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Sanitizable Access Control System for Secure
Cloud Storage Against Malicious Data Publishers

Willy Susilo , Fellow, IEEE, Peng Jiang , Jianchang Lai , Fuchun Guo ,

Guomin Yang , Senior Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract—Cloud computing is considered as one of the most prominent paradigms in the information technology industry, since it can

significantly reduce the costs of hardware and software resources in computing infrastructure. This convenience has enabled

corporations to efficiently use the cloud storage as a mechanism to share data among their employees. At the first sight, by merely

storing the shared data as plaintext in the cloud storage and protect them using an appropriate access control would be a nice solution.

This is assuming that the cloud is fully trusted for not leaking any information, which is impractical as the cloud is owned by a third party.

Therefore, encryption is mandatory, and the shared data will need to be stored as a ciphertext using an appropriate access control.

However, in practice, some of these employees may be malicious and may want to deviate from the required sharing policy. The existing

protection in the literature has been explored to allow only legitimate recipients to decrypt the contents stored in the cloud storage, but

unfortunately, no existing work deals with issues raised due to the presence of malicious data publishers. Malicious data publishers

construct data following the given policy, but the ciphertexts can actually be decrypted by unauthorized users without valid keys, or

simply, anyone else who is unauthorized. The impact of the involvement of malicious data publishers is detrimental, as it may damage

intellectual properties from the corporations. Therefore, it remains an elusive research problem on how to enable a sound approach to

resolve the issue when malicious data publishers are involved in the system, which is a very practical question. In this work, we present

a new direction of research that can cope with the presence of malicious data publishers. We resolve the aforementioned problem by

proposing the notion of Sanitizable Access Control System (SACS), which is designed for a secure cloud storage that can also resist

against malicious data publishers. We define the threat model and its formal security model, as well as its design and scheme which is

based on q-Parallel Bilinear Diffie-Hellman Exponent Assumption. We provide the security proof of our construction as well as its

performance analysis. We believe that this work has opened a new area of research which has never been explored before, even

though it is very practical. Therefore, this work will enhance the adoption of secure cloud storage in practice.

Index Terms—Secure cloud storage, access control, sanitizable, malicious data publishers

Ç

1 INTRODUCTION

THE emergence of cloud storage technology has greatly
influenced enterprise operations and the adoption of

cloud technology has been one of the biggest changes of the
digital age. Cloud storage offers low-cost solutions, which
would be perfect for business, such as Small and Medium-
sized Enterprises (SMEs). The existence of cloud storage
enables business corporations to conveniently share their
data among their employees. These data are supposed to be
used solely by the employees of those corporations, since

those may be related to their intellectual properties. At the
first sight, by merely storing the data as plaintext in
the cloud storage and protecting them by using an appro-
priate access control would be a sufficient solution. This is
based on the assumption that the cloud is fully trusted and
will not leak those data, which is impractical, as the cloud is
owned by a third party. Therefore, it is essential to employ
an encryption mechnism and store the data as a ciphertext
in the cloud to avoid the data leakage.

The existing body of work in the literature make use of
the notion of Attribute-based Encryption (ABE) [1], [2], [3]
to enable such an unauthorized prevention by protecting
the data with an appropriate access policy. Anyone who
is equipped with a valid decryption key satisfying the
access policy will be able to decrypt the data correctly. It
implies that the data will be stored as a ciphertext instead of
a plaintext in the cloud. This kind of protection only consid-
ers data privacy when data publishers are honest and follow
the encryption algorithm.

Unfortunately, in practice, some of these employees may
be malicious and they intentionally attempt to leak the con-
tents of those data to unauthorized recipients, such as com-
peting business corporations. These malicious employees
may even would like to publish some sensitive contents and
store them in the cloud, but also enable other unauthorized
users to retrieve it - hence constituting a malicious data
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publisher. It is unfortunate that the approach based on ABE
is not sound due to malicious data publishers, who encrypt
data in a pernicious way. Here, the malicious data publisher
constructs encrypted data following the given policy, but
the ciphertexts can actually be decrypted by unauthorized
users without valid keys. In practice, malicious data pub-
lishers refer to staff or virus-infected computers of a com-
pany that intend to leak internal sensitive information. As
an example, a malicious data publisher may want to leak
new product designs or commercial secrets that are only
supposed to be accessed by certain people. The impact of
the involvement of malicious data publishers is detrimental.
In the above setting, malicious data publishers will con-
struct ciphertexts containing copyrighted materials that
seemingly adhere the required security access policy set by
the organization. Nevertheless, the supposedly encrypted
file can actually be decrypted by anyone illegally without
any valid decryption key. Therefore, our main goal is to
achieve data privacy when data publishers are malicious and they
do not follow the encryption algorithm accordingly.

We aim to propose a very practical notion, called Sanitiz-
able Access Control System, or simply SACS, which is
designed for the cloud storage to resist against malicious
data publishers. SACS enables a flexible access control for
both data publishers and data receivers. As in ABE, SACS
allows any valid receivers who are equipped with private
keys satisfying the access policy to decrypt the ciphertext.
However, SACS is equipped with sanitizing capability,
which prevents malicious data publishers from generating
ciphertexts that will be decryptable without any valid pri-
vate keys. Although the malicious data publishers can mali-
ciously generate ciphertexts which can be decrypted by
anyone, the sanitizer will transform these ciphertexts into
new ciphertexts which will only be decryptable by valid pri-
vate key holders. We present our architecture as well as our
scheme to achieve the above concept to build SACS. Fur-
thermore, we also present an implementation of SACS.

Organization. The rest of this paper is organized as fol-
lows. In Section 2, we review the existing work that is
related to SACS. In Section 3, we present SACS overview,
which includes its system architecture, design goals, threat
model and a brief workflow. The description of Sanitized
ABE is provided in Section 4. Section 5 instantiates an SACS
design, which is built from Sanitized ABE. Its security anal-
ysis and performance evaluation are provided in Sections 6
and 7. Finally, Section 8 concludes this work.

2 RELATED WORK

In this section, we review some closely related work in the
literature.

