Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

5-2022

Message-locked searchable encryption: A new versatile tool for
secure cloud storage

Xueqiao LIU

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Willy SUSILO
Joseph TONIEN

Rongmao CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Data Storage Systems Commons, and the Information Security Commons

Citation

LIU, Xuegiao; YANG, Guomin; SUSILO, Willy; TONIEN, Joseph; CHEN, Rongmao; and LV, Xixiang. Message-
locked searchable encryption: A new versatile tool for secure cloud storage. (2022). IEEE Transactions on
Services Computing. 15, (3), 1664-1677.

Available at: https://ink.library.smu.edu.sg/sis_research/7299

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Xueqiao LIU, Guomin YANG, Willy SUSILO, Joseph TONIEN, Rongmao CHEN, and Xixiang LV

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7299

https://ink.library.smu.edu.sg/sis_research/7299

1664

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Message-Locked Searchable Encryption: A New
Versatile Tool for Secure Cloud Storage

Xueqiao Liu™, Guomin Yang

Joseph Tonien™, Rongmao Chen

, Senior Member, IEEE, Willy Susilo™, Senior Member, IEEE,
, Member, IEEE, and Xixiang Lv

Abstract—Message-Locked Encryption (MLE) is a useful tool to enable deduplication over encrypted data in cloud storage. It can
significantly improve the cloud service quality by eliminating redundancy to save storage resources, and hence user cost, and also
providing defense against different types of attacks, such as duplicate faking attack and brute-force attack. A typical MLE scheme only
focuses on deduplication. On the other hand, supporting search operations on stored content is another essential requirement for cloud
storage. In this article, we present a message-locked searchable encryption (MLSE) scheme in a dual-server setting, which achieves
simultaneously the desirable features of supporting deduplication and enabling users to perform search operations over encrypted
data. In addition, it supports both multi-keyword and negative keyword searches. We formulate the security notions of MLSE and prove
our scheme satisfies all the security requirements. Moreover, we provide an interesting extension of our construction to support Proof of
Storage (PoS). Compared with the existing solutions, MLSE achieves better functionalities and efficiency, and hence enables more

versatile and efficient cloud storage service.

Index Terms—NMessage-locked encryption, searchable encryption, deduplication, proof of ownership, proof of storage

1 INTRODUCTION

ITH the emergence of cloud storage service, managing

business/personal data via a cloud storage provider
such as Dropbox, OneDrive and Google Drive has become a
common option. Affordable expense, high capacity, and
more convenient service including data storage, access, and
modification via the cloud anytime and anywhere make
cloud storage a more appealing alternative over the conven-
tional storage model. The statistics portal website statista [1]
forecasts that the number of personal cloud storage con-
sumers will reach an estimated 2.3 billion worldwide by
2020. However, users’ sundry uploads may overwhelm
cloud service providers for the redundancy or duplicated
documents will be amplified by the huge scale of the num-
ber of users.

Suppose that an international corporation deploys an
enterprise-scale cloud architecture for sharing and storing
corporate documents or operational data, then a large num-
ber of duplicated documents could exist in the storage. For
instance, the leaders of the corporation release a document
of regulation, all employees will download, learn and then
store it under their own accounts. The trivial strategy is

o Xueqiao Liu, Guomin Yang, Willy Susilo, and Joseph Tonien are with the
Institute of Cybersecurity and Cryptology, University of Wollongong,
Wollongong, NSW 2522, Australia.

E-mail: {x1691, gyang, wsusilo, dong)@uow.edu.au.

e Rongmao Chen is with the College of Computer, National University of
Defense Technology, Changsha 410073, China.

E-mail: chromao@nudt.edu.cn.

o Xixiang Lv is with the National Key Lab of ISN, Xidian University, Xi'an
710126, China. E-mail: xxlv@mail .xidian.edu.cn.

Manuscript received 13 Oct. 2019; revised 16 June 2020; accepted 24 June
2020. Date of publication 2 July 2020; date of current version 15 June 2022.
(Corresponding author: Guomin Yang.)

Digital Object Identifier no. 10.1109/TSC.2020.3006532

each file is stored once per account, resulting in a huge
waste of storage resource. Message-locked encryption was
hence proposed [2] to reduce redundancy, where the
encryption key is derived from the message so the same
message leads to the same key and ciphertext.

MLE may face data privacy threats from various attack-
ers including the cloud server and clients. For anyone
can generate the key given a plaintext, brute-force attacks
are possible for short plaintexts [2], [3] and should be
prevented.

Compared with target-based deduplication, source-based
deduplication needs a client not to re-upload a document but
merely a tag if there is already a duplicated one in storage,
thereby advantageous in communication cost. However,
source-based deduplication is subject to owner impersonat-
ing attacks where a validate tag is forged based on eaves-
dropped partial information. Such attacks spawned the
notion of Proof of Ownership (PoW) [4] where the client
needs to prove to the server the possession of the whole file.

Another issue worth noticing is that existing MLE
schemes [5], [6], [7] rarely provide sufficient functionalities
for user demands in real cloud applications, e.g., supporting
search. In addition, MLE by default does not provide any
protection on data integrity and data stored on the cloud
server may be damaged due to accidents or malicious
attacks. It is desirable to have an MLE scheme that can sup-
port data integrity check, e.g., Proof of Storage (PoS) [8].

1.1 Weakness of Simple Combination of Existing
Techniques

To construct a system with all mentioned merits, a trivial

solution is to simply combine all existing techniques. How-

ever, this simple combination of MLE, Searchable Encryp-

tion (SE), PoW and PoS will lead to the following problems.

1939-1374 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4430-8408
https://orcid.org/0000-0002-4430-8408
https://orcid.org/0000-0002-4430-8408
https://orcid.org/0000-0002-4430-8408
https://orcid.org/0000-0002-4430-8408
https://orcid.org/0000-0002-4949-7738
https://orcid.org/0000-0002-4949-7738
https://orcid.org/0000-0002-4949-7738
https://orcid.org/0000-0002-4949-7738
https://orcid.org/0000-0002-4949-7738
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0000-0003-2846-1071
https://orcid.org/0000-0003-2846-1071
https://orcid.org/0000-0003-2846-1071
https://orcid.org/0000-0003-2846-1071
https://orcid.org/0000-0003-2846-1071
https://orcid.org/0000-0002-5113-387X
https://orcid.org/0000-0002-5113-387X
https://orcid.org/0000-0002-5113-387X
https://orcid.org/0000-0002-5113-387X
https://orcid.org/0000-0002-5113-387X
https://orcid.org/0000-0003-2879-241X
https://orcid.org/0000-0003-2879-241X
https://orcid.org/0000-0003-2879-241X
https://orcid.org/0000-0003-2879-241X
https://orcid.org/0000-0003-2879-241X
mailto:xl691@uow.edu.au
mailto:gyang@uow.edu.au
mailto:wsusilo@uow.edu.au
mailto:dong@uow.edu.au
mailto:chromao@nudt.edu.cn
mailto:xxlv@mail.xidian.edu.cn

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE

1.1.1 Linear Growth of Storage, Computational

and Communication Burden

Both keyword search and message-locked encryption are
dependent on tags to enable search and deduplication. A
simple assembly of the two techniques to obtain a versatile
system means generating these two kinds of tags respec-
tively, which undoubtedly doubles the storage, the compu-
tational and the communication burden for tags.

1.1.2 Difficulties in Collaborative Work on Multiple
Modules

If cloud service providers choose one of these schemes as
the core technique of the cloud system, additional indepen-
dent modules must be deployed simultaneously in order to
obtain functionalities unrealized by the scheme. Then
besides the significant increase on the storage, computation
and communication cost, extra adjustment is needed for let-
ting all modules collaborate as a whole. All interfaces and
parameters should be correctly docked and all parameters
should be well adjusted.

1.1.3 Security Risks

When discussing the privacy of SE, a leakage function is to
be defined to formulate the permitted leakage and claim the
privacy under this leakage. For instance, the number of
documents is an inevitable leakage in the building index
phase. However, if SE and MLE are directly assembled
together, the leakage function must further cover MLE rele-
vant communication transcripts in leakage, implying more
information is leaked than SE itself. Moreover, such a com-
bination of separate modules will suffer more security risks
regarding more interfaces and more interactions between
modules. To supply an appropriate security analysis for the
combination, not only the security of each component
scheme needs to be considered, but also the integral security
as a joint system needs validation. That is also why norms
like UC-security were proposed.

1.2 Our Contributions

As mentioned before, if both the keyword search and the
message-locked encryption functionalities can share the
same tag, or the two tag generation processes can be
merged, the storage, computational and communication
burden will be significantly reduced. In addition, a unified
scheme would be a better choice for cloud service suppli-
ers instead of assembling all techniques directly and signif-
icantly simplifies their cloud application architecture.
Besides, the security of separate schemes does not imply
the security of the entire system. Therefore, we aim to find
a solution combining the two functionalities while achiev-
ing better efficiency, deployability and security than the
trivial solution.

