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Efficient Server-Aided Secure Two-Party
Computation in Heterogeneous

Mobile Cloud Computing
Yulin Wu , Xuan Wang ,Member, IEEE, Willy Susilo , Senior Member, IEEE,

Guomin Yang , Senior Member, IEEE, Zoe L. Jiang , Qian Chen , and Peng Xu ,Member, IEEE

Abstract—With the ubiquity of mobile devices and rapid development of cloud computing, mobile cloud computing (MCC) has been

considered as an essential computation setting to support complicated, scalable and flexible mobile applications by overcoming the

physical limitations of mobile devices with the aid of cloud. In the MCC setting, since many mobile applications (e.g., map apps)

interacting with cloud server and application server need to perform computation with the private data of users, it is important to realize

secure computation for MCC. In this article, we propose an efficient server-aided secure two-party computation (2PC) protocol for

MCC. This is the first work that considers collusion between a malicious garbled circuit evaluator and a semi-honest server while

ensuring privacy and correctness. Also, it can guarantee fairness when collusion does not exist. The security analysis shows that our

protocol can securely compute any function f(x, y) against different types of adversaries in the malicious model. Also, the experimental

performance analysis shows that this work outperforms the previous works for at least 10 times with the same security level.

Index Terms—Secure two-party computation, server-aided computation, mobile cloud computing, garbled circuit

Ç

1 INTRODUCTION

MOBILE devices with the aid of wireless communication
technologies have gained tremendous popularity. More

and more useful but complicated applications (such as map
apps, car-hailing apps, social apps, and banking apps) need to
be implemented on mobile devices. However, most of the
data that these apps process is directly linked to the privacy of
mobile users. Thus, to provide privacy protection for mobile
device users, the most effective way to securely implement
these applications is to execute secure two-party computation
between the mobile device and an application server. How-
ever, the limited capabilities of mobile devices for computa-
tion, storage and communication have been a bottleneck for
mobile devices to efficiently take the corresponding task of

secure two-party computation. Fortunately, the cloud com-
puting technology can help to resolve this problem, as more
powerful computation, storage and communication resources
can be offered as an on-demand service to mobile devices.
Integrating the advantages of cloud computing, mobile cloud
computing (MCC) arises rapidly as a new computing para-
digm in recent years. It enables mobile devices to overcome
the hardware limits and provides the possibility to realize
complicated secure computation between a mobile device
and an application server with the aid of the cloud server.

Secure two/multi-party computation (2/MPC) is one of
the central problems in modern cryptography. It enables a
group of parties with their own private inputs to jointly
compute a function without the necessity of revealing any
information about their inputs except for the output of the
function. MPC protocols can not only achieve various pri-
vacy-preserving data analysis with the private data of partici-
pant parties, but can also resist one single point attack by
distributing secrets and computation. After nearly three dec-
ades of development, MPC has achievedmany achievements
based on different adversarial models. Loosely speaking,
there are two most common adversarial models: (1) semi-
honest model, where adversaries follow the protocol but try
to learn more than is allowed by inspecting the protocol tran-
script; (2) malicious model, where adversaries can adopt any
strategy to break the protocol. For the semi-honest model,
programming tools [1], [2], [3] realize the application on
benchmark applications like AES and PSI, and some other
complicated applicationswith complex logic [4], [5] and large
scale sensitive data [6], [7], [8]. Although MPC protocols for
semi-honest model are efficient and can be applied to many
fields, they cannot provide security guarantee in the presence
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of malicious adversaries. To achieve a higher security level,
manyworks focused on themaliciousmodel andmade some
progress. For the malicious model, recent works have shown
that they can securely compute hundreds of thousands logi-
cal-gates per second [3], [9], [10], [11], [12], which provides
the possibility forMPC to be further applied in practice.

However, all the above standard MPC protocols use the
homogeneous computation model as the default setting,
where all parties play symmetric (or similar) roles with sym-
metric (or similar) computation resources. Unfortunately, this
setting is not very common in today heterogeneous comput-
ing paradigm, especially for the MCC setting. In the MCC,
mobile devices usually take roles in collecting and storing the
private data of users with the popular apps like map apps
(such as Google map and Gaode map), car-hailing apps (such
as Grab and Uber), social apps (such as Facebook and Twit-
ter), etc. These applications all need to acquire external service
from an application server or cloud server by executing some
computation task with the private data of users, as shown in
Fig. 1. Hence, privacy protection for this kind of computation
is one of the significant concerns that would affect the wide-
spread adoption of MCC. It is necessary to extend the stan-
dard secure computation protocol from the homogeneous
computing setting to the heterogeneous setting.

In this work, we construct an efficient server-aided secure
two-party computation (2PC) protocol for MCC. Our work
extends the work [13] which is a new paradigm to obtain an
extremely efficient secure 2PC protocol in malicious model.
We adopt the heterogeneous computation setting by replac-
ing the original homogeneous computing setting with two

stronger devices, namely the cloud server and application
server which have more powerful computation and storage
resources, and oneweakmobile device. Unlike themost sim-
ilar work [14] as shown in Table 1, considering that the data
privacy can be better protected by not uploading them to the
application server, we set the role of the mobile device as the
garbled circuit evaluator and application server as the gar-
bled circuit generator which can complete garbled circuit
generation without being provided with the data. This set-
ting is also more suitable for practical situations where
mobile devices store the data and call external services that
the application server provides. The main contributions of
our work are concluded as follows:

1) We propose an efficient server-aided secure two-party
computation protocol for MCC based on the garbled
circuit. This work provides the solution for efficient
secure two-party computation in heterogeneous com-
puting setting, especially for theMCC.

2) This is the first work that considers collusion between
the garbled circuit evaluator and server with guaran-
teeing privacy and correctness in the malicious
model. Also, it can guarantee fairness when collusion
does not exist in themaliciousmodel.

3) We implement our protocol and evaluate it on the
benchmark AES circuit. The experimental perfor-
mance analysis shows that this work outperforms all
the previous works at least 10 times with the same
security level.

The rest of this paper is organized as follows: In Section 2,
we review the related work on server-aided 2/MPC proto-
cols. In Section 3, we provide preliminaries for this work. In
Section 4, we provide system model, threat model and secu-
rity goals. In Section 5, we provide the efficient server-aided
2PC protocol construction. In Section 6, we provide security
analysis. In Section 7, we provide performance evaluation.
In Section 8, we conclude this work.

2 RELATED WORK

Since the 1980s, MPC has experienced a development pro-
cess from theory to practice. Especially for 2PC (the special
case of MPC), it has been increasingly practical with recent
advances. Over the past thirty years, there are tremendous
efficiency improvements for 2PC based on Yao’s protocol in

Fig. 1. Mobile cloud computing with applications.

TABLE 1
Comparison of Related Work in the Literature

Work Task of Server Num of Server Num of Client Parties Security Model Collusion Fairness

[KMR11]([15]) Circuit Evaluation 1 2/n Semi-honest & Malicious � �
[KMR12]([16]) Circuit Evaluation 1 n Semi-honest & Malicious � @
[CMTB13]([17]) Circuit Evaluation 1 2 Malicious � @
[CLT14]([14]) Circuit Generation 1 2 Malicious P1&Server @
[JNO14]([18]) Function Evaluation m n Malicious Serversð�Þ �
[CMTB16]([19]) Aid Circuit Evaluation 1 2 Malicious P1&Server �
[BB16]([20]) Circuit Evaluation 1 2 Malicious � @
[MOR16]([21]) Aid Circuit Generation 1 2 Semi-honest & Malicious � @
[BPPS17]([22]) Circuit Evaluation 1 n Semi-honest � �
This Work Circuit Evaluation 1 2 Malicious P2&Server @

Note: P1 refers to the garbled circuit generator, and P2 refers to the garbled circuit evaluator.
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the semi-honest model like works [23], [24], [25], [26], [27],
[28], [29], [30]. However, achievingmaliciously secure for 2PC
is far more difficult. Based on the Yao’s semi-honest secure
protocol, researchers propose cut-and-choose technique [31],
[32] which is the classic technique to lift Yao’s garbled circuit
to work efficiently in the malicious model. Traditional cut-
and-choose approaches operate at the circuit level, whereas
the Large Efficient Garbled-circuit Optimization (LEGO) [33],
MiniLEGO [34] and TinyLEGO [35] approaches further
improve asymptotic and concrete efficiency by operating cut-
and-choose at the gate level. Recently, Wang et al. [13] pro-
posed a new paradigm to obtain an extremely efficient mali-
ciously secure 2PC based on the highly optimized TinyOT
protocol. Themain idea of this work is to use the information-
theoretic MAC tags to enable each of the two parties to gener-
ate one part of the authenticated garbled circuit. This can not
only prevent the selective failure attack, but also integrate the
advantages of both original MPC paradigms: the constant
round for garbled circuit based approaches and low com-
munication for secret sharing based approaches.