Access Control. Access control is able to guarantee data
security in cloud storage systems. This has attracted much
attention from academia and industry. IBM developed the
capability-based model and systematic approaches to
improve access control in the cloud services [4], [5]. Crypto-
graphic primitives have been proposed for enabling access
control on encrypted storage, such as broadcast encryption
[6], proxy re-encryption [7], role-based encryption [8] and
attribute-based encryption [1]. For the reason of security,
scalability and flexibility, ABE has been regarded as one of

the most suitable technologies for enabling access control
[9]. Users whose attributes satisfying the access policy are
able to access the plain data. ABE is mainly classified into
two complementary forms, key-policy ABE [10] and cipher-
text-policy ABE [2], [3]. In CP-ABE, attributes are used to
describe the user’s attributes and access policies over these
attributes are attached to the encrypted data. Due to its flexi-
bility and expressiveness, CP-ABE has more applications in
cloud storage access control [11], [12], [13]. In this paper, we
borrow CP-ABE as a component into our SACS design.

Sanitizable Signatures. Sanitizable signatures (SS’s) are
proposed by Ateniese et al. [14] to allow controlling modifi-
cations of signed messages without invalidating the signa-
ture. SS is a variant of digital signatures where a designated
party (the sanitizer) can update admissible parts of a signed
message. Brzuska et al. [15] introduced most of security
notions in SS’s. Fehr and Fischlin [16] proposed sanitizable
signcryption to hide the message-signature pair from the
sanitizer. Many SS schemes [17], [18], [19], [20] have been
proposed to satisfy different properties. SS provides the
foundation to the concept of sanitization in encryption.

Access Control Encryption. Access Control Encryption
(ACE) [21] was introduced to provide fine-grained access
control. ACE gives different rights to different users not
only in terms of which messages they are allowed to receive,
but also which messages they are allowed to send. Here, the
important property of Sanitization is included. ACE can pre-
vent corrupted senders from sending information to cor-
rupted receivers. In ACE, the sanitizer uses its sanitizer key
from the authority to execute a specific randomized algo-
rithm on the incoming ciphertext and thereafter passes the
result to a database server or the receivers. By sanitizing,
ACE ensures that no matter what the corrupted sender
sends, what the receiver receives looks like a random
encryption of a random message. In our SACS, the sanitiz-
ing operation does not need a sanitizer key from the author-
ity. Only the valid receiver, who is assigned a valid private
key by the authority, can recover the message.

3 SACS OVERVIEW

SACS aims to provide a flexible access control in terms of
both data receivers and data publishers. It enables only
valid data receivers, who hold private keys from the author-
ity, to access the plain data. With ciphertext sanitizing,
SACS prevents malicious data publishers from issuing
information that can retrieve decryption key without valid
private key generated from the trusted center, e.g., encryp-
tion key, such that any invalid receivers cannot access plain
data even if they have encryption key. Our SACS does not
use the notions of the data owner and the user. We call the
entity who sends the cipher data as the data publisher and
the entity who recovers the plain data as the receiver. We
still consider cloud as the data storage platform.

3.1 System Architecture

We show SACS architecture in Fig. 1, where five kinds
of independent entities are involved. They are the autho-
rity, the data publisher, the sanitizer, the receiver and the
cloud server.
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� The authority manages and maintains the whole sys-
tem. In SACS, we regard the authority as a trusted
entity who holds the master secret key. The authority
issues a unique private key to each receiver who
registers into this system. Without loss of generality,
we assume that the authority neither colludes with
any other entities nor is compromised.

� The data publisher owns the plain data. He/she
encrypts its plain data with an encryption key
(e.g., K) and sets an access policy to deal with the
encryption key. Then the data publisher sends the
encrypted data (or cipher data) to the sanitizer. Actu-
ally, the publisher relies on this access policy to con-
duct data access control. Publishers are either honest
or malicious. Both honest and malicious publishers
execute the encryption operation on the plain data,
but a malicious publisher might have extra behav-
iors, such as distributing the encryption key to some
non-registered receivers. This incurs a failure of
access control since some receivers can access the
data without valid private key.

� The sanitizer is introduced to transform the original
cipher data into the sanitized cipher data. Once get-
ting cipher data from the data publisher, the sani-
tizer is instructed to do some specific processing on
these cipher data. The processing includes two
parts. One is to check whether the cipher data is
under the claimed access policy and the other is to
sanitize the cipher data with its encryption key K0.
Then the sanitizer sends the sanitized cipher data to
the cloud server for storage. Such a sanitization
operation on the cipher data is to prevent malicious
publishers and invalid data access. The sanitizer is
an honest party, which means it just executes the
sanitization following the sanitizing algorithm but
no malicious operations, such as replacing/modify-
ing the cipher data. The sanitizer learns nothing
about the plain data.

� The receiver wants to access the plain data. He/she
can freely download the cipher data that he/she is
interested in from the cloud server. Prior to accessing
the data, the receiver must register into the system
and ask for a private key from the authority. When
the registered receiver owns conditions satisfying
the access policy, it is valid. Only valid receivers can
access the plain data from the data publisher.
Receivers will share neither their private keys nor

the decrypted plain data with other entities. Here,
we note that each receiver is unique.

� The cloud server provides a platform for cipher data
storage. The cipher data stored in the cloud server
can be acquired by any receivers. The cloud server
just receives cipher data from the sanitizer and sends
the cipher data to the receiver, while executes no
computation operation. The cloud server will behave
maliciously, e.g., delete the cipher data. Whether
the cloud server is curious or not gives no effect on
the security of SACS.

3.2 Design Goals

SACS aims to achieve the following design goals.

� Sanitization. SACS allows to sanitize the cipher data.
The sanitization is to prevent any data publisher from
malicious behaviors, which incurs invalid access to
plain data. SACS makes an enhancement to data pri-
vacy in terms of publishers and provides secure data
storage againstmalicious data publishers.

� Integrity. SACS allows the sanitizer to check whether
the cipher data from the data publisher is indeed
under the claimed access policy. This integrity check
ensures the validity of the received cipher data. We
requires such an operation to be prior to sanitizing.