In this work, we propose a generic dual-server message-
locked searchable encryption (MLSE) scheme (Fig. 1) . Com-
pared with existing MLE schemes, our scheme acquires the
merit of resisting brute-force attacks by requiring a key
server to be involved in the key generation, i.e., adopting a
dual-server (the key server and the storage server) model.
In addition, our scheme enables efficient search on

1665

Client 3

Key Server Client 2

3
I nggn Dedupucauonl I J

@
\

S

Client 1

Upload

Storage Server

Fig. 1. MLSE. KeyGen, upload and search respectively respresent algo-
rithms for deriving keys, storing documents, and performing search on
storage.

encrypted data that may be simultaneously possessed by
multiple owners and only permits owners to access their
own data. Our scheme also realizes PoW mechnism to help
detect clients’ cheating behaviors. Moreover, our scheme
can be extended to support efficient PoS mechanism.

The contributions of our work are four-fold:

e We present a framework for constructing a MLE
scheme supporting keyword search, i.e., MLSE, for-
mulate the definition and the security requirements
of MLSE, then propose a generic MLSE construction.

e The deduplication in our scheme is due to two types
of tags, in which the search tag not only accelerates
locating the target duplicated document in the
upload protocol, but also makes both multi-keyword
search and negative keyword search possible in the
search protocol.

e Compared with the previous constructions, our
scheme simplifies the PoW implementation by per-
forming a hash computation to achieve PoW.

e Our scheme is versatile and can be extended to sup-
port efficient PoS mechanism for data integrity check.

1.3 Related Work

Searchable encryption (SE) was introduced by Song et al. [9].
It can be divided into two branches, searchable symmetric
encryption (SSE) [9] and public key encryption with key-
word search (PEKS) [10], [11], [12], [13], [14]. Bellare et al.
introduced efficiently searchable encryption (ESE) to enable
fast search where tag generation is a deterministic function
of the plaintext .

Message-locked encryption (MLE) is a kind of symmetric
encryption where messages are encrypted under message-
derived keys rather than under permanent secret keys.
Bellare et al. formalized the definition and security notions,
i.e., privacy and tag consistency of MLE in [2], then assessed
several concrete schemes from these two security consi-
derations. It is worth noting that their privacy also depends
on the assumption of unpredictable messages. Following
researches [3], [5], [15] are still based on this assumption. Prior
to presenting their schemes, Abadi et al. further considered
security requirements for messages whose distribution is
dependent on public parameters, namely lock-dependent

1666

messages [15]. They adopted computationally expensive
NIZK and secret sharing mechanism to obtain a fully ran-
dom scheme satisfying their security requirements in
random oracle model and gave a deterministic scheme where
security of lock-dependent messages holds under computa-
tional assumptions on the message distributions. Bellare et al.
strenghthed the security for messages that are not only
dependent on the public parameters, but correlated as well
[5] and presented interactive protocols GMLE) meeting their
security definitions in standard model. In addition, their con-
struction supports incremental updates. In order to prohibit
brute-force attacks recovering known files, an architecture [3]
consists of a key server in addition to the storage server was
proposed together with a system DupLESS which achieves
prominent privacy with the help of the key server.

Besides schemes concentrated on file-level deduplication
mentioned above, numerous schemes [6], [7], [16] focus on
block-level deduplication or dual-level (both file-level and
block-level) deduplication successively appear in this rese-
arch field. Li et al. designed a dual-level deduplication con-
struction on the base of CE, which supports efficient key
management [16]. Chen et al. extended file-level deduplica-
tion to block-level deduplication [6], formalizing the defini-
tion of block-level message-locked encryption (BL-MLE)
and presenting a dual-level source-based deduplication
scheme which is more space saving than only file-level
deduplication. However, all the mentioned MLE schemes
do not consider to implement search functionality simulta-
neously. That means to enable search on a deduplication
system, keyword search technique needs to be embedded
as a separate module, proportionally increasing the use of
computational and storage resource.

When discussing source-based deduplication, PoW [4] is
indispensable which is an interactive protocol between
server and client and helps client convince server that it
owns a file. Merkle Hash Tree [17] is widely used to imple-
ment PoW in MLE. Alternative implementations [18], [19],
[20] of PoW were proposed successively.

Proof of Storage (PoS) [8] was proposed in 2007 to detect
data damage due to accidents or attacks by. Server responds
to a challenge from client based on stored data. Studies on
PoS [21], [22], [23] emerge endlessly.

1.4 Organization

In Section 2, we retrospect the concepts which will be
applied in our scheme. Problem formulation is presented in
Section 3. Then syntax, workflows, correctness and security
definitions are shown in Section 4. The proposed scheme is
depicted in Section 5. Security analysis is given in Section 6.
Section 7 contains an update extension and a PoS extension
on our scheme followed by our scheme performance evalu-
ation. Finally we review all this work.

2 PRELIMINARIES

2.1 Notation

In this paper, « €p S denotes that x is chosen independently
and uniformly at random from a finite set S. |M| denotes
the number of bits in M. s;||s; denotes the concatenation of
the string s; and the string s.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

By convention, n denotes the number of stored docu-
ments and m denotes the number of keywords. D = {M,
...,M,} denotes documents stored on the server and
W ={w,...,w,} denotes the keyword set whose key-
words are contained in the above document set D.
flag(w;, M;) denotes whether the keyword w; is contained
in a document M and is defined as follows:

1 ifw €M,
flag(w;, M;) = {0 otherwise.

2.2 Unpredictable Source
The min-entropy of a random variable X is Hy(X) =
—log(max,Pr[X = z]), then the guessing probability of X is
GP(X) = max,Pr[X = z] = 27H~(Y, Given a random vari-
able Y, the conditional guessing probability GP(X|Y") of the
varibale X with the conditional min-entrpy Hy (X]Y) is
GP(X[Y) =Y, Pr[Y = y] - max,Pr[X = z|Y = y] = 27 H= V),
A source is a polynomial algorithm M which on input 1*
outputs (M, Z) where M is a message vector over {0,1}"
and Z € {0,1}" is the auxiliary information. arity denotes
the arity of the message vector. In this paper, since our
scheme is on file-level, arity = 1. For i € [1,arity], GPy =
max;GP(M][i]|Z) denotes the guessing probability of the
source M. We say that the source M is unpredictable if
GP ,, is negligible.

2.3 Signature

Digital signature allows a signer who owns the secret key sk
to sign a message M by computing a signature o and a veri-
fier who knows the corresponding public key pk to verify if
m is not distorted by checking o.

Unforgeability. As one of the required features of digital
signature, unforgeability aims to make an adversary’s forg-
ery impossible even when the adversary is given the public
key and can query the sign oracle.

The signature scheme consists
algorithms:

KeyGen(1') — (pk, sk). for each particular signer, given
the security parameters A of the scheme, it outputs the sign-
er’s public key pk and the secret key sk.

Sign(M, sk) — o. given a message M and signer’s secret
key sk, it outputs the signature o.

Verify(pk, M, o) — 0/1. given the signer’s public key pk,
a message M and a signature o, it outputs 1 if o is the signa-
ture on M signed by sk and 0 otherwise.

of the following

2.4 Blind Signature
Blind signature [24] is a cryptography tool introduced by
Chaum in 1983.

Blindness. In a blind signature scheme, a participating
party is required to sign a message from another party with-
out learning its content. In general, the message owner
needs to mask the message with a blinding factor before
asking for a signature.

Unforgeability. As one of the required features of a signa-
ture, unforgeability should also be provided by blind signa-
ture. It aims to make an adversary’s forgery impossible
even the adversary is given the public key and can query
the sign oracle.

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE

The blind signature consists of the following algorithms:

KeyGen(1') — (pk, sk). given the security parameter), it
outputs the public key pk and the secret key sk.

Blind (M, r,pk) — M'. given the message M, a blinding
factor r and pk;, it outputs the concealed message M’

Sign(M’, sk) — s'. given M’ and sk, it outputs the signa-
ture s’ for M'.

Unblind(s',r, pk) — s/ L. given ¢, r and pk, it outputs a
signature s for M if Verify(pk, M, s) — 1 and L otherwise.

2.5 Real or Random Security

Real or random (ROR) Security [25] for the symmetric
encryption SE = {G,E,D} depicts the indistinguishability of
the encryption of a message and the encryption of a random
message of the same length. The game depicting the ROR
security is defined as follows:

Setup. The challenger C random chooses b € {0,1} and
runs G(1') — K.

Challenge. The adversary A sends any message m of its
choice to the challenger C. C runs E(K,m) — C; if b=0;
runs E(K, {0,1}") — C; otherwise. Then C returns Cj.

Output. The adversary A outputs its guess b’ for b.

Definition 1. We say that the symmetric encryption SE is ROR
secure in the above distinguishing game ROR, if for any proba-
bilistic polynomial-time (PPT) adversary A, the advantage

eror(\) = [PrlAFOR0 outputs 1] — Pr[ARF! outputs 1]],
is negligible.

2.6 Pseudo-Random Generator

Pseudo-random generator (PRG) is a deterministic algo-
rithm that takes a short random seed as the input, and out-
puts a longer pseudo-random string [26].

