use of verbal instructions to navigate people [6, 7]. 
But instead of navigation, our work focuses on indoor localization— 
the necessary but often-overlooked precursor to implementing 
wayfnding services. 

We conducted two preliminary studies to investigate the feasi-
bility of conversational localization. First, we conducted a Wizard-
of-Oz study with N=7 participants to investigate how people inter-
act with the hypothetical conversational agent when involved in 
wayfnding and localization tasks within a university campus. The 
study result showed that the agent (i.e., an experimenter disguised 
as a chatbot) could deduce users’ positions with user-provided in-
formation containing location cues. But we also observed that users 
interact using description-rich and unstructured language and men-
tion a wide variety of indoor entities. This suggested that the agent 
must process such raw information and dynamically decide what 
indoor entities are suitable for localization. 

Thus, to further analyze the language people use and to catego-
rize the various indoor entities people mention, we conducted a 
study on Amazon Mechanical Turks (AMT). We collected natural 
language descriptions of diferent indoor locations using 360° tours 
of multiple locations within a university campus from N=80 par-
ticipants. We employed a factorial design to investigate the impact 
of modifying certain agent behaviors on user descriptions. This 
study uncovered interesting fndings about interaction between 
agent features that presented several implications for the design of 
the conversational agent. The fndings suggest that people can be 
guided to identify more useful information. We developed and used 
a Named-Entity-Recognizer (NER) to extract the entities in user-
provided descriptions. We then further classifed them into diferent 
tiers of indoor entities based on their suitability for localization 
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and devised “Entity Suitability Scale”—a scoring system to dynami-
cally categorize and group indoor entities based on their structural, 
visual, semantic, and functional suitability for localization. 

2   Related Work
Conversational      
known as chatbots, have grown prevalent [2]. Utilizing the recent 
advent of technologies to interpret and generate natural language, 
researchers and designers have created an array of conversational 
applications, such as improving education and learning experiences 
[9, 12, 29], providing social and emotional support [13, 19], and cus-
tomer service [32]. These applications set forth a promising premise 
for the efectiveness of chatbots. We thus see an opportunity to 
extend what today’s location-based services ofer to users through 
conversational technology. However, the research domain remains 
under-explored despite the theoretically well-supported potential 
in using natural language in human wayfnding [24, 27]. 

Sensor-based indoor localization. To locate a target’s posi-
tion in the indoor environments, numerous studies have proposed 
solutions that utilize sensors combined with wireless signals (e.g., 
Wi-Fi [4, 22, 30, 34], Ultra-wide Band (UWB) [21, 23, 33], FM signal 
[31], Infrared [16, 35], Ultrasound [1], and RFID tags[18]). These 
solutions use strategically-placed signal access points across the 
area of interest. Through the system installation process, one needs 
to fngerprint the strength of the signal in each unit of the parti-
tioned environment. The system then estimates the location of a 
sensor-carrying target using the signal strength received by the 
sensor or measuring signal transmission and reception timings. 
While these approaches achieve high localization accuracy, imple-
mentation overheads associated with hardware deployment and 
maintenance and labor-intensive on-site surveying impede their 
adoption. 

Instead of utilizing actively emitted signals and sensors, prior 
work has also worked with images collected from camera phones 
[14, 25]. For instance, Ravi et al. [25] made users wear their smart-
phones around their necks as pendants and collected images at 
certain time intervals. Their system compared the collected images 
to stored images with known locations for localization. However, 
this solution still sufers from the overhead of collecting and geo-
graphically tagging images. More recently, Li et al. [14] designed a 
system that localizes users by asking them to capture short videos. 
The system processes video clips and automatically identifes visual 
signage, and estimates the locations of the corresponding points-of-
interest. While using visual landmarks to locate the user position is 
related to our approach, we hand of the responsibility of identify-
ing landmarks to humans. People are better at interpreting visual 
scenes than an artifcial system; as our research shows below, hu-
mans can not only provide signage but are also capable of providing 
other useful landmarks (e.g., presence of a room). 

Routing Instruction Generation. Prior work in architectural 
and urban design sought to understand the roles and signifcance 
of visual landmarks in navigating people [6, 7, 20]. Duckham et al. 
[6] studied ways in providing landmark-based route instructions to 
support people’s wayfnding in unfamiliar outdoor environments, 
and Fellner et al. [7] adapted the approach for indoor environ-
ments and highlighted the importance of distinctive “landmarks” 

Agents. Conversational agents, more popularly

in wayfnding. Ohm et al. [20] studied visual saliency of various 
indoor objects using eye-tracking to identify the objects that grab 
human attention during route-based indoor navigation. However, 
the prior work considered only the situation where the user and the 
system already know the user’s position. Unlike the prior work, we 
focus on localization, which is a precursor to other location-based 
applications like navigation. Our work learns and incorporates the 
signifcance of visual landmarks in conversational localization from 
this body of prior work. 

