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Abstract: We consider a multi-period lot-sizing problem with multiple products and multiple suppliers. 

Demand is deterministic and time-varying. The objective is to determine order quantities to minimize the total 

cost over a finite planning horizon. This problem is strongly NP-hard. For a special case, we extend the 

classical zero-inventory-ordering principle and solve it by dynamic programming. Based on this new 

extension, we also develop a heuristic algorithm for the general problem and computationally show that it 

works well. 
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1. Introduction 

We study a multi-period lot-sizing problem with multiple 

products and multiple suppliers, where demand for 

products is deterministic and known in advance over the 

planning horizon. When a product is purchased from a 

supplier, it incurs a supplier-dependent fixed cost, and a 

per-unit variable cost that is specific to the product and 

the supplier. We also consider a product-dependent 

holding cost for any unit remaining at the end of a period. 

The objective of the problem is to determine when to 

order as well as how many units of products to order from 

each supplier to minimize the total cost over the planning 

horizon. This is one of the most general versions of the 

economic lot-sizing (ELS) problem involving several 

suppliers, and this particular extension, proposed by [2], 

is called the multi-period lot-sizing with supplier 

selection problem (MLSSP). 

The ELS problem and its extensions have been 

studied extensively in the past half-century 

(see [4], [5] for detailed surveys), and heuristics to solve 

these problems are included in modern MRP and ERP 

systems [14], [16]. A common approach to solve the ELS 

problem is to use dynamic programming, dating back to 

the basic single-product single-supplier problem [17]. 

This problem exhibits the well-known zero-inventory 

property, which says that there should be no inventory 

when an order is placed. The solution approach is based 

on dynamic programming, which decomposes time 

periods based on when an order is placed. 

While some ELS problems can be solved via 

dynamic programming, other problems are difficult to 

solve and they are proven to be NP-hard. Examples 

include systems with nonlinear production costs [9], 

capacitated production [3], and multiple echelons [19]. 

For the variant of ELS problem that we study, MLSSP, 

we formally establish that it is NP-hard in the strong 

sense. Since it is challenging to solve MLSSP, the 

existing approaches are based on heuristics. An 

enumerative approach with a partial search tree is used 

in [2], and additional constraints are introduced in [6] to 

restrict the feasible region. For variants of MLSSP, 

genetic algorithms are adapted in [8] and [15]. 

We take a different approach. Since the general MLSSP 

problem is intractable, we impose an additional 

assumption that the per-unit variable cost depends on 

both the product and the supplier in an additive manner. 

In other words, the per-unit variable cost Pij associated 

with product i and supplier j can be written in the form 

of Pij =Pi˜+Pjˆ. It is reasonable to adopt this assumption, 

for example, when the products are bulk materials such 

as iron ore, coal, and steel, in which case a large portion 

of the purchase costs of those products is the 

transportation cost, heavily dependent on the locations of 

the suppliers, and the costs of the same product across 

suppliers are almost the same. This assumption is 

applicable to a construction company named HNSL First 

Engineering Co. (Henan province, China) when it was 

building a large bridge during 2010-2012. It needed 

substantial amounts of cement and steel material and 

there were several suppliers at various locations from 

 

 



which the company could purchase cement and steel. (The third 
author provided consultancy for this project during 2010-2011.)

With this assumption, we can show that while the optimal so-
lution does not satisfy the classical zero-inventory-ordering prop-
erty, it exhibits a generalization of this property, which we call 
the echelon zero-inventory-ordering property. We show that prod-
ucts can be ordered such that the set of products to be ordered in 
each period has an echelon structure. This is a key observation that 
enables us to develop a tractable dynamic programming formula-
tion. This formulation is unlike any other dynamic programming 
formulation for the ELS problem and its extensions in the sense 
that it does not decompose the problem based on time periods 
only, but rather it is based on a two-dimensional decomposition 
consisting of time periods and the set of products to be ordered. 
This novel approach enables us to attain a dynamic programming 
solution that is more sophisticated than any other dynamic pro-
gramming solution in the ELS literature. Based on this approach, 
we further develop an efficient heuristic for the general problem, 
which turns out to perform well in the computation experiments.

We note that the MLSSP problem is closely related to the joint 
replenishment problem (JRP) which also deals with multiple prod-
ucts. The JRP system has only one supplier but there are fixed costs 
of ordering associated with each product as well as with joint or-
dering (we refer to [13] for a detailed survey). The MLSSP problem 
is different from the JRP problem since it has multiple suppliers 
instead of one supplier, and it has supplier-specific fixed costs 
but not product-specific costs. Thus, the complexity proof [1] or 
heuristics for the JRP cannot be adopted directly to our problem.

2. Model

We consider a multi-period lot-sizing problem with multiple 
products and multiple suppliers, where demand is deterministic 
and time-varying over a finite planning horizon. The purchase cost 
is supplier-dependent and consists of a fixed ordering cost, which 
is independent of the amount ordered, and a per-unit variable 
cost. Any unit remaining at the end of a period incurs a product-
dependent holding cost. All demand must be satisfied without any 
delay, and product replenishment is instantaneous. The problem is 
to determine the order quantity for each product in each period so 
as to minimize the total cost of product purchase and inventory 
holding. This problem is called the multi-period lot-sizing with 
supplier selection problem (MLSSP). We adopt the notations used 
in [2] as follows.

