
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

Strongly leakage resilient authenticated key exchange, revisited Strongly leakage resilient authenticated key exchange, revisited

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Rongmao CHEN

Yi MU

Willy SUSILO

GUO Fuchun

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
YANG, Guomin; CHEN, Rongmao; MU, Yi; SUSILO, Willy; GUO Fuchun; and LI, Jie. Strongly leakage resilient
authenticated key exchange, revisited. (2019). Designs, Codes and Cryptography. 87, (12), 2885-2911.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7303

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Guomin YANG, Rongmao CHEN, Yi MU, Willy SUSILO, GUO Fuchun, and Jie LI

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7303

https://ink.library.smu.edu.sg/sis_research/7303

Designs, Codes and Cryptography (2019) 87:2885–2911
https://doi.org/10.1007/s10623-019-00656-3

Strongly leakage resilient authenticated key exchange,
revisited

Guomin Yang2 · Rongmao Chen1 · Yi Mu2 ·Willy Susilo2 · Fuchun Guo2 · Jie Li1

Received: 6 September 2018 / Revised: 4 March 2019 / Accepted: 11 June 2019 / Published online: 22 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Authenticated Key Exchange (AKE) protocols allow two (or multiple) parties to authenticate
each other and agree on a common secret key, which is essential for establishing a secure
communication channel over a public network. AKE protocols form a central component
in many network security standards such as IPSec, TLS/SSL, and SSH. However, it has
been demonstrated that many standardized AKE protocols are vulnerable to side-channel
and key leakage attacks. In order to defend against such attacks, leakage resilient (LR-) AKE
protocols have been proposed in the literature. Nevertheless, most of the existing LR-AKE
protocols only focused on the resistance to long-term key leakage, while in reality leakage
of ephemeral secret key (or randomness) can also occur due to various reasons such as the
use of poor randomness sources or insecure pseudo-random number generators (PRNGs). In
this paper, we revisit the strongly leakage resilient AKE protocol (CT-RSA’16) that aimed to
resist challenge-dependent leakage on both long-term and ephemeral secret keys. We show
that there is a security issue in the design of the protocol and propose an improved version
that can fix the problem. In addition, we extend the protocol to a more general framework that
can be efficiently instantiated under various assumptions, including hybrid instantiations that
can resist key leakage attacks while preserving session key security against future quantum
machines.

Keywords Authenticated key exchange · Key leakage · Weak randomness

Mathematics Subject Classification 94A60 · 14G50

1 Introduction

Key distribution is one of the fundamental security problems in network security. In order to
protect the communications between two (or multiple) network entities using cryptographic

Communicated by C. Blundo.

This paper is an extended version of a preliminary work published in the proceedings of CT-RSA 2016 [11].
In this version, we fix a security flaw in the protocol presented in [11] and extends the protocol to a more
general framework.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-019-00656-3&domain=pdf

2886 G. Yang et al.

Fig. 1 Side-channel/secret-leakage attacks against AKE

methods, a shared secret key needs to be established among those parties. Since Diffie and
Hellman [16] introduced their seminal key exchange protocol, which is also the first public
key cryptosystem, many authenticated key exchange (AKE) protocols have been proposed
and deployed in various network security standards such as IPSec, SSL/TLS, SSH, etc.

In the design of a typical AKE protocol, such as the SIG-DH protocol (i.e., ISO/IEC IS
9789-3) [10,20] and the Internet Key Exchange (a.k.a. SIGMA) protocol [27] for IPSec, it is
usually considered that a user holds a long-term secret key and generates a fresh ephemeral
secret key in each AKE session. The long-term key is for user authentication purpose while
the ephemeral key ensures the freshness and uniqueness of each session key. In the design
of many traditional AKE protocols, it is usually assumed that the long-term secret key is
unreachable by active adversaries while the ephemeral secret key used in a session is hidden
from passive adversaries that however may obtain the long-term secret key (i.e., forward
secrecy). However, the advances of various side-channel [7,23,26,35] and memory attacks
[1,24] voided the aforementioned assumptions underlying the traditional AKE designs. In
such attacks (illustrated in Fig. 1), the adversary is able to learn some imperfect information
of the user secrets when they are stored in memory and/or used during computation. We
should note that the secret leakage we considered in this paper is different from the exposure
of an entire long-term or ephemeral secret key that has been considered in some existing
AKE security models (e.g., CK [10] and eCK [28]). In particular, we are interested in the
situation that one of those keys is completely exposed to the adversary while the other key is
partially leaked.

1.1 Capturing key leakage in AKE

There have been a few works on the modeling and construction of leakage-resilient AKE
[3,4,19,32]. However, there are some limitations in these early works. The general approach
for modeling secret leakage in a security protocol is that in the adversarial game, in addition
to the normal black-box interaction with an honest party executing the protocol, the attacker
can also learn some partial information of a user secret via an abstract leakage function f
which simulates the real key leakage attacks by different means (e.g., timing, electromagnetic
radiation, etc.). Meanwhile, the de facto security definition of AKE requires that the real
session key of the challenge AKE session (i.e., target session chosen by the adversary) is

123

Strongly leakage resilient authenticated key exchange, revisited 2887

indistinguishable from a randomly chosen key. However, such a security definition brings
a problem under the leakage setting. During the execution of the challenge session, the
adversary can make use of the leakage oracle by encoding the available information of the
challenge session into a leakage function and obtain partial information of the real session
key. This would allow the adversary to trivially win the adversarial game defined in the
security model. The previous security definitions for leakage-resilient AKE, e.g., [4,19,32,
39], bypassed such a problem by considering only challenge-independent leakage. Namely,
the adversary cannot make any leakage query that involves a leakage function f related to
the challenge session. Specifically, in those models, the adversary is disallowed to make any
leakage query during (or after in [32]) the execution of the challenge session. This approach
indeed bypasses the problem, but it also puts some strong restrictions on the adversary’s
capability in making leakage queries. It is worth noting that inspired by the work in [25],
Alawatugoda et al. [3] modeled after-the-fact leakage for AKE protocols. Their proposed
model, named bounded after-the-fact leakage eCK model (BAFL-eCK), captures leakage of
the long-term secret key during and after the challenge session. However, the BAFL-eCK
model has implicitly assumed that the long-term secret has split-state since otherwise their
security notion is unachievable.

Moreover, the aforementioned leakage-resilient security notions for AKE only focused
on leakage of the long-term secret key. However, the leakage of the ephemeral secret key (or
randomness) could also happen in practice due to various reasons. First of all, the key leakage
attacks (e.g., various kinds of side-channel attacks) against the long-term secret key can also
be performed against the ephemeral secret key. Moreover, the ephemeral key leakage could
also happen due to other reasons such as the use of a poor randomness source or an insecure
pseudo-random number generator (PRNG) that produces weak or predictable random coins
[30,37,40].

Motivated by the limitations in the existing LR-AKE models and constructions, Chen et
al. [11] proposed a new AKE security model, named challenge-dependent leakage-resilient
eCK (CLR-eCK), to capture the challenge-dependent leakage of both long-term and ephemeral
secret keys, and a newAKE protocol that aimed to achieve their security goals. Subsequently,
they also extended their work from the relative/bounded leakage setting to the auxiliary input
setting [12]. However, the model under the auxiliary input setting presented in [12] is non-
adaptive, which means the adversary is required to commit all the leakage functions at the
beginning of the adversarial game. On the other hand, the model under the relative leakage
setting given in [11] considers an adaptive adversary. Hence, the two models given in [11]
and [12] are incomparable.

1.2 Our results

In this paper, we revisit the CLR-eCK secure AKE construction presented in [11] and show
that there is a security problem in the design of the protocol. Specifically, we show that
the protocol is insecure when the adversary is allowed to make some challenge-dependent
leakage queries that are permitted in the model given in [11]. We then present an improved
protocol that can fix the problem.1

In addition, we present a more generic framework for the construction of CLR-eCK secure
AKE protocols. Compared with the original construction given in [11], the new framework
allows more flexible instantiations under various assumptions. Specifically, we show that the

1 It is worth noting that the identified problem is not applicable to [12] due to the reason that the leakage
model considered in [12] is non-adaptive.

123

2888 G. Yang et al.

Table 1 Comparison with existing leakage-resilient AKE protocols

Protocols Round Relative leakageb Security AKE models

lsk esk

eSIG-DH [4] 3 (1 − ε) 0 w/ RO BRM-CK [4]

Enc-DH [19] 3 (1 − ε) 0 w/o RO LR-CK [19]

MO [32] 2 (1/4 − ε) 0 w/o RO LR-eCK [32]

π [3] 2 (1/n − ε) 0 w/o RO BAFL-eCK [3]

Our framework 2a (1/4 − ε) (1 − ε) w/o RO CLR-eCK

aIn some cases, our protocol could be only one-round (e.g., Sects. 4.4.1 and 4.4.2).
b The “Relative Leakage” column indicates the leakage ratio of a secret key.We use lsk to denote the long-term
secret key and esk the ephemeral secret key. In [3], the secret key is split into n parts

extended framework allows concrete instantiations under a sole number theoretic assump-
tion, as well as hybrid instantiations that can resist key leakage attacks and provide forward
secrecy against (future) quantummachines. A comparison between our framework and exist-
ing leakage-resilient AKE protocols is given in Table 1.

