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Multi-User Verifiable Searchable Symmetric
Encryption for Cloud Storage

Xueqiao Liu , Guomin Yang , Senior Member, IEEE, Yi Mu , Senior Member, IEEE,

and Robert H. Deng , Fellow, IEEE

Abstract—In a cloud data storage system, symmetric key encryption is usually used to encrypt files due to its high efficiency. In order

allow the untrusted/semi-trusted cloud storage server to perform searching over encrypted data while maintaining data confidentiality,

searchable symmetric encryption (SSE) has been proposed. In a typical SSE scheme, a users stores encrypted files on a cloud storage

server and later can retrieve the encrypted files containing specific keywords. The basic security requirement of SSE is that the cloud

server learns no information about the files or the keywords during the searching process. Some SSE schemes also offer additional

functionalities such as detecting cheating behavior of a malicious server (i.e., verifiability) and allowing update (e.g., modifying, deleting

and adding) of documents on the server. However, the previous (verifiable) SSE schemes were designed for single users, which

means the searching can only be done by the data owner, whereas in reality people often use cloud storage to share files with other

users. In this paper we present a multi-user verifiable searchable symmetric encryption (MVSSE) scheme that achieves all the

desirable features of a verifiable SSE and allows multiple users to perform searching. We then define an ideal functionality for MVSSE

under the Universally Composable (UC-) security framework and prove that our ideal functionality implies the security requirements of

a secure MVSSE, and our multi-user verifiable SSE scheme is UC-secure. We also implement our scheme to verify its high

performance based on some real dataset.

Index Terms—Searchable encryption, dynamics, verifiability, multi-user, UC-security

Ç

1 INTRODUCTION

WITH the popularity of cloud computing, more and
more data are being stored on cloud storage systems.

However, it has also brought new challenges for data secu-
rity and privacy as users don’t fully trust cloud storage pro-
viders that are outside the users’ trusted domains. To
protect the confidentiality of sensitive data in a cloud stor-
age system, the clients can pre-process their data using
encryption before uploading them to the remote cloud stor-
age. However, storing only encrypted files brings another
problem: if the cloud server could not access the contents of
the data, it will not be able to process any data searching
queries from the clients.

In order to deal with this problem, searchable encryption
was introduced. The idea of searchable encryption is that
the server could perform searching on encrypted data with-
out decrypting them. In general, searchable encryption
could be classified into public key encryption with keyword
search (PEKS) and searchable symmetric encryption (SSE).

In this paper we focus on the latter which is more efficient
in terms of computation overhead.

Most searchable symmetric encryption schemes are in
single-user setting where the client is both the data owner
and the data user, and the server is responsible for storing
encrypted data, performing data search and returning the
corresponding result. This kind of SSE suits the need of sin-
gle users for storing their personal sensitive data in cloud
storage. However, one of the benefits provided by cloud
storage is the convenience for data sharing and SSE schemes
for single users cannot cater for such a need.

1.1 Our Contributions

In this work, we present a multi-user verifiable searchable
symmetric encryption (MVSSE) scheme (Fig. 1) that allows
efficient search over encrypted data that are shared among
multiple users. Compared with the existing SSE schemes
that use single-keyword index and are less efficient in
multi-keyword search, i.e., they require search for every
keyword once followed by logic operations (conjunction,
disjunction, etc.) among all the returned sets, our MVSSE
utilizes a two-keyword index that can significantly acceler-
ate multi-keyword search with various logic operations.
Moreover, our scheme also achieves other desirable features
of SSE such as verifiability against a dishonest server and
supporting dynamic data operations. The contributions of
our work are four-fold:

� To address the data sharing in multi-user setting, we
formalize a solution for constructing secure MVSSE
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and formulate the security definitions, namely pri-
vacy and reliability, of MVSSE.

� An efficient scheme is presented which utilizes a
two-keyword index to reduce the searching time. It
is also the first multi-user SSE supporting verifiabil-
ity and dynamic operations (i.e., adding, deleting
and modifying files) on the cloud storage.

� We define the ideal functionality FMVSSE for MVSSE
which can also be used by the future research on this
topic in proving the UC-security of any newly pro-
posed schemes.

� We prove the equivalence between UC-security and
the security requirements, namely privacy and reliabil-
ity, of a secureMVSSE.We then prove that ourMVSSE
scheme is UC-secure against non-adaptive adversar-
ies, i.e., the scheme securely realises our ideal function-
alityFMVSSE, which implies privacy and reliability.

� We implement our MVSSE scheme and demonstrate
its high efficiency in real experiments based on real
datasets.

1.2 Related Work

The rudiment of SSE was proposed by Song et al. [1]. In
order to search the location of target word Wi, they intro-
duced a solution of sequential scan involving steam cipher
and block cipher operations. But the searching time of their
scheme is linear to the length of the document.

Secure indexes were introduced by Goh [2]. He designed
a secure index which could accelerate searching by the
server. He first formulated a security model for indexes
named semantic security against adaptive chosen keyword
attack, IND-CKA for short. This security model describes the
intuition of keeping privacy of document contents: the con-
tent of a document can not be deduced from the its index
and indexes of other documents which have been queried
before. His scheme Z-IDX with a secure index, which is
constructed by Bloom filter, achievesOð1Þ searching time. In
addition, they proved that their scheme is IND-CKA secure.

Chang et al. [3] pointed out that the initial scheme in [2]
still leaks some information, namely the number of ‘1’ entries
in the Bloom filter of one index. They moved on to propose
Privacy Preserving Keyword Searches on Remote Encrypted
Data, PPSED for short to depict security requirements that a
searchable encryption scheme should meet. Then in a later
version of [2], the IND-CKA security model is strengthened

by limiting that the two challenging documents could have
different lengths. By that it achieves stronger security such
that the adversary should not distinguish documents even
though they have different file lengths. This modified one is
called IND2-CKA for short. They also modified their scheme
tomake it IND2-CKA secure.