3 A Feasibility Evaluation of Conversational 
Localization 

Wizard-of-Oz Study Method. We conducted a Wizard-of-Oz 
study to assess the feasibility of localizing a person in the indoor 
environment through a conversation. We recruited (N=7) local 
university students unfamiliar with the indoor study site. Upon 
arrival at the study site, we gave the participants three tasks. 

i. Navigation Task: We instructed each participant to navigate 
from a starting point to a destination. The experimenter physi-
cally guided a participant to the starting point and left them alone. 
The participant then interacted with the conversational agent 
(i.e., the experimenter) via chat on Discord [5]. The task was com-
plete once the participant reached the destination by requesting 
and following navigational instructions from the agent. 
ii. Localization Task: After the Navigational Task, the partic-
ipant was asked to head to a random location within the same 
building. Upon reaching the location, the participant initiated 
a conversation, and the experimenter attempted to locate their 
position. The task simulated the situation where the user does 
not know their location within a building. We instructed the 
participant not to explicitly state the room names/numbers to 
make the task realistically hard. The task was complete when 
the agent identifed the location based on their interaction. 
iii. Localization + Navigation Task: The participant was then 
instructed to move to another random location of their choice in 
the same building. The agent identifed the participant’s location 
through the conversation, just like the Localization Task, then 
supplied a set of navigational instructions to guide the participant 
from their current location to the study site, like the Navigation 
Task. 
The experimenter followed a script (Appendix A) as much as 

possible to imitate the hypothetical chatbot and resorted to using 
their judgement only in case the participant behaved unexpectedly. 
The experimenter used indoor entities in participants’ descriptions 
and foor maps to estimate the participant’s location. 

Result. All the participants were able to complete the three 
tasks, and the experimenter successfully located the participants in 
Localization tasks. We collected 410 chat utterances between the 
participant and the experimenter disguised as a chatbot. N = 215 
were participants’ utterances. In completing each task, participants 
made 8.3 utterances on average (min = 5, max = 14) for the Naviga-
tional Task, 7.7 utterances (min = 3, max = 14) for the Localization 
Task, and 14.9 utterances (min = 7, max = 27) for the combined 
task. 

From the 215 participant utterances, we manually identifed 106 
unique indoor entities. Participants used various phrases to describe 
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Figure 1: An excerpt of the interaction between an agent (i.e., experimenter) and a participant from the Wizard-of-Oz study (Section 3). The 
human experimenter could locate a user using an indoor map and entities extracted from a conversation. We envision a conversational agent 
system that automatically extract indoor entities from user utterances and locate their indoor position. 

these indoor entities (emphasized in the following examples). For 
example, to refer to an open stretch hallway in the study area, 
participants used “open area” (P2) and “passage that leads to the 
toilet and other classrooms” (P3). We observed that participants 
struggled to describe when there was a lack of distinct or familiar 
entities in their surroundings. They would resort to mentioning 
whatever they saw and could name, e.g. “In front of me is a wall” 
(P1) and “to my right is a deadend” (P7). The experimenter thus 
needed to use their judgement and knowledge about the study site 
in addition to foor maps to disambiguate the entities. 

To this end, we developed a custom named-entity-recognizer 
(NER) in Python using the NLTK library [15] to process the user 
descriptions by analysing the participant descriptions from Wizard-
of-Oz study. The NER removed all punctuation from the descrip-
tions and converted them to lower case. It then tokenized the de-
scriptions using NLTK’s regex_tokenizer and tagged the tokens 
with part-of-speech (POS) using NLTK.tag.pos_tag. For example, 
the sentence “I am outside near some empty benches” got con-
verted into [(i, NN), (am, VBP), (outside, IN), (near, IN), 
(some, DT), (empty, JJ), (benches, NNS)], where the second 
element of each tuple represents a POS tag (e.g., NN: a singular 
noun). The script then compared the token sequence to the gram-
mar that we defned; we devised the grammar rules iteratively by 
trial-and-error. Using the grammar, we created a RegexParser in-
stance to parse and chunk the identifed tokens into terms or the 
“named entities”. See Appendix B for more implementation details. 
We describe the evaluation of the NER in section 5.1 below. 