1.3 Related work

Traditional AKE security notionsBellare and Rogaway (BR) [5] introduced the first formal
security notion for AKE which captured the requirements that a secure session key must be
indistinguishable from a randomly chosen key and session keys established in multiple AKE
sessions must be independent. The BR model and its extensions are nowadays the de facto
security notion for AKE. In particular, the Canetti–Krawczyk (CK) model [10], which can
be regarded as the extension and combination of the BR model and the Bellare–Canetti–
Krawczyk (BCK) model [6], has been used to prove the security of some widely used AKE
protocols such as SIG-DH and IKE. Subsequently, an extension of the CKmodel, named eCK
model, was introduced by LaMacchia et al. [28] to consider a stronger (in certain aspects)
adversary that is allowed to entirely reveal either the long-term secret key or the ephemeral
secret key of the challenge session. We refer the readers to [13,15] for some detailed analysis
and comparisons among these models.

Modeling leakage resilience The modeling of leakage attacks in an abstract way was first
proposed byMicali and Reyzin [31]. Inspired by the cold boot attack presented byHalderman
et al. [24], Akavia et al. [1] formalized a general framework, named Relative Leakage Model,
which considered the situation that the adversary is able to obtain a fraction of a user secret key.
The Bounded-Retrieval Model (BRM) proposed by Alwen et al. [4] is a generalization of the
relative leakage model, in which the leakage-parameter forms an independent parameter of
the system. Another relatively stronger leakage model is the Auxiliary Input Model proposed
by Dodis et al. [18] where the leakage function can be any one-way function (i.e., there is no
bound on the leakage size).

Leakage-resilient AKE Alwen et al. [4] presented an efficient leakage-resilient AKE pro-
tocol in the random oracle model. They considered a leakage-resilient extension of the CK
model under the BRM setting and showed that a leakage-resilient AKE protocol can be
constructed from an entropically-unforgeable digital signature scheme secure under chose-
message attacks. In [19], Dodis et al. also proposed leakage-resilient AKE constructions

123

Strongly leakage resilient authenticated key exchange, revisited 2889

based on different primitives. Their first construction is similar as [4], i.e., authenticating
Diffie–Hellman (DH) key exchange using a leakage-resilient signature scheme, whereas the
second construction is based on a leakage-resilient CCA-secure PKE scheme. Based on
the eCK model, Moriyama and Okamoto [32] proposed another leakage-resilient model for
AKE. Their proposed notion, named λ-leakage resilient eCK where λ denotes the leakage
size, is an extension of the eCK model by incorporating the relative leakage introduced in
[1]. They also presented a 2-round AKE protocol that is secure under their proposed notion.
Yang et al. [39] studied leakage resilient AKE in the auxiliary input model. They showed
that in the random oracle model, an AKE protocol secure under the auxiliary input leak-
age can be built based on a digital signature scheme that is random message unforgeable
under random message and auxiliary input attacks (RU-RMAA) [21]. Alawatugoda et al. [3]
modeled after-the-fact leakage for AKE protocols and proposed a construction that implic-
itly assumes the long-term secret key has split-state. In [11,12], Chen et al. proposed the
challenge-dependent leakage-resilient eCK models under different leakage settings. Specif-
ically, they proposed a model with adaptive adversaries under the relative leakage setting in
[11], and another (incomparable) model with non-adaptive adversaries under the auxiliary
input setting in [12].

AKEunder bad randomnessYang et al. [38] extended theCKmodel to considerAKEunder
bad randomness. They considered two bad randomness scenarios, namely randomness reset
and adversarial-controlled randomness, and pointed out that no AKE protocol can be secure
against reset-and-replay attacks. They then introduced some generic methods for enhancing
the security of some existing AKE protocols such as SIG-DH under the bad randomness
setting. Whereas [38] considered the worst-case randomness failure, they didn’t consider
leakages of the long-term secret key. Noting that the result of [38] only holds for stateless
AKE protocols, Feltz et al.[22] proposed novel stateful AKE protocols that can provide
resilience even against the worst case randomness failure. In particular, they constructed
variants of the NAXOS protocol [28] that are secure against reset-and-replay attacks.

2 Preliminaries

2.1 Notation

For a finite set Ω , ω
$← Ω denotes that ω is selected uniformly at random from Ω .

Statistical indistinguishability Let X and Y be two random variables over a finite domain
Ω , the statistical distance between X and Y is defined as SD(X , Y) = 1/2

∑
ω∈Ω |Pr[X =

ω] − Pr[Y = ω]|. We say that X and Y are ε-statistically indistinguishable if SD(X , Y) ≤ ε

and for simplicity we denote it by X
s≡ε Y . If ε = 0, we say that X and Y are perfectly

indistinguishable.

Computational indistinguishability Let V0 and V1 be two probability distributions over a
finite set Ω where |Ω| ≥ 2k and k is a security parameter. We define the computational
indistinguishability between V0 and V1 against a distinguisher D̃ as follows. D̃ takes as input

the descriptions of V0 and V1 and an element v
$← Vγ where γ

$← {0, 1}. Finally, D̃ outputs a

bit γ ′ ∈ {0, 1} as its guess on γ . We define the advantage of D̃ in this game as AdvV1,V2

D̃ (k) =
Pr[γ ′ = γ] − 1/2. We say that V0 and V1 are computationally indistinguishable if for any

polynomial-time distinguisher D, AdvV0,V1

D̃ (k) is negligible, and we denote it by V0
c≡ V1.

123

2890 G. Yang et al.

2.2 Randomness extractor

Average-case min-entropy The min-entropy of a random variable X is H∞(X) =
− log(maxx Pr[X = x]). Following Dodis et al. [17], define

H̃∞(X |Y) = − log(Ey←Y [2−H∞(X |Y=y)]).
The following result was proved by Dodis et al. [17].

Lemma 1 If Y has 2λ possible values, then H̃∞(X |Y) ≥ H̃∞(X) − λ.

Definition 1 (Average-case strong extractor) [17] Let k ∈ N be a security parameter. A
function Ext : {0, 1}n(k) × {0, 1}t(k) → {0, 1}l(k) is said to be an average-case (m, ε)-
strong extractor if for all pairs of random variables (X , I) such that X ∈ {0, 1}n(k) and
H̃∞(X |I) ≥ m, it holds that

SD((Ext(X , S), S, I), (U , S, I)) ≤ ε,

as long as l(k) ≤ m − 2 log(1/ε), where S
$← {0, 1}t(k) is the extraction key and U

$←
{0, 1}l(k).

2.3 Pseudo-random function

PRFLet k ∈ Nbe a security parameter and Fbe a function family associatedwith {Seedk}k∈N,
{Domk}k∈N and {Rngk}k∈N. For any

∑ $← Seedk , σ
$← ∑

, D $← Domk and R $← Rngk ,

Fk,
∑

,D,R
σ defines a function which maps an element of D to an element of R. That is,

Fk,
∑

,D,R
σ (ρ) ∈ R for any ρ ∈ D.

Definition 2 (PRF) We say that F is a pseudo-random function (PRF) family if
{
Fk,

∑
,D,R

σ (ρi)} c≡ {RF(ρi)
}

for any {ρi ∈ D} adaptively chosen by any polynomial time distinguisher, where RF is a

truly random function. That is, for any ρ ∈ D, RF(ρ)
$← R.

πPRF [33]. Let Z∑ be a set of random variables over
∑

, and I∑ be a set of indices
regarding

∑
such that there exits a deterministic polynomial-time algorithm f∑ : I∑ →

Z∑, which on input the index i ∈ I∑, outputs σi ∈ Z∑. Consider the random variables
{σi j } j=0,...,q(k) = { f∑(i j)} j=0,...,q(k) where i j ∈ I∑ and q(k) a polynomial function of k.
We say that σi0 is pairwisely independent from other variables σi1 , ..., σiq(k) if for any pair of

(σi0 , σi j)(j = 1, ..., q(k)) and any (x, y) ∈ ∑2,we havePr[σi0 → x∧σi j → y] = 1/| ∑ |2.

Definition 3 (πPRF) Define F̃(ρ j) = Fk,
∑

,D,R
σi j

(ρ j) for i j ∈ I∑, ρ j ∈ D. We say that F is a
πPRF family if

{̃F(ρ j)} c≡ {R̃F(ρ j)}
for any {i j ∈ I∑, ρ j ∈ D} (j = 0, 1, ..., q(k)) adaptively chosen by any polynomial time
distinguisher such that σi0 is pairwisely independent from σi j (j > 0), where R̃F is the same
as F̃ except that R̃F(ρ0) is replaced by a truly random value in R.

123

Strongly leakage resilient authenticated key exchange, revisited 2891

2.4 Smooth projective hash function

Syntax A smooth projective hash function (SPHF) [14] is defined over a domain X and a
subset L ⊂ X where L is defined by an NP language. A key property of SPHF is that, for
any W ∈ L, its corresponding hash value can be computed by using either a secret hashing
key, or a public projection key with the witness w of W . Formally, an SPHF with domain X
and range Y is defined by the following algorithms

– SPHFSetup(1k): a probabilistic algorithm that generates the global parameters param
and the description of an NP language L;

– WordG(L,param, w): a deterministic algorithm that generates a word W ∈ L from the
witness w;

– HashKG(L,param): a probabilistic algorithm that generates a (secret) hashing key hk;
– ProjKG(hk, (L,param)): a deterministic algorithm that derives the (public) projection

key hp from hk;
– Hash(hk, (L,param),W , aux): a deterministic algorithm that outputs the hash value

hv ∈ Y of the word W from the hashing key hk and an auxiliary input aux ;
– ProjHash(hp, (L,param),W , w, aux): a deterministic algorithm that outputs the hash

value hv’ ∈ Y of the word W from the projection key hp, the witness w of W and an
auxiliary input aux .