Curtmola et al. [4] formulated the security definitions of
SSE: non-adaptive indistinguishability and adaptive indis-
tinguishability, which are all simulation-based definitions.
Then they constructed their non-adaptive secure SSE-1
scheme and adaptive secure SSE-2 scheme. They also came
up with an extension to realize multi-user SSE by combining
a single-user SSE with a broadcast encryption scheme.
However, their scheme is not a verifiable one.

Kurosawa et al. [5] provided the definition of verifiable
searchable symmetric encryption and its security notions,
privacy and reliability. They formulated the ideal functional-
ity F of verifiable symmetric searchable encryption and
proved that UC-security against non-adaptive adversaries1 is
equivalent to their definition of privacy and reliability. They
also fixed a flaw in the SSE-2 of [4], proposed a verifiable SSE
scheme and proved that it satisfies both privacy and reliabil-
ity which are equivalent to UC-security. In a subsequent
work [6], they also constructed a verifiable SSE that supports
file update (i.e., modifying, deleting and adding documents).

Cash et al. implemented an keyword based searchable
symmetric encryption scheme OXT which support conjunc-
tive keyword search [7]. The scheme realizes the conjunctive
queries with negative keyword search as well. Besides, by
converting boolean queries to Searchable Normal Form
(SNF for short), it can also support performing boolean
queries. Kamara et al. presented a keyword based search-
able symmetric encryption scheme IEX which achieves
sub-linear complexity in the worst case of disjunctive
queries [8]. In addition, it leaks less information than [7] in
this worst-case disjunctive search. It also provided an exten-
sion scheme BIEX to realize boolean queries and an exten-
sion scheme ZMF to satisfy adaptive security.

In some special scenarios, the user desires to selectively
retrieve its data. For example, after sending a multi-
keyword query to the server, the user requests the server to
sort the returning documents by the ascending order of key-
word appearing times and return the top k encrypted files.
This demands the server to execute computation on the
encrypted data. Some schemes [9], [10] have realized several
analogous functions with the fully homomorphic encryp-
tion (FHE for short) technology.

PEKS, the asymmetric counterpart of SSE, was introduced
in [11]. Variants of PEKS were proposed in subsequent
works, reducing search complexity in [12], supporting more
expressive search mode in [13], resisting inside Keyword
Guessing Attack (KGA) in [14], [15] and so on.

1.3 Organization

In Section 2, we retrospect the concepts which will be
applied in our scheme. Problem formulation is presented in
Section 3. Then the formal syntax and security definitions of

Fig. 1. Multi-user SSE. The owner stores a set of encrypted documents
C and the corresponding index which is also encrypted on the server.
An authorised user can generate a token t based on the searching key-
words and sends it to the server. The server will find the corresponding
documents C0 and return them to the user.

1. Non-adaptive adversaries refer to adversaries that make queries
without taking into account the trapdoors or search outcomes of previ-
ous queries, while adaptive adversaries choose their queries based on
trapdoors and search outcomes from previous queries.
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MVSSE are presented in Section 4. A concrete construction
of MVSSE is shown in Section 5. Security analysis is given
in Section 6. Section 7 contains several variants of our
MVSSE system in diverse application scenarios, followed
by our scheme perfomance evaluation. Finally, we review
all this work and pose an open problem.

2 PRELIMINARIES

2.1 Notation

In this paper, x; y; z 2R S denotes that all x; y; z are chosen
independently and uniformly at random from a finite set S.
jkj denotes the length of bits of k. PPT denotes probabilistic
polynomial time.

By convention, n denotes the number of stored docu-
ments and m denotes the number of keywords. D ¼
fD1; � � � ; Dng denotes target document set whose docu-
ments will be uploaded to the server and W ¼ fw1; � � � ; wmg
denotes the keyword set whose keywords are contained in
the above document set D. Index ¼ fei;jg is an n column
matrix such that:

ei;j ¼ 1 if wi is contained in Dj

0 otherwise

�

DðwÞ denotes the set of documents which contain the key-
word w and ListðwÞ ¼ fijDi contains keyword wg denotes
the set of sequence number of documents.

2.2 UC-Security Framework

Universally Composable (UC-) security, which was intro-
duced in [16], is a powerful tool to measure protocol secu-
rity. If a protocol is UC-secure, then the security properties
of this protocol could be maintained under general protocol
composition.

In general, a UC-security framework has three roles: an
environment Z, involved parties Piði ¼ 1; � � � ; nÞ and an
adversary A. In addition, an ideal functionality F should be
defined in the UC-security framework. Z is an environment
outside F , Pi and A, which gives inputs to parties in the
framework, reads outputs from parties, interacts with A
and try to distinguish real world scenarios from ideal world
scenarios. Involved parties Piði ¼ 1; � � � ; nÞ in the framework
are regarded as dummy ones which could do nothing but
forwarding inputs they received from Z to the functionality
F and forwarding outputs they received from F to Z as
well. F is a trusted powerful ideal functionality which
could complete any complex computation of the protocol
for dummy parties Piði ¼ 1; � � � ; nÞ.

We say that S securely realizes F if for any A there exists
an ideal adversary S such that no environment Z could tell
whether it is interacting with A and parties running the pro-
tocol in real world, or with S and dummy parties whose
computation is undertaken by F in ideal world.

2.3 RSA Accumulator

Below we briefly review the RSA Accumulator used in [6]
and will also be used in our scheme.

Let P ¼ 2P 0 þ 1 and Q ¼ 2Q0 þ 1 be two large primes
such that P 0 and Q0 are also primes and jPQj > 3�. � is a
security parameter. LetN ¼ PQ and let

QRN ¼ faja ¼ u2 mod N for some u 2 Z�
Ng:

Then QRN is a cyclic group of size ðP � 1ÞðQ� 1Þ=4. Let
v be a generator of QRN . We say that a family of functions
F ¼ ff : A ! Bg is two-universal if Pr½fðu1Þ ¼ fðu2Þ� ¼
1=jBj for all u1 6¼ u2 and for a randomly chosen function
f 2 F . For a set E ¼ fy1; � � � ; yRg with yi 2 f0; 1g�, the RSA
accumulator works as follows.