Definition 2 [26]. i(-) is a polynomial and G is a polynomial-
time algorithm with the input length n and the output length
I(n). G is a pseudo-random generator if the following two condi-
tions hold:

1) Expansion: for any n, l(n) > n.
2) Pseudo-randomness: for all polynomial-time distin-
guisher D, its advantage

eprc(N) = [Pr[D" outputs 1] — Pr[D®) outputs 1],

is negligible, where r € {0,1}'") is chosen uniformly
at random, the seed s € {0,1}" is chosen uniformly at
random and the probabilities are taken over the random
coins used by D and the choice of v and s.

3 PROBLEM FORMULATION

3.1 System Model
3.1.1 Clients

The clients can store their own documents on the storage
server (including answering PoW challenge from the stor-
age server), access documents which they have ever stored
on the storage server in a searchable way, and launch PoS
challenge and verify the proof from the storage server.

1667

3.1.2 Key Server

The key server responds to clients” key generation requests
to generate searchable (keyword-related) keys which can
also be pooled to synthesize the key for message-locked
encryption for authenticated clients.’

3.1.3 Storage Server

The storage server is responsible for storing documents
uploaded by clients, conducting deduplication on newly
uploaded duplicated documents such that only one copy of
duplicated documents is kept (including launching PoW
challenge and verifying the proof from clients), responding
to clients” search requests, and answering PoS challenge
from clients.

3.2 Design Goals
A secure MLSE should satisfy the following features and
security requirements.

1) Deduplication Availability: The system is space saving,
i.e., keeps only one copy of identical documents on
the storage server.

2) Data Privacy: Brute-force attacks no matter from
unauthorized clients or the storage server are pre-
vented with the help of a correctly behaving key
server; the storage server is unable to learn plaintexts
of documents uploaded from an honest client.

3) Search Availability: Every authorised client is permit-
ted to search documents stored on the storage server
by preparing search tags which correspond to trap-
doors in Searchable Symmetric Encryption (SSE)
associated with some searching keywords.

4) Versatile Search: The system should support both
multi-keyword search and negative keyword search
to achieve satisfactory performance.

5) Keyword Privacy: Given a search tag from an honest
client which corresponds to a trapdoor in SSE, the
curious storage server cannot learn the underlying
keyword; given a key generation request from an
honest client, the curious key server cannot learn the
underlying keyword.

6) PoW: The system should consist of a PoW mecha-
nism so that it can perform source-based deduplica-
tion reliably, i.e., a cheating client not in possession
of the document cannot convince the correctly
behaving storage server that it owns the document.

7) PoS: The system should support PoS extention so
that a correctly behaving client can check if its data is
still available on the unreliable storage server in case
of the data integrity is violated.

3.3 Threat Model

In our work, we consider threat models from the perspec-
tive of different parties.

1.In a real scenario, each network application may deploy some
devices in charge of access control or user identity authentication to
block external invalid access and attacks, e.g., access control server
which is separated from all the other internal entities and works as the
security root of the system. This kind of devices are suitable to work as
the key server mentioned in our scheme.

1668

We first suppose that the key server is a passive
attacker, i.e., honest-but-curious adversary which runs
protocols as required but wants to collect and benefit
from runtime information. That means, the key server
honestly responds to key generation requests, but may
gather some leaked information during interactions, e.g.,
the queried keyword.

Another consideration is that the storage server is also
assumed to be a passive attacker, i.e., a honest-but-curious
adversary which honestly follows protocols to interact with
clients but collects privacy information. For instance, the
storage server may try to tell the underlying keyword from
a search tag.”

A client is regarded as an active attacker who may try
to deceive the storage server. On one hand, the client
may be curious about other clients” documents, thereby
trying to convince the storage server that s/he is the
owner and retrieve these documents from the storage
server, even though s/he never possesses them. On the
other hand, the malicious client may attach a tag of a
right ciphertext with a fake ciphertext and intend to
bypass the consistency verification to replace the right
ciphertext uploaded by other honest users, namely dupli-
cate faking attack (DFA).

4 MESSAGE-LOCKED SEARCHABLE ENCRYPTION
AND SECURITY DEFINITIONS

Similar to but different from regular MLE, besides dedu-
plication, MLSE supports further functionality of search.
In this section, we first outline the syntax of MLSE, then
illustrate the workflow of system protocols based on the
given syntax. Correctness and security definitions are
given after that. To be noted, though MLSE is designed
on the basis of MLE and SSE, its security definition can-
not be split into two parts for MLE and SSE respectively,
and must be considered for the whole MLSE. In short,
MLSE is to MLE and SSE, what signcryption is to
encryption and signature. Thus, new security definitions
for MLSE should be given rather than using those for
MLE and SSE directly.

4.1 Syntax
A message-locked searchable encryption (MLSE) is defined
as follows:

Setup(1") — (pp, skxs, {Skaient}). given the security
parameter), it outputs the public parameter pp' including a
keyword set W, the key server’s secret key skrs and each
client’s secret key skjient-

KeyGen(M, skxs, skeient) — ({kuw, },{sw,}, K). given a
document M, the key server’s secret key skxg and the cur-
rent client’s secret key skeien, it outputs keyword keys
{ky,}, search keys {s,, } and the message-locked key K.

1) W'KeyGen (’wiv flag(’wh M)7 Sk}(s, Skclient) - (kwﬁ Sw;):
given a keyword w; € W, flag(w;, M) which is
derived from w; and M, the key server’s secret key

2. Here we assume that the key server would not collude with the
storage server. This assumption is common and widespread in crypto-
graphic schemes involving multiple semi-honest adversaries or deploy-
ing multiple servers in charge of different functions [13], [27], [28].

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

skis and the current client’s secret key skejjens, it out-
puts the keyword key £, and the search key s, cor-
responding to w;.?

2) M-KeyGen ({k,,}) — K: given all keyword keys
{kuw, }, it outputs the message-locked key K.

Enc (M, K, skejient) — C. given a document M, a mes-
sage-locked key K and an owner client’s secret key
Skeiient, it outputs the the ciphertext C' = (Cy,C>) where
C) is unique for each owner, C; is identical and can be
independently reconstructed by any other owner in pos-
session of M.

Dec(C, skejent) — M/ L. given the ciphertext C' = (C}, Cs)
and the owner client's secret key skeicnt, it outputs the
underlying document A or L.

TagGen({s., },C) — ({Ppub,, },1). given search keys {s., }
and the ciphertext C, it outputs the search tag set {Ppubwi}
and the ciphertext tag .

1) W-TagGen (sy;) — Py, : given a search key s,,, it
outputs the corresponding search tag P, -
2) C-TagGen (C) — t: given C = (Cy,(Cy), it outputs
the ciphertext tag ¢.
ConTest (C,t) — 0/1. given the ciphertext C' and the
ciphertext tag ¢, it outputs 0/1.
PoWChallenge () — Q. it outputs a challenge Q.
PoWProve (Q,C,{Pyu,, }) — P. given a challenge Q,
the ciphertext C, the search tag set {P,u., }, it outputs
the proof P.
PoWVerify (Q, { Pyu,, },C;P) — 0/1. given the challenge
Q, the search tag set { P, }, the ciphertext C'and the proof
P, it outputs 0/1.

4.2 Workflow of MLSE

Our contruction involves interactions among multiple
parties who play three different roles, i.e., a key server, a
storage server and multiple clients. Here we denote the
key server KS and the storage server SS for short. A
quick glance is given in Fig. 2, which illustrates how our
system works based on the syntax in following scenarios:
storing a document for the first time, storing a document
which exists in SS (deduplication) and searching docu-
ments of interest.

Algorithm 1. SystemBuild

Input:KS chooses the security parameter system \.
Output:KS keeps skgg, SS and all clients obtain the public
parameters pp and each client obtains its secret key skgjent
respectively.
1: KSdoes:

e run Setup (1*) — (pp, skxs, {skeient })-

e share pp among SS and all clients.

e distribute each sk;.,; to each client.
2: return

We divide our system into three interactive processes: Sys-
temBuild, Upload and Search. Algorithms 1, 2 and 3 describe
these interacting procedures which realize functionalities of

3. From the inputs skxs, skeient, it is easy to learn that this is an inter-
active algorithm ran between the key server and the client rather than
one ran by any single party.

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE

Client 2

Store a document which Client 3

exists in Storage Server Search keywords of interest
¥ PoWProve Dec
Key Server Q’ = {Ppubwi } q
E i M/ L
skxs Skclient2 @; Skclientg
b
oP {Ppub., lwi € W'}

|
Ko, s swijwli, flag(w;, M)

W-KeyGen Poubyy, s b PoWChallengeQ

I[C|C’ € result}

M-KeyGen

R
nc C
E\Q ku:yk Ppubw,M 9 t

request C({Ppub,,, })

t A
c- agGe)C/ Ppub,,,_ i-Tagten O/V'
C, t/Storage Server

Client 1
ConTest
0/

Store a document for the first time

Fig. 2. The input, output, and information exchange in three scenarios
regarding the syntax of MLSE. Here we omit SystemBuild. In the first
scenario on the left, after running KeyGen with Key Server (KS), Enc
and TagGen itself, Client 1 sends tags including an aggregated search
tag and a ciphertext tag to Storage Server (SS). Since there exists no
such document, SS requests the document (together with search tags)
and stores both the ciphertext and the ciphertext tag. If the ciphertext
tag to be stored is generated by Client 1 rather than SS, SS also runs
ConTestto guarantee tag consistency. In the second scenario in the cen-
ter, after KeyGen and sending tags, SS finds there already exists such a
document, then runs PoW with Client 2 in order to decide whether Client
2 is the owner. In the third scenario on the right, after KeyGen, Client 3
sends search tags of interest and retrieves corresponding documens
from SS.