3.1 Measuring Entity’s Suitability for 
Localization 

Indoor entities described in a conversation vary in their usefulness 
for localization. Consider the following description, “To my right 
is a room [...] with glass doors. Behind me is a pillar in the middle of 
the hallway [...]” (from a Section 4 study participant). The NER ex-
tracts entities ["room"], ["glass" ,"doors"], ["pillar"] and 
["hallway"]. As humans, we instinctually perceive a variability 
in the “usefulness” of the diferent entities. E.g., the entity “room” 

would arguably be more useful in localization compared to “hall-
way”. That is, we make a judgement about which pieces of informa-
tion to use for localization and what to ask next in order to refne 
our estimation of the target’s location. This indicates that (i) entities 
could be categorized into tiers based on their suitability for indoor 
localization, and (ii) an autonomous system should be able to rank 
the entities by their suitability so that it can utilize the best entities 
to localize people. 

We compiled the following four dimensions that characterize this 
“usefulness” of entities—which we call “Entity Suitability Scale”—by 
adapting existing literature in architecture, urban planning [17], 
indoor [7] and outdoor localization [6]: 

i. Signage-based imageability: The visual characteristic of a 
useful entity should separate itself from its environment and let 
the user identify it with ease. Such a characteristic is referred as 
“imageability” [17] or “prominence” [7]; highly imageable entities 
possess distinguishable visual, cognitive, semantic, and structural 
elements [28]. Examples of prominent entities include signages 
like room number plates and restaurant signs. 
ii. Permanence: A structure’s permanence afect its suitability 
as a localizational cue. An entity which occupies the same space 
within a foor map for a reasonably long period of time can be 
considered as a permanent. Permanent entities contribute to 
localizational knowledge whereas temporary entities without a 
dedicated location do not [6]. 
iii. Spatial Extent: Narrower the area that the entity occupies, 
more precise the information it provides for locating a target. For 
example, a “shop” can contribute a more precise location than 
an entire “wall” [6, 7]. 
iv. Ease of Mapping: For an agent to utilize entities to localize a 
user, it has to know the entities’ locations. That is, we need to be 
able to identify entities in data sources like foor maps and feed 
them into the system’s locational database. Thus, we consider 
whether the entities can be found on foor maps as one of the 
dimensions. 

In the study described below, we use this scale to investigate 
what entities people mention and how useful they are for indoor 
localization. Note, although some features may be more critical 
in assessing entities’ suitability, we treat the importance of each 
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Feature Question If yes, Else, 
Signage-based Imageability Does the entity have signage? 1 0 
Permanence Is the entity built into the infrastructure or is it connected to some- 1 0 

thing which is built into the infrastructure? 
Spatial extent Is it a decision point?* 1 0 
Ease of mapping Is it on the available foor map? 1 0 

Table 1: Entity Suitability Scale used to assess usefulness of indoor entities for localization. We take a sum to compute entity’s suitability score. 
(* A decision point is entity where a navigational decision can be made. e.g. Turn right at the ATM.) 

feature equally. We come up with a if/then rule for each feature, 
and assign 1-point to an entity if it satisfes the condition (see Table 
1). We then sum up the points to calculate the total suitability score 
of the indoor entity in question. A higher score on Entity Suitability 
Scale thereby indicates better suitability for indoor localization. 

4 AMT Study Method 
We conducted an online study on Amazon Mechanical Turk (AMT) 
to: (i) evaluate our NER script’s accuracy in extracting location enti-
ties, (ii) investigate how people use language to describe unfamiliar 
indoor environments, and (iii) assess suitability of the entities that 
people mention. 

We recruited N=80 participants from AMT to describe indoor 
locations presented in 360° panoramic images. We turned to re-
mote crowdsourcing study due to the current COVID-19 restriction 
which prevented us to conduct an in-situ study. For the study, we 
captured 166 360° images from 24 locations across the university 
campus with an average of six images (min = 5, max = 8) per 
location. The participants used a web browser interface to virtually 
look around the indoor environment of ten locations via pan-and-
zoom interaction—see Appendix C for the task interface. We also 
investigated the diferences in descriptions based on type of indoor 
location and on how the agent presented itself. We adjusted the in-
structions and types of indoor images to study whether how we ask 
the participants to provide the information afected their responses. 
More specifcally, we considered the following three manipulation 
variables: 