The set of indices:

• i = 1, . . . , I , indexes products, where I ≥ 1 is the total number 
of products;

• j = 1, . . . , J , indexes suppliers, where J ≥ 1 is the total num-
ber of suppliers;

• t = 1, . . . , T , indexes time in a forward manner, where T is the 
planning horizon.

The exogenous parameters:

• O j : fixed ordering cost from supplier j, incurred if any posi-
tive amount of any product is ordered from supplier j;

• Pij : unit purchase price for product i from supplier j;
• Hi : unit holding cost for product i over a single period;
• Dt

i : demand for product i in period t .

We assume that quantities {Hi} are positive and all other quanti-
ties are non-negative, and that there is no inventory at the begin-
ning of the planning horizon (i.e., period 1). It is also required that 
all demands must be satisfied without any backlog. The following 
are decision variables and intermediate variables:
 

• xt
i j ≥ 0: quantity of product i to be ordered from supplier j at 

the beginning of period t;
• yt

j ∈ {0, 1}: a binary indicator variable for whether a positive 
amount of order is placed to supplier j in period t , i.e., yt

j = 1

if and only if 
∑

i xt
i j > 0;

• zt
i ≥ 0: an intermediate variable indicating the amount of in-

ventory for product i at the end of period t . Then we have 
zt

i = ∑t
t′=1

∑
j xt′

i j −
∑t

t′=1 Dt′
i , which is the difference between 

the cumulative order quantity up to period t and the cumula-
tive demand up to period t .

Note that we have to determine the ordering quantities, {xt
i j}. 

The other quantities, {yt
j} and {zt

i }, are determined by the choice 
of {xt

i j}. The objective is to minimize the total cost given by:

∑
t

∑
j

∑
i

P i jx
t
i j+

∑
t

∑
j

O j yt
j+

∑
t

∑
i

Hi z
t
i ,

where the first term is the variable purchase cost, the second term 
is the fixed ordering cost, and the last term is the inventory hold-
ing cost.

The problem can be formulated as a mixed integer program. Let 
Mt

i = ∑T
t′=t Dt′

i , which is the total demand for product i between 
periods t and T . Then, it is straightforward to see that the order 
quantity in period t for product i should not exceed Mt

i , implying 
xt

i j ≤ Mt
i . The mixed integer programming formulation for MLSSP 

is given below:

min
∑

t

∑
j

∑
i

P i jx
t
i j+

∑
t

∑
j

O j yt
j+

∑
t

∑
i

Hi z
t
i

s.t. zt
i =

t∑
t′=1

∑
j

xt′
i j −

t∑
t′=1

Dt′
i ≥ 0 ∀i, t

0 ≤ xt
i j ≤ Mt

i yt
j ∀i, j, t

yt
j ∈ {0,1} ∀ j, t.

According to [2], an optimal ordering policy should satisfy the 
following two properties. First, in any given period, all units of any 
particular product should be ordered from one supplier instead of 
spreading them among multiple suppliers because once multiple 
fixed ordering costs are paid for, we can purchase all units from 
the supplier with the lowest variable cost. Second, no inventory of 
a product is carried into a period in which a positive quantity of 
that product is ordered; if a positive amount of product i is or-
dered in period t and its inventory is carried into period t , then 
it is better off if the last order for the product before period t is 
changed. (Specifically, it can be decreased such that the inventory 
carried into period t becomes zero, or it can be increased such 
that no order is placed for product i in period t .) This is indeed 
the zero-inventory-ordering property for each product. However, it 
does not specify any relationship between the carried-over inven-
tory of one product and the ordering of another product. In other 
words, it allows the possibility that when product i is ordered in 
period t , there might be some units of another product i′ carried 
over from period t − 1 to period t . We refer to it as the product-
specific zero-inventory-ordering property.

We note that MLSSP is strongly NP-hard. One way to see this 
result is to note that MLSSP with a single period is a Simple Plant 
Location Problem (SPLP), which contains the set covering problem 
[11]. Since the set covering problem is known to be strongly NP-
hard [10], SPLP and thus MLSSP are strongly NP-hard. Alternatively, 
we can establish a reduction from the Exact Cover by 3-Sets (X3C) 
problem, a strongly NP-hard problem [10] (see Appendix 1). Given 



the intractability of MLSSP, we consider a special case of MLSSP 
where a polynomial-time solution can be found in the next section.

3. Additive per-unit purchase cost: two-dimensional dynamic 
programming formulation

Since MLSSP is strongly NP-hard, a polynomial-time algorithm 
for solving it to optimality is not expected unless P = N P . We 
proceed to identify sufficient conditions under which we can find 
polynomial-time solution algorithms. More specifically, we focus 
on properties of the input parameters, such as independency on 
the product index i or the supplier index j. Note that even if pa-
rameters Hi

′s are independent of i or O j
′s are independent of j, 

MLSSP is still strongly NP-hard. In this section, we study the case 
where the variable cost parameter Pij is additive with respect to 
the product index i and the supplier index j, that is, Pij = P̃ i + P̂ j . 
We show a polynomial-time algorithm for this case.