However, all of thesemaliciously secure 2PCworks either
have the significant overhead or set high configuration
demands for devices (like multicore CPUs and high thread
counts). They cannot be applied directly to the mobile devi-
ces that do not have such considerable computation resour-
ces. To further reduce the overhead of two parties and
efficiently achieve 2PC, a series of works outsource some
work originally belonged to two parties to the third party
server (e.g., cloud server). This also provides us with ideas to
achieve secure computation in heterogeneous mobile cloud
computing setting.

Feige et al. [36] first added a trusted third party to propose a
minimal extension of 2PC, where the communication pattern
was minimal. Although the original motivation of [36] was
not to reduce the clients’ work at the expense of the server, the
work did put forward new ideas for the follow-up works.
Kamara et al. [15] first initiated the study of MPC in the
server-aided setting, where the client parties can outsource
some part of their work to the server. However, if the server
colluded with a subset of the client parties, any generic
server-aided MPC protocol can be reduced to a standard
MPC protocol where the colluding party still did the linear
size work of the circuit and remain parties did the sublinear
work. However, the reduced standardMPCprotocol can only
be achieved by Fully Homomorphic Encryption (FHE) [37].
To minimize the computation of client parties and let the out-
sourced party’s work to be sublinear or independent of the
circuit size, Kamara et al. [15] introduced non-colluding
adversaries and formalized the security definitions for server-
aided MPC. Later, Kamara et al. [16] proposed two server-
aided MPC protocols which were secure against covert and
malicious adversaries, respectively. Both of these server-
aided MPC protocols also achieved fairness without the
assumption that majority of the parties are honest in standard
MPC protocols [38]. This provided a new direction to achieve
fairness for standard MPC protocols with a dishonest major-
ity. Unfortunately, this work introduced the assumption that
the client parties should have high bandwidth capability,
which brought higher demands to today’s mobile devices
and wireless network technology. In addition, [16] required
to execute a fair coin tossing protocol to share a secret key. To

address the above problem, Carter et al. [17] introduced a new
outsourced oblivious transfer primitive to construct a circuit
evaluation outsourced server-aided 2PCprotocol inmalicious
model. To further improve the security and efficiency of pre-
viouswork, Carter et al. [14] designed a server-aided 2PC pro-
tocol with outsourcing the garbled circuits generation task.
With changing the outsourcing task, they eliminated themost
expensive public key cryptography operations and reduce
the rounds of communication appeared in oblivious transfers.
They also achieved the stronger security guarantee by allow-
ing collusion between the server and original circuit genera-
tion party. However, since this protocol was based on the cut-
and-choose approach, the efficiency of it can still be improved.
It also considered fairness in all but one collusion scenario.
Jakobsen et al. [18] designed server-aided MPC framework
where a number of servers rather than a single one run the
underlying standard MPC protocol for the client parties.
However, it required the underlying standard MPC protocol
to be reactive computation where private values can be
opened in the protocol execution [19]. Blanton et al. [20]
focused on genomic computation and proposed a server-
aided 2PC outsourcing circuit evaluation scheme. It also pro-
vided the fairness property for secure computation and
required non-collusion assumption like [16]. However, it
introduced additional public key operations. Mohassel et al.
[21] extended the [39] to the server-aided settingwith non-col-
lusion assumption. It divided the protocol execution into off-
line and online phases which makes mobile devices to
execute the protocol flexibly with the changeable bandwidth.
The server did some auxiliary computation for garbled circuit
generation. However, the underlying 2PC scheme [39] was
not efficient enough in today’s computing setting, which
made this protocol less efficient. Carter et al. [19] proposed a
scheme to transform any secure 2PC protocol into server-
aided 2PC protocol. It leveraged the non-collusion assump-
tion to produce low-cost output consistency check. Although
the computation and bandwidth required by the mobile
devicewere reduced, the cost of the evaluation increased. Bal-
dimtsi et al. [22] focused on the online social networks and
designed a server-aided MPC protocol to utilize online social
data of multiple parties. They designed a sub-protocol to
transform inputs under different keys into ones under the
same key. This enables the other n� 1 parties do not need to
be online all the time. It needed the non-collusion assumption
among server and client parties and did not provide the fair-
ness property.

In addition to the above garbled circuit based approaches,
there are also some protocols designed with the homomor-
phic encryption. Loosely speaking, in these protocols all the
client parties need to encrypt their data with the FHE scheme
and upload the ciphertexts to the server, and then the server
performs computation directly on these ciphertexts and
returns the ciphertext results to the client parties. However,
the main challenge for these FHE based protocols is that how
different client parties can decrypt the result with different
secret keys. Asharov et al. [40] addressed this by secret-shar-
ing the secret key among all the participants. Lopez-Alt et al.
[41] based on themulti-key FHE scheme designed the on-the-
fly multiparty computation to enable the client parties to
have their long-term public and secret key pairs. To further
improve the efficiency, Peter et al. [42] based on the additively
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homomorphic encryption proposed two-server-aided multi-
party computation scheme. However, the efficiency of these
works was based on the underlying FHE scheme. Thus, it is
still an open problem for constructing practical and efficient
FHE schemes nowadays.

We summarize the main difference between our work
and the previous works in Table 1. We conclude that our
work is the first work that considers collusion between the
garbled circuit evaluator and server with guaranteeing pri-
vacy and correctness in the malicious model. Also, it can
guarantee fairness when collusion does not exist in the mali-
cious model.

3 PRELIMINARIES

3.1 Garbled Circuit

Garbled Circuit (GC) is the key technology in constructing
generic 2PC protocol. It permits two parties P1 and P2 with
their private inputs x and y respectively to securely compute
any function fðx; yÞ represented as the boolean circuit Cf . At
a high level the garbled circuit protocol works as follows:

1) Based on the boolean circuit Cf , P1 constructs the cor-
responding garbled circuit GCf : it selects two secret
keys Lw;0 and Lw;1 for every wire w in the circuit Cf as
two labels of wire w to replace the true value 0 and 1,
respectively. We take an AND gate for example as
shown in Fig. 3. P1 replaces the value of truth table for
the AND gate with the labels Lw;0 and Lw;1 it chooses,
as shown in Figs. 2a and 2b. For the output wire g it
uses the double-key symmetric encryption Ek1;k2ðmÞ
to encrypt the label Lg;0 and Lg;1with the labels La;0=1

and Lb;0=1 of input wires a and b, and generates
the new truth table as shown in Fig. 2c. Finally, it

randomly permutes the table to avoid leaking the
information from the row and generates the garbled
table as shown in Fig. 2d for one AND gate. After this,
it sends the garbled tables for all the gates in the circuit
Cf and the label of its inputLa;xto the P2.

2) P2 runs 1-out-of-2 Oblivious Transfer protocol with
P1 so that P2 can get the label Lb;y of its input ywith-
out leaking y to the P1. Also, this enables P1 not to
leak another label Lb;�y of the input wire to P2.

3) Based on the two inputwire labels ðLa;x; Lb;yÞ and gar-
bled tables for all the gates of the circuit Cf , P2 evalu-
ates the circuit gate-by-gate by decrypting the correct
row of every garbled table for every gate, and it ends
this decryption operation when he gets the final out-
put wire labelLO;0=1.

4) To recover the output, either P2 sends this label LO;0=1

to the P1, and P1 outputs the real output z to P2 based
on the mapping table shown as Fig. 2e. Or P1 sends
the mapping table to P2, and let P2 know the real out-
put z and send z to P1.

3.2 Information-Theoretic MAC Tags

In the following, we would like to recall a brief summary on
information-theoretic MAC tags, which is one of basic blocks
for the protocol [13].