Qs {Ppubwi }1 Ca P

v
PoWVerify

1669

Ty PpubThagg Iapubq-l,.,,1 IDpubrl,w2 Ppub’rl,wm
itemr, 1 | t1 | Cty 2 |(clienty, Cy, 1,client,)|(clients, Cy, 1 clients)
itemp, o | L2 | Cy, 2 |(clients, Cy, 1,clients)

TZ Ppubrgvagy P]J’Ub1‘2‘wl PpubT2,W2 PPUbTvam
itemTz,l t3 Ct3,2

Ts PP“bTa.ugg

Fig. 3. Records in the storage server. The storage server keeps two
types of content: the tag 7" and the record item. T; is the ith tag which
contains Py, ,,, and a set of search tags {F,u,, , }- The former one is
generated by the storage server when the set of search tags {Pyu,. , }
is uploaded for the first time, aggregating members of the set. item;’ e
represents the kth record under 7). A item corresponds to a document,
which consists of a ciphertext tag ¢, a part of ciphertext C; and several
client-ciphertext pairs (client, C' gient)- t is computed from C, when it is
uploaded for the first time. C, is uploaded by its first owner client. Each
(client, Cy aient) is uploaded by the document’s each owner.

building system, uploading and searching documents respec-
tively. The storage records are organized as Fig. 3. Algorithm 2
is complex and could be divided into three cases which are
depicted in Figs. 4,5 and 6.

client

run:
KeyGen(M, skis, skciient) = ({kw, }» {Sw, }, K) with KS
Enc(M, K, skciient) — C

TagGen({s,,},C) — ({F)P“bu', 1)

aggregate all s,,, € {sy,} to get sy ar

run W-TagGen(sw,11) = Ppubyy s Poubyy ar

Storage Server

cannot find 7' = { Pyub, .y { Ppubu, }} St Ppun

agg pubw m

request { Py, } and C

A

{Ppub,,, },C = (C1 ctient, C2)

aggregate all Pyu,, € {Ppus,,} 10 get P,

> open a new storage under T = { Ppub, ;s { Ppub., } }
run C-TagGen(C') — t
store item = {t, Ca, (client,C client)} under T'

Fig. 4. First-time uploading with nonexistent search tags (FPyu,,, # Ppu,,,) in storage. Client sends aggregated tag and ciphertext tag to Storage
Server. Storage Server cannot find identical search tags so asks client to upload search tags and ciphertext, generates ciphertext tag itself and stores

corresponding item under the new search tags and the new ciphertext tag.

client
run:
KeyGen(M, skks, skeiient) = ({kw, }+ {Sw, }» K) with KS
Enc(M, K, skjient) — C
TagGen({s.,},C) = ({Ppus,, } 1)
aggregate all s,,, € {sy,} to get sy

Storage Server

run W-TagGen(sw a1) = Ppubyy Ppubyy et _ find 7' = {Ppuv,,,» {PPUbu', st Pouba,, = Poubyy,a
¥ cannot find item s.t. tjjer, =t under T
request C'

A

C = (C1,ctient, C2)

run C-TagGen(C) — t

store item = {t, Ca, (client, C1 ciient)} under T

Fig. 5. First-time uploading with existent search tags (Pyu,,, = Pyun,,,,) but nonexistent ciphertext tag (ti.... # t). Client sends aggregated tag and
ciphertext tag to Storage Server. Storage Server finds identical search tags but cannot find identical ciphertext tag so asks client to upload ciphertext,
generates ciphertext tag itself and stores corresponding item under the new ciphertext tag.

1670

Algorithm 2. Upload

Input:A client client owns a document M and skcjjen:-
Output:The ciphertext of M is stored on SS and client is one of
its owners, or SS rejects the upload request.

1: client does:

e run KeyGen (M,skgs, Skeient) = ({kuw, }s {50}, K)
with KS, Enc (M, K, skuient) — C, TagGen ({s,, },C)
- ({ijub“;i }a t)/
aggregate all s,,, € {sy, } to get sy,
run W-TagGen (syy1/) —
send (Ppyup,, 1) to SS.
2: SS scans each tag 7' = {Pp“;,”gg, {P,,”bml }} where P,
aggregation of { Pyus,, }-
3: if thereisno tag T's.t. Bribag, = Poubyya then
4: (Fig.4) SS does:

pubyy pr 7

is the

Dbagg

e ask client to upload tag set {F,u,, } and ciphertext
C= (Cl,clienta C?)/
aggregate all Py, € {Pub,, } to get Py,
open a new storage under 7' = { Py, 0 {lebu',j .
run C-TagGen (C) — ¢,
store item = {t, Cy, (client, C cjient) } under T
else

scans all items item under T'.

if there is no item s.t. tj;.,, =t then

(Fig. 5) SS does:

o ask client to upload ciphertext C' = (C gient, C2),
e run C-TagGen (C) — t.
e storeitem = {t,Cy, (client, Cy cjens)} under T

9: else
10: (Fig. 6) SS does:

run PoWChallenge () — O,
send Q to client
11: client does:

run PoWProve (Q, C,{ Py, }) — P,
e sendPtoSS. '
12: SSruns PoWVerify (Q, { Pyu,, }, C2, P) — pow.
13: if pow = 1 then

14: append item with (client, C1 cjent).
15: else

16: reject the upload request.

17: end if

18: endif

19: end if

20: return

Remark. Since the ciphertext tag ¢ is computed by the stor-
age server when the ciphertext C' is uploaded for the first
time, the stored ¢ is always consistent with the stored C. As
mentioned in Thus ConTest (C,t) — 1 is explicit in our
scheme. For the sake of integrity, we still include it in the
syntax of our scheme.

4.3 Correctness
We define the document space M(\). For any A € N and
pp «Setup (1%), the following correctness conditions are
required for a MLSE.

Decryption Correctness. Any ciphertext processing the file
from the message space can always be decrypted to the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

original one, i.e., for M € MsgSp(\), (skxs, skeient) <Setup
(1Y), K «KeyGen (M, skxs,skaient) and C «—Enc (M, K,
Skeiient), we have that Dec (C skgjen) — M.

Algorithm 3. Search

Input:A client client chooses keywords W' = {w;} C W.
Output: client obtains documents with or without keywords
W = {w;} C W ofits own.

1: client runs KeyGen (M, skxg, skaient) — ({kuw,; }> {Sw; }, K)

with KS.

2: runs W-TagGen (su,) — Ppup,, for w; € W'
3: sends { Py, |wi € W'} to SS.
4: SSinitializes the returning result = {).
5: reads the first tag set { Pyus,, }-
6
7
8

. repeat
if {Ppubur,,}) {PPUbw,, ‘wl € W/} then
reads the first item under { Pyu,, }-

9: repeat
10: if (client, C cient) € item then
11: result = result U{C = (C dient, C2)}-
12: else
13: reads the next item.
14: end if
15: until has scanned all items under { Pyus,, }-
16: else
17: reads the next tag set.
18: endif

19: until has scanned all tag sets

20: sends result to client.

21: client runs Dec (C, skejent) — M/ L for each C = (C} gients
Cy) € result .

22: return

Tag Correctness. It implies any two tags of two identical
documents from the message space are the same, i.e., for
M=M e MsgSp()\), (SkK57 Skclient) <—S€tuP (1A)’ ({SLLZ}»
K) «— KeyGen (M, skis, skaient) and ({s,,}, K') — Key-
Gen (M,7 skks, Skclient)/ C «—Enc (M7 K, Skclient) and
C" —Enc (M', K', skeient), ({ Ppun,, },t) < TagGen ({s,, },C)
and ({Pyu,, }' ') < TagGen ({s,,}’,C’), we have that Con-
Test (C,t) — 1, ConTest (C',t') — 1%, {Bpuv, } = { Poub, Y
andt =t¢'.

PoW Correctness. It requires the client possessing the doc-
ument can pass the ownership challenge based on the docu-
ment from the server.

The formalization is, for M € M()), (skks, Skdient) <—Setup
(1Y), ({54}, K) —KeyGen (M, skgsg, skeient), C <—Enc (M, K,
katient), { Ppub,,, } < TagGen ({s.,},C), @ «+~PoWChallenge()
and P «PoWProve (Q, C,{FPyu,, }, we have that PoWVerify
(Qa {PP”hur, }7 C? P) — L

4.4 Privacy
The privacy should be considered on two folds: privacy
against the key server, and privacy against the storage server.