Property A smooth projective hash function SPHF =(SPHFSetup, HashKG, ProjKG,
WordG, Hash, ProjHash) should satisfy the following properties,

– Correctness Let W = WordG(L,param, w), then for any hashing key hk and the corre-
sponding projection key hp, we have

Hash(hk, (L,param),W , aux) = ProjHash(hp, (L,param),W , w, aux).

– Smoothness For any W ∈ X\L, the following two distributions are statistically indistin-
guishable:

V1 = {(L,param,W ,hp, aux,hv)|
hv = Hash(hk, (L,param),W , aux)}

V2 = {(L,param,W ,hp, aux,hv)|hv $← Y}.

Definition 4 (2-smooth SPHF) For any W1,W2 ∈ X\L, let aux1, aux2 be auxiliary inputs
such that (W1, aux1) �= (W2, aux2), we say an SPHF is 2-smooth if the following two
distributions are statistically indistinguishable:

V1 = {(L,param,W1,W2,hp, aux1, aux2,hv1,hv2)|
hv2 = Hash(hk, (L,param),W2, aux2)}

V2 = {(L,param,W1,W2,hp, aux1, aux2,hv1,hv2)|hv2 $← Y}
where hv1 = Hash(hk, (L,param),W1, aux1).

Definition 5 (Hard subset membership problem) For a finite set X and its subset L ⊂ X , we

say the subset membership problem is hard if the distribution W
$← L is computationally

indistinguishable from the distribution W ′ $← X\L.

123

2892 G. Yang et al.

2.5 Key encapsulationmechanism

A Key Encapsulation Mechanism (KEM) consists of the following algorithms

– KeyGen(1k): a probabilistic algorithm that generates a encapsulation and decapsulation
key pair (EK , DK);

– Enc(EK): a probabilistic algorithm that generates a ciphertext CT and a session key K
encapsulated in CT ;

– Dec(DK ,CT): a deterministic algorithm that outputs a key K or a special symbol ⊥
(decryption failure).

Definition 6 (IND-CPA security) We say a KEM is IND-CPA secure if for any probabilistic
polynomial time adversary

{EK ,CT , K } c≡ {EK ,CT , R}
where EK ← KeyGen(1k), (CT , K) ← Enc(EK) and R is randomly chosen from the
session key space defined by EK .

3 Strongly leakage-resilient AKE security model

3.1 AKE protocol

A two-party AKE protocol is run between two parties. In the symmetric-key setting, the two
parties share a long-term symmetric key lsk while in the public-key setting, each party has
a secret key lsk together with a certificate that binds the corresponding long-term public key
(lpk) to the identity of the party. Hereafter we denote Â (B̂) as the (certified) long-term public
key of party A (B).

A andB can be activated to execute an instance of theAKEprotocol, which is referred to as
a session. Specifically, during the execution of a session, each party generates an ephemeral
public/secret key pair (epk, esk) and sends epk as part of the message to the peer party. At
the end of the session execution, each party derives the shared session key by taking as input
their own long-term and ephemeral secret keys, along with the long-term and ephemeral
public keys of the peer party.

We note that there can be parallel and concurrent sessions between A and B. A ses-
sion of party A with peer party B is identified by a session identifier, which is defined as
(A, B, epkA, epkB) in this paper, and the session (B, A, epkB, epkA) of B is referred to as
the matching session.

3.2 eCK security model

The extended Canetti–Krawczyk (eCK) model was proposed by LaMacchia et al. [28] based
on the CK model by Canetti and Krawczyk [10]. The eCK model is designed for public-key
based AKE and we will discuss how to adapt the model to the symmetric-key setting later.

In the eCK model, the adversary M controls all the communications among the parties
and is also responsible for activating all the protocol sessions. Under the public-key setting,
M is also given the public keys of all the honest parties, and is allowed to issue the following
oracle queries.

123

Strongly leakage resilient authenticated key exchange, revisited 2893

– Send(A,B,message). Send message to party A on behalf of party B, and obtain A’s
response for this message.

– EstablishParty(pid, PK). Under the public-key setting, this query allows the adversary to
register a long-term public key PK on behalf of a partypid that is considered dishonest and
controlled byM. We should note that the adversary does not need to prove its knowledge
of the secret key corresponding to PK.

– LongTermKeyReveal(pid). This query allows the adversary to learn the long-term secret
key of an honest party pid.

– SessionKeyReveal(sid). This query allows the adversary to obtain the session key of a
completed session sid.

– EphemeralKeyReveal(sid). This query allows the adversary to obtain the ephemeral secret
key used by an honest party in session sid.

In the challenge phase, adversary M selects a completed session sid∗ as the test session
and makes a query Test(sid∗) as follows.

– Test(sid∗). To answer this query, the challenger picks b $← {0, 1}. If b = 1, the challenger
returns SK ∗ ← SessionKeyReveal(sid∗). Otherwise, the challenger sends M a random

key R∗ $← {0, 1}|SK ∗|.

Note that the Test query can be issued only once but at any time during the game, and the
game terminates as soon asM outputs its guess b′ on b. Here, we require the test session to
be a fresh session which is defined as follows.

Definition 7 (Fresh session in eCKmodel) Let sid be a completed session owned by an honest
party A with peer party B, who is also honest. We denote the matching session of sid as sid
if it exists. Session sid is said to be fresh if none of the following conditions holds:

– M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid) query (If sid exists).
– sid exists and M issues either

– LongTermKeyReveal(A) ∧ EphemeralKeyReveal(sid), or
– LongTermKeyReveal(B) ∧ EphemeralKeyReveal(sid).

– sid does not exist and M issues either

– LongTermKeyReveal(A) ∧ EphemeralKeyReveal(sid), or
– LongTermKeyReveal(B).

We remark that the freshness of the test session can be identified only after the game is
completed as M can continue other queries after the Test query. That is, M wins the game
if he correctly guesses the challenge for the test session which remains fresh until the end of
the game. Formally, we have the following notion for eCK security.

Definition 8 (eCKsecurity) Let the test session sid∗ be fresh according to the abovedefinition.
We define the advantage of M in the eCK game by

AdveCKM (k) = |Pr[b′ = b] − 1/2|,
where k is the security parameter.We say an AKE protocol is eCK-secure if the matching ses-
sion computes the same session key (if the matching session exists) and for any probabilistic
polynomial-time adversary M, AdveCKM (k) is negligible.

123

2894 G. Yang et al.

3.3 Challenge-dependent leakage-resilient eCKmodel

The Challenge-Dependent Leakage-Resilient eCK (CLR-eCK) model [11] is the first security
model that captures leakage of both long-term and ephemeral keys while allowing the adver-
sary to issue leakage queries at any time during the game. Formally, adversaryM is allowed
to issue the following leakage queries on top of those defined in the eCK model.

– LongTermKeyLeakage(f1,pid). This query allowsM to learn f1(lsk)where f1 denotes
the leakage function and lsk denotes the long-term secret key of an honest party pid.

– EphemeralKeyLeakage(f2, sid). This query allowsM to learn f2(esk)where f2 denotes
the leakage function and esk denotes the ephemeral secret key used by an honest user in
the session sid.

Restrictions on the leakage function In the CLR-eCK security model, there are some neces-
sary restrictions on the leakage functions to prevent the adversaryM from trivially winning
the game.

Under the relative leakage setting, the first restriction is that the total output length
of the leakage functions { f1} and { f2} must be less than |lsk| and |esk|, respectively.
Specifically, we define the bounded leakage function family Fbbd-I for the long-term
secret key and Fbbd-II for the ephemeral secret key as follows. Fbbd-I(k) is defined as the
class of all polynomial-time computable functions: f : {0, 1}|lsk| → {0, 1}≤λ1(k), where
λ1(k) < |lsk|. Fbbd-II(k) is defined as the class of all polynomial-time computable func-
tions: f : {0, 1}|esk| → {0, 1}≤λ2(k), where λ2(k) < |esk|. We then require that the leakage
function submitted by the adversary should satisfy that f1 ∈ Fbbd-I and f2 ∈ Fbbd-II.

Another necessary restriction is related to the challenge-dependent leakage security of
AKE protocols. Consider a test session sid∗ which is owned by party A with peer B. Note
that for a 2-pass AKE protocol, the session key of sid∗ is determined by (A, B, lskA, esk∗

A,

lpkB, epk∗
B) which contains only two secret keys (i.e., lskA, esk∗

A). Since M is allowed
to reveal esk∗

A (or lskA) in the eCK model, M can launch a trivial attack by encoding the
session key derivation function into the leakage function of lskA (or esk∗

A) and trivially
win the security game. Therefore, in order to define an achievable security notion, it is
impossible to let the adversary M have absolute freedom in making leakage queries if one
of the two (i.e., long-term and ephemeral) secret keys regarding the test session has been
revealed by the adversary. In order to give the adversary as much freedom as possible while
ensuring achievable security, we impose the restrictions on LongTermKeyLeakage(f1,A)

and EphemeralKeyLeakage(f2, sid
∗) as follows.