Let P1 holds the randomuniformly global keyD1 2 f0; 1gk
and a uniform key K½s�. At the same time P2 holds the bit s
and theMac tagM½s� :¼ K½s� � sD1. Such that when P2 sends
pair ðs;M½s�Þ to P1, it can verify whether M½s� equals to the
M½s�0 generated with ðs;K½s�;D1Þ. If so, we denote ½s�2 as the
authenticated bit s known to P2 (i.e., P2 holds ðs;M½s�Þ and
P1 holdsK½s�). Similarly, for the authenticated bit ½r�1, P1 can
verify its validity by sending the pair ðr;M½r�Þ to P2 who has
the key K½r�, so that P2 can verify the triple ðr;M½r�; K½r�Þ.
The important property of the above MAC tags is XOR-
homomorphic. That is to say, if P1 holds two authenticated
pairs ða;M½a�Þ and ðb;M½b�Þ while P2 holds the correspond-
ing keysK½a� andK½b�, P1 can generate the authenticated bit
½a� b�1 by letting P1 locally xor the pairs ða� b;M½a� �M½b�Þ
and P2 locally xor the keyK½a� �K½b�.

In this paper, the same as in the protocol [13], we utilize
this information-theoreticMAC tags to authenticate the secret
shared bits for every wire of the circuit. So that the malicious
behaviors like values corruption and improper computation
can be prevented by checking theMAC tags.

3.3 The Functionality FPRE

Based on the above information-theoretic MAC tags, we use
the functionality FPRE of [13] as a critical component for ourFig. 3. AND gate.

Fig. 2. Garbled circuit: (a) AND gate truth table; (b) AND gate with labels; (c) garbled AND gate; (d) garbled table; (e) output mapping table.
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protocol and briefly recall it as follows. This functionality is
used to set up the authenticated values on each wire of the
circuit for P1 and P2. It is only executed with two parties P1

and P2, and there does not exist a third party to assist this
work. It is an optimized version of the TinyOT protocol [39]
based on the oblivious transfer technique.

There are three functions of the functionality FPRE and
we summarize them as follows:

1) Choose uniformly global key for both parties: both
parties send init to the FPRE so that FPRE returns
global key D1 to P1 and D2 to P2.

2) Generate random authenticated bit shares: both par-
ties send random to the FPRE so that FPRE returns
ðr;M½r�; K½s�Þ to P1 and ðs;M½s�; K½r�Þ to P2, where
� ¼ r� s.

3) Generate the authenticated secret shares of an AND
gate: P1 sends ðAND; ðr1;M½r1�; K½s1�Þ; ðr2;M½r2�;
K½s2�ÞÞ to FPRE , while P2 sends ðAND; ðs1;M½s1�;
K½r1�Þ; ðs2;M½s2�; K½r2�ÞÞ to FPRE . The FPRE first veri-
fies M½ri� ¼? K½ri� � riD1 and M½si� ¼? K½si� � siD2 for
i 2 f1; 2g. If so, FPRE continues; otherwise, it sends
cheat to both parties. If FPRE continues, it defines
�3 ¼ r3 � s3 and sets r3 ¼ s3 � ððr1 � s1Þ ^ ðr2 � s2ÞÞ.
Also, it sets M½r3� ¼ K½r3� � r3D2 and M½s3� ¼ K½s3�
�s3D1. Finally, the FPRE returns ðr3;M½r3�; K½s3�Þ to
P1 and ðs3;M½s3�; K½r3�Þ to P2.

For the third function which is the key component of FPRE

is to generate the authenticated secret shared values ½x1�1,
½x2�2, ½y1�1, ½y2�2, ½z1�1, and ½z2�2 for an AND gate, such that
z1 � z2 ¼ ðx1 � x2Þ ^ ðy1 � y2Þ. To achieve this goal, it designs
three sub-functions: (1) Fabit: Generate the authenticated ran-
dom bit on the wire with the corresponding global key. This
is the same as the above second function; (2) FHaAND: Invoke
the Fabit to generate the authenticated secret shared bit triple
½x1�1 and ½x2�2, and then generate the secret shares of x1y2�
x2y1; (3) FLaAND: Invoke the Fabit to generate the ½y1�1 and ½z1�1
for P1 and ½y2�2 for P2, and invoke the FHaAND to generate
½x1�1 and ½x2�2 and secret shares of x1y2 � x2y1. Then, P1 and
P2 locally computes x1y1 and x2y2 respectively. Finally, they
can get the secret shares of ðx1 � x2Þ ^ ðy1 � y2Þ locally. For
more details about how the functionality FPRE is constructed
with the oblivious transfer technique, we refer you to the
work [13].

4 PROBLEM STATEMENT

4.1 System Model

Our system consists of three entities: the Server, the two cli-
ent parties P1 and P2, as shown in Fig. 4. Their roles in our
protocol are summarized as follows:

� Server: It is the third party in this protocol to assist
the circuit evaluation work for client party P2 for
securely computing some function f . It has large-
scale computation resources, such that it can be the
cloud server in the MCC setting.

� P1: It is one of the two client parties that takes one part
of the garbled circuit generation task. It has less or
equal computation resources compared with Server,
namely, it can be the application server in the MCC
setting.

� P2: It is the other client party that takes the other part
of garbled circuit generation task. Since it has limited
computation resources, it employs Server to assist
the circuit evaluation task in standard 2PC. It can be
the mobile device in the MCC setting.

4.2 Threat Model and Security Goals

4.2.1 Threat Model

In this paper, we can guarantee the security of protocol
against the following adversary structure ADV :

1) Any one of the two client parties is malicious and can-
not collude with the other semi-honest client party
and semi-honest Server.

2) P2 is malicious and can collude with semi-honest
Server, while P1 is honest.

ADV ¼
ðP1½mnc�; P2½s�; S½s�Þ
ðP1½s�; P2½mnc�; S½s�Þ
ðP1½h�; P2½mc�; S½sc�Þ

8
><

>:
;

wheremnc refers to malicious and non-collude, s refers
to semi-honest, h refers to honest,mc refers tomalicious
and collude, and sc refers to semi-honest and collude.

4.2.2 Security Goals

1) Privacy: Any one of the two client parties cannot learn
any information (including the private input of the
other client party) from the protocol execution other
than its computation output and what is inherently
leaked from it. Server cannot learn any information
(including the private inputs of two client parties and
the computation output) from the protocol execution.

2) Correctness: The two client parties should get the cor-
rect output of the computation for function f . Server
correctly executes computation operations.

3) Fairness: If any one of the two client parties gets the
computation output, then the other client party does.

Note that we cannot guarantee fairness in ðP1½h�; P2½mc�;
S½sc�Þ setting. Since the Server and P2 can collude together
in this setting, we cannot prevent P2 from getting the compu-
tation output from Server before P1. Also, we cannot prevent
P2 from controlling Server to abort the protocol before P1

receiving the output.Actually, in this setting, our server-aided

Fig. 4. System model.
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2PC protocol can be reduced into the 2PC protocol which
inherently cannot achieve fairness inmaliciousmodel [43].

To guarantee privacy: (1) For the two client parties, since
the garbled circuit technique can withstand the malicious
behavior of the circuit evaluation party (i.e., the combination
of Server and P2), we mainly focus on preventing the selec-
tive failure attack launched by themalicious circuit generation
party (i.e.,P1). This attack specifically refers to that amalicious
circuit generation party can use inconsistent labels in garbled
circuit generation and oblivious transfer, so that the private
input of the circuit evaluation party would be leaked to the
circuit generation party based on whether or not the protocol
aborts. To prevent this attack, we utilize the authenticated gar-
bled circuit secret sharing technique from Wang et al. [13] to
let both client parties P1 and P2 generate one part of the gar-
bled table. So that the input of P2 is independent of the part of
garbled table generated by P1, and themalicious partyP1 can-
not get the private input of P2 by launching this attack. (2) For
Server, we construct the protocol with the advantage of
enabling all the values transferred to it are random and the
result it computed is masked. Therefore, it cannot get any
information from the protocol execution, either the private
inputs of two client parties, or the computation result.

To guarantee correctness: (1) For the two client parties, we
need to ensure that the malicious client party cannot replace
the values for any of the internal wires in the circuit, which
would lead to the incorrect result of the computation for
function f . To address this, we use the information-theoretic
MAC tags and the functionality FPRE of [13], so that both cli-
ent parties can verify whether or not the internal values are
correctly constructed for their respective garbled tables. (2)
For Server, we set Server to be semi-honest, which provides
the correctness guarantee for its computation.