We first study the product-specific component of the variable 
purchase cost, i.e., P̃ i . The total cost associated with the product-
specific components of the variable purchase cost incurred during 
the whole planning horizon does not depend on the decision of 
which suppliers to purchase from. Since it is optimal to have no 
inventory at the end of the planning horizon, the total amount 
of product i purchased during the planning horizon is the same 
as the total demand of product i between periods 1 and T , i.e., ∑

t

∑
j xt

i j = ∑
t Dt

i . Thus, the total product-specific component of 
the variable cost is∑

t

∑
j

∑
i

P̃ i x
t
i j =

∑
i

P̃ i

∑
t

∑
j

xt
i j =

∑
i

P̃ i

∑
t

Dt
i

=
∑

i

∑
t

P̃ i Dt
i ,

which is independent of the decision variables, and therefore, it 
can be omitted in the analysis. Thus, we proceed by assuming

Pij = P̂ j for any i ∈ {1, . . . , I}. (1)

We index products {1, . . . , I} based on non-increasing unit 
holding costs, i.e.,

H1 ≥ H2 ≥ · · · ≥ H I . (2)

Note that we do not need to consider supplier j if there exists 
supplier j′ satisfying O j′ ≤ O j and P̂ j′ ≤ P̂ j ; in that case, supplier 
j′ dominates j in terms of both the fixed cost and the purchase 
cost. Without loss of generality, we proceed by assuming

(O j′ − O j) · ( P̂ j′ − P̂ j) < 0

for every distinct pair j, j′ ∈ {1, . . . , J }. (3)

With this assumption, it can be shown that at most one supplier 
is used in each period under the optimal policy. If we order from 
two or more suppliers in a period, the total cost could have been 
reduced by grouping some orders. This property is formally stated 
below.

Proposition 1. Suppose (1) and (3) hold. Then, there exists an optimal 
solution such that at most one supplier is used in each period, i.e., for 
each t, 

∑
j yt

j ∈ {0, 1}.

Proof. We prove it by contradiction. Suppose that in an optimal 
solution, there are two products, say products 1 and 2, to be pur-
chased from distinct suppliers j and j′ respectively in some period 
t . We note that a product cannot be ordered from different suppli-
ers in the same period, as discussed in Section 2. Suppose strictly 
 

positive amounts have been purchased for these products in period 
t . Without loss of generality, assume P̂ j ≤ P̂ j′ . Then, (3) implies 
P̂ j < P̂ j′ . Thus, we can eliminate the total amount of product 2 
purchased from supplier j′ and instead purchase it from supplier 
j. By doing so, the total variable purchase cost decreases, contra-
dicting the optimality of the solution. Therefore we conclude that 
at most one supplier is used in any period. �

The next proposition shows that products {1, . . . , i} should not 
be carried into a period in which product i is ordered. For conve-
nience, we define zt

i = 0 for t = 0.

Proposition 2. Suppose (1) and (2) hold. Then, there exists an opti-
mal solution such that if product i ∈ {1, . . . , I} is purchased in pe-
riod t ∈ {1, . . . , T }, then there should be no inventory for products 
{1, 2, . . . , i} carried into period t, i.e., zt−1

i′ · xt
i j = 0 holds for any product 

i′ ∈ {1, . . . , i} and any supplier j ∈ {1, . . . , J }.

Proof. Consider the optimal solution with the least number of 
strictly positive zt

i variables. Suppose that, by way of contradiction, 
product i is purchased from supplier j in period t , and inventory 
of product i′ ∈ {1, . . . , i} is carried into period t , i.e., xt

i j > 0 and 
zt−1

i′ > 0. By the product-specif zero-inventory-ordering property 
given in [2], product i and i′ must be distinct, implying, i′ < i. 
Since zt−1

i′ > 0, there exists at least one period before t with a 
positive order for product i′. Let period s be the last such period 
before t , and let j′ denote the supplier used in period s.

Since product i′ is not purchased in period t , the cost incurred 
by purchasing one unit of product i′ in period s and carrying it into 
period t must be smaller than the cost of purchasing it in period t , 
i.e., P̂ j′ + (t − s)Hi′ < P̂ j ; otherwise, we can either reduce the total 
cost or obtain another optimal solution with fewer strictly positive 
zt

i variables. Similarly, since product i is purchased in period t , we 
can show P̂ j′ + (t − s)Hi ≥ P̂ j .

These two inequalities above imply Hi′ < Hi , where i′ < i. This 
contradicts the indexing of products given in (2), i.e., H1 ≥ H2 ≥
· · · ≥ H I . Based on this contradiction, we conclude that the inven-
tory of products {1, . . . , i} should not be carried into this period in 
the optimal solution with the least number of strictly positive zt

i
variables. �

An implication of the structure of the optimal policy given in 
Proposition 2 is that product 1 is not carried into a period in 
which any order takes place. In other words, whenever a posi-
tive quantity of some product is ordered, product 1 is also or-
dered. However, it is possible that only product 1 is ordered in 
a period. The property shown in Proposition 2 is a type of zero-
inventory-ordering property. It is stronger than the product-specific
zero-inventory-ordering property given in [2] since it factors in the 
ordering pattern of other products. However, it is weaker than the 
complete zero-inventory-ordering property in which every product 
is ordered every time an order is placed. It shows that if product 
i is ordered in a period, products {1, . . . , i} should not be carried 
into this period. In other words, whenever product i is ordered, all 
products with lower indices are also ordered. We refer to this as 
an echelon zero-inventory-ordering property.