� Stronger Access Control. SACS ensures stronger access
control over encrypted data. It guarantees that only
valid receivers can access the plain data while any
receiver, even if he/she has an encryption key from
the malicious data publisher, cannot decrypt the san-
itized cipher data correctly.

3.3 Threat Model

In SACS, we consider a necessary sanitizer who controls the
communication between the data publisher and the cloud
server. All outgoing communication of data publishers
must pass through this sanitizer. We consider a malicious
data publisher who can illegally distribute the encryption
key to invalid (even non-registered) receivers. We also con-
sider that all of receivers in this system attempt to access the
plain data.

The goal of an adversary in this system is to decrypt the
sanitized cipher data and obtain the plain data. We give
some illustrations about the adversary capability. First, it
can have full access to sanitized cipher data in the cloud but
have no right to obtain the original cipher data generated by

Fig. 1. SACS architecture.
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the data publisher. Second, it is allowed to register into this
system like a receiver but cannot be assigned a valid private
key corresponding to the specified access policy. Third, it
can submit a requirement to a malicious data publisher and
ask for his/her encryption key. Further, it is able to know
the decryption algorithm and execute kinds of attacks to
obtain the plain data from the given sanitized cipher data.

We also need to make some assumptions. One is that the
public information (such as the system public parameters,
the attribute space, the global identity space) are freely
available in this system, while the secret information (such
as master secret key, private keys and random numbers
chosen by entities) are not available. One is that the author-
ity is non-compromised. Another is that all entities honestly
execute its embedded algorithm and no collusion exists
between any two entities.

We do not consider the case where the cipher data gener-
ated from the data publisher is wrong, that is, all the
receivers cannot decrypt the cipher data. This assumption is
reasonable as it loses the encryption meaning if all the
receivers cannot decrypt the cipher data.

3.4 Protocol Workflow

A SACS protocol mainly consists of five phases: System Ini-
tialization, Receiver Registration, Cipher Data Publishing,
Cipher Data Sanitizing and Data Access. The protocol work-
flow is described as follows and its detailed construction
will be presented in Section 5.

System Initialization. This phase is executed by the author-
ity. The authority establishes the system by generating all
system parameters. The public parameters are publicly
available to all of entities while the master secret key is only
kept by the authority.

Receiver Registration. This phase is mainly executed by the
authority. In SACS system, a receiver sends a registration
request to the authority and thereafter the authority returns
a private key, which is used to decrypt the sanitized cipher
data. Non-registered receivers impossibly finish a correct
decryption while registered receivers have a certain possi-
bility to retrieve the data with some access conditions. Our
SACS design adopts CP-ABE, where a private key is associ-
ated with a set of attributes.

Cipher Data Publishing. This phase is mainly executed by
the data publisher. For plain data confidentiality, the data
publisher first leverages the encryption algorithm over the
plain data and generates the cipher data. The data publisher
combines both symmetric encryption and CP-ABE in the
encryption. The plain data is directly encrypted with some
symmetric encryption by using a symmetric key (i.e., the
encryption key) and the symmetric key is encrypted with
CP-ABE under a specified access policy. Such cipher data
with a built-in access policy guarantees only registered
receivers whose attribute set satisfies the specified access
policy can get the symmetric key and thereby retrieve the
plain data. After that, the cipher data is delivered to the
sanitizer.

Cipher Data Sanitizing. This phase is mainly executed by
the sanitizer. The sanitizer carries out a sanitization for the
cipher data from the data publisher, which prevents mali-
cious data publishers from distributing the encryption key

and invalid receivers from accessing the plain data. This
phase is split into two sub-phases, checking and sanitizing.
Checking is to ensure the cipher data is indeed under the
claimed access policy and sanitizing is to transfer the cipher
data to the sanitized cipher data. The cipher data sanitizing
further guarantees the access right of valid receivers, which
means only valid receiver can access the plain data. After
that, the sanitized cipher data is uploaded to the cloud
server for storing and sharing.

Data Access. This phase is mainly executed by the
receiver. The receiver downloads the sanitized cipher data
from the cloud server and then decrypts with the decryp-
tion algorithm. Only holding a valid private key, the
receiver can decrypt to retrieve the plain data. That is, if
his/her attribute set in the private key satisfies the access
policy in the sanitized cipher data, the encryption key can
be obtained and then the plain data can be decrypted with
the symmetric decryption.

4 SANITIZED ATTRIBUTE-BASED ENCRYPTION

The SACS is based on a notion of Sanitized Attribute-based
Encryption (SABE). SABE allows to sanitize the ciphertext
and prevents malicious encryptors, such that only valid pri-
vate keys can be used to obtain the message. This section
gives formal algorithm definitions and security model.

4.1 Algorithm Definitions

Definition 1. A sanitized (ciphertext-policy) ABE scheme con-
sists of the following algorithms.

Setup(�; U). The setup algorithm takes as input a security
parameter � and the number of universal attributes U . It
returns system parameters Params and a master secret
keymsk.

KeyGen(S;msk;Params). The key generation takes as
input an attribute set S, the master secret key msk and the
system parameters Params. It returns the private key skS
of S.

Encrypt(P;M;Params). The encryption algorithm takes
as input an access policy P , a message M and the system
parameter Params. It returns a ciphertext CT ¼ Enc½P;
M;Params�.

Sanitize(CT;Params). The sanitization algorithm takes
as input the system parameter Params and a ciphertext CT .
It returns a sanitized ciphertext CT 0 ¼ San½Params; CT �.

Decrypt(CT 0; skS;Params). The decryption algorithm
takes as input a sanitized ciphertext CT 0 for P;M and a pri-
vate key skS for S. If the attribute set S satisfies the access
policy P , the decryption algorithm returns M ¼ Dec½CT 0;
skS;Params�. Otherwise, it returns ?.

Correctness. We give the correctness of Sanitized CP-ABE
as follows. For all Params;msk;S;P such that the attribute
set S satisfies the access policy P , if skS  KeyGen
(S;msk;Params) , CT  Encrypt(P;M;Params) and CT 0  
Sanitize(CT;Params) , we have M ¼ DecryptðCT 0; skS;
ParamsÞ.