To guarantee fairness: we need to prevent any one of the
malicious client parties from aborting the protocol once it
receives the output so that the other client party cannot get the
output. To cope with this, we let Server simultaneously release
the masked output to both client parties based on whether the
verification of values on the output wires succeeds or not. If so,
the two client parties can decrypt the output directly; Other-
wise, they cannot get the masked output, let alone the actual
output. Asmentioned above, we only provide fairness guaran-
teewhenServer does not colludewith any client party.

5 EFFICIENT SERVER-AIDED 2PC PROTOCOL

5.1 Overview

To complete the secure computation on function fðx; yÞ ! z,
two client parties P1 and P2 with their private input x and y
respectively, first reach a consensus on the boolean circuitCf

representing the evaluated function f . Then, both client par-
ties execute the protocol of circuit preprocessing and input
processing phase and provide values that Server needs for
the circuit evaluation. Then, Server executes protocol of the
circuit evaluation and outputs distribution phase. Finally, if
the two-round verifications between the Server and two cli-
ent parties are passed, the two client parties can get the actual
output; Otherwise, the protocol aborts. The high-level idea of
the four phases of the protocol is provided as follows:

1) Circuit preprocessing phase: The two client parties P1

and P2 first get their own MAC keys D1 and D2,

respectively. Then, P1 and P2 preprocess the circuit Cf

to generate the corresponding values for each wire of
the circuit Cf based on the functionality FPRE . Finally,
they upload the corresponding values of all AND gates
to Server for the subsequent circuit evaluation.

2) Input processing phase: The two client parties P1 and
P2 both check whether each other provides the cor-
rect shared mask bits for input wires of the other
party. If so, P1 sends Server the masked inputs and
the corresponding labels for its own input wires; P2

sends Server the masked inputs and let P1 send the
corresponding labels for its input wires to Server.

3) Circuit evaluation phase: With the masked inputs and
labels of both client parties P1 and P2, Server follows
the logical topology of circuit Cf to compute the
masked outputs and labels for the output wires of
circuit C.

4) Outputs distribution phase: The two client parties P1

and P2 both check whether each other provides the
correct shared mask bits for the output wries. If so,
Server sends the masked outputs for all output wires
of circuit Cf to P1 and P2. Finally, P1 and P2 locally
recover the actual output.

5.2 Server-Aided 2PC Protocol

Inputs: The two client parties P1 and P2 agree on the circuit
Cf which represents the evaluated function f : f0; 1gjI1j�
f0; 1gjI2j ! f0; 1gjOj. P1 has its own private input x 2 f0;
1gjI1j and P2 has its own private input y 2 f0; 1gjI2j. We
denote I1 as the index set of the input wires for P1, I2 as the
index set of the input wires for P2, O as the index set of the
output wires for circuit Cf , and W as the index set of the
output wires for all AND gates in circuit Cf . Also, we define
the computational security parameter as k. As shown in
Fig. 5, our protocol works as follows:

Phase 1: Circuit preprocessing

1) P1 and P2 both send init to functionality FPRE which
respectively returns D1 and D2 to them.

2) For wire w 2 I1 [ I2 [W :
P1 andP2 send random toFPRE. Then, FPRE returns

authenticated sharedmask bit triple ðrw;M½rw�;K½sw�Þ
to P1 and ðsw;M½sw�;K½rw�Þ to P2, where the mask bit
�w ¼ sw � rw. P1 then sets the label for bit 0 of wire w
as Lw;0 2 f0; 1gjkj and the label for bit 1 of wire w as
Lw;1 :¼ Lw;0 � D1.

3) For each XOR gate G ¼ ða;b; g;�Þ with two input
wires a, b and one output wire g:

P1 locally computes the authenticated shared
mask bit triple ðrg ;M½rg �; K½sg �Þ :¼ ðra � rb;M½ra��
M½rb�; K½sa� �K½sb�Þ. P2 locally computes the
authenticated shared mask bit triple ðsg ;M½sg �;
K½rg �Þ :¼ ðsa � sb;M½sa� �M½sb�; K½ra� �K½rb�Þ. Then,
P1 sets the labels on that wire to be Lg;0 :¼ La;0 � Lb;0

and Lg;1 :¼ Lg;0 � D1. Define the mask bit �g ¼ �a�
�b for the output wire g.

4) For each AND gate G ¼ ða;b; g;^Þ with two input
wires a, b and one output wire g:

(a) P1 sends ðand; ðra;M½ra�; K½sa�Þ; ðrb;M½rb�;K½sb�ÞÞ
to FPRE , while P2 sends ðand; ðsa;M½sa�; K½ra�Þ;
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ðsb;M½sb�; K½rb�ÞÞ to FPRE . Then, P1 receives ðrs ;
M½rs �; K½ss�Þ and P2 receives ðss ;M½ss�; K½rs�Þ
from FPRE , where rs � ss ¼ �a ^ �b.

(b) P1 locally computes the set fðrg;i;M½rg;i�;
K½sg;i�Þgi2½3� as follows:

rg;0;M½rg;0�; K½sg;0�
rg;1;M½rg;1�; K½sg;1�
rg;2;M½rg;2�; K½sg;2�
rg;3;M½rg;3�; K½sg;3�

where rg;i, M½rg;i�, and K½sg;i� for i 2 ½3� are
respectively computed as follows:

rg;0 :¼ rs � rg
rg;1 :¼ rs � rg � ra
rg;2 :¼ rs � rg � rb
rg;3 :¼ rs � rg � ra � rb

8
>><

>>:

M½rg;0� :¼M½rs � �M½rg �
M½rg;1� :¼M½rs � �M½rg � �M½ra�
M½rg;2� :¼M½rs � �M½rg � �M½rb�
M½rg;3� :¼M½rs � �M½rg � �M½ra� �M½rb�

8
>>><

>>>:

K½sg;0� :¼ K½ss� �K½sg �
K½sg;1� :¼ K½ss� �K½sg � �K½sa�
K½sg;2� :¼ K½ss� �K½sg � �K½sb�
K½sg;3� :¼ K½ss� �K½sg � �K½sa� �K½sb� � D1

8
>>><

>>>:

Fig. 5. The efficient server-aided 2PC protocol.
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Then, P1 computes fV AID;i;K
1 gi2½3� ¼ fK½sg;i�gi2½3�,

where AID is the index of the AND gate in the

circuit C.

(c) P1 then computes the set fGg;igi2½3� as below and
sends the set to Server:

Gg;0 :¼ HðLa;0; Lb;0; g; 0Þ � ðrg;0;M½rg;0�; Lg;0 �K½sg;0� � rg;0D1Þ
Gg;1 :¼ HðLa;0; Lb;1; g; 1Þ � ðrg;1;M½rg;1�; Lg;0 �K½sg;1� � rg;1D1Þ
Gg;2 :¼ HðLa;1; Lb;0; g; 2Þ � ðrg;2;M½rg;2�; Lg;0 �K½sg;2� � rg;2D1Þ
Gg;3 :¼ HðLa;1; Lb;1; g; 3Þ � ðrg;3;M½rg;3�; Lg;0 �K½sg;3� � rg;3D1Þ

(d) P2 locally computes the set fðsg;i;M½sg;i�;
K½rg;i�Þgi2½3� as below and sends the set to Server:

sg;0;M½sg;0�; K½rg;0�
sg;1;M½sg;1�; K½rg;1�
sg;2;M½sg;2�; K½rg;2�
sg;3;M½sg;3�; K½rg;3�

where sg;i, M½sg;i�, and K½rg;i� for i 2 ½3� are com-
puted as follows:

sg;0 :¼ ss � sg
sg;1 :¼ ss � sg � sa
sg;2 :¼ ss � sg � sb
sg;3 :¼ ss � sg � sa � sb � 1

8
>><

>>:

M½sg;0� :¼M½ss � �M½sg �
M½sg;1� :¼M½ss � �M½sg � �M½sa�
M½sg;2� :¼M½ss � �M½sg � �M½sb�
M½sg;3� :¼M½ss � �M½sg � �M½sa� �M½sb�

8
>>><

>>>:

K½rg;0� :¼ K½rs� �K½rg �Þ
K½rg;1� :¼ K½rs� �K½rg � �K½ra�Þ
K½rg;2� :¼ K½rs� �K½rg � �K½rb�Þ
K½rg;3� :¼ K½rs� �K½rg � �K½ra� �K½rb�Þ

8
>>><

>>>:

Also, P2 computes fV AID;i;K
2 gi2½3� ¼ fK½rg;i�gi2½3�.