Note that we are the first to present such a type of nuanced 
generalization of the classical zero-inventory property proposed by 
[17], which allows us to restrict to O (I) sets of product in each 
period, rather than 2I possible combinations of products. With the 
multiple-product multiple-supplier extensions considered in the 
literature, the complete zero-inventory-ordering property no longer 
holds, and the product-specific zero-inventory-ordering property is 
too weak to be algorithmically useful. Thus, other structural prop-
erties are needed to solve the problem. The structural property 



that we have identified here, the echelon zero-inventory-ordering 
property, is one of such properties that enable us to construct a 
new approach to the dynamic programming algorithm extending 
the Wagner-Whitin algorithm.

The key idea in our dynamic programming approach is how we 
make the problem smaller in the divide-and-conquer step. We di-
vide the problem not only by partitioning time periods but also by 
partitioning products. The classical Wagner-Whitin algorithm and 
its extensions in the literature use partitioning based on time pe-
riods only (see, e.g., [7,18]). In other words, existing algorithms 
make the problem smaller by considering iteratively shorter time 
intervals, but in each interval, all products are considered. Our ap-
proach is different. A smaller problem is defined not only by the 
time interval but also by a subset of products to be considered. 
When we partition products, we use the echelon zero-inventory-
ordering property. For some products, inventory is carried over the 
entire interval under consideration, and the cost associated with 
these products can be easily computed by adding the cost of pur-
chasing at the beginning and the cost of holding inventory over 
the interval. For the remaining products, we can apply the echelon
zero-inventory-ordering property to one of the periods in the given 
interval, enabling us to partition the time interval into smaller in-
tervals. This forms the basis for our recursive formulas.

We use the following notations. For �, i ∈ {1, . . . , I} where � ≤ i, 
and s, t ∈ {1, . . . , T } where s ≤ t , define:

• Ds,t
i : cumulative demand for product i from period s to period 

t , i.e., Ds,t
i = ∑t

τ=s Dτ
i ;

• Ds,t
�,i : total demand for products {�, . . . , i} from period s to pe-

riod t , i.e., Ds,t
�,i = ∑i

k=� Ds,t
k ;

• H
s,t
i : total holding cost for product i from period s to period t

if an order is placed in period s to cover demand until period 
t , i.e., H

s,t
i = Hi

∑t
τ=s(τ − s)Dτ

i ;

• H
s,t
�,i : total holding cost for products {�, . . . , i} from period s to 

period t if an order is placed in period s to cover demand until 
period t , i.e., H

s,t
�,i = ∑i

k=� H
s,t
k .

The above quantities depend on exogenous parameters only and 
can be computed easily. The quantities that are determined in our 
dynamic programming algorithm are as follows. Let i ∈ {1, . . . , I}, 
j ∈ {1, . . . , J }, and s, t ∈ {1, . . . , T } where s ≤ t . All of these quanti-
ties assume zero inventory of products {1, . . . , i} at the beginning 
of period s and also at the end of period t .

• C s,t
i : minimum total cost for products {1, . . . , i} over periods 

{s, . . . , t};
• C s,t

i j : minimum total cost for products {1, . . . , i} over periods 
{s, . . . , t} with an order from supplier j in period s;

• Ls,t
i j : minimum total cost for products {1, . . . , i} over periods 

{s, . . . , t} with an order from supplier j in period s and strictly 
positive inventory of at least one product at the end of every 
period except t .

Note that the optimal cost that we consider in this problem is 
C1,T

I . From Proposition 1, at most one supplier is used in period s, 
and we have

C s,t
i = min

1≤ j≤ J
C s,t

i j . (4)

For the remainder of this section, we calculate C s,t
i j for given i, j

and s ≤ t .
If s = t , Ls,t

i j and C s,t
i j are single-period costs, and we have

Ls,s = C s,s = O j + P̂ j · Ds,s
.
i j i j 1,i

 

Also, if i = 1, Ls,t
i j is the cost associated with a single product i

only, and thus we have

Ls,t
1 j = O j + P̂ j · Ds,t

1 + H
s,t
1 , (5)

since there is no order for product 1 in any periods from s +1 to t .
Next, we present recursion relations to compute Ls,t

i j and C s,t
i j

quantities, where s < t . We consider the following two cases sepa-
rately.

Case 1. In the first case we consider, there is a period between 
s and t − 1 in which the ending inventory is zero for all prod-
ucts in {1, . . . , i}. Let r denote the first such period. If r = s, the 
total cost incurred in period s is Ls,r

i j = Ls,s
i j . If r > s, then there ex-

ists a positive amount of inventory in every period between s and 
r − 1, implying that the cost associated with products {1, . . . , i} in-
curred between periods s and t is Ls,r

i j . The minimum total cost 
from periods r + 1 and t is given by Cr+1,t

i . Thus, the optimal cost 
for products {1, . . . , i} from period s to t is

C s,t
i j = min

s≤r<t
Ls,r

i j + Cr+1,t
i . (6)

This is the case where the complete zero-inventory-ordering prop-
erty takes place in some period r + 1 between periods s + 1 and 
t , where the product space is restricted to {1, . . . , i}. In an exam-
ple illustrated in Fig. 1, with i = 5, s = 1, t = 10 and r = s + 3, the 
complete zero-inventory-ordering property holds in period s + 4, 
where all products in {1, . . . , i} are ordered, and this enables us to 
divide the interval {s, ..., t} into two shorter ones {s, ..., s + 3} and 
{s + 4, ..., t}.