4.2 Security Model

For SABE, we consider the indistinguishability-based secu-
rity. The adversary outputs an access structure and two
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distinct ciphertexts for challenge, and tells apart which
ciphertext is used to sanitize randomly chosen by the chal-
lenger. During this interaction, the adversary is allowed to
query the private key of any attribute set as needed under
the restriction that the queried attribute set does not satisfy
the access structure. The security model is defined by a
security game played between an adversary and a chal-
lenger below.

Setup. The challenger runs the system setup algorithm to
generate the system public parameters Params and sends
Params to the adversary.

Phase 1. In this phase, the adversary can issue pri-
vate key query on any attribute set Si as needed. The
challenger runs the key generation algorithm to gener-
ate the corresponding private key and returns the result
to the adversary.

Challenge. Once the adversary decides phase 1 is over, it
outputs an access structure ðM�; r�Þ, two distinct ciphertexts
CT0; CT1 for challenge. We require that none of the attribute
sets Si from phase 1 satisfies the access structure ðM�; r�Þ.
Then the challenger randomly picks a bit m 2 f0; 1g and
runs the ciphertext sanitizing algorithm to sanitizes the
ciphertext CTm under ðM�; r�Þ after checking the validity of
CTm, and generates a challenge ciphertext CT � which is
given to the adversary.

Phase 2. In this phase, the adversary can issue more pri-
vate key queries on attribute sets with the restriction estab-
lished in the challenge phase. The challenger responds the
same as phase 1.

Guess. Finally, the adversary outputs its guess m0 of m.
We define the advantage of an adversary A in this

game as

AdvA ¼ Pr½m0 ¼ m� � 1

2

����
����;

where the probability is over the random bits used by the
challenger and the adversary.

The security of our proposed scheme is conducted in a
weaken security model, namely selective security. In the
selective security model, the adversary must commit the
access structure ðM�; r�Þ before seeing the system public
parameters, and the adversary is not allowed to make pri-
vate key query on any attribute set which satisfies the access
structure ðM�; r�Þ.

5 SACS DESIGN

This section presents the SACS design in details. The
SACS is built on top of SABE, where LSSS-based CP-
ABE [3] is adopted. The data publisher encrypts the
plain data with a random encryption key, which is
encrypted with CP-ABE. To guarantee the integrity, the
cipher data needs to be verified to be under the claimed
access policy before sanitizing. A main challenge is that
the traditional ABE ciphertext form (with only a-associ-
ated elements) cannot support the sanitization. To
address it, a trick in construction is to add another ele-
ment (C2 ¼ e g; gð Þbs in the cipher data) corresponding to
the a-associated element. This a-associated element is
used to encrypt the encryption key K (C1 ¼ K � e g; gð Þas).
Then the sanitizer can chooses s0; K0 to sanitize the

cipher data and a valid receiver can decrypt the sani-
tized cipher data by reconstructing K;K0. The used nota-
tions for SACS are summarized in Table 1 and the
construction details are presented as follows.

5.1 System Initialization

The system is established by an authority. The authority
first chooses a pairing group PG ¼ ðG;GT ; e; pÞ [22] and
the number of universal attributes U , and randomly
picks group elements g; h1; h2; . . . ; hU from G. It also
chooses random exponents a;a;b 2 Zp, computes
ga; eðg; gÞa; eðg; gÞb and sets the system master secret key
as msk ¼ ðga; gbÞ. It then chooses a pseudorandom gener-
ator PRG and publishes the system public parameters
Params as

Params ¼ ðPG; g; h1; h2; . . . ; hU; g
a; eðg; gÞa; eðg; gÞb; PRGÞ:

Here, we adopt the pseudorandom generator that is usu-
ally used to encrypt large-size message in the Cipher Data
Publishing phase. PRG is constructed from the crypto-
graphic hash functions in the form of PRGðKÞ ¼
HðK; 1ÞjjHðK; 2Þjj � � � jjHðK;nÞ, where H is a hash function.
With such a form, we can see PRG as the random oracle in
the Section 6.

5.2 Receiver Registration

In this phase, receivers can register to the system and
receives the correspond private keys from the authority.
Suppose a receiver has an attribute set S � f1; 2; . . . ; Ug.

The authority first checks whether the receiver has these
attributes indeed by artificial methods, such as certificate
verification. Otherwise, taking as input S;msk;Paramsð Þ,
the authority chooses two random exponents t; t0 2 Zp and
creates the private key for S as

skS ¼ ðgagat; gbgat0 ; gt; gt0 ; ht
x; h

t0
x : 8x 2 SÞ:

5.3 Cipher Data Publishing

For a given data M, the data publisher specifies an easy
expressed monotone boolean formula as the access policy
and turns it into an LSSS access structure ðM; rÞ by follow-
ing the terminology in [23]. M is an m� n matrix, where m
is the scale of a specific attribute set and n is variable

TABLE 1
Notations Used in SACS

Notation Description

Params System public parameters.
msk Master secret key, kept by the authority.
S An attribute set.
skS Private key for S.
M Plain data.
K Encryption key chosen by the data publisher.
ðM; rÞ LSSS access structure.
CT Cipher data
psk Partial private key only used in Checking phase.
K0 Encryption key chosen by sanitizer in Sanitizing.
CT 0 Sanitized cipher data.
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depending on the monotone boolean formula definition and
the LSSS turning method. The function r maps each row of
M to a specific attribute, marked as rðiÞ 2 fAtt1; . . . ; AttUg.
To encapsulate the encryption key, the data publisher choo-
ses a vector ~v ¼ ðs; y2; y3; . . . ; ynÞ 2 Zn

p , where y2; y3; . . . ; yn
are randomly chosen. Each share ui can be calculated with
ui ¼ ~v �Mi 2 Zp, whereMi denotes the ith row ofM.