– M is allowed to query an arbitrary leakage function f1 ∈ Fbbd-I before it obtains
the ephemeral secret key esk∗

A via an EphemeralKeyReveal(sid∗) query; however,
after obtaining esk∗

A, M can only query the leakage functions f1 ∈ F1 ⊂ Fbbd-I
where F1 is a leakage functions set chosen and submitted by M before issuing
EphemeralKeyReveal(sid∗).

– M is allowed to query an arbitrary leakage function f2 ∈ Fbbd-II before it obtains the
long-term secret key lskA via a LongTermKeyReveal(A) query; however, after obtaining
lskA, M can only query the leakage functions f2 ∈ F2 ⊂ Fbbd-II where F2 is a set of
leakage functions chosen and submitted byM before it issues LongTermKeyReveal(A).

– If the matching session sid∗ of the test session exists, the above restrictions also apply to
the leakagequeriesLongTermKeyLeakage(f1,B) andEphemeralKeyLeakage (f2, sid

∗).

Remarks One can see that the abovemodel enables adversaryM to chooseF1,F2 adaptively
andM can submit F1,F2 after seeing the challenge session as long as the restriction holds.

123

Strongly leakage resilient authenticated key exchange, revisited 2895

That is, M can specify leakage function sets F1,F2 after seeing epk∗
A and epk∗

B. Also,
if there is no long-term (ephemeral, respectively) key reveal query, then the adversary can
choose any leakage function in Fbbd-II (Fbbd-I, respectively), i.e., M is allowed to obtain
f1(lskA), f ′

1(lskB), f2(esk∗
A), f ′

2(esk
∗
B) where f1, f ′

1 ∈ Fbbd-I, f2, f ′
2 ∈ Fbbd-II can be

dependent on (lpkA, lpkB, epk∗
A, epk∗

B). The model essentially gives M the most freedom
in making key reveal and key leakage queries.

We define the notion of a fresh session in the CLR-eCK model as follows.

Definition 9 (Session freshness in the (λ1, λ2)-leakage CLR-eCK model) Let sid be a com-
pleted session owned by an honest party A with peer B, who is also honest. Let sid denote
the matching session of sid, if it exists. Session sid is said to be fresh in the CLR-eCK model
if the following conditions hold:

– sid is a fresh session in the sense of eCK model.
– M only issues the queries

LongTermKeyLeakage(f1,A), LongTermKeyLeakage(f ′
1,B), EphemeralKeyLeakage

(f2, sid),
EphemeralKeyLeakage(f ′

2, sid) (if sid exists)
such that f1, f ′

1, f2, f ′
2 satisfy the restriction given above.

– The total output length of all the LongTermKeyLeakage queries to A (B, respectively)
is at most λ1.

– The total output length of all the EphemeralKeyLeakage query to sid (sid, respectively,
if it exists) is at most λ2.

We now present the notion of CLR-eCK security.

Definition 10 (CLR-eCK security) Let the test session sid∗ be fresh according to the above
definition. We define the advantage of M in the CLR-eCK game by

AdvCLR-eCKM (k) = |Pr[b′ = b] − 1/2|
where k is the security parameter. We say an AKE protocol is (λ1, λ2)-CLR-eCK-secure if
the matching session computes the same session key (if the matching session exists) and for
any probabilistic polynomial-time adversary M, AdvCLR-eCKM (k) is negligible.

4 CLR-eCK-secure AKE

In this section, we present a generic construction of CLR-eCK-secure AKE under the public-
key setting. Our construction fixes a security flaw in the construction given in [11] and is
more generic (i.e., allowing various instantiations).

4.1 General framework

Figure 2 describes our generic construction of a CLR-eCK-secure AKE protocol. Suppose
that k is the security parameter. Let KEM denote an IND-CPA secure key encapsulation
mechanismwith public key spacePK and ciphertext space C. Let SPHF denote a 2-smooth
SPHF over L ⊂ X and onto Y such that the subset membership problem between L and X
is hard. Denote the hashing key space byHK, the projection key space byHP , the auxiliary
input space by AUX and the witness space by W . Let H1 : {0, 1}∗ → AUX denote a
collision-resistant hash function.

123

2896 G. Yang et al.

Fig. 2 CLR-eCK secure AKE framework

Letλ1 = λ1(k)be the boundon the amount of long-termsecret key leakage andλ2 = λ2(k)
be that of the ephemeral secret key leakage. Let Ext1, Ext2, Ext3 be strong extractors as
follows. Ext1 : HK × {0, 1}t1(k) → {0, 1}l1(k) is an average-case (|HK| − λ1, ε1)-strong
extractor. Ext2 : {0, 1}u(k) × {0, 1}t2(k) → {0, 1}l2(k) is an average-case (u(k) − λ2, ε2)-
strong extractor. Ext3 : Y × {0, 1}t3(k) → {0, 1}l3(k) is an average-case (|Y| − λ1, ε3)-strong
extractor.

Let F̂ and F be PRF families and F̃ be a πPRF family as follows.2

F̂ : ∑
F̂ = {0, 1}l1(k),DF̂ = {0, 1}u(k),RF̂ = W × {0, 1}ζ(k),

F : ∑
F = {0, 1}l2(k),DF = {0, 1}t1(k),RF = W × {0, 1}ζ(k),

F̃ : ∑
F̃ = {0, 1}l3(k),DF̃ = Λ(k)2 × L2 × PK × C × {0, 1}2t3(k),RF̃ = {0, 1}l4(k).

2 In this paper, we denote the space of a certified long-term public key (such as Â) by Λ(k) and the maximum
size of the random coins required by KEM.KeyGen and KEM.Enc by ζ(k).

123

Strongly leakage resilient authenticated key exchange, revisited 2897

Let F̂ ← F̂
k,

∑
F̂,DF̂,RF̂ , F ← F

k,
∑

F,DF,RF and F̃ ← F̃
k,

∑
F̃,DF̃,RF̃ . The system parameter

is (param, H1, Ext1, Ext2, Ext3, F̂, F, F̃) where param ← SPHFSetup(1k).

Long-term key generation At the long-term key generation stage, A runs the algorithm
HashKG to obtain a hashing key hk and then the algorithm ProjKG to obtain the projec-

tion key hp, picks rA2

$← {0, 1}t2(k), tA $← {0, 1}t3(k), then sets its long-term key pair
as lskA = (hk, rA2), lpkA = (hp, tA). Similarly, B generates its long-term key pair as
lskB = (hk′, rB2), lpkB = (hp′, tB).

Session execution (A � B). The key exchange protocol between A and B is executed as
follows.

– (A⇀B). A performs the following steps.

1. Select the ephemeral secret key kA
$← {0, 1}u(k), rA1

$← {0, 1}t1(k).
2. Set l̂skA = Ext1(lskA, rA1), êskA = Ext2(kA, rA2).
3. Compute (wA, λA) = F̂l̂skA(kA) + FêskA(rA1).

4. Run WordG(param,L, wA) to obtain a word WA and KEM.KeyGen(1k; λA) to
obtain (EKA, DKA).

5. Erase all state except (kA, rA1 ,WA, EKA), set (WA, EKA) as the ephemeral public
key and send (B̂, Â,WA, EKA) to B.

– (B⇀A). Upon receiving the message from A, B executes the following steps.

1. Select the ephemeral secret key kB
$← {0, 1}u(k), rB1

$← {0, 1}t1(k).
2. Set l̂skB = Ext1(lskB, rB1), êskB = Ext2(kB, rB2).
3. Compute (wB, λB) = F̂l̂skB (kB) + FêskB (rB1).
4. RunWordG(param,L, wB) to obtain a word WB and compute

(CTB, KB1) = KEM.Enc(EKA; λB).

5. Erase all state except (kB, rB1 ,WB,CTB,WA, EKA), set (WB,CTB) as the
ephemeral public key and send (Â, B̂,WB,CTB) to A.

Session key output When A receives (Â, B̂,WB,CTB), A computes the session key as
follows.

1. Reconstruct (wA, DKA) from (lskA, lpkA, kA).
2. Sets sid = (Â, B̂,WA, EKA,WB,CTB), aux = H1(sid).
3. Compute KA1 = KEM.Dec(DKA,CTB), KA2 = ProjHash(param, L, hp′, WA, wA,

aux), KA3 = Hash(param, L, hk,WB, aux).
4. Set sA = Ext3(KA1 ⊕ KA2 ⊕ KA3 , tA ⊕ tB).
5. Compute SKA = F̃sA(sid).

Similarly, party B computes the session key as follows.

1. Reconstruct (wB, KB1) from (lskB, lpkB, kB, rB1 , EKA).
2. Set sid = (Â, B̂,WA, EKA,WB,CTB), aux = H1(sid).
3. Compute KB2 = Hash(param,L, hk′,WA, aux), KB3 = ProjHash(param,L, hp,WB,

wB, aux).
4. Set sB = Ext3(KB1 ⊕ KB2 ⊕ KB3 , tA ⊕ tB).
5. Compute SKB = F̃sB (sid).

123

2898 G. Yang et al.

Fig. 3 The AKE framework proposed in [11]

Correctness analysis One can easily see that KA1 = KB1 due to the correctness of KEM.
Due to the correctness of SPHF, we have

KA2 = ProjHash(param,L, hp′,WA, wA, aux)

= Hash(param,L, hk′,WA, aux) = KB2 ,

KA3 = Hash(param,L, hk,WB, aux)

= ProjHash(param,L, hp,WB, wB, aux) = KB3 .