4.4.1 Privacy Against Key Server

Even though KS’s participation helps prevent adversaries
such as SS from launching brute-force attacks, KS learning

4. As mentioned in Section 4.2, ConTest (C,t) — 1 and ConTest
(C',t') — 1 are straightforward in our scheme.

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE 1671
client Storage Server
run:
KeyGen(M, Sk[(s, Sk(“pm) — ({k,,,, } {Sw, }, I() with KS
Enc(M, K, skejient) — C
TagGen({s.,,},C) = ({Pyus, }.1)
aggregate all s,,, € {sy,} to get sy s
run W'TagGen(SW-A/) - PI’””W.;\I IJI’“"W..\I‘t _ find T = {ID])ub(,yya {P]mb“.l }} s.t. ijubuyy = Fpubyy m
" find item s.t. tijtern =t under T'
« Q run PoWChallenge() — Q
run PoWProve(Q,C, {Ppus,, }) = P P run PoWVerify(Q, { Pyus, },C,P) — pow
> if pow = 1, then append item with (client, Cy crient)
otherwise, reject

Fig. 6. Deduplication with existent search tags (Pus,,, = Pyuby)

) and existent ciphertext tag (¢;:.., = t). Client generates search tags and ciphertext

tag, aggregates search tags into one, and sends both to Storage Server. Storage Server finds the same aggregated tag and the ciphertext so asks
the client to prove its ownership. If the proof is validated, Storage Server marks a copy for client.

the underlying keywords when assisting the user to gener-
ate the message-derived key is also a threat. Thus, a security
requirement is in demand that given scripts of two key-
words during interaction (KeyGen is an interactive protocol
between a client and the key server), the key server cannot
tell their correspondence. The distinguishing game against
the key server is defined as follows:

Setup. The challenger C generates public parameters P,
the public key pk and the secret key sk, then sends them to
the adversary A.

Challenge. The adversary A randomly chooses and sends
(wp,w1) €W to the challenger C. C randomly chooses
ber {0,1} and M from the message space, then sends A
Yuy» Yuy, Which are intermediate interaction scripts generated
honestly by running W-KeyGen (wy, flag(wo, M), skis, skient)
and W-KeyGen (w1, flag(wy, M), skgs, skeient), respectively.

Output. The adversary A gives its guess b’ and wins the
game if b’ = b.

Definition 3. We say that a MLSE is secure in the above game
INDrsg, if for any PPT adversary A, the advantage

7 1
AdvﬁngﬂA()\) = Pr[A wins| — 2 1)
is negligible.

4.4.2 Privacy Against Storage Server

From observation, when each document is uploaded for the
first time, the owner user should send to the storage server
the following information: the search tag, the ciphertext tag
and the ciphertext. Then the game can be described as fol-
lows: the adversary chooses two distinct messages of identi-
cal length and sends them to the challenger, the challenger
randomly chooses one of them to derive corresponding
search tag, ciphertext tag, ciphertext and returns them; then
the adversary tries to distinguish the two messages. In
short, our security model requires the ciphertext tag and the
ciphertext should not reveal anything about their underly-
ing message.

It is worth noting that no query on a chosen message is
permitted. The reason is that as long as the two challenge
messages have opposite flags on w;, then the adversary
queries on a new message, gets returning search tags and
compares By, with the challenge one F,, , the adversary
will definitely win the game.

The distinguishing game IND — CMA s depicting the
security requirement against a chosen message attack is
defined as follows:

Setup. By running Setup (1) — (pp, skxs, {skeien }), the
challenger C aquires (pp,{skaicn}) and the adversary A
aquires pp.

Challenge. The adversary A picks two documents M, M;
st. |My|=|M| and flag(w;, My) = flag(w;, My) for
t=1,...,m. A sends M, M; to the challenger C. C picks
ber{0,1}, runs KeyGen (M,,skgs, Skaient) = ({ku, }s
{Su,i},Kb), Enc (]\/[b7Kb’e9k;clig1lt) — Cb and TagGen ({Swi},
Cy) — ({ Pouby, }-1), sends ({ Ppup,, },t, Cy) to A.

Output. The adversary A gives its guess b’ and wins the
game if b’ = b.

Definition 4. We say that a MLSE satisfies indistinguishability
in the above game, if for any unpredictable MLE-valid source
M and any PPT adversary A, the advantage

ID—CM . 1
AV () = [Pr{A wing — 31 @

is negligible.

4.5 Tag Consistency

Duplicate faking attack is a threat that happens in the fol-
lowing situation. A malicious client uploads a fake cipher-
text C" of a message M’ with a inconsistent tag ¢, when a
honest client uploads the same tag ¢ honestly generated
from a ciphertext C of a message M, the server observes the
equality of these two tags, thereby wrongly believing that C'
and C' are encrypted from the same message. Then the
server performs deduplicating operations, only keeping C".
Later when the honest client wants to retrieve its document,
the server returns C’. The honest client decrypts C’ and
obtains M’. Accordingly, s/he cannot obtain the original
message M any more. Tag consistency is a security require-
ment defined to exclude duplicate faking attacks, which is
formalized by Bellare et al. in [2].

Our tags are deterministic and generated from the
ciphertext. In addition, at the first time that a document is
uploaded, generating ciphertext tag ¢ is undertaken by the
storage server. That is, our mechanism will not encounter
the above attack from clients due to the workflow in
Algorithm 2.

1672

4.6 Proof of Ownership

Our tags are generated on document-level in a deterministic
way rather than on block-level in a random way, thus we
adjust the security notion of PoW in [6] for block-level dedu-
plication to satisfy our security requirements. The game
depicting the security requirement against an uncheatable
chosen distribute attack (UNC-CDA) is defined as follows:

Setup. The challenger C generates parameters by running
Setup (1") — (pp, skis, {skaient}) and sends pp to the
adversary A. The adversary 4 sends the challenger C a
MLE-valid source M [2]. C runs M(1}) — (M, Z), KeyGen
(M7 skrs, Skclient) - ({kwi}; {swi}7 K)/ Enc (AL K, Skclient) -
C, TagGen ({sy;},C) — ({Fun,, },t) and sends
(Z,C,{ Pyub,, }:1) to A.

Query. The adversary A inquires of the challenger C
about the response P; for any challenge Q; of the above
({Ppubw,v ht).

Challenge. The challenger C runs PoWChallenge () — Q
and sends the challenge Q to A.

Output. The adversary A outputs a respond P* and wins
the game if POWVerify (Q, { Pyu,, },C, P*) — 1.

Definition 5. We say that a MLE is UNC-CDA secure in the
UNC — CDAyysp game, ie., under the chosen distribution
attack, if for any unpredictable source M and any PPT adver-
sary A, the advantage

AdViiisrd " (V) = PrlA wins],)
is negligible.

5 OUR MLSE CONSTRUCTION

For simplicity, we denote a blind signature scheme as BS
and a standard signature scheme as S for short.

5.1 An Overview of Our Construction

We start our system prototype on the foundation of a dual-
server model. By separating the key server from the storage
server, unauthorized users cannot aquire keys for encryp-
tion and tag generation so that brute-force attacks are pre-
vented. Our keys are hiden keywords of the processed
document. An interactive blind signature scheme between
the key server and a client is in use to blind keywords so
that the key server helps the client generate keyword keys,
but still has no idea about the processed keyword.

Then we add search functionality by extracting search
tags from each keyword. One keyword has two states, e.g.,
0 and 1 which denote the current keyword is included by
the document and otherwise, respectively. These two states
will be appended to the keyword and then involved in the
generation of search tags, thereby enabling negative key-
word search. In addition, by submitting multiple search
tags corresponding to several keywords, multi-keyword
search also comes true. Besides, as shown in the deduplica-
tion workflow, we can use techniques such as aggregate sig-
natures [29] to merge multiple tags into one and only
transmit this tag at the very beginning. If there is a matching
tag in storage, then there is no need to transmit each search
tag corresponding to each keyword, thereby further reduc-
ing the communication burden caused by multiple tags.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

We use a hash to implement PoW. In the process of
deduplication, the challenge from the storage server is in
the form of (k, R) where k is the sequence number of key-
words and R is a randomly chosen number. The client will
prove that s/he is the document owner by responding to
the storage server a hash value of Py, [|C2||R as the proof,
which is the concatenation of the kth search tag, a part of
ciphertext and the random number. Finally, the storage
server verifies the proof by re-computing the hash value of
the concatenation.

5.2 Detailed Construction
Setup (1) — (pp, skis, {Skeient})- given the system security
parameter 1%, the public parameters {ppps, pps} of the blind
signature scheme and the standard signature scheme are
generated. It runs BS.KeyGen (1*) — (pkgs, skps) to get the
pair of public key and secret key. I'; € pppg is the signature
domain of the blind signature scheme and I'; € ppg is the
domain of secret keys of the standard signature scheme. I; is
the length of ciphertext tag. [p,w is the length of proof of
ownership. PRG(+) is a pseudo-random generator with the
input length A and the output length is the length of mes-
sage to be encrypted in SE. W is an m-size specified key-
word set. L(\) is a linear function of A. Hash functions are
collision-resistent: H; : {0,1}* — {0,1}", Hy:{0,1}* =T,
Hy:Ty — Ty, Hy:{0,1}" — {0, 1}lf and H; : {0,1}" — lpow-
SE = {G,E,D} is a pair of symmetric encryption and decryp-
tion algorithms. It runs G(1*) — Kiens to get a unique key
K jens for each client. The outputs are the public parameter
pp = {ppps, pps, H1, Hy, H3, Hy, PRG(-),SE,m, W, L()\)}, the
key server’s secret key skxs = skpg and each client’s secret
key Sk(:lien,t = {pkBS7 Kclient}~

KeyGen(M, skis, skeiient) — ({kw,; }+{5w; }, K). given a
document M, the key server’s secret key skxs and the cur-
rent client’s secret key skeicn, it outputs keyword keys
{kw, }, search keys {s,,} and the message-locked key K.