Phase 2 : Inputs processing
5) For each wire w 2 I1:

P2 sends ðsw;M½sw�Þ to P1 who checks whether
the triple ðsw;M½sw�; K½sw�Þ is valid. If so, P1 recov-
ers the mask bit �w :¼ sw � rw and sends both the
masked input xw � �w and the label Lw;xw��w to
Server.

6) For each wire w 2 I2:
P1 sends ðrw;M½rw�Þ to P2 who checks whether the

triple ðrw;M½rw�; K½rw�Þ is valid. If so, P2 recovers the
mask bit �w :¼ sw � rw. Then, it sends the masked
input yw � �w to P1 and Server. Finally, P1 sends the
corresponding label Lw;yw��w to Server.

Phase 3 : Circuit evaluation
7) Server evaluates the circuit following the logical

topology of circuit Cf . For each gate G ¼ ða;b; g; T Þ
with two input wires a and b, and the output wire g,
Server holds the two tuples ðza � �a; La;za��aÞ and

ðzb � �b; Lb;zb��bÞ received from P1, where za and zb
are the actual values of the wires.

(a) If T ¼ �, for the output wire g: Server computes
the masked output zg � �g :¼ ðza � �aÞ � ðzb � �bÞ
and the corresponding label Lg;zg��g :¼ La;za��a
�Lb;zb��b .

(b) If T ¼ ^, for the output wire g: Server first com-
putes i :¼ 2ðza � �aÞ � ðzb � �bÞ and puts i into
the index list List :¼ fAID; ig. Then, it recovers

ðrg;i;M½rg;i�; Lg;0 �K½sg;i� � rg;iD1Þ :¼ Gg;i �H

ðLa;za��a ; Lb;zb��b ; g; iÞ. Then, it sets V AID;i;S
1 :¼ sg;i,

V
AID;i;M
1 :¼M½sg;i�, V AID;i;R

2 :¼ rg;i and V
AID;i;M
2 :¼

M½rg;i�. Then, Server computes the masked output
zg � �g :¼ ðsg;i � rg;iÞ and the corresponding label
Lg;zg��g :¼ ðLg;0 �K½sg;i� � rg;iD1Þ �M½sg;i�.

(c) After Server computes the last AND gate, it com-
putes the following values: V A;S

1 :¼ �AID2AV
AID;i;S
1 ,

V A;M
1 :¼ �AID2AV

AID;i;M
1 , V A;R

2 :¼ �AID2AV
AID;i;R
2 ,

V A;M
2 :¼ �AID2AV

AID;i;M
2 . Then it sends ðV A;S

1 ;
V A;M
1 ; ListÞ to P1 for check. P1 first computes

V A;K
1 :¼ �AID2AV

AID;i;K
1 based on the List, and

checks ðV A;S
1 ; V A;M

1 ; V A;K
1 Þ. If the verification suc-

cesses, P1 returns continue to Server; Otherwise,
it returns abort. Similarly, Server also sends ðV A;R

2 ;
V A;M
2 ; ListÞ to P2 for check. P2 first computes

V A;K
2 :¼ �AID2AV

AID;i;K
2 based on the List,

and checks ðV A;R
2 ; V A;M

2 ; V A;K
2 Þ. If the verification

successes, P2 returns continue to Server; Other-
wise, it returns abort. If Server receives continue
both from P1 and P2, it continues; Otherwise,
it aborts.

Phase 4 : Outputs distribution
8) For each wire w 2 O:

P1 sends ðrw;M½rw�Þ to P2 and P2 checks whether
ðrw;M½rw�; K½rw�Þ is valid. Similarly, P2 sends ðsw;
M½sw�Þ to P1 and P1 checks whether ðsw;M½sw�;
K½sw�Þ is valid. If any one of the two verifications
fails, the party sends abort to Server. Otherwise,
Server sends the masked output zw � �w to both P1

and P2. Then P1 and P2 can recover the final actual
output zw :¼ ðzw � �wÞ � rw � sw

6 SECURITY ANALYSIS

6.1 Security Definition

We follow the security definition first formally provided by
Kamara et al. [16] and first specified in two-party case by
Carter et al. [17]. We summarize the definition here and sug-
gest readers to the previous works for a more formal and
complete definition.

In the real-model execution, the protocol is executed
by three parties: two client parties P1 and P2, and one
Server. P1 and P2 respectively provide the computation
input xi, auxiliary input zi and random coins ri, where
i 2 f1; 2g. Server only provides the auxiliary input z3 and
random coins r3. We assume that the Server should not
collude with party P1 defined by [15]. There exists some
subset of three independent malicious adveraries
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fA1; A2; A3g. Each adversary Ai of the subset can corrupt
one participant party Pi. For honest party Pi, let OUTi be
the output of Pi. For the corrupted party Pi, let OUTi be
the view of the protocol for Pi. The ith partial output of
a real-model execution is defined as follows:

REALðiÞðk; x; rÞ ¼ fOUTj : j 2 Hg [OUTi;

where k is the security parameter, x ¼ fx1; x2g is the set of
computation inputs for all parties, r ¼ fr1; r2; r3g is the set
of random coins for all parties, and H is the set of honest
parties.

In the ideal-model execution, there exist four parties: two
client parties P1 and P2, one Server, and one trusted third
party. The first three parties provide their inputs to the
trusted third party. In particular, P1 and P2 respectively pro-
vides the computation input xi, auxiliary input zi and ran-
dom coins ri, where i 2 f1; 2g; Server provides the auxiliary
input z3 and random coins r3. Once receiving these inputs,
the trusted party evaluates the predefined function f and
returns the output to P1 and P2. Note that Server has no out-
put because it does not provide the computation input of
the function f to the trusted third party. If the party is hon-
est or semi-honest, it provides the real input; While if the
party is malicious, it provides the arbitrary input rather
than the real one. If any party aborts early and refuses to
send the input, the trusted third party will abort immedi-
ately and send no output. For honest party Pi, let OUTi be
the output of Pi from the trusted third party. For the cor-
rupted party Pi, let OUTi be the arbitrary value generated
by Pi itself. The ith partial output of an ideal-model execu-
tion in the presence of independent malicious simulators
S ¼ fS1; S2; S3g is defined as follows:

IDEALðiÞðk; x; rÞ ¼ fOUTj : j 2 Hg [OUTi;

where the parameter k; x; r;H are the same as defined in the
real-model execution.

Based on this real/ideal-model, the formal security defi-
nition is provided as follows:

Definition 1. A server-aided protocol can securely compute the
function f if there exists a set of probabilistic polynomial-time
(PPT) simulators fSimigi2½3� such that all PPT adversaries
fAigi2½3�, computation inputs x and auxiliary inputs z, for all

i 2 ½3�:

REALðiÞðk; x; rÞk2N �
c
IDEALðiÞðk; x; rÞk2N:

Where S ¼ fS1; S2; S3g, Si ¼ SimiðAiÞ and r is chosen uni-
formly at random.

We also specialize the lemma in [15] for 3 parties that we
will use for proofs as follows:

Lemma 1. If a multi-party protocol among 3 parties fP1; P2; P3g,
securely computes function f , in presence of (1) semi-honest and
independent parties and (2) a malicious party Pj and honest par-
ties fPig for i 2 f1; 2; 3g=fjg, then the multi-party protocol is
also secure in presence of a malicious party Pj with all the other
semi-honest parties.

6.2 Security Proofs

Based on the above security definition, we provide proofs
for the following theorem.

Theorem 1. The efficient server-aided two-party protocol securely
computes a function fðx; yÞ ! z to against the following adver-
sary structure ADV : (1) Any one of the two client parties is
malicious and cannot collude with the other semi-honest client
party and semi-honest Server. (2) P2 is malicious and can col-
lude with semi-honest Server, while P1 is honest.

ADV ¼
ðP1½mnc�; P2½s�; S½s�Þ
ðP1½s�; P2½mnc�; S½s�Þ
ðP1½h�; P2½mc�; S½sc�Þ

8
<

:
;

where mnc refers to malicious and non-collude, s refers to
semi-honest, h refers to honest, mc refers to malicious and
collude, and sc refers to semi-honest and collude.

As the security definition in the Section 6.1 is based on
the real/ideal model paradigm, we need to provide the
security proofs to prove that the joint output distribution of
the adversary and honest parties of the protocol for real-
model execution and that for the ideal-model execution are
indistinguishable. Since the security goals of the protocol
are guaranteed in the ideal-model execution with a trusted
third party, the indistinguishable result of the real-model
and ideal-model executions indicates that the protocol for
real-model execution can provide the same security guaran-
tees as ideal-model execution.