Therefore, we can obtain that

sA = Ext3(KA1 ⊕ KA2 ⊕ KA3 , tA ⊕ tB)

= Ext3(KB1 ⊕ KB2 ⊕ KB3 , tA ⊕ tB) = sB

which guarantees that SKA = SKB.

4.2 Fixing a security issue in the construction in [11]

One of the differences between the construction presented in [11] and the one in Fig. 2 is that
in [11], the keys (rA1 , rA2) and (rB1 , rB2) of the strong randomness extractors are given in
the long-term public keys of A and B respectively (shown in Fig. 3).

As a result, the protocol given in [11] cannot be proved secure under the CLR-eCK model
when the adversary performs the following queries in the game:

1. Based on the knowledge of rA1 given in A’s long-term public key, the adversary adds a
function f (·) = Ext1(·, rA1)[1,··· ,λ1(k)] in the committed set of leakage functions F1.

2. The adversary makes an ephemeral key reveal query to learn eskA of the test session,
which allows the adversary to derive êskA in the test session.

3. The adversary makes a leakage query on f (lskA) to obtain λ1(k) bits of the l̂skA in the
test session.

123

Strongly leakage resilient authenticated key exchange, revisited 2899

Since the adversary has the full knowledge of êskA and also partial knowledge of l̂skA, we
cannot guarantee that (wA, λA) = F̂l̂skA(eskA) + FêskA(rA1) is random and unknown to
the adversary.

Fixing the problem In the modified construction given in Fig. 2, rA2 (rB2 , respectively) is
now part of the user long-term private key ofA (B, respectively), while rA1 (rB1 , respectively)
is part of the ephemeral secret key randomly chosen by A (B, respectively) in each session.
Such a modification can prevent the above problem due to the following reason:

1. If the adversary does not reveal the ephemeral secret key, which contains (eskA, rA1), of
the test session, then before the adversary reveals the long-term secret key, which contains
(hk, rA2), the adversary needs to commit the setF2 of leakage functions on (eskA, rA1),
and at that time, the adversary can only learn at most λ1(k) bits of information about
lskA = (hk, rA2). If we set t2(k) � λ1(k) (e.g., t2(k) − λ1(k) = k), then the function
Ext2(·, rA2) is excluded from the set F2 of leakage functions the adversary can make
after obtaining lskA.

2. On the other hand, if the adversary reveals the ephemeral secret key (eskA, rA1), then
before that the adversary needs to commit the set of leakage functionsF1 for lskA, and at
that time the adversary can only learn atmostλ2(k) bits of information about (eskA, rA1).
If we set t1(k) � λ2(k) (e.g., t1(k) − λ2(k) = k), then the function Ext1(·, rA1) is
excluded from the set F1 of leakage functions the adversary can make after obtaining
(eskA, rA1).

4.3 Security analysis

Theorem 1 The AKE protocol following the general framework is (λ1, λ2)-CLR-eCK-secure if
the underlying smooth projective hash function is 2-smooth, the underlyingKEM is IND-CPA
secure, H1 is a collision-resistant hash function, F̂ and F are PRF families and F̃ is a πPRF
family. Here λ1 ≤ min{|HK|−2 log(1/ε1)−l1(k), |Y|−2 log(1/ε3)−l3(k), t2(k)−k}, λ2 ≤
min{u(k) − 2 log(1/ε2) − l2(k), t1(k) − k}.

Proof Let session sid∗ = (Â, B̂,W ∗
A, PK ∗

A,W ∗
B,CT ∗

B) be the target session chosen by
adversary M. Wlog, assume A is the owner of the session sid∗ and B is the peer. We then
analyze the security of the AKE protocol in the following two disjoint cases.

Case I There exists a matching session, sid∗, of the target session sid∗.
We analyse the security based on the reveal and leakage queries that the adversary issues

to the target session, its matching session and the corresponding parties.

– LongTermKeyReveal(A), LongTermKeyReveal(B).
In this sub-case, suppose that the adversary obtains at most λ2 bits of the ephemeral secret
key of target session sid∗. Before the adversary reveals the long-term secret key of A,
which contains (hk, rA2), the adversary needs to commit the set F2 of leakage functions
on (k∗

A, r∗
A1

), and at that time, the adversary can only learn at most λ1 bits of information
about lskA = (hk, rA2). Since λ1 ≤ t2(k) − k, Ext2(·, rA2) is excluded from the set of
leakage functions the adversary can make on the ephemeral secret key. Since at most λ2
bits of k∗

A is leaked, based on the security of the strong randomness extractor Ext2, we
have that

êsk
∗
A = Ext2(k∗

A, rA2)
s≡ε2 êsk

′
A

$← {0, 1}l2(k), (1)

123

2900 G. Yang et al.

Therefore, (w∗
A, λ∗

A) = F̂l̂skA(k∗
A) + Fêsk

∗
A(r∗

A1
)

c≡ (w′
A, λ′

A)
$← W × {0, 1}ζ(k).

Similarly, suppose that the adversary obtains at most λ2 bits of the ephemeral secret key
of matching session sid∗, we have that

êsk
∗
B = Ext2(k∗

B, rB2)
s≡ε2 êsk

′
B

$← {0, 1}l2(k), (2)

and thus (w∗
B, λ∗

B) = F̂l̂skB (k∗
B) + Fêsk

∗
B (r∗

B1
)

c≡ (w′
B, λ′

B)
$← W × {0, 1}ζ(k).

– EphemeralKeyReveal(sid∗), EphemeralKeyReveal(sid∗).
In this sub-case, before the adversary reveals the entire ephemeral secret key of sid∗,
the adversary must first commit the set F1 of leakage functions on lskA. Suppose that
the adversary first obtains at most λ2 bits of the ephemeral secret key of sid∗ before
committing the set F1, due to the condition that λ2 ≤ t1(k) − k, Ext1(·, r∗

A1
) is excluded

from the set F1. Since the adversary obtains at most λ1-bits of the long-term secret key
of A, we have that

l̂sk
∗
A = Ext1(hk, r∗

A1
)

s≡ε1 l̂sk
′
A

$← {0, 1}l1(k), (3)

hence (w∗
A, λ∗

A) = F̂l̂sk∗
A(k∗

A)+ Fêsk
∗
A(r∗

A1
)

c≡ (w′
A, λ′

A)
$← W×{0, 1}ζ(k). Similarly,

suppose that the adversary obtains at most λ1 bits of the long-term secret key of party B,
we have that

l̂sk
∗
B = Ext1(hk′, r∗

B1
)

s≡ε1 l̂sk
′
B

$← {0, 1}l1(k), (4)

and therefore (w∗
B, λB∗) = F̂l̂sk∗

B (k∗
B) + Fêsk

∗
B (r∗

B1
)

c≡ (w′
B, λ′

B)
$← W × {0, 1}ζ(k).

– LongTermKeyReveal(A), EphemeralKeyReveal(sid∗)
In this sub-case, following the same analysis with regards to Eqs. (1) and (4), we have
that

(w∗
A, λ∗

A) = F̂l̂sk∗
A(k∗

A) + Fêsk
∗
A(r∗

A1
)

c≡ (w′
A, λ′

A)
$← W × {0, 1}ζ(k)

and

(w∗
B, λ∗

B) = F̂l̂sk∗
B (k∗

B) + Fêsk
∗
B (r∗

B1
)

c≡ (w′
B, λ′

B)
$← W × {0, 1}ζ(k).

– EphemeralKeyReveal(sid∗), LongTermKeyReveal(B). In this sub-case, following the
same analysis with regards to Eqs. (2) and (3), we have that

(w∗
A, λ∗

A) = F̂l̂sk∗
A(k∗

A) + Fêsk
∗
A(r∗

A1
)

c≡ (w′
A, λ′

A)
$← W × {0, 1}ζ(k)

and

(w∗
B, λ∗

B) = F̂l̂sk∗
B (k∗

B) + Fêsk
∗
B (r∗

B1
)

c≡ (w′
B, λ′

B)
$← W × {0, 1}ζ(k).

Therefore, regardless of the reveal and leakage queries in the above sub-cases, (λ∗
A, λ∗

B) are
uniformly random strings in {0, 1}ζ(k) from the view of adversaryM. Therefore, K ∗

A1
= K ∗

B1
is computationally indistinguishable from a random key based on the IND-CPA security
of KEM. We then have that the seed s∗

A for the πPRF function is uniformly distributed
and unknown to the adversary and thus the derived session key SK ∗

A is computationally
indistinguishable from a random string. It is worth noting that in this case we only require F̃
to be a normal PRF.

Case II There exists no matching session of the test session sid∗.

123

Strongly leakage resilient authenticated key exchange, revisited 2901

In this case, the adversary cannot issue LongTermKeyReveal query to reveal the long-
term secret key of B but may issue the leakage query LongTermKeyLeakage to learn some
information of lskB. In the simulation, we modify the security game via the following steps
to obtain two new games.

– Game 1: Replace (w∗
A, λ∗

A) by random elements from the respective spaces.
– Game 2: Replace

K ∗
A2

= ProjHash(param,L, hp′,W ∗
A, w∗

A, aux∗)

by K ∗
A2

= Hash(param, L, hk′,W ∗
A, aux∗).

– Game 3: ChooseW ∗
A ∈ X \L instead of deriving it fromL through the algorithmWordG.

By following the same analysis as in Eqs. (1) and (3), we can see that Game 1 is indistin-
guishable from the original game. Game 2 is identical to Game 1 from the view of adversary
M due to the fact that ProjHash(param,L, hp′,W ∗

A, w∗
A, aux∗) = Hash(param,L,

hk′,W ∗
A, aux∗), and Game 3 is indistinguishable from Game 2 (and hence also the orig-

inal game) due to the difficulty of the subset membership problem which ensures that a
random element in X \ L is indistinguishable from that in L.