Case 2. In the second case we consider, there is a positive end-
of-period inventory of at least one product in {1, . . . , i} in every 
period between s and t − 1. The minimum total cost for products 
{1, . . . , i} over periods {s, . . . , t} is then given by Ls,t

i j , i.e.,

C s,t
i j = Ls,t

i j . (7)

The value of Ls,t
i j with i = 1 is given above in equation (5). To com-

pute Ls,t
i j for i > 1, we consider the following two subcases.

The first subcase corresponds to the event that none of the 
products {1, . . . , i} are ordered between s + 1 and t . Then, the cor-
responding cost Ls,t

i j is

O j + P̂ j · Ds,t
1,i + H

s,t
1,i . (8)

For the second subcase, we proceed by assuming that there 
exists at least one order between s + 1 and t . Let � be the prod-
uct with the highest index such that a positive order of products 
{1, . . . , �} is placed between s + 1 and t . Let s′ be the first period 
index in {s, s + 1, . . . , t} in which the end-of-period inventory of 
products {1, . . . , �} becomes zero. Note 1 ≤ � < i and s ≤ s′ < t .

• Consider products {1, . . . , �}. Since there exists a positive 
amount of inventory in every period between s and s′ − 1
by the definition of s′ , the minimum total cost from period s

to s′ is Ls,s′
� j . Note that Ls,s′

� j includes the fixed ordering cost in 
period s. The minimum total cost incurred from period s′ + 1
to t is C s′+1,t

� .
• Consider products {� + 1, . . . , i}. Since these products are not 

ordered between period s + 1 and t , they are purchased in 
period s in sufficient quantities to cover demand until period 
t . The sum of the purchase cost in period s and the holding 
cost between periods s and t is P̂ j · Ds,t

�+1,i + H
s,t
�+1,i . (The fixed 

cost of ordering in period s is already factored into Ls,s′ above.)

� j



Fig. 1. An Example with i = 5, s = 1, t = 10 and r = s + 3.

 

By choosing the best s′ and �, the optimal cost under the second 
subcase is

min
s≤s′<t

min
1≤�<i

{
Ls,s′
� j + C s′+1,t

�

}
+

{
P̂ j · Ds,t

�+1,i + H
s,t
�+1,i

}
. (9)

Hence, from considering the two subcases above, we have

Ls,t
i j = minimum of (8) and (9) . (10)

Furthermore, combining (6) and (7) and recalling (4), we summa-
rize as follows:

C s,t
i j = min

s≤r≤t
Ls,r

i j + Cr+1,t
i and C s,t

i = min
1≤ j≤ J

C s,t
i j (11)

where we conveniently define C s,t
i = 0 whenever s > t .

It can be verified that the values of Ds,t
i , H

s,t
i , Ds,t

�,i and H
s,t
�,i

can be computed in O (I2 T 2) time. Furthermore, it takes O (I2 J T 3)

time to compute C s,t
i j , Ls,t

i j and C s,t
i values. Thus, the computational 

complexity of our algorithm is O (I2 J T 3).

Theorem 3. If (1) holds, there exists a polynomial-time algorithm for 
solving MLSSP.

4. General MLSSP problem: heuristic algorithm

4.1. Description

In this section, we consider the general problem and develop 
a heuristic for it based on the algorithm proposed for the special 
case in Section 3. In the general problem, we take into account 
the product-specific unit purchase price Pij rather than separable 
Pij = P̃ i + P̂ j that we have considered in Section 3.

We first illustrate by an example that key properties identified 
in Section 3 do not continue to hold for the general MLSSP prob-
lem. We note that Proposition 1 does not necessarily hold for the 
general problem, i.e., two separate orders may be placed from dif-
ferent suppliers in a given period, which can be illustrated by the 
example below. Note also that in an optimal solution to the general 
problem, every supplier may offer different unit purchase prices 
for different products, and separate orders may be placed from 
different suppliers in a period. Thus, the ordering policy for the 
general problem may not have an easily identifiable structure such 
as the one given by the special case in Section 3, and the echelon
zero-inventory-ordering property may not hold for our problem, as 
shown in the following example.
 

Example 4.1. Consider a four-period problem with two products 
and two suppliers, where O 1 = 4, O 2 = 5, P11 = P22 = 0, P12 =
P21 = 10, H1 = 3, H2 = 2 and Dt

1 = Dt
2 = 1, t = 1, . . . , 4.

One can check that both suppliers should be used in any pe-
riod when both products are ordered under the optimal policy, 
implying that Proposition 1 does not hold. This is because of the 
relatively high cost of ordering product 1 (respectively, 2) from 
supplier 2 (respectively, 1). Moreover, we can deduce that any 
product i, if purchased, should be ordered from supplier j = i. 
Then, product 1 and 2 can be considered separately. It is thus not 
surprising to find that the echelon zero-inventory-ordering prop-
erty does not hold in period 4, where only product 2 is purchased 
under the optimal policy.