1) For each yi, the prover chooses a prime ui such that
fðuiÞ ¼ yi randomly. Let primeðyiÞ denote such a
prime ui. Then computes the accumulated value of
E ¼ fy1; � � � ; yRg as

AccðEÞ ¼ v
QR

i¼1
primeðyiÞmod N;

and sends AccðEÞ to the verifier.
2) Later the prover proves that yj 2 E to the verifier as

follows. It computes

pj ¼ v

Q
i 6¼j

primeðyiÞmod N

and sends pj and primeðyjÞ to the verifier.
3) The verifier verifies that

AccðEÞ ¼ ðpjÞprimeðyjÞmod N:

In fact, when computing primeðyÞ, they will use PRF0ðk0;
yÞ as the randomness. k0 is chosen randomly and PRF0 :
f0; 1gjk0j � f0; 1g� ! f0; 1g� so that they can get the same
primeðyÞ locally.
Proposition 1. [6] Given N; v; f and E ¼ y1; � � � ; yn, it is hard

to find y =2 E and p, such that

pprimeðyÞ ¼ AccðEÞ mod N ð3Þ
under the strong RSA assumption.

3 PROBLEM FORMULATION

3.1 System Model

As shown in Fig. 1, our system involves three different par-
ties: a data owner who stores documents on the cloud
server, a group of data users who are permitted to search
the stored documents of the data owner and a cloud server
who offers storage service for the data owner and search
service for the data users.

3.1.1 Data Owner

The data owner is responsible for generating the system
parameters and the private keys for the data users. Then it
encrypts documents, generates a related index and corre-
sponding verifiable information. Finally it stores both the
encrypted documents and the index on the cloud server,
and sends the verifiable information to the system users. It
is also able to add, modify and delete documents on the
cloud server.

3.1.2 Data Users

A data user is permitted to search the documents stored on
the cloud server. When the data user wants to search docu-
ments containing some keywords, it generates a trapdoor

1324 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020



and communicates with the cloud server to retrieve the tar-
get documents. Finally, the data user should also be able to
execute validity check on the search results to decide
whether to accept the search results or not.

3.1.3 Cloud Server

The cloud server is in charge of storing documents and the
index uploaded by the data owner as well as responding
the search queries from the valid data users with documents
and verification information so that the users can perform
validity check on the searching result.

3.2 Threat Model

In this paper, it is assumed that the cloud server is a mali-
cious adversary. It means the cloud server is curious about
the documents as well as the corresponding index and key-
words and tries to collect more information than the permit-
ted leakage. In addition, the cloud server may also delete or
forge documents and only return partial searching results.
It is worth noting that although some malicious behaviours
such as forging search outcomes or returning fewer results
may not be intentionally done by the cloud server, they may
still occur due to malware or software bugs [6].

The data owner is assumed to be honest. In other words,
it honestly generates parameters, outsources documents
together with the related index to the cloud server. At the
same time, it also provides the authorized data users with
authentic keys and verifiable information.

The data users are also supposed to be honest-but-
curious. They honestly generate a trapdoor and communi-
cate with the cloud server during every search.

3.3 Design Goals

A secure MVSSE should satisfy the following features and
security requirements.

3.3.1 Multi-User Search Availability

Every authorised data user is permitted to directly search
documents stored on the cloud storage by preparing a trap-
door associated with some searching keywords.

3.3.2 Verifiability

The cloud server returns not only searching results but also
a proof. The data user can test the correctness and complete-
ness of the searching results with the proof.

3.3.3 Dynamic Data

The system allows the data owner to add, modify and delete
documents efficiently. That is, these operations should not
influence the index items related to other documents in
order to minimize the cost.

3.3.4 Efficiency

The system is able to process multi-keyword queries
efficiently.

3.3.5 Data Privacy

The cloud server is not be able to learn either the outsourced
documents or the related index.

3.3.6 Keyword Privacy

Given a trapdoor, the server cannot learn the related key-
word even though the server can offer search service.

3.3.7 Dynamic Users

When a new data user is added into the system or an exist-
ing data user is revoked, other data users should not be
influenced.

4 MULTI-USER VERIFIABLE SSE SYSTEM AND

SECURITY DEFINITIONS

Below we formalize the MVSSE system model, present the
syntax of a multi-user verifiable searchable symmetric
encryption scheme and its security definitions.

4.1 Multi-User Verifiable SSE Scheme

A multi-user verifiable searchable symmetric encryption
scheme is a protocol which is run among a data owner, a
server and a set of data users as follows.

Setup. Upon input security parameter �, the owner pub-
lishes public parameters pp, sends user private keys ski to
user i and server key ks to the server, and keep master key
mk secret.

Store. Upon input pp, mk, document set D and keyword
set W, the owner sends encrypted index I and encrypted
document set C ¼ fC1; � � � ; Cng to the server, and verifiable
information A to each user.

TokenGen.

1) Upon input a keyword set Ws � W, user i generates
trapdoor token and sends it to the server.

2) The server computes auxiliary information H and
sends it to user i.

Search.

1) Upon input H, user i computes search query L and
sends it to the server.

2) The server finds encrypted document set CðWsÞ and
computes partial verifiable information Tag, then
sends them to user i.

3) User i accepts ðCðWsÞ; TagÞ and decrypts CðWsÞ to
get result setDðWsÞ. Otherwise it outputs reject.

Modify.

1) Upon input document sequence number k and mod-
ified document Dk, the owner sends k and encrypted
document Ck to the server.