1) W-KeyGen
(U)i7 ﬂag(w“ M)a SkKSa Skclient) - (kw,'v Sw;): giVen a
keyword w; € W, flag(w;, M) which is derived from
w; and M, the key server’s secret key skxg and the
current client’s secret key skjiens, it randomly choo-
ses 1y, computes h,, = Hy(w;|| flag(w;, M)), interacts
with the key server by running BS.Blind (A, 7w,
pkps) — @, BS.Sign (z.,, skps) — Yu,, BS.Unblind
(Yuwy> Tw;» PkBs) — Ky, and computes s, = Hj(ky,), it
outputs k,, and s,,.

2) M-KeyGen ({k,,}) — K: given {k,,}, it computes
the message-locked key K = @,ewH:(i||ky,||M)
and outputs K.

Enc (M, K, skejient) — C. given a document M, the mes-
sage-locked key K and the client’s secret key skjjen, it com-
putes C) =Eg, . (K|[H\(M)), C,=PRGK)®M, it
outputs the ciphertext C' = (Cy, Cy).

Dec (C, skejent) — M/ L. given the ciphertext C' = (Cy, C5)
and the owner client's secret key skyicn, it computes
K||h =Dg,,,,(C1), M' = PRG(K) @ Cy, outputs the docu-
ment M’ if Hy(M') = hand L otherwise.

TagGen ({su,},C) — ({Fun,, },t)- given search keys
{sw;} and the ciphertext C, it outputs the search tag set
{Ppub,, } and the ciphertext tag ¢.

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE

1) W-TagGen (s,,) — Dby, GIVEN Sy, unlike the usual
key generation in a standard signature scheme, here
5y, is designated rather than chosen randomly, then
Pyup,, is computed as usual by running S.KeyGen
(1%, 84;) = Ppup,, , outputs the search tag Py, -

2) C-TagGen (C) — t: given C = (C4, Cy), it computes
t = Hy4(Cy) and outputs the ciphtertext tag .

PoWChallenge () — (k, R). it randomly picks a sequence
number of keywords k€ {1,...,m} and a random string
Re {0,1}'W, outputs the challenge (%, R).

PoWProve ((k, R),Cs, {Ppu,, }) — P- given a challenge
(k, R), a part of ciphertext Cs, search tags {Fu,, }, it finds
the kth search tag Py, € {FPpun,, }, computes P = H5(Ppup,,
[|C2||R) and outputs the proof P.

PoWVerify((k, R), { Pyu,, }, C2, P) — 0/1. given the chal-
lenge k, the search tag set {Ppubm }, the ciphertext C =
(C1,Cs) and the proof P, it finds the kth Py, € {FPpus,, |,
outputs 1if P = H5(Ppup,, ||C2||R) and 0 otherwise.

5.3 Correctness Analysis

1) Decryption Correctness. It is straightforward to
observe that our scheme satisfies Decryption Correct-
ness since we use symmetric encryption.

2) Tag Correctness. Suppose that two document
M = M’, since computations are deterministic, we
have equations of their search keys {s,.} = {sy,},
message-locked keys K = K, ciphertexts C = (",
search tags {Pyus,, } = {Pus,, } and ciphertext tags
t=t.

3) PoW Correctness. When a client owns a document
M, it can obtain search keys and the message-locked
key ({su,},K) —KeyGen (M, skgs, skejent), a part
of ciphertext C, € C «—Enc (M, K, skejient), tags
{Ppub,, } — TagGen ({sy;},C). With challenge
(k, R) «PoWChallenge() from Storage Server, client
computes the response P «—PoWProve ((k,R),Cs,
{Ppun,, }) which is the hash on P, [|Co||R. 1t is
observed that P must pass the PoW check PoWVer-
ify (Q,{Ppup,,},C2,P) — 1 since the check is re-
computing the hash value and comparing the two
hash values.

6 SECURITY

In this section, we present the security analysis and proofs
of our MLSE scheme. Since tag consistency is explicit
according to Sections 4.3 and 4.5, we will not repeat the
analysis here. Theorems are given as follows, while all
proofs can be found in the appendices, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2020.3006532.

6.1 Privacy
6.1.1 Privacy Against Key Server

Theorem 1. Our MLSE scheme is secure against the key server if
the blind signature scheme satisfies blindness.

6.1.2 Privacy Against Storage Server

Theorem 2. The adversary’s advantage e(\) in the IND—
CMA s game

1673
€(A) <m-eps(N) + €epra(N) + €ror(N),

is negligible, where m is the number of keywords of W, SE is
ROR secure with the adversary’s advantage epor(X), BS satis-
fies unforgeability with the forger’s advantage eps(\), PRG is
a pseudo-random generator with the distinguisher’s advantage
epra(A).

6.2 Proof of Ownership

Theorem 3. The adversary A’s advantage e(\) in the
UNC — CDA]\,[LSE gamnie

e(\) < 9N 1 (GCR,H;)()\) + QPQO+()(\)>\))

is negligible where p(\) is the min-entropy of block-source M,
Hs is collision-resistent with the adversary’s advantage
€cr i, qrow(N) is the number of queries in the UNC—
CDApse game, L(N) is the length of the random string R.
Hy is collision-resistent with the adversary’s advantage
ecri,(N), Iy is the output length of Hy, m is the number of
keywords of W.

7 EXTENSIONS ON PROOF OF STORAGE

When using cloud services at untrusted servers, the risk of
data tampering and data deletion in storage always bothers
users. On the other hand, some trusted servers may suffer
system errors or external attacks, and then misbehave
unintentionally, such as modifying data content or clearing
storage. Therefore, with the demand of verifying data pos-
session on the server, a new security requirement named
Proof of Storage has been considered in [8], [21]. PoS
requires the server to generate a proof based on both the
message stored and the user’s challenge which should con-
vince the user that the message stored is intact. In addition,
the trivial way that the user should retrieve the whole mes-
sage to check data possession could be avoided. The server
only needs to access a part of message, i.e., corresponding
message blocks designated by the challenge to derive the
proof which will demonstrate the availability of the whole
message with overwhelming probability.

Since we will use the instantiation of [8] as a building
block to achieve PoS functionality, first we review the
generic syntax of PoS [8]:

KeyGen(1") — (pkp,s, skr,s). given the security parame-
ter), it outputs the public key pkp,s and the secret key skpyg
for PoS.

TagBlock(pkp,s, skpes, m[j], j) — t;. given the public key
pkpos, the secret key skp,g, the message block m/[j] and the
block index j, it outputs the block tag ;.

GenProof(pkp,s, {m[j]}, Qrs. {t;}) — Pros. given the
public key pkp,g, all message blocks {m][j]}, the PoS challenge
Qp,s and all block tags {¢;}, it outputs the PoS proof Pp,s.

CheckProof(pkpos, skpos, Qros, Pros) — 0/1. given the
public key pkp,s, the secret key skp,g, the PoS challenge
Qpys and the PoS proof Ppyg, it outputs the failure or suc-
cess 0/1.

Our construction can be slightly modified and extended
to support PoS mechanism. There are two problems to be
solved. First, due to the idea of [8], the content stored should
be parsed into several blocks and each block has its block

http://doi.ieeecomputersociety.org/10.1109/TSC.2020.3006532
http://doi.ieeecomputersociety.org/10.1109/TSC.2020.3006532

1674

tag accordingly. That means our scheme needs to be
adjusted in order to support block tags. Thus, in TagGen, an
additional BL-TagGen is added to compute block tags from
ciphertext blocks Cs[j] for j =1,..., N where N is the num-
ber of blocks. Another issue is, which components kept by
the document owner and the server respectively of our
scheme could be used as the key pair in PoS? Besides, in
terms of the multi-owner scenario, each owner of the docu-
ment stored should have the secret key in common. The
aggregated search key sy s and the aggregated search tag
Pyub,,, seem to satisfy the above requirements. That is, the
user who uploads the document for the first time uses the
aggregated search key sy, computed from all search keys
corresponding to the current document to derive each block
tag and uploads them together with the ciphertext. Then
when one of the authenticate owners would like to check
the availability of the document and comes up with a PoS
challenge, the storage server uses the aggregated search tag
Prubag, (PI’7‘bW,1\ , on the client side) computed from uploaded
search tags of the current document as the PoS public key to
derive the proof. Finally, the owner in challenge will verify
the validity of the proof.

The following algorithms could be a supplement to our
scheme in order to implement PoS functionality. For sim-
plicity, PoS refers to the PoS protocol [8] according to the
syntax of PoS mentioned above.