Based on these observations, we develop our heuristic in the 
following way. Since considering every combination of suppliers in 
every period is computationally expensive, we allow up to a spe-
cific number of suppliers in every period in our heuristic. Specifi-
cally, a fixed k is exogenously given, and we allow up to k suppliers 
in every period. Furthermore, with regard to the product set to be 
ordered, we first sequence the products, which is an extension of 
(2) in Section 3, and then assume that the echelon zero-inventory-
ordering property holds with this sequence of products in the so-
lutions given by our heuristic. Under these assumptions, we can 
apply dynamic programming to generate an efficient heuristic for 
our general problem similar to the algorithm proposed in Sec-
tion 3. The proposed heuristic runs in polynomial time.

4.2. Heuristic algorithm

In the heuristic, we still use the echelon zero-inventory-ordering 
property to develop the recursion formulas. Note that we have 
considered only one supplier used in each period for the special 
case in Section 3, but we need to consider the supplier set used in 
each period for the general problem under the assumption of al-
lowing up to a specific number of suppliers. Thus we modify the 
algorithm proposed in Section 3 to develop our heuristic. As stated 
below, there are two phases in our heuristic.

Phase 1. The first phase is the sequencing phase to determine 
the sequence of the products when I ≥ 2, which plays a crucial 
role in the echelon zero-inventory-ordering property. In this phase, 
we first consider each product in turn and solve the single-product 
lot-sizing with supplier selection problem. Note that Jaruphongsa 
et al. [12] consider a dual-sourcing version of this problem and 
propose a dynamic programming algorithm for it based on the 
product-specific zero-inventory-ordering property, which can be 
easily extended to solve our problem with supplier selection. We 
then calculate the number of orders under the optimal policy 



for each product and initialize by indexing products with a non-
increasing number of orders. Here we expect a product with more 
orders in the single-product problem would still be ordered more 
in the multi-product problem, which would have a smaller index 
according to the echelon zero-inventory-ordering property. This is 
not necessarily the best sequence of products, and thus, our final 
step adjusts the sequence to achieve a better performance in the 
second phase. Specifically, for i proceeding from 1 to I − 1, we 
swap products i and i + 1 if the minimum total cost given by the 
second phase with k = 1 can be reduced by doing so. This provides 
a new sequence of products.

Phase 2. For the second phase, fix k where 1 ≤ k ≤ min{I, J }. 
Let {�m, m = 1, . . . , M} be all possible supplier sets when allowing 
up to k suppliers in every period. Then

M =
(

J

1

)
+ · · · +

(
J

k

)
. (12)

If ordered from a supplier set �m , product i must be purchased 
from the supplier with the least unit purchase price for it and we 
denote the supplier by j(m, i). Thus, Pi, j(m,i) = min j∈�m Pij .

Now, we discuss how we adapt the dynamic programming 
formulation given in Section 3. For integers i ∈ {1, . . . , I}, m ∈
{1, . . . , M} and s, t ∈ {1, . . . , T } where s ≤ t , we consider Ĉ s,t

im and 
L̂s,t

im rather than C s,t
i j and Ls,t

i j . These quantities assume zero inven-
tory of products {1, . . . , i} at the beginning of period s and also at 
the end of period t .

• Ĉ s,t
im : minimum total cost for products {1, . . . , i} over periods 

{s, . . . , t} with orders from supplier set �m in period s;
• L̂s,t

im: minimum total cost for products {1, . . . , i} over periods 
{s, . . . , t} with orders from supplier set �m in period s and 
strictly positive inventory of at least one product at the end of 
every period except t .

Similar to (8) and (9) for the special case in Section 3, we can 
obtain the value of L̂s,t

im by computing the minimum total cost in 
the subcase corresponding to the event that none of the products 
{1, . . . , i} are ordered between s + 1 and t ,

∑
j∈�m

O j +
i∑

i′=1

Pi′, j(m,i′) · Ds,t
i′ + H

s,t
1,i, (13)

and the one when there exists at least one order between s + 1
and t ,

min
s≤s′<t

min
1≤�<i

{L̂s,s′
�m + C s′+1,t

� } + {
i∑

i′=�+1

Pi′, j(m,i′) · Ds,t
i′ + H

s,t
�+1,i}.

(14)

Similar to the formulas (10) and (11), we have the recursion for-
mulas below:

L̂s,t
im = minimum of (13) and (14),

Ĉ s,t
im = min

s≤r≤t
L̂s,r

im + Cr+1,t
i and

C s,t
i = min

1≤m≤M
Ĉ s,t

im ,

where L̂s,s
im = Ĉ s,s

im = ∑
j∈�m

O j + ∑i
i′=1 Pi′, j(m,i′) · Ds

i′ for 
any i, m, s, and L̂s,t

1m = ∑
j∈�m

O j + P1, j(m,1) · Ds,t
1 + H

s,t
1 for 

any m and s < t . Note that when considering the optimal solution 
over the interval {s, . . . , t}, we consider a supplier set rather than 
a single supplier in period s, which is the only difference between 
these formulas and those stated in Section 3.
 

Table 1
Distributions to Generate Parameters.