2) The server computes partial verifiable information
Tag and sends it to the owner.

3) The owner sends verifiable information A to each
user or outputs reject.

Delete. This phase is similar to the phase Modify. Dk is
replaced by 00delete00.

Add.

1) Upon input new document Dnþ1, the owner com-
putes update material a and new verifiable informa-
tion A, then sends ðCnþ1;aÞ to the server, sends A to
each user.

2) The server stores Cnþ1, updates I with a and n to
nþ 1.
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3) Each user updates A and n to nþ 1.

4.2 Security Definitions

We define two games: Gamereal (Fig. 2) and Gamesim (Fig. 3).
The former one depicts the process of real interaction
between an adversary and a challenger running our proto-
col while the latter one depicts the process of interaction
between an adversary, a simulator and a challenger trying
to simulate all the same scenarios as the real protocol.

4.2.1 Privacy

The cloud server is curious about documents and index
stored on itself and tries to collect more information than
the permitted leakage. [4] formulated this security defini-
tions on verifiable SSE and we apply it to our MVSSE whose
real Game and simulation Game are different from theirs.

From intuition, privacy means the server should not learn
any more information than permitted leakage such as docu-
ment size and sequence numbers of desired documents.

Definition 1. We say that a verifiable SSE satisfies privacy if
there exists a PPT simulator Sim such that

AdvpriA ð�Þ ¼ jPrðA outputs b ¼ 1 in GamerealÞ
� PrðA outputs b ¼ 1 in GamesimÞj

(1)

is negligible for any PPT adversary A.

4.2.2 Reliability

Besides considering the leakage in each phase, the server
should not successfully forge a valid returning result
ðCðwÞ�; Tag�Þ which could pass the validity check of the cli-
ent as well. Now let us define this security notion.

For fixed ðD;WÞ and search queries w1; � � � ; wq 2 W arbi-
trarily, A wins if it could return ðCðwiÞ�; Tag�Þ for any query
tðwiÞ such that CðwiÞ� 6¼ CðwiÞ and VerifyðK; tðwiÞ;

CðwiÞ�; Tag�Þ ¼ accept.

Definition 2. We say that a verifiable SSE satisfies reliability if
for any PPT A,

AdvrelA ð�Þ ¼ PrðA winsÞ (2)

Fig. 2. Real game.

Fig. 3. Simulation game.
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is negligible for any ðD;WÞ and any search queries w1; � � � ; wq.

5 OUR MVSSE CONSTRUCTION

In this section, we present our MVSSE construction. Below
we first give an overview of our construction.

5.1 An Overview of Our Construction

We start our system prototype on the foundation of a single-
user searchable encryption scheme [6] since it is a dynamic
one and our scheme can inherit functionalities of adding,mod-
ifying and deleting documents. To transform it to a scheme in
multi-user setting, we integrate the broadcast encryption [17]
with it, regarding data users as broadcast users.

The labelwhich helps locate index items is designed to be
computed from two parts: the broadcast plaintextK and the
trapdoor t. The former is obtained by decrypting the broad-
cast ciphertext Hdr and the latter is related to keywords. As
shown in Fig. 4, parameters and keys are delivered to in
Setup phase, so is Hdr. Then the owner uploads documents
and index to the server in Store phase. Receiving Hdr, the
user decrypts it to getK, generates t from desired keywords
and figures out label in Search phase. However, once a user
obtains K, it needs not to ask the permission to search any
more. What we expect is each search is granted in real time.
Therefore,K cannot be obtained directly and another round
of communication is added. In TokenGen phase, the server
processes Hdr with the received t and returns Hdr. By
decrypting Hdr, the user gets label and sends it with pad
(auxiliary information for decrypting the encrypted index
item) to the server. Finally, the server returns target docu-
ments C.

Another issue is how to verify searching results. Here
verification should be performed on checking two aspects:
if returned documents are modified and if more or fewer
documents are returned, i.e., the index item is tampered.
Two accumulators which are used for checking set mem-
bers are employed: one is deployed on documents and the
other is deployed on encrypted index items. Refering to
Fig. 4, the server returns the verifiable information p

together with C so that the user computes the accumulators
and compares them with A (accumulators received from
the owner initially).

To improve multi-keyword query efficiency, we deploy a
two-keyword index, i.e., each index item represents docu-
ments containing two keywords so that the user can deal
with two keywords once. Though a multi-keyword index

using more keywords will bring further acceleration than a
two-keyword index in a multi-keyword search, it inflates the
number of index items and occupies more storage space at
the same time. In addition, computation cost on the index
accumulator for checking the correctness of the index is
also related to the number of index items. Thus, deploying
multi-keyword index will also significantly increase the
computation cost of various operations involving the index
accumulator. To balance the efficiency in different opera-
tions, wemake a trade-off and adopt the two-keyword index.

5.2 Details of Our Construction

Our proposed MVSSE scheme consists of the following
phases.

Setup.

1) G is a bilinear group of prime order p. There exists a
group G1 and an efficiently computable bilinear map
e : G� G ! G1. g is a generator of G and a 2R Zp is
randomly chosen. gi ¼ gða

iÞ is computed for i ¼ 1;
2; � � � ; b; bþ 2; � � � ; 2b. The owner randomly chooses
g 2R Zp and sets s ¼ gg . The public key is PK ¼ ðg;
g1; � � � ; gb; gbþ2; � � � ; g2b; sÞ. U ¼ f1; 2; � � � ; bg and the
private key for user i 2 U is di ¼ ggi . Suppose the
user set is S � U . The owner randomly chooses
t 2R Zp and sets K ¼ eðgbþ1; gÞt ¼ eðgb; g1Þt, Hdr ¼
ðc0; c1Þ ¼ ðgt; ðs �Qj2Sgbþ1�jÞtÞ.