i. Presence of Spatial Signage (with-signage vs without-
signage). Presence of salient visual landmarks could afect how 
people describe the indoor environment. We exposed half of our 
participants to indoor images with unique signage (e.g., restau-
rant sign) (with-signage group) and the other half to images 
without such signage (without-signage group). We selected 10 
images with unique signage and 10 images without signage for 
the tasks. 
ii. Disclosure of the Agent Context (friend vs bot). Prior chat-
bot research reported people ofered more information when they 
thought they were talking to a fellow human than a computer 
agent [26]. To study if this verbosity holds in our setting, we 
instructed a half of our participants to imagine that they are 
describing the indoor locations to a friend and the other half to 
think they are describing for a bot. 
iii. Guidance using Example Descriptions (with-example 
vs without-example) We studied the efect of providing an ex-
ample indoor environment description on the elicitation of entity 
information. For half of our participants, we provided an example 

description (with-example) and no such example for the other 
group (without-example). In the instruction for the with-example 
group, the following “good” and “bad” responses were added: “I 
am near Pastamania. It’s next to a food court and I can see a shop 
called Dim Sum. I can also see an escalator.” (good) and “Very like.”, 
“I felt very happy and very involved with this image.”, and “indoor 
shop” (bad). 

To avoid confound due to order efect [8], we opted for a 2 × 2 × 2 
between-subjects design study where we recruited 10 participants 
for each condition. We recruited N=80 participants who were adult 
U.S. residents and had an assignment acceptance rate ≥ 99% on 
AMT with no additional eligibility criterion. We reimbursed US$5 
upon task completion. 

5 AMT Study Result 
5.1 Participant description processing with 

 NER
Our foor maps contained 16 labels corresponding to entities in 
the location of the tours used for the AMT study. One research 
team member manually searched and identifed 566 occurrences 
of the 16 entities in the 800 descriptions. We also ran our NER on 
the descriptions and extracted 99.11% (=561/566) of the manually 
identifed entities (i.e., recall = 0.9911). The NER missed fve of the 
manually tagged entities, four of which contained typographical 
errors and one contained unusual phrasing ("a restaurant that serves 
rice" instead of naming the restaurant). Note that, we did not use 
an of-the-shelf entity tagger [10] as it missed many entities with 
proper nouns in their names (recall = 46.28% or 262/566). In addi-
tion to entities on the foor maps, the NER also extracted various 
other indoor entities mentioned by participants. Overall, the NER 
extracted 4368 phrases from the 800 descriptions. The shortest en-
tity was “TV” and the longest was “long white wall many diferent 
brown doors”. We removed all duplicates and retained 2195 unique 
phrases. People over-mentioned and our NER over-detected enti-
ties, necessitating us to rank them by their suitability. See Section 
5.3 for the analysis. 

5.2 Analysis of language and entities in 
participants’ descriptions 

The participants recognized and described 1,229 entities (that are au-
tomatically extracted) in areas with-signage; this is 56% (=1229/2195) 
of all the entities, suggesting that participants mentioned fewer 
entities in locations without-signage. The diference in the num-
ber of entities mentioned looked more prominent in the absence 
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Figure 2: (a) A dot plot of each condition’s entity count. (b) Inter-
action between spatial signage and agent context factors. People 
tend to mention more entities in the friend context when signage is 
present. (c) Interaction between spatial signage and example factors. 
There is a trend where people mention less entities when signage is 
absent and the instruction does not provide examples. 

Figure 3: A scatter plot showing entity suitability score-entity class 
sizes relationship—raw data in Appendix B. Entities in classes 
like “Shop/Store” are oft-mentioned and suitable for localization. 
Classes like “People” are rarely mentioned and not useful. 

of example. The participants in the with-example group identifed 
slightly more entities (52.3% = 1149/2195) than without-example 
group. The participants in the bot group mentioned slightly fewer 
entities (48.4% = 1062/2195) compared to the friend group. 

We used Generalized Linear Model (GLM) with a log link func-
tion to study whether there are signifcant diferences in entity 
counts between conditions. As our object of analysis was frequency 
data, we refrained from using methods like ANOVA that assume 
continuous data that follows a normal distribution. The result indi-
cated signifcant main efects of agent context (i.e., bot vs friend) 
(χ2(5) = 46.23, p < 0.001) and signifcant interaction between the 
spatial signage and agent context at p < 0.05. We also observed a 
possible trend in interaction between the spatial signage and exam-
ple descriptions at p < 0.1. Due to the presence of interactions, we 
refrained from discussing the main efects. The signifcant interac-
tion between spatial signage and agent context (Fig 2.b) indicated 
that participants mentioned more entities under friend context in 
areas with signage. This partly supported previous fndings [26] 
that people shared more information with fellow humans. But the 
increase seemed to be conditioned on the presence of prominent 
signs in the environment. The possible interaction between spatial 
signage and examples (Fig 2.c) suggested that providing examples 
are helpful in increasing the number of entities in the responses 
particularly in areas without signage. 