BL-TagGen({ Fpup,, },{su; }, C2[j], j) — t;. given all search
tags {Pu,, }, all search keys {s,;}, the jth ciphertext block
C5[j] and the block index j, the owner aggregates all search
tags and all search keys respectively to get P, ,, and sy u
respectively in the same way as Algorithm 2, then runs PoS.
TagBlock (Pyub,, s Sw.ar, Ca[j], j) — t; to output the block
tag t;.

PoSChallenge() — Qp,s. the document owner outputs a
challenge Qpys.

PoSProve({ Pyup,, }>C2, Qros; {tj}) — Pros- given all search
tags { Ppu,, }, a part of ciphertext Cy, the challenge Qp,s and
all block tags {t;}, the server first aggregates all Py, to get
Ppub,y,, then runs PoS.GenProof (Pyu,,,, {C2[1]}, Qros, {t;}) —
P ros and outputs the proof Pp,g.

PoSVerify({ Pyu,, }+{5u; } Qros, Pros) — 0/1. given all
search tags {Fu,, }, search keys {s,;}, the challenge Qp,s
and the proof Pp,s, the owner aggregates all search tags
and all search keys respectively to get Py, ,, and sy
respectively in the same way as Algorithm 2, runs PoS.
CheckProof (P, s Sw.ars Qros, Pros) — 0/1 and outputs
failure or success 0/1.

8 PERFORMANCE EVALUATION

8.1 Algorithm Performance

In this section, we present the experiment results of our
scheme implemented in C++. Our experiments are con-
ducted on a PC with Intel Core i7-4770 CPU (8-core 3.4 GHz)
and 16 GB RAM running 64-bit Windows 7 Enterprise.

Fig. 7 compares the time cost of KeyGen, TagGen and PoW
related algorithms of our scheme and schemes in [3], [6]
offering a 80-bit security level. We utilize RSA-based blind
signature [24] as the blind signature scheme in our scheme
and the scheme in [3], Schnorr signature [30] as the standard
signature scheme and 50-keyword list in ours. The

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

KeyGen TagGen PoW

10°; 900
G -KeyGen G W-TagGen | m—Fowprove
1600 ‘-M-Ksyssn I \/C-TagGen | I—owverity ‘
800
1400
10*
1200
3
2 1000 10
£
0
g 800
= 102
600
300
400
10! 200
200 100
0 - 10° 0 -

8] ours [3] 8] ours [3] [8] ours

) ~
=1 =3
S S

Times(ms)

Times(ms)
o
8

IS
o
S

Fig. 7. Algorithm performance.

document size for experiments is 1 MB. For the scheme in
[6] with 160-bit group order, we let the block size be 4 KB
which leads the block number of each document to be 256
and the sector number be 128.

8.1.1 KeyGen Performance

As the illustration of KeyGen shows, our W-KeyGen and
M-KeyGen take 121.16 and 322.16 milliseconds (ms) respec-
tively, since W-KeyGen consists of 50 blind signing processes
according to 50 keywords and their flags and M-KeyGen
consists of 50 XOR operations.

B-KeyGen and M-KeyGen take 1499.7 and 51.7 ms respec-
tively in the comparing scheme [6]. Their B-KeyGen includes
256 operations of mapping a message block of 128 sectors to
a group element and their M-KeyGen includes an operation
of hashing the whole message. Thus, the integral efficiency
of our KeyGen is better than theirs.

The scheme in the comparing scheme [3] supports nei-
ther search nor block-level deduplication, so it only has M-
KeyGen algorithm which is 55 ms. The algorithm uses an
RSA-OPRF protocol which is similar to our W-KeyGen algo-
rithm for each keyword and there is an extra PRF computa-
tion after the RSA-based blind signature.

Our KeyGen has better performance than that of [6] and
KeyGen of [3] is better than ours. It is worth noting that our
scheme supports search with a little more time consump-
tion of KeyGen and the extra time cost cannot be detected
by users.

8.1.2 TagGen Performance

Our W-TagGen and C-TagGen take 35 and 6067.84 ms respec-
tively. W-TagGen consists of 50 public key generation opera-
tions from designated secret keys of the standard signature
scheme, and C-TagGen consists of ciphertext generation
(6014.2 ms) and hashing the ciphertext (53.64 ms).

B-TagGen and M-TagGen in [6] take 88803.7 and 5.7 ms
respectively. M-TagGen contains a computation from Z, to
the group G, while B-TagGen contains 256 * 129 exponential
calculations and 256 * 128 multiplications on the group G.
To simplize comparison, Enc on each message block is not
counted in the time cost of B-TagGen, though encryption
should be done before the above power and multiplication
calculations in their B-TagGen.

For supporting neither search nor block-level deduplica-
tion, the scheme in the comparing scheme [3] only has C-

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE 1675
TABLE 1 TABLE 3
PoS Performance Search Functionality Comparison
#of blocks #ofsectors BL-TagGen PoSProve PoSVerify Trapdoor Ciphertext Test
256 128 2919.8 400.28 1164.4 MLE + PEKS ICe mCp + 2mCe ImCy
ours [Ce + IC; + 2ICy mCe -

All durations are measured in milliseconds and for 50 keywords.

of blocks denotes the number of blocks of each document which size is 1 MB.
of sectors denotes the number of sectors in each block. BL-TagGen, PoSProve,
PoSVerify respectively denote the time cost of computing block tags, generat-
ing the proof and verifying the proof in PoS process.

TagGen algorithm which costs 52.4 ms and is similar to our
C-TagGen, including an operation of hashing the whole
ciphertext. Enc on the whole ciphertext is not counted for
the same reason mentioned above.

Our TagGen time cost mainly comes from encryption. It is
more reasonable to count this encryption time cost in Enc
since other schemes also spend time on encryption. Exclud-
ing the encryption time, our time cost is only 36 ms more
than that of [3] but provides addtional functionality of
search. Thus, the efficiency is still satisfactory.

Discussion. We evaluate PoS extension (Section 7) perfor-
mance in Table 1. We utilize the second scheme of [21] as
our embeded PoS mechanism and the document size is 1
MB, the block size is 4 KB which lead the block number of
each document to be 256 and the sector number to be 128 to
measure the time cost on generating block tags. B-TagGen
takes 2919.8 ms since it contains 256 * 127 additions on Z,
(to aggregate 128 sectors in each block), 256 * 2 exponential
calculations and 256 multiplications on the group G. Thus,
when block tags are also attached (extra time cost for com-
puting block tags is added to time cost of our TagGen), its
performance is still much better than that of [6].

8.1.3 PoW Performance

In terms of PoW related algorithms, our scheme also out-
weighs the contrast scheme in [6]. The scheme of [3] does
not provide detailed PoW solution in their construction, so
here we just compare ours with that of [6]. PoWProve and
PoWVerify roughly cost 9.96 and 10 ms respectively since
they correspond to computing the hash value of the concate-
nation of the kth search tag, a part of ciphertext and the ran-
dom number.

TABLE 2
Feature Comparison
pairing search model D/R PoW PoS
XtCIH [2] x x STD D x x
XtDPKE [2] x x STD D x x
R-MLE [15] v x RO R x x
D-MLE [15] v X RO D x x
[5] x x STD D x x
[3] X X — D X X
[6] v x RO D v v
[7] X x RO D v x
our scheme X v RO D v v

Paring denotes whether the MLE scheme uses pairing to check the equality of
tags. Search denotes whether it supports search. Model indicates whether it is
in the random oracle (RO) or the standard model (STD). D/R denotes whether
it is deterministic or randomized. PoW and PoS respectively denote whether it
supports PoW and PoS.

[denotes the number of keywords in query, m denotes the number of keywords
in document, C, refers to pairing, C, refers to exponentiation, C; refers to
inversion, and Cy, refers to multiplication.

For the scheme in [6], we assume the challenge of their
scheme consists of half of the number of blocks, i.e., 128
(i,v;) pairs, then their PoWProve and PoWVerify each consist
of 128 exponential operations and 127 multiplications on
the group G. PoWVerify consists of an additional value com-
parison of two elements on the group G. Thus, they take
about 414.4 and 414.4 ms respectively.

8.2 Comparison

Table 2 compares some existing MLE schemes with ours.
Our scheme is a deterministic one which achieves security
in random oracle model. When considering efficiency,
unlike other schemes [6], [15] which utilize pairing in tag
equality comparison, our scheme directly compares the val-
ues of two tags, which certainly takes less time. In addition,
our scheme provides search solution further while other
comparing schemes do not support this functionality. In
terms of security issues, our scheme is proved under ran-
dom oracles while some comparing schemes [2], [5] achieve
security under standard models and [3] does not explicitly
provide security proof. Most message-locked encryption
schemes execute deterministic algorithms including ours
and only R-MLE [15] among comparing schemes provides a
solution to randomization. However, the solution is com-
plex and very time consuming. Moreover, our scheme has
the merit of supporting PoW mechanism and PoS exten-
sions, which cannot be achieved simultaneously in [2], [3],
(5], [71, [15].