In Game 3, since W ∗
A ∈ X \L, we have that K ∗

A2
is uniformly distributed in Y due to the

smoothness of the SPHF. Suppose that the leakage of lskB, denoted by l̃skB, is at most λ1
bits, then according to Lemma 1, we have

H̃∞(K ∗
A2

|l̃skB) ≥ H̃∞(K ∗
A2

) − λ1 = |Y| − λ1.

Therefore, by using the strong extractor Ext3, it holds that

s∗
A = Ext3(K ∗

A1
⊕ K ∗

A2
⊕ K ∗

A3
, tA ⊕ tB)

s≡ε3 s
′
A

$← {0, 1}l3(k).

In this case, F̃ is required to be a secure πPRF in order to ensure SK ∗
A is indistinguishable

from a random key.M can replayW ∗
A and send it toB in another session, denoted by sid, and

then issue a SessionKeyReveal (sid) query to learn the session key output by B. Nevertheless,
since sid �= sid∗, we have aux = H1(sid) �= aux∗ = H1(sid

∗) based on the collision
resistance property of H1. Then due to the 2-smooth property of the underlying smooth
projective hash function, we have that K ∗

A2
is independent from KB2 derived by B in the

session sid and thus s∗
A in the test session sid∗ is pairwisely independent from sB in sid.

Therefore, SK ∗
A is computationally indistinguishable from a truly random value from M’s

view given that F̃ is a secure πPRF.

Simulation for non-test session For the two cases given above, we need to also simulate
the non-test sessions and answer the queries issued by the adversary correctly. It is easy to
see that the simulation can be done easily since in both cases the simulator can know both
lskA and lskB as the security of strong randomness extractor and the hardness of the subset
membership problem does not rely on the secrecy of lsk. Hence, the simulator can answer
LongTermKeyReveal and LongTermKeyLeakage queries without any problem. To simulate
a non-test session, the simulator can just follow the protocol by generating an ephemeral
secret key and computing the ephemeral public key honestly. Similarly, the simulator can
also answer the SessionKeyReveal query for any non-test session simulated by itself. ��

123

2902 G. Yang et al.

4.4 Instantiations of the proposed protocol

In this section, we present several instantiations of the proposed framework based on different
assumptions.

4.4.1 Instantiation based on DDH assumption

Diffie–Hellman language Let G be a group of primer order p and g1, g2 ∈ G two random
generators of G. Define the domain X as

X = {(u1, u2)|∃r1, r2 ∈ Z
2
p, s.t ., u1 = gr11 , u2 = gr22 }

and the Diffie–Hellman Language as

LDH = {(u1, u2)|∃r ∈ Zp, s.t ., u1 = gr1, u2 = gr2}.
One can see that LDH ⊂ X = G

2 and immediately obtain the following result.

Theorem 2 The subset membership problem over X = G
2 and LDH is hard under the DDH

assumption.

SPHF based on LDH Let H1 : {0, 1}∗ → Zp denote a collision-resistant hash function. The
construction is as follows.

– SPHFSetup(1λ): param = (G, p, g1, g2);

– HashKG(LDH,param): hk = (α1, α2, β1, β2)
$← Z

4
p;

– ProjKG(hk, (LDH,param)): hp = (hp1,hp2) = (gα1
1 gα2

2 , gβ1
1 gβ2

2) ∈ G
2;

– WordG((LDH,param), w = r): W = (gr1, g
r
2);

– Hash(hk, (LDH,param),W = (u1, u2) = (gr1, g
r
2), aux = d = H1(W , aux ′)): hv =

uα1+dβ1
1 uα2+dβ2

2 ;
– ProjHash(hp, (LDH,param),W = (u1, u2) = (gr1, g

r
2), w = r , aux = d =

H1(W , aux ′)): hv′ = hpr1hp
dr
2 .

Note that Y = G,HK = Z
4
p,HP = G

2,AUX = Zp,W = Zp and we have the following
result.

Theorem 3 SPHFDH is projective and 2-smooth.

Proof We show that SPHFDH is projective and smooth (2-smooth).

– Projective For a word W = (u1, u2) = (gr1, g
r
2) ∈ LDH we have

Hash(hk, (LDH,param),W , d) = uα1+dβ1
1 uα2+dβ2

2

= hpr1hp
dr
2

= ProjHash(hp, (LDH,param),W , r , d)

– Smooth (2-smooth) Suppose g2 = gθ
1 . Given hp1 = gα1

1 gα2
2 ,hp2 = gβ1

1 gβ2
2 , the hashing

key (α1, α2, β1, β2) is constrained by the following equations

logg1 hp1 = α1 + θα2. (5)

logg1 hp2 = β1 + θβ2. (6)

123

Strongly leakage resilient authenticated key exchange, revisited 2903

Let W1 = (gr11 , gr22),W2 = (g
r ′
1
1 , g

r ′
2
2) ∈ X\LDH where r1 �= r2, r ′

1 �= r ′
2, and aux1 =

d1 = H1(W1, aux ′
1), aux2 = d2 = H1(W2, aux ′

2), then the hash values hv1 of W1 and
hv2 of W2 are as follows,

hv1 = Hash(hk, (LDH,param),W1, aux1) = gr1(α1+d1β1)
1 gr2(α2+d1β2)

2 ,

hv2 = Hash(hk, (LDH,param),W2, aux2) = g
r ′
1(α1+d2β1)
1 g

r ′
2(α2+d2β2)
2 ,

which also constrain (α1, α2, β1, β2) to satisfy

logg1 hv1 = r1α1 + r2θα2 + r1d1β1 + r2d1θβ2. (7)

logg1 hv2 = r ′
1α1 + r ′

2θα2 + r ′
1d2β1 + r ′

2d2θβ2. (8)

From the above equations, we have

(α1, α2, β1, β2) · A = (logg1 hp1, logg1 hp2, logg1 hv1, logg1 hv2),

where A is a matrix defined as

A =

⎡

⎢
⎢
⎣

1 θ 0 0
0 0 1 θ

r1 θr2 r1d1 θr2d1
r ′
1 θr ′

2 r ′
1d2 θr ′

2d2

⎤

⎥
⎥
⎦ .

If (W1, aux1) �= (W2, aux2) where aux1 = d1 = H1(W1, aux ′
1), aux2 = d2 =

H1(W2, aux ′
2), we have d1 �= d2 since H1 is collision resistant. Furthermore, as θ �= 0,

r1 �= r2 and r ′
1 �= r ′

2, we can obtain that the determinant of A is θ2 · (r2 − r1) · (r ′
2 − r ′

1) ·
(d2 − d1) �= 0 and hence the Eq. (8) is independent from the Eq. (7). Therefore, we have
that hv2 is independent from hv1 and randomly distributed in G.

��
A concrete AKE protocol based on DDHWe can instantiate our generic construction using
the SPHFDH described above together with an IND-CPA secure KEM. The Diffie–Hellman
key exchange, i.e., theKEMunderlying the ElGamal encryption, is a natural candidate for our
purpose. The resulting AKE protocol is presented in Fig. 4. It is worth noting that since the
Diffie–Hellman KEM allows the protocol responder B to generate a ciphertext CTB without
knowing the encryption key PKA from A, the concrete AKE protocol presented in Fig. 2
requires only one round.

Parameters of the DDH based protocol In the DDH based protocol presented in Fig. 4, G
denotes a cyclic group of primer order p and g1, g2 are random generators of G. Then for
the SPHFDH, we have that Y = G,HK = Z

4
p,HP = G

2,AUX = Zp,W = Zp . Choose
a collision-resistant hash function H1 : {0, 1}∗ → Zp and strong extractors as follows:
Ext1 : Z

4
p × {0, 1}t1(k) → {0, 1}l1(k) an average-case (4 · log p − λ1, ε1)-strong extractor,

Ext2 : {0, 1}u(k) × {0, 1}t2(k) → {0, 1}l2(k) an average-case (u(k) − λ2, ε2)-strong extractor
and Ext3 : G × {0, 1}t3(k) → {0, 1}l3(k) an average-case (log p − λ1, ε3)-strong extractor.

Choose F̂ ← F̂
k,

∑
F̂,DF̂,RF̂ , F ← F

k,
∑

F,DF,RF and F̃ ← F̃
k,

∑
F̃,DF̃,RF̃ . The system parameter

is (G, p, g1, g2, g, H1, Ext1, Ext2, Ext3, F̂, F, F̃).
Based on Theorems 1, 2 and 3, we have the following result for the concrete AKE protocol

based on DDH.

Corollary 1 The concrete AKE protocol in Fig. 4 is (λ1, λ2)-CLR-eCK-secure under the DDH
assumption,whereλ1 ≤ min{4 log p−2 log(1/ε1)−l1(k), log p−2 log(1/ε3)−l3(k), t2(k)−
k}, λ2 ≤ min{u(k) − 2 log(1/ε2) − l2(k), t1(k) − k}.

123

2904 G. Yang et al.

Fig. 4 CLR-eCK secure AKE protocol based on DDH assumption

4.4.2 Instantiation based on DCR assumption

Below we present another language LDCR and it corresponding 2-smooth SPHF.