To prove the first setting in Theorem 1: First, we prove the
condition (1) of Lemma 1 which involves two cases: ðP1½s�;
P2½h�; S½h�Þ and ðP1½h�; P2½s�; S½h�Þ; Second, we prove the con-
dition (2) of Lemma 1 respectively, namely ðP1½mnc�; P2½h�;
S½h�Þ and ðP1½h�; P2½mnc�; S½h�Þ; Finally, with the above proofs
and Lemma 1, we reach the conclusion that our protocol
securely computes function f in the first setting of Theorem 1,
namely ðP1½mnc�; P2½s�; S½s�Þ and ðP1½s�; P2½mnc�; S½s�Þ.

To prove the second setting in Theorem 1: we reduce it to
the based maliciously secure 2PC protocol and provide the
corresponding description.

6.2.1 Semi-Honest Party P1 or P2

(1) Semi-honest party P1 ðP1½s�; P2½h�; S½h�Þ:
In this setting, P1 is semi-honest and follows the protocol

while P2 and Server are both honest. We construct simulator
S1 that runs A1 as a subroutine and plays the role of P1 inter-
actingwith the third trusted party. S1 receives the input of P1

and sends it to the trusted third party. Then, the third party
computes the output of function f : z :¼ fðx; yÞ and returns z
to P1 and P2. Then, S1 plays the role of P2 interactingwith the
semi-honest adversary A1 to collect all the random bits
frw; swgw2O. Hence, it can compute the mask bits f�wgw2O
and recover the actual output bits fzwgw2O. It is obvious that
the views of the semi-honest adversaryA1 are indistinguish-
able in both real and ideal model.

REALð1Þðk; x; rÞk2N �
c
IDEALð1Þðk; x; rÞk2N:

(2) Semi-honest party P2 ðP1½h�; P2½s�; S½h�Þ:
In this setting, P2 is semi-honest and follows the protocol

while P1 and Server are both honest. Since this setting is
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very similar to the above, we only provide the conclusion as
bellow and omit the proof here.

REALð2Þðk; x; rÞk2N �
c
IDEALð2Þðk; x; rÞk2N:

Based on the above we conclude that our protocol securely
computes function f in presence of cases ðP1½s�; P2½h�; S½h�Þ
and ðP1½s�; P2½h�; S½h�Þ, which satisfies the condition (1) of
Lemma 1.

6.2.2 Malicious Party P1 ðP1½mnc�; P2½s�; S½s�Þ
In this setting, P1 can maliciously adopt any strategy to devi-
ate from the protocol while P2 and Server are both semi-
honest.

First, we prove ðP1½mnc�; P2½h�; S½h�Þ which satisfies the
condition (2) of Lemma 1. Second, combined with the condi-
tion (1) of Lemma 1 proved at above, we can reach the conclu-
sion that our protocol securely computes function f against
ðP1½mnc�; P2½s�; S½s�Þ.

For ðP1½mnc�; P2½h�; S½h�Þ, we construct a simulator S1 that
runs A1 as a subroutine and plays the role of P1 interacting
with the third trusted party. In particular, S1 is defined as
bellow in the ideal world setting:

1) For step 1 to 4, S1 takes role of an honest P2 and
Server and interacts with A1. It records all the values
that would have been sent to P2 and Server. S1 also
takes the role fo FPRE and records all the value sent
to and received from P1.

2) For step 5, for each wire w 2 I1, based on the x̂w

received from P1 and rw, sw sent to P1, S1 computes
xw ¼ x̂w � rw � sw. Then S1 sends x ¼ fxwgw2I1 to the
third trusted partywho returns fzwgw2O ¼ z ¼ fðx; yÞ.

3) For step 6 to 7, S1 takes role of an honest P2 and
interacts with A1. It provides the 0-string as the hon-
est P2’s input y. If P2 aborts, S1 sends abort to the
third trusted party; Otherwise, S1 sends continue.

4) For step 8, for eachwirew 2 O, if z0w ¼ zw, S1 takes the
role of an honest P2 and sends ðsw;M½sw�Þ to A1; Oth-
erwise, S1 sends ðsw � 1;M½sw� � D1Þ to A1. Then, S1

outputs whateverA1 outputs.
We then provide the following experiments to prove the

security in the setting where P1 is malicious, P2 and Server
are honest.

Hyb1ðk; x; rÞ : This is the hybrid-world protocol, where S1

takes role of an honest P2 and FPRE . It uses the actual input
of P2.

Hyb2ðk; x; rÞ : This experiment is the same as Hyb1ð1Þðk;
x; rÞ, except that: (1) For step 6, for each wire w 2 I2, based on
the x̂w received from P1 and rw, sw sent to P1, S1 recovers
xw ¼ x̂w � rw � sw. Then, S1 sends xw to the trusted third
party to get fzwgw2O ¼ fðx; yÞ; (2) For step 8, S1 calculates
s0w :¼ ẑw � rw � zw for each wire w 2 O, and sends ðs0w;
K½s0w� � s0wD1Þ toA1.

Lemma 2.

Hyb1ðk; x; rÞ �c Hyb2ðk; x; rÞ:

Proof. Because these two experiments both use the inputs x
and y to evaluate the function f , and the view of A1 and

S1 is identical due to the zw that A1 calculates by zw ¼
ẑw � �w is the same as S1 receives from the trusted third
party. Furthermore, the output of P2 does not change
between these two experiments. tu
Hyb3ðk; x; rÞ : This experiment is the same asHyb2ðk; x; rÞ,

except that for for step 1, S1 randomly chooses fuwgw2I2 and
send it to P2 to replace the fswgw2I2 used before, and set
sw :¼ uw � yw for everyw 2 I2.

Lemma 3.

Hyb2ðk; x; rÞ �c Hyb3ðk; x; rÞ:

Proof. Because fuwgw2I2 is randomly generated, so does
fswgw2I2 . The view of S and adversary A1 is identically
distributed. The same for the output of P2 in both
experiments. tu
Hyb4ðk; x; rÞ: This experiment is the same asHyb3ðk; x; rÞ,

except that for step 6, S1 takes the role of an honest P2 and
interacts with A1. It provides the 0-string as the input of the
honest P2.

Lemma 4.

Hyb3ðk; x; rÞ �c Hyb4ðk; x; rÞ:

Proof. Although the value of y is different in both experi-
ments, but there exists yw � �w ¼ rw � uw in both experi-
ments. So the view of S and adversary A1 is identically
distributed. Also, If S1 aborts, which means P2 aborts, as
to the P2’s abort based on y can take place by choosing
which row of the garbled table to decrypt. This depends
on the calculation on �a � za and �b � zb which are dis-
tributed uniformly in these two experiments. If S1 does
not abort, the distribution on the output of P2 in both
experiments are identical. tu
The experiment Hyb4ðk; x; rÞ is the ideal world execution

described above. We conclude that based on above series of
experiments, the following equation holds which proves
Definition 1 when P1 is malicious, P2 and Server are honest.

REALðk; x; rÞk2N �
c
IDEALðk; x; rÞk2N:

Together the above proofwith the proof for condition (1) in
Lemma 1 and Lemma 1, we reach the conclusion that our
server-aided protocolmeets the case (1) in Theorem 1, namely
ðP1½m�; P2½s�; S½s�Þ where P1 is malicious, P2 and Server are
semi-honest.

6.2.3 Malicious Party P2 ðP1½s�; P2½mnc�; S½s�Þ
In this setting, P2 can maliciously adopt any strategy to devi-
ate from the protocol while P1 and Server are semi-honest.

Since the proof for this case is similar as above, thus we
omit it here and provide the conclusion that our protocol can
securely compute function f against ðP1½s�; P2½mnc�; S½s�Þ.

6.2.4 Malicious Party P2 and ServerðP1½h�; P2½mc�; S½sc�Þ
In this setting, P2 is malicious and can collude with semi-
honest Server, while P1 is honest. Thus, the security reduces
to the original 2PC protocol [13] for the case where P2 is
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malicious. Thus, we omit the proof here and suggest the
reader to the [13] for more details. However, since P2 and
Server collude together, the fairness property cannot be pro-
vided in this setting. Because P2 can always get the final out-
put earlier than P1, and can decide whether to abort the
protocol for preventing P1 from receiving the output.