In addition to evaluating deduplication relevant algo-
rithms in Section 8.1, we also consider the computation
complexity comparison between our scheme and the combi-
nation of a traditional MLE and a superimposed PEKS [31]
regarding search functionality in Table 3. Our trapdoor gen-
eration is not as good as the combination due to the blind
signature but defends keyword guessing attacks suffered
by the combination. Moreover, our ciphertext generation
and test outperform that of the combination. The combina-
tion has m pairings and m more exponentiations than ours.
Our test algorithm merely has lightweight operations such
as hashing while the combination has [x m parings.

9 CONCLUSION AND OPEN PROBLEMS

In this paper, we introduced the notion of message-locked
searchable encryption, which has merits of both message-
locked encryption and searchable encryption in cloud storage
systems. We presented the security definitions, i.e., privacy,
tag consistency and PoW for MLSE and an efficient construc-
tion. We also proved that our proposed scheme satisfies the
above security requirements and presented an extension of
the proposed scheme to obtain PoS functionalities . We finally

1676

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

leave designing such a messag-locked searchable encryption
scheme supporting update which can be proved secure as our
future work.

ACKNOWLEDGMENTS

The authors would like to thank the Associate Editor and a
nonymous Reviewers for their insightful and constructive
comments on this work. The work of Rongmao Chen was
supported by the National Natural Science Foundation of
China (Grant No. 61702541) and the Young Elite Scientists
Sponsorship Program by CAST (2017QNRC001). The work of
Xixiang Lv was supported by the Foundation of Science and
Technology on Information Assurance Laboratory (KJ-17-108).

REFERENCES

[1]

[2]

(3]

[4]

[5]

[6]

(7]

[8]
1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

Forecast number of personal cloud storage consumers/users
worldwide from 2014 to 2020 (in millions). 2016. Accessed: Aug.
30, 2018. [Online]. Available: https://www.statista.com/
statistics /499558 / worldwide-personal-cloud-storage-users/

M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” in Procc. Annu. Int. Conf.
Theory Appl. Cryptographic Techn., 2013, pp. 296-312.

S. Keelveedhi, M. Bellare, and T. Ristenpart, “DupLESS: Server-
aided encryption for deduplicated storage,” in Proc. 22th USENIX
Secur. Symp., 2013, pp. 179-194.

S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. 18th ACM Conf.
Comput. Commun. Secur., 2011, pp. 491-500.

M. Bellare and S. Keelveedhi, “Interactive message-locked encryp-
tion and secure deduplication,” in Proc. IACR Int. Workshop Public-
Key Cryptography, 2015, pp. 516-538.

R. Chen, Y. Mu, G. Yang, and F. Guo, “BL-MLE: Block-level message-
locked encryption for secure large file deduplication,” IEEE Trans.
Inf. Forensics Security, vol. 10, no. 12, pp. 2643-2652, Dec. 2015.

Y. Zhao and S. S. Chow, “Updatable block-level message-locked
encryption,” in Proc. ACM Asia Conf. Comput. Commun. Secur.,
2017, pp. 449-460.

G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp. 598-609.

D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44-55.

D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory
Appl. Cryptographic Techn., 2004, pp. 506-522.

P. Xu, Q. Wu, W. Wang, W. Susilo, J. Domingo-Ferrer, and H. Jin,
“Generating searchable public-key ciphertexts with hidden struc-
tures for fast keyword search,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 9, pp. 19932006, Sep. 2015.

K. Liang, X. Huang, F. Guo, and J. K. Liu, “Privacy-preserving and
regular language search over encrypted cloud data,” IEEE Trans.
Inf. Forensics Security, vol. 11, no. 10, pp. 2365-2376, Oct. 2016.

R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, “Dual-server public-
key encryption with keyword search for secure cloud storage,” IEEE
Trans. Inf. Forensics Security, vol. 11, no. 4, pp. 789-798, Apr. 2016.

R. Chen et al., “Server-aided public key encryption with keyword
search,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 12,
pp- 2833-2842, Dec. 2016.

M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages,” in
Proc. Annu. Cryptol. Conf., 2013, pp. 374-391.

J. Li, X. Chen, M. Lj, J. Li, P. P. Lee, and W. Lou, “Secure dedupli-
cation with efficient and reliable convergent key management,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615-1625,
Jun. 2014.

R. C. Merkle, “A digital signature based on a conventional encryp-
tion function,” in Proc. Conf. Theory Appl. Cryptographic Techn.,
1987, pp. 369-378.

R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in
proof of ownership for deduplication,” in Proc. 7th ACM Symp.
Inf. Comput. Commun. Secur., 2012, pp. 81-82.

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

W.K.Ng, Y. Wen, and H. Zhu, “Private data deduplication proto-
cols in cloud storage,” in Proc. 27th Annu. ACM Symp. Appl. Com-
put., 2012, pp. 441-446.

Y. Zhao and S. S. Chow, “Towards proofs of ownership beyond
bounded leakage,” in Proc. Int. Conf. Provable Secur., 2016, pp. 340-350.
H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2008, pp. 90-107.

Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proc. Theory Cryptography Conf., 2009,
pp- 109-127.

D. Cash, A. Kiip¢ii, and D. Wichs, “Dynamic proofs of retrievabil-
ity via oblivious ram,” J. Cryptol., vol. 30, no. 1, pp. 22-57, 2017.

D. Chaum, “Blind signatures for untraceable payments,” in Proc.
Advances Cryptol., 1983, pp. 199-203.

M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Password-based
authenticated key exchange in the three-party setting,” in Proc.
Int. Workshop Public Key Cryptography, 2005, pp. 65-84.

Y. Lindell and J. Katz, Introduction to Modern Cryptography, CRC
Press, 2014.

S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-
party computation,” IACR Cryptol. ePrint Archive, vol. 2011, 2011,
Art. no. 272.

X.Liu, R. H. Deng, K.-K. R. Choo, and]. Weng, “An efficient privacy-
preserving outsourced calculation toolkit with multiple keys,” IEEE
Trans. Inf. Forensics Security, vol. 11, no. 11, pp. 24012414, Nov. 2016.
D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Proc. Int.
Conf. Theory Appl. Cryptographic Techn., 2003, pp. 416—432.

C.-P. Schnorr, “Efficient signature generation by smart cards,” J.
Cryptol., vol. 4, no. 3, pp. 161-174, 1991.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory
Appl. Cryptographic Techn., 2004, pp. 506-522.

Xueqiao Liu received the BS degree from the
Hefei University of Technology, Hefei, China, in
2011, and the MS degree from Jinan University,
Guangzhou, China, in 2014. She is currently
working toward the PhD degree with the School
of Computing and Information Technology, Uni-
versity of Wollongong, Wollongong, Australia.
Her major research interests include cryptogra-
phy, data security and privacy in cloud computing,
and network security.

Guomin Yang (Senior Member, |IEEE) received
the PhD degree in computer science from the City
University of Hong Kong, Hong Kong, in 2009.
He was a research scientist with the Temasek
Laboratories, National University of Singapore
from 2009 to 2012. He is currently an associate
professor with the School of Computing and Infor-
mation Technology, University of Wollongong. His
research mainly focuses on applied cryptography
and network security.

Willy Susilo (Senior Member, IEEE) received the
PhD degree in computer science from the Univer-
sity of Wollongong, Wollongong, Australia. He is
currently a professor and the head of the School
of Computing and Information Technology, Uni-
versity of Wollongong, Australia. He is also the
director of the Centre for Computer and Informa-
tion Security Research, University of Wollongong.
His main research interests include cloud secu-
rity, cryptography, and information security. He
has received the prestigious ARC Future Fellow-

ship from the Australian Research Council. He has served as a program
committee member in major international conferences.

https://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users/
https://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users/

Joseph Tonien received the PhD degree in infor-
mation security from the University of Wollongong,
Wollongong, Australia, in 2005 and has nearly a
decade of experience in enterprise software devel-
opment. He was a recipient of a research grant
and a postdoctoral fellowship from Australian
Research Council. His main research interests
include cryptography and number theory. He is a
member of the Institute of Cybersecurity and Cryp-
tology, University of Wollongong.

Rongmao Chen (Member, |IEEE) received the
PhD degree in computer science from the Univer-
sity of Wollongong, Wollongong, Australia. He is
currently an assistant professor with the College
of Computer, National University of Defense Tech-
nology, China. His major research interests
include applied cryptography, data security and
privacy in cloud computing, and cyber security. He
currently focuses on the area of post-snowden
cryptography. Very recently, he has been awarded
the prestigious Young Elite Scientists Sponsorship
by China Association for Science and Technology.

LIU ET AL.: MESSAGE-LOCKED SEARCHABLE ENCRYPTION: A NEW VERSATILE TOOL FOR SECURE CLOUD STORAGE 1677

Xixiang Lv received the BS and PhD degrees
from Xidian University, Xi’an, China, in 2001 and
2007, respectively. She is currently a full profes-
sor with the School of Cyber Engineering, Xidian
University, Xi'an, Shaanxi, China. Her research
interests include cryptography and wireless net-
work security.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

	Message-locked searchable encryption: A new versatile tool for secure cloud storage
	Citation
	Author

	Message-Locked Searchable Encryption: A New Versatile Tool for Secure Cloud Storage