The data publisher chooses an encryption key K 2 GT

and z1; z2; . . . ; zm 2 Zp, and creates the corresponding cipher
data CT ¼ C0; C1; C2; D0; D1i; D2ið Þmi¼1

� �
as

C0 ¼ PRGðKÞ 	M; C1 ¼ K � eðg; gÞas; C2 ¼ eðg; gÞbs;

D0 ¼ gs;
�
D1i ¼ gauih

�zi
rðiÞ; D2i ¼ gzi

�
; i ¼ 1; 2; . . . ;m:

After generating the cipher data CT, the data publisher
sends the cipher data CT to the sanitizer.

5.4 Cipher Data Sanitizing

After receiving the cipher data, the sanitizer performs the
following two steps to sanitize the cipher data.

Step 1: Checking.
The goal of this step is to check whether the cipher

data is generated under the access structure ðM; rÞ as it
claimed in the received cipher data. To do the verifica-
tion, the sanitizer chooses a random exponent g as the
dummy master secret key and computes g-relevant par-
tial private key pskS whose attribute set S satisfies the
access structure as below:

pskS ¼ ðggga~t; h
~t
x; g

~t : 8x 2 SÞ;
where ~t is a random from Zp chosen by the sanitizer. Then it
uses this private key to compute

Y
i2I eðD1i; g

~tÞe
�
D2i; h

~t
rðiÞ
�� �wi

¼
Y

i2I e gauih
�zi
rðiÞ; g

~t
� �

e gzi ; h
~t
rðiÞ

� �� �wi

¼
Y

i2I e g; gð Þa~tsiwi

¼ e g; gð Þ
P

i2I a~tsiwi

¼ e g; gð Þa~ts;

eðD0; g
gga

~tÞ
e g; gð Þa~ts

¼ eðg; gÞgse g; gð Þa~ts
e g; gð Þa~ts

¼ eðg; gÞgs:

Finally, it checks whether the following equation holds:

eðD0; g
gÞ ¼ eðg; gÞgs;

and performs Step 2 cipher data sanitizing below if the
answer is yes. Otherwise, the sanitizer rejects the cipher
data. By this, the sanitizer can believe that the cipher data is
valid generated under the claimed access policy.

Step 2: Sanitizing.
The sanitizer chooses a vector ~v0 ¼ ðs0; y02; y03; . . . ; y0nÞ 2

Zn
p , where s0; y02; y

0
3; . . . ; y

0
n are randomly chosen. Each

share u0i can be calculated with u0i ¼ ~v0 �Mi 2 Zp, where
Mi denotes the ith row of M. It chooses another

encryption key K0 2 GT , and randomly picks z01; z
0
2; . . . ;

z0m 2 Zp. It then computes

C00 ¼ PRGðK0Þ; C01 ¼ eðg; gÞas0 ; C02 ¼ K0 � eðg; gÞbs0 ;

D00 ¼ gs
0
; D01i ¼ gau

0
ih
�z0

i
rðiÞ; D02i ¼ gz

0
i

� �
; i ¼ 1; 2; . . . ;m:

Then it sanitizes CT and generates the sanitized cipher
data CT 0 ¼ V0; V1; V2; V3; ðAi;BiÞmi¼1

� �
as

V0 ¼ C0 	 C00 ¼ PRGðK0Þ 	 PRGðKÞ 	M;

V1 ¼ C1 � C01 ¼ K � eðg; gÞaðsþs0Þ;
V2 ¼ C2 � C02 ¼ K0 � eðg; gÞbðsþs0Þ;
V3 ¼ D0 �D00 ¼ gsþs

0
;

together with for i ¼ 1; 2; . . . ;m

Ai ¼ D1i �D01i ¼ gauiþau
0
ih
�zi�z0i
rðiÞ :

Bi ¼ D2i �D02i ¼ gziþz
0
i :

The sanitized cipher data CT 0 will be sent to and stored in
the cloud.

5.5 Data Access

Given a sanitized cipher data CT 0 ¼ V0; V1; V2; V3;ð
ðAi;BiÞmi¼1Þ The receiver executes the decryption algorithm
to access the plain dataM. The decryption mainly recovers
K and K0. The former can be computed with eðg; gÞaðsþs0Þ,
which is obtained by using private key gagat, and the latter
can be computed with eðg; gÞbðsþs0Þ, which is obtained by
using private key gbgat. The concrete decryption processes
are described as follows.

The receiver runs the decryption algorithm, which taking
as input a sanitized cipher data CT 0 for access structure
ðM; sÞ and a private key for a set S. Suppose that S satisfies
the access structure and let I 
 f1; 2; . . . ;mg be defined as
I ¼ fi : rðiÞ 2 Sg. Let fwi 2 Zpgi2I be a set of constants such
that if f�ig are valid shares of any secret s according to M,
then

P
i2I wiui ¼ s. Then the receiver computes

Y
i2I eðAi; g

tÞe Bi; h
t
rðiÞ

� �� �wi

¼
Y

i2I e gauiþau
0
ih
�zi�z0i
rðiÞ ; gt

� �
e gziþz

0
i ; ht

rðiÞ
� �� �wi

¼
Y

i2I eðg; gÞ
atðuiþu0iÞwi

¼ eðg; gÞ
P

i2I atðuiþu
0
i
Þwi

¼ eðg; gÞatðsþs0Þ;Y
i2I eðAi; g

t0 Þe Bi; h
t0
rðiÞ

� �� �wi

¼
Y

i2I e gauiþau
0
ih
�zi�z0i
rðiÞ ; gt

0� �
e gziþz

0
i ; ht0

rðiÞ
� �� �wi

¼
Y

i2I e g; gð Þatðuiþu0iÞwi

¼ e g; gð Þ
P

i2I atðuiþu
0
i
Þwi

¼ e g; gð Þat0ðsþs0Þ;
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eðV3; g
agatÞ

e g; gð Þatðsþs0Þ
¼ eðg; gÞaðsþs0Þe g; gð Þatðsþs0Þ

e g; gð Þatðsþs0Þ

¼ eðg; gÞaðsþs0Þ;
eðV3; g

bgat
0 Þ

e g; gð Þat0ðsþs0Þ
¼ eðg; gÞbðsþs0Þe g; gð Þat0ðsþs0Þ

e g; gð Þat0ðsþs0Þ

¼ eðg; gÞbðsþs0Þ:

After obtaining eðg; gÞaðsþs0Þ, eðg; gÞbðsþs0Þ, the receiver can
retrieve the encryption keysK andK0 by computing

K ¼ V1

eðg; gÞaðsþs0Þ
;

K0 ¼ V2

eðg; gÞbðsþs0Þ
;

and get the message as

M¼ V0 	 PRGðKÞ 	 PRGðK0Þ:

From our setting, after sanitizing, the cipher data actually
is encrypted by two encryption keys K and K’, where K’ is
chosen by the sanitizer secretly. As the sanitizer is full
trusted, K’ can only be retrieved via decryption by provid-
ing a valid private key. Therefore, even the malicious data
publisher reveals the decryption key K in the cipher data,
the non-authorized receivers cannot retrieve the plain data.
Our approach can efficiently prevent the malicious data
publisher from leaking the plain data.

6 SECURITY ANALYSIS

In this section, we give a formal security proof of our pro-
posed scheme. Before starting to analyze the security, we
show the complexity assumption which the security of our
scheme based on.

6.1 Complexity Assumption

The security of the proposed scheme is derived from the
below complexity assumption.

Decisional q-Parallel Bilinear Diffie-Hellman Exponent
Assumption [3]. Let PG ¼ ðG;GT ; e; pÞ be a pairing group,
a; s; b1; b2; . . . ; bq 2 Zp be chosen at random and g be a gener-
ator of G. If an adversary is given ~Y ¼

g; gs; ga; . . . ; gða
qÞ; gða

qþ2Þ;...;gða2qÞ

81�j�q gs�bj ; ga=bj ; . . . ; gða
q=bjÞ; gða

qþ2=bjÞ;...;gða
2q=bjÞ

81�j;k�q;k6¼j ga�s�bk=bj ; . . . ; gða
q �s�bk=bjÞ;

it must remain hard to distinguish eðg; gÞaqþ1s 2 GT from a
random element Z in GT .

An algorithm D that outputs m 2 f0; 1g has advantage �
in solving decisional q-parallel BDHE in G if

jPr½Bð~Y ;Z ¼ eðg; gÞaqþ1sÞ ¼ 1�
� Pr½Bð~Y ;Z ¼ RÞ ¼ 1�j � �:

Definition 2. We say that the decisional q-parallel BDHE
assumption holds if no polynomial time algorithm has non-neg-
ligible advantage in solving the decisional q-parallel BDHE
problem.

6.2 Security Proof

The security of the proposed scheme is fulfilled by the fol-
lowing theorem.

Theorem 1. Suppose the decisional q-parallel BDHE assumption
holds and the pseudorandom generator PRG is a random ora-
cle, then no polynomial time adversary can selectively break
our proposed scheme with a challenge matrix of size m� � n�,
wherem�; n� � q.

Proof. Suppose there is an adversary A with non-negligible
advantage � in the selective security game against our con-
struction. Then we can construct a simulator B to solve the
decisional q-parallel BDHE problem. Suppose B is given a
decisional q-parallel BDHE problem instance as input.

Init. The simulator takes in a q-parallel BDHE chal-
lenge ~Y ;Z. The adversary gives the algorithm the chal-
lenge access structure M�; r�ð Þ, where M� is a m� � n�

matrix withm�; n� � q.
Setup. The simulator randomly chooses a0;b0; h 2 Zp

and implicitly a ¼ a0 þ aqþ1, b ¼ b0 þ haqþ1 and
computes eðg; gÞa ¼ e ga; ga

q� �
eðg; gÞa0 ; eðg; gÞb ¼ eðgau; gaq Þ

eðg; gÞb0 and ga ¼ ga
qþ1

ga
0
.

Next, we show how to simulate the group elements
h1; h2; . . . ; hU . For each x 2 ½1; U�, we choose a random
value lx. Let X denote the set of indices i such that
r�ðiÞ ¼ x. The simulator computes

hx ¼ glx
Y
i2X

g
aM�

i;1
=bi � ga2M�i;2=bi � � � gan

�
M�

i;n� =bi :

We note that ifX ¼ ;, we have hx ¼ glx . As lx is chosen at
random, hx is distributed randomly.

PRG-Query. Upon receiving a PRG query for Ki, the
simulator B responds as follow. B maintains a list L of a
tuple ðKi; FiÞ. This list is initially empty. If Ki already
appears in the list in a tuple ðKi; FiÞ, it returns the corre-
sponding Fi. Otherwise, B picks a random Fi 2 Zp as the
value of PRGðKiÞ, and adds the tuple ðKi; FiÞ to L and
then sends Fi to A.

Phase 1. In this phase, the adversary can issue the pri-
vate key queries. For a private key query of a set S where
S does not satisfy the access structure M�; r�ð Þ, the simu-
lator first randomly chooses r 2 Zp. It then finds a vector
~w ¼ w1; . . . ; wn�ð Þ 2 Zn�

p such that w1 ¼ �1 and for all i
where r�ðiÞ 2 S we have that ~w �M�

i ¼ 0. From the defini-
tion of LSSS, such a vector must exist. The simulator then
implicitly sets

t ¼ rþ w1a
q þ w2a

q�1 þ � � � þ wn�a
q�n�þ1:

Similarly, the simulator chooses a random r0 2 Zp and
finds a vector ~w0 ¼ w01; . . . ; w

0
n�

� � 2 Zn�
p such that w01 ¼ �h

and for all i where r�ðiÞ 2 S we have that ~w0 �M�
i ¼ 0.