7 PERFORMANCE EVALUATION

7.1 Asymptotic Evaluation

We first provide the asymptotic evaluation by comparing the
related previousworks in the literature. Based on the Table 1,
we select the works [14], [16], [17], [19], [20], [21] which
achieve maliciously security. We omit the comparison for
three works [15], [18], [22] and give reasons as follows: For
the work [15], it is improved by the work [16], so it is a wise
choice to compare with [16] directly. For the work [18], it
works in a different framework from ours with multiple
servers. Also, it neither permits the collusion between client
parties and servers nor provides the fairness guarantee. For
the work [22], it can only prevent semi-honest adversary,
and neither considers collusion nor fairness.

As shown in Table 2, we conclude the asymptotic compu-
tation cost as follows: Since the protocols in [16], [17] and [14]
are all based on the cut-and-choose technique to achieve
security in the malicious model, the computation cost for
each of the three participant parties related to the parameter
s which is the number of generated circuits used in the cut-
and-choose based protocols. To ensure an adversary could
succeed in cheating with probability at most 2�40, the param-
eter s should be 128 according to 2�40 ¼ 2�0:32�s . This incurs
significant computation overhead in these protocols. For the
work [19], as it only provides the sever-aided 2PC frame-
work where P2 and Server run some 2PC protocol as a black
box for circuit evaluation, it is hard to estimate the computa-
tion cost for P2 and Server. Therefore, we cannot tell whether
the cost of their work is lower or higher than ours. For the
work [20], the protocol utilizes oblivious transfer (OT), com-
mitments and zero-knowledge proofs (ZK) to achieve input

certification. However, these techniques are high overhead
computation operations. Since the OT and ZK operations are
at least 2-3 orders of magnitude slower than Pseudo Random
Generator (PRG) utilized by information-theoretic MAC in
this work against malicious adversary, these high overhead
operations do affect the efficiency of work [20] compared
with this work. However, it is not easy to get the result
directly from the asymptotic computation cost comparison,
as the operations calculation is complicated for this work.
Therefore, we would provide the concrete experimental
comparison for these two works in the next section. For the
work [21], although the asymptotic computation cost shows
that it has less overhead than ours, the experimental results
provided in the next section show that its running time is 10
times less efficient than ours. The detailed reason is provided
in the next section and omitted here.

As shown in Table 3, we conclude the asymptotic commu-
nication cost as follows: The first three works are all based on
the cut-and-choose technique of which the parameter s has to
be at least 128 to achieve the security of 2�40. Thus, the com-
munication overhead of them is higher than our work. For the
work [19], the communication cost of P1 $ Server and
P1 $ P2 is lower than ours. However, as it provides the 2PC
like a black box, the 2PC communication cost of P2 $ Server
cannot be calculated. Therefore, it is hard to tell whether this
protocol costs higher than ours or not in theory. For the work
[20], the communication cost of these three types are all less
than ours and the experimental data in next section also
proves this. But this communication cost advantage does not
benefit the execution time of it, the experimental data pro-
vided in the next section shows that this work is 81 times
faster than work [20]. The detailed analysis for this is pro-
vided in the next section and omitted here. For the work [21],
although communication cost of P2 $ Server and P1 $ P2 is
lower than ours, this also does not benefit the running time of
it as the communication latency will affect the execution time.
The experimental data provided in the next section shows
thiswork is 10 times faster thanwork [21]. The detailed analy-
sis for this is provided in the next section and omitted here.

TABLE 2
Comparison of Computation Cost in the Literature

Work P1 P2 Server

[KMR12]([16]) 2
5 sjxj þ 4

5 sjzj þ jCj þ 2ðjxj þ jyjÞHash 2
5 sjyj þ 4

5 sjzj þ 2ðjxj þ jyjÞHash 4
5 sjzj þ sjCj

[CMTB13]([17])
2sjxj þ sjzj þ sjCj þ ðsjxj þ 2sjyj
þsÞHashþ tOT þ 1CT

2
5 sjxj þ jzj þ 2

5 s þ tOT þ 1CT 2
5 sjzj þ sjCj þ sHashþ jzjZK

[CLT14]([14])
ð1þ sÞjxj þ 2

5 sjzj 3
5 sjxj þ 3

5 sjyj þ 3
5 sjzj þ 3

5 sjcjþ
2
5 sjCj þ jzjHashþ jyjOT þ sOT

5sjxj þ 5sjyj þ ð2s þ 1Þjzjþ
3sjcj þ sjCj þ jyjOT þ sOT

[CMTB16]([19]) 6jxj þ 2jzj þ 8jxjMAC 3jxjMAC þ jCjð2PC �OP Þ 2jxj þ jzj þ 3jxjMAC þ jCjð2PC �OP Þ

[BB16]([20])
2jxj þ jzjHashþ 2jxjComþ jxjZK jCj þ 2jZjHashþ jyjOTþ

ðjxj þ jyjÞComþ jyjZK
2jxj þ 2jyj þ jCj þ jyjOT þ ðjxj þ jyjÞZK

[MOR16]([21]) jxj þ jzj þ 18jCj þ 2jCjHashþ 2jCjMAC jzj þ 34jCj þ 2jCjHash 6jCj þ ðjxj þ jyj þ 3jCjÞMAC

This Work
2jxj þ 3jzj þ 46jCj þ 8jCjHashþ
ð2jxj þ jyj þ jzj þ 2jCjÞMAC

2jyj þ 2jzj þ 33jCj þ 4jCjHashþ
ðjxj þ 2jyj þ jzj þ 2jCjÞMAC

7jCj þ jCjHash

Note: The computation cost is measured by the number of symmetric encryption operations or XOR operations, Hash operations (Hash), oblivious transfer operation
(OT ), coin tossing operation (CT ), message authentication code operations (MAC) and zero-knowledge proofs operations (ZK). jxj; jyj; jzj; jcj; jCj are the input size
ofP1, input size ofP2, the output size, the special input size ofServer and circuit size respectively. s is the number of circuits used in cut-and-choose approach.
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7.2 Experimental Evaluation

7.2.1 Experiment Setup

Based on the implementation of [13], we expand it into the
server-aided version for heterogeneous MCC. The corre-
sponding setting and parameters for the implementation are
shown as follows:

1) Computational security parameter k ¼ 128 and sta-
tistical security parameter r ¼ 40.

2) Deployment platform:One single-core 3.1GHzmachine
with Intel i5-7267U processor running Ubuntu Linux
14.04 LTS. Note that in real heterogeneousMCC setting,
Server is expected to have stronger computation resour-
ces such that it will have more cores and threads to run
the code. Therefore, the execution time will be signifi-
cantly reduced in practice.

3) Function f : We set the function f in our protocol to be
AES, which is the standard benchmark for 2PC imple-
mentations and also tested widely in the server-aided
2PC implementations. One client party inputs the
128-bit text to be encrypted, and another party inputs
the 128-bit key. Then, both client parties get the out-
put for the function f , which is the ciphertext of the
128-bit text encrypted by AES. In our implemen-
tation, the corresponding parameter is jI1j ¼ 128,
jI2j ¼ 128, jOj ¼ 128 and jCj ¼ 6800, where jI1j is the
input size of P1, jI2j is the input size of P2, jOj is the
output size of function f , jCj is the circuit size of the
corresponding boolean circuit.

7.2.2 Experiment Data Analysis

We select two works [20] and [21] from previous server-
aided 2PC works to be compared with for the following
reasons: (1) With the experiment results that work [20] pro-
vided, it outperforms the work [16], [17], [14], and [19]. This
makes it the representative work for the server-aided 2PC
where server actually takes some task for client parties (i.e.,
circuit generation or circuit evaluation). Thus, we omit com-
parison with the other works; (2) Although [21] works in a
different setting from ours and [20] (i.e., Server does not take

circuit generation or evaluation work for client parties), the
execution time that it provided is even better than work [20].
We believe it is necessary to show that our work also outper-
forms it. We implement our protocol on the AES circuit as
stated in Section 7.2.1. We then summarize AES evaluation
results that work [20] and [21] provided and compare with
our work, as shown in Table 5.