Decision composite residuosity assumption Let p, q, p′, q ′ be distinct odd primes such
that p = 2p′ + 1 and q = 2q ′ + 1 (i.e., p and q are safe primes) where p′ and q ′ are k
bits in length. Let N = pq, N ′ = p′q ′ and GN ,GN ′ be subgroups of Z

∗
N2 of order N and

N ′, respectively. Let G = {xN : x ∈ Z
∗
N2}. The Decision Composite Residuosity (DCR)

assumption says that given only N , elements randomly chosen fromZ
∗
N2 are computationally

indistinguishable from those randomly chosen from G.
Let T denote the subgroup of Z

∗
N2 generated by −1 (mod N 2). Define

X = GN · GN ′ · T and LDCR = GN ′ · T .

Theorem 4 [14] The subset membership problem over LDCR and X is hard under the DCR
assumption.

123

Strongly leakage resilient authenticated key exchange, revisited 2905

SPHF based on LDCR Let g denote a random generator of LDCR, W = {0, 1, · · · , N/2},
K = {0, 1, · · · , N 2/2} and H1 : {0, 1}∗ → W a collision-resistant hash function. Define a
map f : ZN2 → ZN as follows:

∀x = a + bN (mod N 2),

where 0 ≤ a, b < N , f (x) = b (mod N).
The construction of the SPHF is as follows.

– SPHFSetup(1λ): param = (g, N);

– HashKG(LDCR,param): hk = (α, β)
$← K2;

– ProjKG(hk, (LDCR,param)): hp = (hp1,hp2) = (gα , gβ) ∈ L2
DCR;

– WordG((LDCR,param), w ∈ W): W = gw;
– Hash(hk, (LDCR,param),W = gw, aux = d = H1(W , aux ′)): hv = f (Wα+dβ) ∈

ZN ;
– ProjHash(hp, (LDCR,param),W = gw,w, aux = d = H1(W , aux ′)): hv′ =

f (hpw
1 hp

dw
2) ∈ ZN .

The following result can be immediately obtained from [14].

Theorem 5 SPHFDCR is projective and 2-smooth.

KEMWecan also easily obtain an IND-CPA secureKEMscheme based on theDCRassump-
tion as follows where g,K,W , f are as defined above:

– KeyGen: randomly choose x ∈ K and return (SK = x, PK = gx);
– Enc(PK): randomly choose w ∈ W and return (CT = gw, K = f (PKw));
– Dec(SK ,CT): return K = f (Wx).

A concrete AKE protocol based on DCRWe can instantiate our generic construction using
theSPHFDCR and theKEMscheme describe above. The resultingAKEprotocol is presented
in Fig. 5, where N = pq such that p and q are both k + 1 bits safe primes and the generator

g can be picked by choosing μ
$← Z

∗
N2 and setting g = −μ2N . Same as the previous DDH

based protocol, the DCR based protocol also requires only one round.

Parameters of The DCR-based protocol For the SPHFDCR, we have that Y = ZN ,HK =
K2 where K = {0, 1, · · · , N 2/2}, HP = L2

DCR,AUX = W = {0, 1, · · · , N/2}. Choose
a collision-resistant hash function H1 : {0, 1}∗ → W and strong extractors as follows:
Ext1 : K2×{0, 1}t1(k) → {0, 1}l1(k) an average-case (2·log(N 2/2)−λ1, ε1)-strong extractor,
Ext2 : {0, 1}u(k) × {0, 1}t2(k) → {0, 1}l2(k) an average-case (u(k) − λ2, ε2)-strong extractor
and Ext3 : ZN × {0, 1}t3(k) → {0, 1}l3(k) an average-case (log N − λ1, ε3)-strong extractor.

Choose F̂ ← F̂
k,

∑
F̂,DF̂,RF̂ , F ← F

k,
∑

F,DF,RF and F̃ ← F̃
k,

∑
F̃,DF̃,RF̃ . The map f : ZN2 →

ZN is defined as above.
Based on Theorems 1, 4 and 5, we have the following result for the concrete AKE protocol

based on DCR.

Corollary 2 The concrete AKE protocol in Fig. 5 is (λ1, λ2)-CLR-eCK-secure under the DCR
assumption, where λ1 ≤ min{2 · log(N 2/2) − 2 log(1/ε1) − l1(k), log N − 2 log(1/ε3) −
l3(k), t2(k) − k}, λ2 ≤ min{u(k) − 2 log(1/ε2) − l2(k), t1(k) − k}.

4.4.3 Hybrid instantiations

The instantiations given above are based a sole number theoretic assumption. Since a secure
SPHF implies a secure KEM scheme, we are able to instantiate the proposed generic con-
struction with any number theoretic assumption that allows instantiation of the SPHF. On

123

2906 G. Yang et al.

Fig. 5 CLR-eCK secure AKE protocol based on DCR assumption

the other hand, our generic construction can also be instantiated with multiple assumptions
(i.e., via a hybrid instantiation) that could accommodate the needs in different applica-
tions.

One particular interesting setting of the hybrid instantiation is to combine an SPHF
based on a traditional assumption (e.g., DDH, DCR or QR) and a KEM that is based on
a hard problem even for quantum computers (e.g., (Ring) Learning With Errors (LWE)
[29,34,36]). Such a construction method has also been considered by some existing works
(e.g., [8,9]) which performs key exchange with explicit authentication based on digi-
tal signature schemes. As highlighted in [8,9], using a quantum-resistant key exchange
mechanism (corresponding to the KEM in our construction) together with some non-
quantum-resistant authentication mechanism (corresponding to the SPHF in our construction
which enforces implicit authentication) can achieve better performance (in comparison
with a pure quantum-resistant scheme) while ensuring that the secure communications per-
formed today would remain secure against a quantum computer that might be built in the
future.

123

Strongly leakage resilient authenticated key exchange, revisited 2907

Byapplying the hybrid instantiation approachmentioned above, our proposed construction
allows efficient instantiations of AKE schemes that can resist the (present) key leakage
attacks while ensuring the secrecy of current communications against the (future) quantum
machines.

5 Performance analysis

To evaluate the performance of our proposed CLR-eCK secure AKE constructions, we imple-
ment both the DDH-based and DCR-based instantiations.

5.1 Experimental setup

Wesimulate an interactive sessionbetween twoparties over the Internet, and test eachprotocol
under 80-, 112-, and 128-bit security levels. We use SHA-256 as the cryptographic hash
function and choose multiplicative groups for implementation. Specifically, for the DDH-
based protocol, we choose group G with a primer order p as a subgroup of Z∗

q where q is a
prime of size 1024, 2048, and 3072 bits for 80-, 112-, and 128-bit security respectively, and
p has the size of 160, 224, and 256 bits correspondingly. As for the DCR-based instantiation,
to generate the group Z

∗
N2 , we choose the p′ (and q ′) as 512-, 1024-, and 1536-bit prime for

80-, 112-, and 128-bit security respectively, and thus the group element from Z
∗
N2 is of 2048,

4096, and 6144 bits correspondingly.
The implementation is built on ubuntu 16.04 running on 3.4 GHz Intel Core i7-6700 CPU

with access to 8 GB DDR4-2133 SDRAM providing 15 GB/s read and write speed. We
used python 3.5 as programming language and Charm [2] as the library for implementa-
tion.

5.2 Computation efficiency

We divide the protocols into three stages, i.e. KG (key generation stage), SE (session exe-
cution stage), and SKD (session key derivation). The stage KG does not include the system
parameter setup. It is worth noting that we mainly focus on the computation time of the
algorithms involved in the protocol at each stage, and do not consider the network transmis-
sion delay. Moreover, since both the DDH-based protocol and the DCR-based protocol are
symmetric in terms of computation, we only test one party for the computation efficiency
analysis.

We run each protocol for 100 times to test the computation efficiency of each protocol.
Figures 6 and 7 show the average time of each stage for the DDH-based protocol and DCR-
based protocol, respectively. One can note that even at 128-bit security level, each stage
costs less than 100 ms and thus both protocols are computationally efficient. Particularly,
for the DDH-based protocol, the session execution time of each party is less than 6 ms
and thus is very efficient. Regarding the DCR-based protocol, since the underlying group
ZN2 is larger than that of the DDH-based protocol, its execution time is higher. Specifi-
cally, the session key derivation in the DCR-based protocol for 128-bit security level takes
about 42 ms while that in the DDH-based protocol of the same security level is only
about 5 ms.

123

2908 G. Yang et al.

Fig. 6 DDH-based protocol computation cost

Fig. 7 DCR-based protocol computation cost

Fig. 8 DDH/DCR-based protocol transmission cost

5.3 Communication efficiency

Beside the computation cost,we also evaluate the communication cost of bothAKEprotocols.
In our experiment, we consider the transmitted data size as the total amount of data that a
party sends and receives during a session.

As depicted in Fig. 8, the transmitted data grows as the security level increases. In par-
ticular, the transmitted data of DDH-based protocol is below 2 KB when the security level
is 80-bit and increases to around 5.5 KB for 128-bit security. Compared to the DDH-based
protocol, the DCR-based protocol transmits more data as the group is larger for the same

123

Strongly leakage resilient authenticated key exchange, revisited 2909

security level. Specifically, the transmitted data size is 8.5 KB for the DCR-based protocol
for 128-bit security.