Then it implicitly sets

t0 ¼ r0 þ w01a
q þ w02a

q�1 þ � � � þ w0n�a
q�n�þ1;
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and computes

gt ¼ gr
Y

i¼1;...;n� ðg
aqþ1�iÞwi ;

gt
0 ¼ gr

0Y
i¼1;...;n� ðg

aqþ1�iÞw0i ;

gagat ¼ ga
0
gar
Y

i¼2;...;n�ðg
aqþ2�iÞwi ;

gbgat
0 ¼ gb

0
gar
0Y

i¼2;...;n�ðg
aqþ2�iÞw0i :

All these values can be computed from the hard problem
instance. For the computation of ht

x; h
t0
x 8x 2 S, we first

consider x 2 S for which there is no i such that r�ðiÞ ¼ x.
In this case, we can simply let ht

x ¼ gtð Þlx and ht0
x ¼ ðgt

0 Þlx .
For another case, x 2 S, where x is used in the access

structure. Let X be the set of all i such that rðiÞ� ¼ x. The
simulator computes ht

x and ht0
x respectively as follows:

gt
� �lxY

i2X

Y
j¼1;...;n�

gða
j=biÞr

Y
k¼1;...;n�;k6¼j

ðgaqþ1þj�k=biÞwk

 !M�
i;j

;

gt
� �lxY

i2X

Y
j¼1;...;n�

gða
j=biÞr

Y
k¼1;...;n�;k 6¼j

ðgaqþ1þj�k=biÞw0k
 !M�

i;j

:

One might observe that in this case, there are terms of
the form ga

qþ1=bi that we cannot simulate. However, all
these terms will be canceled as M�

i � ~w ¼ 0 and M�
i � ~w0 ¼

0. Therefore, the simulation of private keys is correct.
Challenge. Once the adversary decides that phase 1 is

over, it outputs two distinct ciphertexts CT0; CT1. The
simulator B randomly picks a bit m 2 f0; 1g, an encryp-
tion key K� 2 GT with K� =2 L and computes the chal-
lenge ciphertext as follows.

The simulator first performs the ciphertext checking
process on CTm to check whether CTm was generated
under the the access structure M�; r�ð Þ, and aborts if no.
Otherwise, the simulator believes that CTm has the cor-
rect ciphertext structure and performs as follows.

Let CTm ¼ C0; C1; C2; D0; ðD1i; D2iÞmi¼1
� �

. B first obtains
PRGðK�Þ, computes V �3 ¼ D0 � gs and

V �0 ¼ C0 	 PRGðK�Þ;

V �1 ¼ C1 � Z � eðgs; ga0 Þ;

V �2 ¼ C2 �K� � Zh � e gs; gb
0� �
:

For the simulation of U�i ¼ ðA�i ; B�i Þ, the simulator ran-
domly chooses y02; . . . ; y

0
n� and implicitly sets the shared

secret using the vector

~v ¼ �s; saþ y02; sa
2 þ y03; . . . ; sa

n��1 þ y0n�
� 2 Zn�

p :

It also chooses random values z01; z
0
2; . . . ; z

0
m� from Zp. For

i ¼ 1; . . . ;m�, we define Ri as the set of all k 6¼ i such that
r�ðiÞ ¼ r�ðkÞ. i.e., the set of all other row indices that

have the same attribute as row i. Finally, the simulator
implicitly sets zi ¼ �z0i � sbi and computes the compo-
nents Ai;Bi as

A�i ¼ D1i � hz0
i
r�ðiÞ

Y
j¼2;...;n�

gað ÞM�i;jy0j
 !

ðgbi�sÞ�lr�ðiÞ �

Y
k2Ri

Y
j¼1;...;n�

ðgaj�s�ðbi=bkÞÞM�k;j
 !

;

B�i ¼ D2i � gzi ¼ D2i � g�z0i g�sbi :
The output challenge ciphertext is

CT � ¼ �V �0 ; V �1 ; V �2 ; �A�i ; B�i �m�i¼1
�
:

If Z ¼ eðg; gÞaqþ1s, we have

V �1 ¼ C1 � Z � eðgs; ga0 Þ
¼ C1 � eðg; gÞa

qþ1s � e gs; ga
0� �

¼ C1 � eðg; gÞ a0þaqþ1ð Þs
¼ C1 � eðg; gÞas;

V �2 ¼ C2 �K� � Zh � eðgs; gb0 Þ
¼ C2 �K� � eðg; gÞha

qþ1s � eðgs; gb0 Þ
¼ C2 �K� � eðg; gÞ b0þhaqþ1ð Þs

¼ C2 �K� � eðg; gÞbs:
Therefore, the challenge ciphertext is valid ciphertext
and indistinguishable from the real scheme when

Z ¼ eðg; gÞaqþ1s.
Phase 2. In this phase, the adversary can issue more

private key queries. The simulator responds the same as
phase 1.

Guess. Finally, the adversary outputs its guess m0 of m.
Then the simulator outputs 1 if m ¼ m0 to indicate that it
believes Z ¼ eðg; gÞaqþ1s. Otherwise, it outputs 0 to indi-
cate that it believe Z is a random element in group GT .

This completes the description of the simulation and
the solution of decisional q-parallel BDHE problem. It is
not hard to verify that the simulation is indistinguishable
from the real scheme. If Z ¼ eðg; gÞaqþ1s, according to the
assumption, we have

Pr½Bð~Y ;Z ¼ eðg; gÞaqþ1sÞ ¼ 1� ¼ 1

2
þ �:

When Z is a random group element in GT , as PRG is
viewed as random oracle, we have PRGðK�Þ is random.
Thus V �0 is random. As a0;b0; h; K�; z0i; y

0
i; are random cho-

sen, we have V �1 ; V
�
2 ; B

�
i ; A

�
i are random and independent

of CTm. Therefore the ciphertext CTm is completely hid-
den from the adversary and the challenge ciphertext CT �

is a one-time pad. We have

Pr½Bð~Y ;Z ¼ RÞ ¼ 1� ¼ 1

2
:

Therefore, we have the advantage of the simulator B
in solving the decisional q-parallel BDHE problem is
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AdvB ¼ jPr½Bð~Y ;Z ¼ eðg; gÞaqþ1sÞ ¼ 1�
� Pr½Bð~Y ;Z ¼ RÞ ¼ 1�j

¼ 1

2
þ �� 1

2

¼ �: tu
7 PERFORMANCE ANALYSIS

We present the performance analysis for our SACS protocol
in terms of both communication complexity and computa-
tion time. Due to no comparable protocols in the literature,
we only evaluate our protocol in the following analysis.