Parameter Distribution

Fixed ordering cost int[1000,2000]
Unit purchase price int[20,50]
Unit holding cost U [1,5]
Demand int[1,200]

Notes. U [a, b] refers to the uniform distribution between 
a and b, and int[a, b] refers to the uniform integer dis-
tribution between a and b (including both a and b).

Fig. 2. Average Relative Gaps (%) with Different k. Notes. Each curve depicts the av-
erage relative gaps between the results given by the heuristics and the optimal ones 
given by CPLEX for 20 instances. (I; J ; T ) refers to the problem with I products, J
suppliers, and T time periods.

We can easily construct an algorithm based on the recursion 
formulas above. The algorithm runs in O (I2 MT 3), where M , as de-
fined in (12), is a polynomial function of the number of suppliers 
J with degree k for relatively small k.

4.3. Computational experiments

In this section, we conduct computational experiments to eval-
uate the performance of the proposed heuristic algorithm. After 
showing how the result of the heuristic changes as the maximum 
number of suppliers allowed, denoted by k, increases, we com-
pare the performance of our heuristic with that of the heuristic 
proposed by [2], which we denote by B&L. Problem instances are 
generated in a similar way to those in [2], and distributions to gen-
erate parameters are presented in Table 1.

One way to assess the quality of our heuristic is to compute rel-
ative gaps between heuristic performance and the optimal values, 
and we first consider cases in which the optimal solutions can be 
obtained by CPLEX within 10 hours. We solve the problem using 
our heuristic with a fixed k described in Section 4.2. Our solution 
is an upper bound of the optimal cost since it is a feasible solution 
to the general problem, and we can find the average relative gaps 
over 20 instances for each problem size.

The heuristic policy in Section 4.2 does not specify the value 
of k, the maximum number of suppliers allowed in each period. 
We first consider how our heuristic performs as we change k. In 
Fig. 2, we plot the average relative gaps of our heuristic versus k
for three sizes of problem. We observe that the average relative 
gap for each case decreases as k increases, which is as expected. 
As more suppliers are allowed in each period, the results given by 
our heuristic improve. We also notice that each curve is convex in 
k, which implies that the marginal benefit of an additional supplier 
diminishes as k increases. This makes it reasonable for us to choose 
a proper k, for example, k = 3 in the problems tested in Fig. 2.

Then we compare the performance of our heuristic to B&L. We 
use B&L as the benchmark since this is the only algorithm that 
runs in polynomial time. There are two phases in B&L. In the 



Table 2
Performance of Our Heuristic Compared to B&L.

Problem Size (I, J , T ) Our Heuristic B&L

RG (wo., %) RG (w., %) Time (s) RG (wo., %) RG (w., %) Time (s)

(3,3,10) 0.24 0.24 0.02 0.60 0.58 0.01
(3,3,15) 0.26 0.26 0.03 0.59 0.43 0.01
(4,4,10) 0.40 0.39 0.02 1.26 1.05 0.01
(4,4,15) 0.34 0.34 0.04 1.25 0.84 0.02
(5,5,10) 0.63 0.56 0.02 1.31 1.06 0.01
(5,5,20) 0.69 0.63 0.08 1.27 0.92 0.02
(8,8,15) 0.76 0.70 0.08 1.81 1.36 0.02
(8,8,20) 0.94 0.88 0.12 2.08 1.48 0.03
(10,10,15) 1.38 1.25 0.12 2.21 1.57 0.03
(10,10,20) 1.16 1.06 0.20 2.05 1.36 0.05
(10,10,50) 1.59 1.41 5.04 2.25 1.66 0.22

Notes. (I, J , T ) refers to the problem with I products, J suppliers, and T time periods. RG refers to the average relative gaps between the results of the heuristics and the 
solutions given by CPLEX within 10 hours. Time refers to the average running time of the heuristics with the improvement phase. wo. and w. in the parathesis refer to the 
results of heuristics without and with the improvement phase, respectively. Note that except for 3 out of 20 instances with problem size (10, 10, 50), all optimal values can 
be found by CPLEX within 10 hours. Computations were done on an Intel Core i5-7300U CPU at 2.60 GHz with 15.80 GB RAM.
first phase, they consider each product in turn and allocate it to 
a unique supplier over the whole planning horizon such that the 
total cost of it and products that have been allocated are minimal. 
In the second phase (the improvement phase), they check every 
inventory or purchased quantity in every period to see if it can 
be ordered from other suppliers with positive orders in this period 
and improve the solution. Once our solution is obtained, we can 
optionally perform a local search to possibly improve the solution 
similar to the second phase in B&L. We note that Cárdenas-Barrón 
et al. [6] propose a heuristic based on a “reduce and optimize” ap-
proach and show that the heuristic outperforms B&L. More specifi-
cally, they iteratively construct reduced feasible sets of binary vari-
ables and optimize the problem over those sets using CPLEX, with 
the initial set given by the Wagner-Whitin algorithm. This heuris-
tic does not run in polynomial time since it can have as many 
integer variables as the optimal formulation. In fact, it runs slower 
than the optimal CPLEX solution for the problem sizes we consider. 
Thus we do not include it in our numerical analysis.