For work [20], as shown in Table 4, the execution time that
the client party P1 makes has been reduced to 266:36ms and
1:28ms for preprocessing and evaluation phase respectively,
which makes the total execution time be reduced to 267:64ms
that is 31 times less than work [20]. The execution time that
the client party P2 takes has been reduced to 272:39ms and
1:17ms for preprocessing and evaluation phase respectively,
which makes the total execution time be reduced to 273:56ms
that is 16 times less than work [20]. Even though we signifi-
cantly decrease the execution time for both client parties com-
pared with work [20], the execution time of Server does not
increase. It is 3446 times less thanwork [20] for the evaluation
phase. Therefore, the total execution time of Server is 3581
times less than work [20]. The reason for this kind of signifi-
cant decrease is as follows: We replace the part of scheme
built with OT, commitment and ZK in work [20] with the
information-theoretic MAC technique to guarantee the cor-
rectness of our work in the malicious model. The work [20]
requires hundreds of exponentiations per gate, while our

TABLE 3
Comparison of Communication Cost in the Literature

Work P1 !Server P2 !Server P1 !P2

[KMR12]([16]) 2
5 sjxj þ 3jzj þ sjCj þ 2s þ ðjxj þ jyjÞHash 2

5 sjyj þ 3jzj þ 7
5 s þ ðjxj þ jyjÞHash 0

[CMTB13]([17]) 2
5 sjxj þ sjyj þ ð75 s þ 1Þjzj þ 4

5 s þ jzjZK 2
5 sjxj þ ð25 s þ 1Þjzj þ 2

5 sHashþ jzjZK sjzj þ 1CT

[CLT14]([14])
sjxj þ jzj 2sjxj þ ð2s þ 1Þjyj þ ð2s þ 1Þjzjþ

sjCj þ ðjyj þ sÞOT

sjxj þ 2jzj

[CMTB16]([19]) jzj þ 2MAC 2jxj þ 2jzj þ 4MAC þ jCjð2PC �OP Þ 2jxj þ jzj þ 2MAC

[BB16]([20]) 2jzj þ 2jxjComþ jxjZK 2jzj þ jCj þ jyjOT þ jxjComþ jyjZK 2jxj þ jyj þ 2jzjHash

[MOR16]([21]) jxj þ jyj þ 3jCj þ ðjxj þ jyj þ 6jCjÞMAC jxj þ jyj þ 3jCj þ ðjxj þ jyj þ 6jCjÞMAC jxj þ jyj þ 2jzj þ 4jCj þ 2jzjMAC

This Work
2jxj þ jyj þ jzj þ 4jCjHashþ 1MAC jyj þ jzj þ 4jCj þ ð8jCj þ 1ÞMAC 3jxj þ 4jyj þ 2jzj þ 4jCj þ ð5jxjþ

6jyj þ 2jzj þ 8jCjÞMAC

Note: The communication cost is measured by the number of symmetric encryption ciphertext, Hash strings (Hash), oblivious transfer strings (OT ), coin tossing
strings (CT ), message authentication codes (MAC) and zero-knowledge proofs (ZK). jxj; jyj; jzj; jCj are the input size of P1, input size of P2, the output size and
circuit size respectively. s is the number of circuits used in cut-and-choose approach.

TABLE 4
Comparison With Work [20] on Execution Time

Work Party Circuit Preprocessing Circuit Evaluation Total

[BB16]([20])
P1 8070ms 280ms 8350ms
P2 3990ms 400ms 4390ms

Server 380ms 10200ms 10600ms

This Work
P1 266:36ms 1:28ms 267:64ms
P2 272:39ms 1:17ms 273:56ms

Server � 2:96ms 2:96ms

Note: The execution time of this work is averaged by 5 executions. The offline
phase includes steps 1-4 of the protocol, and the online phase includes steps 5-8
of the protocol.
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work only requires hundreds of PRG andXORoperations per
gate. This makes the computation overhead drops at least 2-3
orders ofmagnitude.However, as thework [20] does not pro-
vide the overall running time of the protocol, we respectively
sum the time of three columns in Table 4, and set it as the
whole execution time for the circuit preprocessing, circuit
evaluation and total without considering the parallelism of
three participant parties in the implementation as shown in
Table 5. Compared with our work, our work is 44 times and
3676 times faster than it for circuit preprocessing and evalua-
tion phase respectively, which makes our total time 81 times
outperform it.

Since the communication time can be varied based on dif-
ferent networks, we provide the communication cost evalua-
tion based on the transferred data size. As shown in Table 5,
compared with work [20], the communication cost of our
work for each of the three parties is a little bit higher than it.
The most fundamental reason for this increment is that we
need to do the authenticated work along with the circuit
based on information-theoretic MAC technique, which ena-
bles the protocol to work in the malicious model without
high computation cost operations like zero-knowledge
proofs. It is the fact that the execution time decreases, but the
communication cost increases. Especially for the cost of
P1 $ P2, the increment is not only caused by the authenti-
cated values for the inputs of two client parties but also the
authenticated values of all the AND gates in the circuit.
However, the work [20] does not permit collusion which
makes the security level of [20] weaker than ours (note that
we only permit collusion in the case where malicious P2 and
semi-honest Server can collude, while P1 is semi-honest).
Besides, the execution time (which involves the communica-
tion time) of our work is much less than [20], which means
that these little higher communication costs have a negligible
effect on the performance.

For work [21], as shown in Table 5, our work is 1.7 times
and 845 times faster than it for circuit preprocessing and
evaluation phase respectively, which makes our total cost
10 times outperform it. The reason for this improvement is
shown as follows: (1) For the circuit preprocessing phase,
the server of work [21] not only needs to generate the
authenticated random bits shares for the inputs wires, but
also the authenticated Beaver triple shares for the non-XOR
gates in the circuit. However, in our work, the above high
overhead work is amortized by two client parties, which
reduces the execution time of preprocessing phase by nearly
half; (2) For the circuit evaluation phase, work [21] follows
the GMW paradigm where the evaluation for each AND
gate of the circuit requires multiple local computations and
interactions. This leads to the high overhead in the circuit

evaluation phase, especially for the deep circuit. However,
in our work, based on the Yao’s garbled circuit paradigm,
the evaluation for all AND gates of the circuit requires only
one round interaction, which greatly improves the execu-
tion time of the evaluation phase. Furthermore, we provide
the histogram to more directly show the performance
improvement for this work compared with works [20] and
[21], as shown in Fig. 6.

As the work [21] did not provide any concrete result on
communication cost (i.e., the transferred data size) of the
protocol, we omit this concrete communication comparison
with it. Although the asymptotic communication compari-
son provided in Table 3 shows that the communication cost
of P2 $ Server and P1 $ P2 is lower than ours, this does
not benefit the total running time which contains the com-
munication time as shown in Table 5. In fact, the communi-
cation time includes the latency which depends on the
interaction time and data transferred time. As the interac-
tions we need for circuit evaluation is quite lower than the
work [21], which makes the communication time is lower
and results in the lower execution time.

Based on the above experimental evaluation, we con-
clude that this work is the most efficient work compared
with all the previous works. Besides, it can permit collusion
between the garbled circuit evaluator and server with
guaranteeing privacy and correctness in the malicious
model. Also, it can guarantee fairness when collusion does
not exist in the malicious model.

TABLE 5
Comparison of the Selected Server-aided 2PCWorks

Work Execution Time Communication Cost

Circuit Preprocessing Circuit Evaluation Total P1 !Server P2 !Server P1 !P2

[BB16]([20]) 12440ms 10880ms 23320ms 149 KB 469 KB 4 KB
[MOR16]([21]) 485ms 2500ms 2985ms - - -
This Work 284:74ms 2:96ms 287:70ms 0:552 MB 1:065 MB 6:478 MB

Note: The communication cost is measured by the size of transfered data between the corresponding communication channel. The dash mark means that the number
was not provided by the work.

Fig. 6. Comparison for execution time.
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8 CONCLUSION

Since the current computing setting is mainly based on het-
erogeneous computation model (e.g., MCC), the standard
2PC protocol focusing on traditional homogeneous computa-
tionmodel is not suitedwell to the current computing setting.
To address this, we provide an efficient server-aided secure
two-party computation protocol in heterogeneous mobile
cloud computing. Compared with previous works, this work
is the first work that considers collusion between the garbled
circuit evaluator and server with guaranteeing privacy and
correctness in the malicious model. Also, it can guarantee
fairnesswhen collusion does not exist in themaliciousmodel.
The security analysis shows that our protocol can securely
compute a function fðx; yÞ in the following two settings: (1)
Any one of the two client parties is malicious and cannot col-
lude with the other semi-honest client party and semi-honest
Server; (2) P2 is malicious and can collude with semi-honest
Server, while P1 is honest. The experimental performance
analysis shows that this work outperforms all the previous
work for at least 10 timeswith the same security level.
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