To present a fair communication analysis, consider four
phases except System Initialization. We use jZpj, jGj and jGT j
to denote the size of an element in groups Zp, G and GT ,
respectively. Also, the size of an attribute set S is denoted as
jSj and the output length of the pseudorandom generator is
denoted as jP j. The communication cost results are summa-
rized in Table 2. In the Receiver Registration phase, the com-
munication cost is contributed by the private key assigned
by the authority to the receiver. The length of the private key
is 4þ jSjð ÞjGj. In the Cipher Data Publishing phase, the com-
munication cost is mainly from the cipher data, which is
uploaded from the data publisher to the sanitizer. The size of
the cipher data is 1þmð ÞjGj þ 2jGT j þ jP j, where m is the
scale of a specific attribute set in the access policy. In the
Cipher Data Sanitizing phase, the communication cost is con-
tributed by the sanitized cipher data sent from the sanitizer
to the cloud server. The size of the sanitized cipher data is
the same as that of the cipher data. In the Data Access phase,
the receiver has no need to send anything to others but needs
to download the sanitized cipher data stored on the cloud
server. The communication cost is definitely the size of the
sanitized cipher data. Here, we do not consider the commu-
nication process of the request launched by the receiver.

For the computation analysis, we conduct the simulation
of our SACS protocol on a machine with 2.2 GHz Intel Core
i7 CPU and 16GB 2133 MHz DDR3 memory. In our experi-
ments, we utilize PBC library and the used language is
Python. We choose the symmetric pairing which is con-
structed based on the curve y2 ¼ x3 þ x over the finite field
Fp. the order of the base field p, satsifying p ¼ 3mod 4, is
512-bit. The embedding degree is 2. G is the group of points
on EðFpÞ and the group order is 160-bit. We implement
the pseudorandom generator by invoking hashlib [24],
where HMAC-SHA256 is used to implement the hash func-
tion H. The ABE simulation is based on cpabe toolkit [25],
assisted with Python Cryptography toolkit [26]. We note
that the simulation is just to test the computation time of
our protocol but not implement a prototype. Hence we con-
sider neither the deployment of entities nor the latency of
data transmitting among different entities.

In our test, three variable factors are considered. They are
the length of the plain data, the number of attributes (i.e.,
the size of the attribute set S) and the scale of a specific attri-
bute set in the access policy (i.e.,m from the matrixMm�n in
Section 5.3). We usually fix two factors and vary the rest to
execute kinds of tests. The number of universal attributes is
pre-set to be 10. In trials, we only collect results with suc-
cessful decryption.

We first consider to run the SACS protocol and test the
computational time. In this test, we vary the length of the
plain data, where the number of attributes in the private key
is fixed to be 5 and the scale of a specific attribute set in
the access policy is fixed to be 10. Three used files (to-
be-encrypted plain data) are pre-selected and their sizes are
10, 100 and 500 KB, respectively. The time is collected from
random element selection to decryption completion. We plot
the computational time of the SACS protocol in Fig. 2. We
notice that the time to execute the SACS protocol increases
quite slightlywith the plain data length. From SACS protocol
description, the computational cost is almost linearly depen-
dent on the size of the attribute set, corresponding to the
access structure, but not on the plain data. The file length the-
oretically has insignificant influence on the running time of
the complete SACS protocol. The above experiment results
are also consistent with their theoretical complexity.

Then we consider different phases and measure the
computational time in each phase. We execute the Receiver
Registration phase, the Cipher Data Publishing phase, the
Cipher Data Sanitizing phase and the Data Access phase. The
System Initialization phase is excluded because its computa-
tional time is independent of variable factors mentioned
above. Figs. 3, 4, 5, and 6 illustrate their corresponding
computational time, respectively. In the Receiver Registration
phase, the computation is mainly from the generation of the
private key, which needs to take the attribute set as input.
So we vary the number of the attributes and run the algo-
rithm of the Receiver Registration phase accordingly. In the
Cipher Data Publishing phase, we focus on the computational
time of the cipher data generation, where we select the plain

TABLE 2
Communication Analysis

Authority! Receiver Data publisher! Sanitizer Sanitizer! Cloud server Cloud server! Receiver

Receiver Registration 4þ jSjð ÞjGj - - -
Cipher Data Publishing - 1þmð ÞjGj þ 2jGT j þ jP j - -
Cipher Data Sanitizing - - 1þmð ÞjGj þ 2jGT j þ jP j -
Data Access - - - 1þmð ÞjGj þ 2jGT j þ jP j

Fig. 2. Computational time of SACS protocol.
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data with size of 10 KB. In terms of construction in Section 5,
the computational time will be associated with only the
scale of a specific attribute set in the access policy and
hence we execute trials with respect varying m. In the
Cipher Data Sanitizing phase, the computational time is
associated with both the scale of a specific attribute set in
the access policy and the used attribute set. Here we
choose to fix the former to be 10 and vary the latter. To test
the computational time of the Data Access phase, we fix the
scale of a specific attribute set in the access policy in the
sanitized cipher data to be 10 and vary the number of
attributes for the private key generated in the Receiver Reg-
istration phase. Then we test the decryption time in the
Data Access phase. Overall, these experiment results show
that the computational time in each phase has a growth
with increase of the specified variable factor although the
amplitude variation is different.

8 CONCLUSION

We initiated the study of secure cloud storage in the pres-
ence of malicious data publishers, which is a very practical
situation that unfortunately has never been studied in the
literature previously. In this setting, malicious data publish-
ers construct data following the given access control policy,
but the ciphertexts can actually be decrypted by unautho-
rized users without the need of valid keys. We designed a
system and its secure scheme to enable protection against
this kind of attack. Our scheme is proven secure under
q-Parallel Bilinear Diffie-Hellman Exponent Assumption.
We also provided an implementation of our system for per-
formance analysis. We believe this work will open future
research work in cloud storage, since this notion is very
practical. We note that this notion will further encourage
the adoption of cloud storage in practice.
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