2) PRF1ðk1; �Þ is a pseudo-random function: f0; 1gjk1j�
f0; 1g� ! Zp. PRF2ðk2; �Þ is a pseudo-random func-
tion: f0; 1gjk2j � f0; 1g� ! f0; 1g�. PRF3ðk3; �Þ is a
pseudo-random function: f0; 1gjk3j � Zp ! Zp. SKE ¼
fG;E;E�1g is a symmetric-key encryption scheme,
where G is a key generation algorithm, E is an
encryption algorithm and E�1 is a decryption algo-
rithm and assume SKE is CPA-secure. H : f0; 1g� !
f0; 1g� is a collision-resistant hash function and will
be used in following phases. The owner randomly
chooses three keys k1; k2; k3 for the above three PRFs
respectively and one key ke for SKE.

3) The owner selects RSA accumulator parameters as
Section 2.3.N; v; f; k0 are public and P;Q are secret.

4) The owner publishes fPRF0; PRF1; PRF2; PRF3; H;
f; SKE;N; v; f; k0;G;G1; p; g; fgigi¼1;���;b;bþ2;���;2b; S; b; sg,
sends fk1; k2; ke; dig to each user, sends fk3; Hdrg to
the server, keeps fP;Q;a; g; s; t; Kg secret.

Store.

1) Dðwi ^ wjÞ denotes the set of documents which con-
tain both keyword wi 2 W and wj 2 W and Listðwi^
wjÞ ¼ fkjDk containsboth wi and wjg. On input ðD;
WÞ, the owner stores ðI ; CÞ to the server, where
D ¼ fD1; D2; � � � ; Dng is a set of documents and W ¼
fw1; w2; � � � ; wmg is a set of keywords. Let Index ¼
fei;j;kg be an mðmþ1Þ

2 � n binary matrix such that

ei;j;k ¼ 1 if wi and wj are both contained in Dk;
0 otherwise:

�

All keywords are arranged in the lexicographical
order. For example, wi ¼ ‘‘common’’ is placed before
wj ¼ ‘‘computer’’ and i < j. There are m rows about
one single keyword which could be considered as wi

Fig. 4. Scheme model. The scheme consists of seven phases: 1. Setup;
2. Store; 3. TokenGen; 4. Search; 5. Modify; 6. Delete; 7. Add.
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with wj in which i ¼ j. The original index Index ¼
fei;j;kg are computed from wi and wj in which i 	 j.
Thus the number of rows is C2

m þm ¼ mðmþ1Þ
2 . That is

to say the directory will be in this order w1 ^ w1; w1^
w2; � � � ; w1 ^ wm;w2 ^ w2; w2 ^ w3; � � � ; wm ^ wm.

2) The owner computes Ck ¼ EkeðDkÞ for each docu-
ment Dk 2 D, tokenl ¼ PRF1ðk1; wijjwjÞ for every
two keywords wi and wj, and rl ¼ PRF3ðk3; tokenlÞ,
where l is the counter of token corresponding to the
counters of keywords i and j. Computes

labell ¼ Ktokenl�rl
indexl ¼ indexl 
 ½PRF2ðk2; wijjwjÞ�1���n

�

for each two keywords wi; wj 2 W. Here jj denotes
concatenation. s is a random permutation on
f1; � � � ; mðmþ1Þ

2 g. Then stores C ¼ ðC1; C2; � � � ; CnÞ, I ¼
flabelsðlÞ; indexsðlÞg to the server.

3) Accð�Þ is used on EC ¼ fðk; CkÞjk ¼ 1; � � � ; ng and
EI ¼ fðlabell; k; ½indexl�kÞjl ¼ 1; � � � ; mðmþ1Þ

2 ; k ¼ 1; � � � ;
ng. The owner computes

AC ¼ v
Qn

k¼1
primeðHðk;HðCkÞÞÞmod N

AI ¼ v
Qmðmþ1Þ

2
l¼1

Qn

k¼1
primeðHðlabell;k;½indexl�kÞÞmod N

8<
:
and sends fAC;AIg to each user.

TokenGen. Suppose that one user wants to search on two
keywords wa and wb.

1) The user computes tokenc ¼ PRF1ðk1; wajjwbÞ and
sends it to the server.

2) Then the server computes rc ¼ PRF3ðk3; tokencÞ and
Hdr ¼ Hdrrc�tokenc ¼ fcrc�tokenc0 ; crc�tokenc1 g, sends Hdr to
the user.

Search.

1) The user decrypts Hdr to get labelc ¼ Krc�tokenc and
computes padc ¼ ½PRF2ðk2; wajjwbÞ�1���n. Then sends
flabelc; padcg to the server.

2) The server access labelc location to get its storing con-
tents, i.e., indexc. It computes ðe1; � � � ; enÞ ¼ padc

indexc and sets C0ðwa ^ wbÞ ¼ fðk; CkÞjek ¼ 1g. Then
it computes

pC ¼ v

Q
ek¼0

primeðHðk;HðCkÞÞÞmod N;

pI ¼ v

Q
l6¼c

f
Qn

k¼1
primeðHðlabell;k;½indexl�kÞÞgmod N:

(

The server returns ðC0ðwa ^ wbÞ;pC;pIÞ to the user.
3) The user first computes Xi ¼ primeðHði;HðCiÞÞÞ for

each ði; CiÞ 2 C0ðwa ^ wbÞ, and checks if

AC ¼ ðpCÞ
Q

ei¼1
Ximod N: (3)

The user then reconstructs ðe1; � � � ; enÞ from
C0ðwa ^ wbÞ and computes indexc ¼ padc 
 ðe1; � � � ;
enÞ. Computes zj ¼ primeðHðlabelc; j; ½indexc�jÞÞ for
j ¼ 1; � � � ; n, and checks if

AI ¼ ðpIÞ
Qn

j¼1
zjmod N: (4)

If both of the checks succeed, the user decrypts all Ci

and outputs the documents fDijei ¼ 1g. Otherwise it
outputs reject.