6 Conclusion

In this paper, we revisited strongly leakage-resilient authenticated key exchange (AKE). We
demonstrated that there is a security issue in the AKE protocol presented in [11] which aimed
to achieve challenge dependent leakage on both long-term and ephemeral secret keys. We
then presented an improved and extended construction that not only fixed the problem but
also allowed more instantiations under various assumptions, including hybrid instantiations
that are secure under key leakage attacks and can protect current private communications
against future quantum computers.

Acknowledgements Wewould like to thank JanakaAlawatugoda for his comments on a preliminary version of
this paper. The work of Guomin Yang is supported by the Australian Research Council Discovery Early Career
Researcher Award (Grant No. DE150101116) and the National Natural Science Foundation of China (Grant
No. 61472308). Thework of RongmaoChen is supported by theNational Natural Science Foundation of China
(Grant No. 61702541), the Young Elite Scientists Sponsorship Program byCAST (Grant No. 2017QNRC001),
and the Science Research Plan Program by NUDT (Grant No. ZK17-03-46). The work of Yi Mu is supported
by the National Natural Science Foundation of China (Grant No.61872087).

References

1. Akavia A., Goldwasser S., Vaikuntanathan V.: Simultaneous hardcore bits and cryptography against
memory attacks. In: TCC, pp. 474–495 (2009).

2. Akinyele J.A., Garman C., Miers I., Pagano M.W., Rushanan M., Green M., Rubin A.D.: Charm: a
framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3(2), 111–128 (2013).

3. Alawatugoda J., Stebila D., Boyd C.: Modelling after-the-fact leakage for key exchange. In: ASIACCS,
pp. 207–216 (2014).

4. Alwen J., Dodis Y., Wichs D.: Leakage-resilient public-key cryptography in the bounded-retrieval model.
In: CRYPTO, pp. 36–54 (2009).

5. Bellare M., Rogaway P.: Entity authentication and key distribution. In: CRYPTO, pp. 232–249 (1993).
6. Bellare M., Canetti R., Krawczyk H.: A modular approach to the design and analysis of authentication

and key exchange protocols (extended abstract). In: ACM Symposium on the Theory of Computing, pp.
419–428 (1998).

7. Biham E., Shamir A.: Differential fault analysis of secret key cryptosystems. In: CRYPTO, pp. 513–525
(1997).

8. Bos J.W., Costello C., Naehrig M., Stebila D.: Post-quantum key exchange for the TLS protocol from the
ring learning with errors problem. In: IEEE Symposium on Security and Privacy, pp. 553–570 (2015).

9. Bos J.W., Costello C., Ducas L., Mironov I., Naehrig M., Nikolaenko V., Raghunathan A., Stebila D.:
Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 Oct
2016, pp. 1006–1018 (2016).

10. Canetti R., Krawczyk H.: Analysis of key-exchange protocols and their use for building secure channels.
In: EUROCRYPT, pp. 453–474 (2001).

11. Chen R., Mu Y., Yang G., Susilo W., Guo F.: Strongly leakage-resilient authenticated key exchange. In:
CT-RSA, pp. 19–36 (2016).

12. Chen R., Mu Y., Yang G., Susilo W., Guo F.: Strong authenticated key exchange with auxiliary inputs.
Des. Codes Cryptogr. 85(1), 145–173 (2017).

13. Choo K.R., Boyd C., Hitchcock Y.: Examining indistinguishability-based proof models for key establish-
ment protocols. In: ASIACRYPT, pp. 585–604 (2005).

14. Cramer R., Shoup V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption. In: EUROCRYPT, pp. 45–64 (2002).

123

2910 G. Yang et al.

15. Cremers C.: Examining indistinguishability-based security models for key exchange protocols: the case
of ck, ck-hmqv, and eck. In: ASIACCS 2011, pp. 80–91 (2011).

16. DiffieW.,HellmanM.E.: Newdirections in cryptography. IEEETrans. Inf. Theory 22(6), 644–654 (1976).
17. Dodis Y., Ostrovsky R., Reyzin L., Smith A.: Fuzzy extractors: How to generate strong keys from bio-

metrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008).
18. Dodis Y., Kalai Y.T., Lovett S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009).
19. Dodis Y., Haralambiev K., López-Alt A., Wichs D.: Efficient public-key cryptography in the presence of

key leakage. In: ASIACRYPT, pp. 613–631 (2010).
20. Entity authentication mechanisms-part3: Entity authentication using asymmetric techniques. ISO/IEC IS

9789-3 (1993).
21. Faust S., Hazay C., Nielsen J.B., Nordholt P.S., Zottarel A.: Signature schemes secure against hard-to-

invert leakage. In: ASIACRYPT, pp. 98–115 (2012).
22. Feltz M., Cremers C.: On the limits of authenticated key exchange security with an application to bad

randomness. IACR Cryptol. ePrint Arch. 2014, 369 (2014).
23. Gandolfi K., Mourtel C., Olivier F.: Electromagnetic analysis: concrete results. In: Cryptographic Hard-

ware and Embedded Systems, Generators, pp. 251–261 (2001).
24. Halderman J.A., Schoen S.D., Heninger N., ClarksonW., Paul W., Calandrino J.A., Feldman A.J., Appel-

baum J., Felten E.W.: Lest we remember: cold boot attacks on encryption keys. In: USENIX Security
Symposium, pp. 45–60 (2008).

25. Halevi S., Lin H.: After-the-fact leakage in public-key encryption. In: TCC, pp. 107–124 (2011).
26. Kocher P.C., Jaffe J., Jun B.: Differential power analysis. In: CRYPTO, pp. 388–397 (1999).
27. Krawczyk H.: SIGMA: the ‘sign-and-mac’ approach to authenticated Diffie-Hellman and its use in the

ike-protocols. In: CRYPTO, pp. 400–425 (2003).
28. LaMacchia B.A., Lauter K.E., Mityagin A.: Stronger security of authenticated key exchange. In: Provable

Security, pp. 1–16 (2007).
29. Lyubashevsky V., Peikert C., Regev O.: On ideal lattices and learning with errors over rings. In: Advances

in Cryptology—EUROCRYPT 2010, pp. 1–23 (2010).
30. Marvin R.: Google admits an android crypto prng flaw led to bitcoin heist (Aug 2013). http://sdt.bz/

64008.
31. Micali S., Reyzin L.: Physically observable cryptography (extended abstract). In: TCC, pp. 278–296

(2004).
32. Moriyama D., Okamoto T.: Leakage resilient eck-secure key exchange protocol without random oracles.

In: ASIACCS, pp. 441–447 (2011).
33. Okamoto T.: Authenticated key exchange and key encapsulation in the standard model. In: ASIACRYPT,

pp. 474–484 (2007).
34. Peikert C.: Lattice cryptography for the internet. In: PQCrypto, pp. 197–219 (2014).
35. Quisquater J., Samyde D.: Electromagnetic attack. In: Encyclopedia of Cryptography and Security, 2nd

ed., pp. 382–385 (2011).
36. Regev O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of

the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005).
37. Shumow D., Ferguson, N.: On the possibility of a back door in the nist sp800-90 dual ec prng. http://

rump2007.cr.yp.to/15-shumow.pdf.
38. Yang G., Duan S., Wong D.S., Tan C.H., Wang H.: Authenticated key exchange under bad randomness.

In: Financial Cryptography and Data Security, pp. 113–126 (2011).
39. Yang G., Mu Y., Susilo W., Wong D.S.: Leakage resilient authenticated key exchange secure in the

auxiliary input model. In: ISPEC, pp. 204–217 (2013).
40. Zetter K.: How a crypto ’backdoor’ pitted the tech world against the nsa. http://www.wired.com/

threatlevel/2013/09/nsa-backdoor/all/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://sdt.bz/64008
http://sdt.bz/64008
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/all/
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/all/

Strongly leakage resilient authenticated key exchange, revisited 2911

Affiliations

Guomin Yang2 · Rongmao Chen1 · Yi Mu2 ·Willy Susilo2 · Fuchun Guo2 · Jie Li1

B Rongmao Chen
chromao@nudt.edu.cn

Guomin Yang
gyang@uow.edu.au

Yi Mu
ymu@uow.edu.au

Willy Susilo
wsusilo@uow.edu.au

Fuchun Guo
fuchun@uow.edu.au

Jie Li
lijie13d@nudt.edu.cn

1 College of Computer, National University of Defense Technology, Changsha, China
2 School of Computing and Information Technology, University of Wollongong, Wollongong,

Australia

123

	Strongly leakage resilient authenticated key exchange, revisited
	Citation
	Author

	Strongly leakage resilient authenticated key exchange, revisited
	Abstract
	1 Introduction
	1.1 Capturing key leakage in AKE
	1.2 Our results
	1.3 Related work

	2 Preliminaries
	2.1 Notation
	2.2 Randomness extractor
	2.3 Pseudo-random function
	2.4 Smooth projective hash function
	2.5 Key encapsulation mechanism

	3 Strongly leakage-resilient AKE security model
	3.1 AKE protocol
	3.2 eCK security model
	3.3 Challenge-dependent leakage-resilient eCK model

	4 CLR-eCK-secure AKE
	4.1 General framework
	4.2 Fixing a security issue in the construction in ChenMYSG16
	4.3 Security analysis
	4.4 Instantiations of the proposed protocol
	4.4.1 Instantiation based on DDH assumption
	4.4.2 Instantiation based on DCR assumption
	4.4.3 Hybrid instantiations

	5 Performance analysis
	5.1 Experimental setup
	5.2 Computation efficiency
	5.3 Communication efficiency

	6 Conclusion
	Acknowledgements
	References