For these problems, we choose k = 3 and the results are shown 
in Table 2. We observe that our heuristic, even without the im-
provement phase, outperforms B&L. All of our 11 average relative 
gaps of 20 instances are smaller than those of their heuristic with 
and without the improvement phase, and all relative gaps between 
our solutions and the optimal ones are within 4.29%, which means 
that our algorithm works well; if adding the improvement phase, 
our heuristic performs better, and the relative gaps are within 
3.43%. We note that our heuristic takes a longer time than B&L, 
but practically it is still reasonably fast.

4.3.1. Impact of increasing fixed ordering costs
In this section, we compare the performance of our heuristic 

and B&L under different values of the fixed ordering costs. More 
specifically, we generate {O j} J

j=1 from the distribution given in 
Table 1 and consider various fixed ordering costs in the form of 
{2n−1 O j} J

j=1, when the integer n varies from 1 to 5.
An example is shown in Fig. 3 to illustrate how the average 

relative gaps change as the fixed ordering costs increase. We can 
see that our heuristic, even without the improvement phase, works 
significantly better than B&L when the ordering fixed costs are 
large. The average relative gaps of our heuristic remain relatively 
stable under different fixed ordering costs, and the gaps are within 
1.38% and 1.24% for the heuristic without and with the improve-
ment phase, respectively. However, the average relative gaps of B&L
increase greatly as the fixed costs increase, and the largest one is 
8.31% when the fixed costs are {16O j} J

j=1.
To explain this phenomenon, we analyze the average number 

of orders placed by the optimal solutions and find that orders are 
 

placed frequently under {O j} J
j=1, with 1.85 orders per period. As 

the fixed ordering costs increase, the orders become more infre-
quent, and only the average of 0.7 orders per period are placed 
under {16O j} J

j=1. This implies that the idea behind B&L, i.e., order-
ing one product from one supplier over the entire horizon, leads 
to a larger loss as the fixed ordering costs increase and orders 
should be placed less frequently. In contrast, the performance of 
our heuristics remains relatively stable as the fixed ordering costs 
change. One can expect a more significant improvement given by 
our heuristics under higher fixed ordering costs.

4.3.2. Larger problems
We now consider larger problems where the optimal solutions 

for most cases cannot be obtained within 10 hours. Below, we 
briefly describe how we adapt our heuristic for solving large prob-
lems and discuss its performance compared to B&L.

We have noted earlier that there are exponentially many sub-
sets of suppliers as the number of suppliers increases. In the 
heuristic policy described in Section 4.2, we limit the set of suppli-
ers that we consider by limiting the maximum size of the suppliers 
in a period, which we denote by k. With an increased number of 
suppliers, even this approach leads to a larger number of suppliers, 
and thus, we take another approach to look for a set of suppliers 
in each period. The main idea is to partition products into smaller 
groups, and we assign a set of suppliers to each group of products. 
Then we apply our heuristic policy with k = 3 to each group.

To assess the performance of our improved heuristic, we test it 
for problem sizes considered in [2] and compute the relative gaps 
between our improved heuristic and theirs. The average relative 
gaps and average running times for 20 instances are shown in Ta-
ble 3. The negative relative gap indicates that our heuristic policy 
outperforms B&L.

From Table 3, we observe that all average relative gaps are be-
tween −2.09% and −1.12%. The running times of our improved 
heuristic are within 12 minutes in average, which exceed the times 
of B&L due to the efforts on reducing the total cost.

5. Conclusion

In this paper, we have introduced the echelon zero-inventory-
ordering property for a special case of MLSSP where the variable 
cost parameter is additive. As a generalization of the classical zero-
inventory-ordering property, it can be used to develop a dynamic 
programming algorithm and solve the special case in a polynomial 
time and it may solve a lot-sizing problem not satisfying the com-
plete zero-inventory-ordering property.



Fig. 3. Performance under Different Fixed Ordering Costs. Notes. Each curve depicts the average relative gaps between the results given by the heuristics and the optimal 
ones given by CPLEX for 20 instances. wo. and w . in the parathesis refer to the results of heuristics without and with the improvement phase. There are 10 products, 10 
suppliers, and 10 periods in the example we consider.

Table 3
Performance for Large-Sized Problems.

Problem Size (I, J, T) Relative Gap (%) Time (s)

wo. VS. wo. wo. VS. w. w. VS. w. Our Heuristic B&L

(15,15,100) -2.03 -1.30 -1.51 28.62 1.00
(20,20,100) -2.09 -1.22 -1.40 37.74 1.04
(20,20,200) -2.05 -1.12 -1.37 203.56 3.33
(50,50,200) -2.07 -1.12 -1.22 635.85 11.91

Notes. (I, J , T ) refers to the problem with I products, J suppliers, and T time periods. Relative Gap refers to the average relative gap between our heuristic and B&L. wo. and 
w. refer to the results of heuristics without and with the improvement phase. For example, “wo. VS. w.” means that our heuristic did not have the improvement phase while 
B&L did.
Our approach for the special case may not be easily extended 
to solve problems with time-varying variable costs. Nevertheless, 
our heuristic for the general problem can be easily modified to in-
corporate time-varying variable costs, and still runs in polynomial 
time. We believe the idea of the echelon zero-inventory-ordering 
property and allowing up to a specific number of suppliers can be 
applied in more complicated practical settings.
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