Modify. Suppose that the owner wants to modify Ci to Ci.

1) The owner sends ði; CiÞ to the server.

2) The server computes pi ¼ v

Q
k6¼i

primeðHðk;HðCkÞÞÞmod N
and returns ðHðCiÞ;piÞ to the owner.

3) The owner computes Xi ¼ primeðHði; HðCiÞÞÞ and
checks if

AC ¼ ðpiÞXimod N: (5)

If the check fails, then he outputs reject. Otherwise
he computes

Xi ¼ primeðHði;HðCiÞÞÞÞ;
d ¼ Xi=Ximod ðP � 1ÞðQ� 1Þ;

AC ¼ ðACÞd ¼ vX1���Xi���Xnmod N:

The owner sends AC to each user for updating AC .
Delete. Suppose that the owner wants to delete Ci.

1) It first sends ðiÞ to the server.
2) Then appliesModify to Ci ¼ EkeðdeleteÞ.
Add. Suppose that the owner wants to add a document

Dnþ1. Let

ei;j;nþ1 ¼ 1 if wi and wj are both contained in Dnþ1;
0 otherwise:

�

1) The owner computes Cnþ1 ¼ EkeðDnþ1Þ and

AC ¼ ðACÞprimeðHðnþ1;HðCnþ1ÞÞÞmod N:

Then sends them to each user for updating AC to AC .
2) The owner also computes al ¼ ½PRF2ðk2; wijjwjÞ�nþ1


ei;j;nþ1 for l ¼ 1; � � � ; mðmþ1Þ
2 , where ½PRF2ðk2; wijj

wjÞ�nþ1 denotes the nþ 1th bit of PRF2ðk2; wijjwjÞ. It
sends Cnþ1; ðasð1Þ; � � � ;asðmðmþ1Þ

2 ÞÞ to the server.

3) The server updates indexsðlÞ to indexsðlÞ ¼ indexsðlÞjj
asðlÞ for l ¼ 1; � � � ; mðmþ1Þ

2 .
4) The owner computes zi ¼ primeðHðlabell; nþ 1;alÞÞ

and computes AI ¼ ðAIÞ
z1���zmðmþ1Þ

2 mod N . It sends it
to each user for updating AI to AI and n to nþ 1.

6 SECURITY

In this section, we prove the security of our MVSSE scheme
under the Universally Composable security framework. We
first show that UC-security against non-adaptive adversar-
ies implies privacy and reliability (Sections 4.2.1 and 4.2.2),
then prove that our scheme is UC-secure.

6.1 Ideal Functionality

Ideal function is used for describing parties’ all computa-
tion. Here we regard all parties (the owner, the server and
the users) as dummy ones who interact with the environ-
ment Z and delegate their computation to the ideal func-
tionality F .

Our ideal functionality F contains all phases and covers
security requirements of each phase. In the setup phase, it
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leaks Hdr to the ideal adversary S. In store phase, it leaks
jD1j; � � � ; jDnj and jWj to S. In the tokengen phase, it leaks
tokenc to S. In the search phase, it leaks Listðwa ^ wbÞ to S.
In the modify phase, it leaks ði; jDijÞ to S. In the delete
phase, it leaks i to S. In the add phase, it leaks jDnþ1j to S.
Our ideal functionality is defined in Fig. 5.

We say that our protocol is UC-secure if it securely real-
izes the ideal functionality F .

6.2 Equivalence

We prove the secure realization of our ideal functionality F
in the UC-framework is equivalent to the definitions of pri-
vacy and reliability presented in Sections 4.2.1 and 4.2.2.
The necessity and sufficiency are discussed respectively in
the follwing two theorems.

Theorem 1. A MVSSE scheme satisfies privacy and reliability if
the corresponding protocol SMVSSE is UC-secure against non-
adaptive adversaries.

The proof is given in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TDSC.2018.2876831.

Theorem 2. SMVSSE is UC-secure against non-adaptive adver-
saries if a MVSSE scheme satisfies privacy and reliability.

The proof is given in Appendix B, available in the online
supplemental material.

6.3 UC-Security of Our Scheme

Because of the equivalence between UC-security and the
security requirements, namely privacy and reliability, the
UC-security of our scheme implies that our scheme satisfies
privacy and reliability.

Theorem 3. The scheme is UC-secure against non-adaptive
adversaries under the strong RSA assumption if broadcast
encryption is CPA-secure, SKE is CPA-secure, PRF is a
pseudo-random function and H is a collision-resistant hash
function.

The general idea of the proof is that with permitted leak-
age from the functionality F , our protocol can be simulated
perfectly without being detected by the environment Z. It
first demonstrates that Z cannot distinguish running our
protocol from interacting with F . Then it shows that the
outputs of involved parties in running our protocol are also
indistinguishable from the outputs in interacting with F in
the view of Z. The proof is given in Appendix C, available
in the online supplemental material.

It is worth noting that our construction is based on the
broadcast encryption scheme proposed in [17] that is
proven CPA-secure.

7 EXTENSIONS

7.1 Boolean Queries

In order to handle boolean queries, such as w1 ^ ðw2 _ w3Þ, a
single keyword index scheme works as follows: the user
first executes three queries on each keyword, then performs
a disjunctive operation to get w2 _ w3 and a conjunctive
operation to get the final result sets on the client side.

To deal with boolean expressions using our two-
keyword index, we can re-write every boolean expression
as a disjunctive normal formulation (DNF) whose inner cell
expressions are conjunctive expressions. Therefore, for a
boolean expression query w1 ^ ðw2 _ w3Þ, we can perform
two searches on w1 ^ w2 and w1 ^ w3 respectively on the
server side and then executes disjunctive operation once on
the two returning document sets on the client side. In this
example, compared with single keyword index, we can
save one searching query on the server side and one con-
junctive operation on the client side, and such a saving may
vary in different boolean expressions.