5.3 Suitability of Entities for localization 
Participants mentioned a variety of indoor entities ranging from 
precise locational entities such as shops and rooms with names to 
ambiguous entities such as “glass doors” or “potted plants”. Quanti-
fying the suitability scores of all 2,195 entities is a gruelling task. 
We thus turned to a three-step semi-automated process to calculate 
the entities’ suitability: (i) we frst converted the entity phrases to 
comparable numerical vectors using embeddings; (ii) we then clus-
tered the entities into indoor entity classes; fnally, (iii) we manually 
calculated suitability score for each indoor entity class. 

i. Creating Embeddings. The entities that we extracted using 
the NER script are a set of terms; to use an unsupervised cluster-
ing algorithm to group the entities in the next step, we convert 
each term into a vector of real values (i.e., an embedding). We 
created embeddings of the entities using the Universal Sentence 
Encoder [3], which is suitable for encoding sequence of words 
like the extracted entities. 

ii. Unsupervised Clustering. We clustered the entities repre-
sented as embeddings using k-medoid algorithm; through trial-
and-error, we decided to use k = 18 for the number of clusters. 
We then studied the 18 clusters and removed four clusters that 
consisted of typos or were solely populated with descriptive 
parts-of-speech such as adjectives, retaining 14 clusters with 
1806 unique entity phrases in total—i.e., the indoor entity classes. 
iii. Manual Suitability Score Calculation. For each indoor 
entity class, one member of the research team manually calcu-
lated the suitability score, following the process described in 
Section 3.1. (See Appendix D) As a result, each class had a score 
between 1 and 4, where 1 is less suitable and 4 is more suitable 
for informing the user’s indoor location. 

To understand the frequency of entities that people mention and 
how useful that information is in localization, we draw a scatter 
plot where each dot represents an indoor entity class (Fig 3); the 
x-axis represents the entity class’s suitability score and the y-axis 
represents how often the participants mentioned entities in each 
class (See Appendix E for size of each entity class). We split the 
chart into four quadrants to make the following observations: (i) 
entity classes like “Shop/Store” and “ATM/Vending Machine” are 
often-mentioned and useful (top-right quadrant); (ii) entity classes 
like “Room” and “Restaurants” are rarely mentioned but would 
be useful for localization if mentioned (bottom-right), (iii) people 
often mentioned things like “Wall” and “Furniture”, but they are 
less useful (top-left); and (iv) some entities are rarely mentioned 
and not useful (bottom-left). 

6 Discussion and Conclusion 
We demonstrated the feasibility of localizing a person in an indoor 
environment in a conversational manner through our Wizard-of-Oz 
study. We identifed challenges in processing natural language to 
extract information useful for localization. We developed an NER 
with 99% recall and devised the Entity Suitability Scale to measure 
suitabilty for localization. Our work sets forth a foundation for the 
design of the conversational localization system. 

Design Implications. Our AMT study result indicates the po-
tential to improve elicitation of entity information from users by 
manipulating agent behavior. The absence of signage saw less num-
ber of entities in user descriptions. Our system needs to fnd ways 
to nudge people provide information that is useful in areas with less 
signage; guiding people on how to describe the indoor environment 
using examples could be efective. Our result also suggested the 
importance of anthropomorphism to the chatbot design; to elicit 



CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA 

useful information for localization, it would be important to com-
municate with the user so that they would feel they are talking to 
a “friend” rather than an inorganic autonomous agent. The future 
conversational system could use the suitability score combined 
with the frequency of the entity class to inform subsequent lines of 
conversation. For example, if people mention entities which have 
lower suitability scores but are mentioned frequently (e.g., Wall), 
the agent can warn users about the lower suitability using tutorials 
or tips. On the other hand, we also take note of highly suitable 
entities which are rarely mentioned (e.g., Restaurant) and could 
take steps to guide users towards them. We anticipate this approach 
to be useful in indoor environments that possess entities that are 
easy to spot and familiar for us to name (e.g., universities with 
uniquely numbered rooms, shopping malls with legible signage, 
airports with gates with unique numbers) [17]. 

Limitations and Future Work. The Entity Suitability Scale, 
while in congruence with our intuitive understanding of "useful-
ness" of entities, needs to be vetted with more rigorous testing in 
the future. More analysis is also needed in estimating the spatial 
boundaries of entities. Our work focused on investigating the feasi-
bility of localizing a person in the indoor environment using the 
indoor description provided by a user, but we did not study if an 
automated chatbot can handle a natural conversation with a user to 
organically elicit information that is suitable for localization yet. In 
the future, we intend to develop and study the localization capacity 
of the conversational localization system on-site. 
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