7.2 Adding or Revoking Users

Suppose that the data owner wants to change the target user
list for sharing data, including delegating the searching
authority to some new users and revoking some users’
authority. This could be resolved by adding two phases to
our scheme.

Add User. Suppose that the owner would like to add a
new user into the target user list S.

1) Its sequence number i should satisfy i 2 U and i =2 S
as long as the total number of users does not exceed
b yet. The data owner first distributes the private key
di ¼ gi

g to user i.

Fig. 5. Ideal Functionality.
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2) Then the newHdr should be computed as follows:

Hdr ¼ ðc0; c01Þ ¼ ðc0; c1 � gtbþ1�iÞ:

The owner sends it to the server for updating.
Revoke User. Suppose that the owner desire to revoke the

searching authority of user i 2 S.
The owner computes the new Hdr ¼ ðc0; c01Þ ¼ ðc0; c1=

gtbþ1�iÞ and sends it to the server for updating.
These two phases only contain the interactions among the

owner, the server and the current user. Therefore, other exist-
ing users in the target user set will not be influenced at all.

8 PERFORMANCE EVALUATION

In this section, we present the experiment results of our
scheme implemented in C++. Our experiments are con-
ducted on a PC with Intel Core i7-4770 CPU (8-core 3.4 GHz)
and 16 GB RAM running 64-bitWindows 7 Enterprise.

The system performance is evaluated on NIPS full papers
containing 1500 files and Enron Emails containing 39861
files.2

8.1 Setup

Fig. 6a illustrates the time cost of Setup phase. As this phase
only consists of generating system parameters and multi-
user keys, the time cost is linear to the (maximum) number
of system users. When there are fewer than 100 system
users, the time cost is less than 1 second. When there are
10,000 users,3 it costs less than 78 seconds, which is still rea-
sonable as Setup is a one-time process.

8.2 Store

Fig. 6b shows the time cost of Store phase, i.e., constructing
the index. For theNIPS dataset, wemeasure the time of build-
ing the index for 20, 40, 60, 80 and 100 percent of the docu-
ments in the dataset, respectively. Though Store phase costs
more time than other phases, it is a one-time process done by
the user before uploading documents onto the server.

The time cost in Store phase exhibits quadratic growth
with respect to the number of keywords when fixing the
number of documents. When the number of documents is
1500 and the number of keywords is 50, it costs about
68.0954 seconds.

8.3 TokenGen

In the TokenGen phase, the computation that a user under-
takes costs about 1 millisecond and the counterpart that the
server undertakes costs roughly 6milliseconds. They are both
independent on the number of documents and keywords.

8.4 Search

We devide our Search phase into three steps to measure its
time consumption: search on the user side, search on the
server side and verification on the user side.

Fig. 6c illustrates the time cost of Search on the user side. It
only depends on the number of users. When there are fewer
than 100 system users, it costs less than 13 milliseconds.
When there are 10,000 users, it costs less than 0.14 second
which is still very efficient.

Fig. 6d shows the time cost of Search phase on the server
side. The time consumption exhibits quadratic growth with
respect to the number of keywords since the server needs to
compute witnesses of two accumulators. It takes less than 3
seconds for the NIPS dataset (1500 files) and 50 keywords.

Fig. 6e shows the time cost of verification in Search
phase on the user side. The verification process consists

Fig. 6. Experimental Results.

2. https://archive.ics.uci.edu/ml/machine-learning-databases/
bag-of-words/

3. We may use a large value of b in the system setup to accommo-
date the need of adding extra users after the setup.
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of verifying the two accumulators and costs less than
50 milliseconds for the NIPS dataset (1500 files).

Due to the use of accumulator in our construction, the
computational cost of the search phase on both server and
user sides largely depends on the scale of the system, i.e., the
number of keywords and documents. To further test the per-
formance of our scheme, we used a larger dataset, the Enron
Emails dataset, with 39861 documents and 100 keywords in
the experiment. The result is presented in Table 1. From the
experimental data, we can see that the cost of computing pC

is approximately proportional to the number of documents
and it takes about 4.82 seconds for 39861 documents. For
the computation of pI , we let the server pre-compute all the
possible results of the internal product, which makes the
real-time computation only related to the number of key-
words. For 100 keywords, the computation of pI takes about
3.6 seconds. For the verification of the searching result, it
takes about 1.25 seconds for 39861 documents on the user
side. We should note that in the above experiment we used a
normal PC to simulate the cloud server while in reality the
cloud server is muchmore powerful.

8.5 Comparison

Table 2 compares some existing SSE schemes with ours.
Most schemes perform only 1 communication round

while our scheme needs 2 communication rounds since we
embed the broadcast encryption into our scheme to realize
the multi-user setting. As our tokens consist of a PRF value
and a pair of ðlabel; indexÞ, our trapdoor computation has the
optimal performance Oð1Þ in comparison with r PRF values

in [2], logðnjDjÞ PRF values in [18] and l keyed hash values in
[19]. Our index is a matrix of mðmþ1Þ

2 rows, hence its index
computation complexity isOðm2Þ. The indexes of [3], [4] con-
sist of both a look-up table of m entries and an array ofP

w2W RðwÞ items. [5] builds an index item for every docu-
ment regardless whether the document contains the key-
word when processing each keyword, so its index
computation complexity is OðmnÞ. [18] uses a binary tree as
its index whose nodes correspond to such entries ðw; id;
add=del; cntÞ recording addition or deletion operations. w
induces at least RðwÞ such entries so the number of total
entries is more than the number of documnet-keyword pairs,
i.e., OðnjDjÞ. [19] uses an j�j-ary tree as the index to store the
set of words, each character of any existing word can be
found in a node of the tree and every existing word corre-
sponds to a branch. Thus its index computation complexity
is less than the max size of the tree j�jlþ1�1

j�j�1 , i.e., Oðj�jlÞ. Hence,
our index computation complexity is smaller than that of [3],
[4], [5], [19] since m is usually much smaller than n. In [6]
and our scheme, given a token, the server directly finds the
row corresponding to the query keywords, therefore our
search complexity is Oð1Þ, better than that of [3], [4], [5]
which traverse index items of all n documents or at least
RðwÞ documents containing the keyword w. The protocol in
[18] finds all tuples ðl; w; id; addÞ in all l 2 f0; 1; � � � ;
blogðnjDjÞcg level, such that the corresponding deletion tuple
ðl; w; id; delÞ does not appear in levels l0 	 l. Its search com-
plexity reaches OðRðwÞlog3ðnjDjÞÞ by means of its SkipHole
algorithm even in the worst case. [19] stores all sequence
numbers of documents containing word w in its leaf node so
that its search complexity is also Oð1Þ. Our scheme uses two
RSA accumulators to check the validity of the returning
documents, and the computation complexity isOðnÞ for veri-
fying AI and OðRðwÞÞ for verifying AC , which is relatively
more expensive than nMACs in [5], nMACs includingRðwÞ
MACs verifying addition entries and at most n�RðwÞ
MACs verifying deletion entries at the edge of each deletion
region in [18], and lþ 1 verifications including block cipher
decryption or keyed hash operations in [19].

Overall, our scheme has a comparable performance with
the existing SSE schemes while realizing multi-user search-
ing and some other desirable features such as verifiability
and supporting dynamic operations.

TABLE 1
Search and Verify Time

# of docs pC cmpt pI cmpt search (server) verify (user)

5000 0.4968 3.5692 4.073 0.1602
10000 1.1142 3.559 4.6872 0.3222
20000 2.3674 3.578 5.973 0.6522
39861 4.8204 3.5652 8.4406 1.2558

1 All durations are measured in seconds and for 100 keywords.
2 # of docs denotes the number of documents. pC cmpt and pI cmpt denote the
time on computing pC and pI respectively in Search phase on the server side,
whose total time cost is denoted by search (server). Verify (user) denotes the
time cost of the verification process in Search phase on the user side.

TABLE 2
Performance Comparison

# of
rounds

trapdoor
computation

index
computation

search multi-
user

hide search
pattern

adaptive
adversary

verifiability verifiacation
cost

update

[1] 1 Oð1Þ – OðnLÞ 7 3 – 7 – 7

[2] 1 OðrÞ OðnjDjÞ OðnÞ 7 3 3 7 – 7

scheme1[3] 1 Oð1Þ OðnjDjÞ OðnÞ 7 3 7 7 – 3

scheme2[3] 2 Oð1Þ OðmÞ þ OðnjDjÞ OðnÞ 7 3 7 7 – 3

SSE-1[4] 1 Oð1Þ OðmÞ þ OðnjDjÞ OðRðwÞÞ 7 3 7 7 – 7
SSE-2[4] 1 OðnÞ OðnjDjÞ OðRðwÞÞ 7 3 3 7 – 7

[5] 1 OðnÞ OðmnÞ OðRðwÞÞ 7 3 7 3 OðnÞ 7

[6] 1 Oð1Þ OðmÞ Oð1Þ 7 3 7 3 OðRðwÞÞ þ OðnÞ 3

[18] 1 OðlogðnjDjÞÞ OðnjDjÞ OðRðwÞlog3ðnjDjÞÞ 7 7 – 3 OðnÞ 3

[19] 1 OðlÞ Oðj�jlÞ Oð1Þ 7 7 – 3 OðlÞ 7

our scheme 2 Oð1Þ Oðm2Þ Oð1Þ 3 3 7 3 OðRðwÞÞ þ OðnÞ 3

1. m is the number of all keywords, RðwÞ is the number of documents containing the keyword w, n is the number of stored documents, jDj is the number of dis-
tinct keywords per document, r is the Bloom Filter parameter of the scheme, l is the word length of the keyword in current search, j�j is the size of alphabetic set
whose characters are orderly organized to construct each word, L is the average length of one document.
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9 CONCLUSION AND OPEN PROBLEMS

In this paper, we introduced the notion of multi-user verifi-
able searchable symmetric encryption, which is more practi-
cal than single-user SSE in cloud storage systems. We
presented the security definitions, i.e., privacy and reliability,
for MVSSE and an efficient construction. We also introduced
a Universally Composable security framework for proving
the security ofMVSSE, and proved that our proposed scheme
is UC-secure.We also presented several extensions of the pro-
posed scheme and illustrated that the scheme could achieve
better performance on conjunctive and boolean queries for
both server and client. Our scheme has a limitation that the
maximum number of users is determined in the system setup
andwe leave the construction of a schemewithout such a lim-
itation as future work. Another interesting open problem is to
explore other keyword index structures that can improve the
searching efficiency formulti-keyword boolean queries.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their invaluable
comments and suggestions on the paper. The work of Yi
Mu is supported by the National Natural Science Founda-
tion of China (61822202, 61872087, 61872089). The work of
Robert H. Deng is supported by the AXA Research Fund.

REFERENCES

[1] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44–55.

[2] E. Goh, “Secure indexes,” IACR Cryptology ePrint Archive,
vol. 2003, 2003, Art. no. 216.

[3] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Proc. 3rd Int. Appl. Cryptog-
raphy Netw. Secur., 2005, pp. 442–455.

[4] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” J. Comput. Secur., vol. 19, no. 5, pp. 895–934, 2011.

[5] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmetric
encryption,” in Proc. 16th Int. Conf. Financial Cryptography Data
Secur., 2012, pp. 285–298.

[6] K. Kurosawa and Y. Ohtaki, “How to update documents verifi-
ably in searchable symmetric encryption,” in Proc. 12th Int. Conf.
Cryptology Netw. Secur., 2013, pp. 309–328.

[7] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
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