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Efficient Certificateless Multi-Copy Integrity
Auditing Scheme Supporting Data Dynamics

Lei Zhou , Anmin Fu ,Member, IEEE, Guomin Yang , Senior Member, IEEE,

Huaqun Wang , and Yuqing Zhang

Abstract—To improve data availability and durability, cloud users would like to store multiple copies of their original files at servers.

The multi-copy auditing technique is proposed to provide users with the assurance that multiple copies are actually stored in the cloud.

However, most multi-replica solutions rely on Public Key Infrastructure (PKI), which entails massive overhead of certificate computation

and management. In this article, we propose an efficient multi-copy dynamic integrity auditing scheme by employing certificateless

signatures (named MDSS), which gets rid of expensive certificate management overhead and avoids the key escrow problem in

identity-based signatures. Specifically, we improve the classic Merkle Hash Tree (MHT) to achieve batch updates for multi-copy

storage, which allows the communication overhead incurred for dynamics to be independent of the replica number. To meet the flexible

storage requirement, we propose a variable replica number storage strategy, allowing users to determine the replica number for each

block. Based on the fact that auditors may frame Cloud Storage Servers (CSSs), we use signature verification to prevent malicious

auditors from framing honest CSSs. Finally, security analysis proves that our proposal is secure in the random oracle model. Analysis

and simulation results show that our proposal is more efficient than current state-of-the-art schemes.

Index Terms—Cloud storage, integrity auditing, multi-copy storage, data dynamics

Ç

1 INTRODUCTION

IN the era of big data, the amount of data is increasing
explosively, and users can no longer manage and share

data well by relying on traditional computing platforms.
The emergence of cloud computing provides a new solu-
tion to this dilemma. With the cloud storage model, users
can upload their data into the cloud and delete the local
copy, enjoying high-quality services on a fee basis [1], [2],
[3]. However, users can no longer manage the data as they
process it locally [4], [5], [6], [7]. They may be concerned
that Cloud Storage Servers (CSSs) do not store their data
correctly. Although a Cloud Storage Provider (CSP) sup-
porting CSSs claims that users’ data has been stored

correctly, it is in their interest to hide data corruption
events in order to maintain their reputation. Therefore, an
efficient mechanism is necessary to enable users to check
the integrity of cloud data.

Integrity auditing technology is regarded as an effective
means to allow users to verify whether the cloud data is
stored correctly. To liberate users from the heavy computa-
tional burden, a Third Party Auditor (TPA) is introduced
into the integrity auditing model to interact with the cloud
on users’ behalf [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], and all of these schemes mainly focus on single copy
research. In single-copy proposals, despite the existence of
auditing mechanisms, the damaged data is hard to recover
due to the deletion of the local copy. Therefore, multi-copy
storage has become an inevitable choice to improve data
availability and restorability by storing multiple copies of
raw data across various CSSs. A notable feature of multi-
copy storage is that the damaged data can be correctly
restored as long as one copy of the data stored in the cloud
remains intact. Therefore, for valuable data, such as finan-
cial applications, scientific research materials, and educa-
tional documents, it is necessary to provide multi-copy
storage to avoid data loss.

Despite existing multi-copy proposals [18], [19], [20], [21]
devoting to improving auditing efficiency, all of them have
been constructed under Public Key Infrastructure (PKI) tech-
nology, which is an uneconomical choice for users, for sub-
stantial certificate management overhead is introduced in
their model. Although several multi-copy schemes [22], [23]
have employed ID-based signatures [24] to reduce certificate
overhead, they do not consider the data dynamics problem.
Some early multi-replica achievements [19], [21] have imple-
mented dynamic updates for all replicas, but suffer replace-
ment attacks launched by malicious CSSs. Another multi-
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replica dynamic construction [20] is designed to resist
replacement attacks, but it is only applicable in the case of
one-by-one copy verification to locate the damaged copies.
Moreover, the overhead for dynamic updating in dynamic
proposals [19], [20], [21] always increases linearly with the
replica number, which is impractical in reality. Therefore,
reducing the cost of dynamic auditing in multi-replica con-
structions as much as possible, while resisting replacement
attacks, is amajor hurdle.

Besides data dynamics, variable copy number storage is
another practical requirement worth considering. Existing
multi-copy solutions always assume that all blocks of one
file are copied into the same replicas for storage. In practice,
some blocks in an original file do not contain valid informa-
tion, while other blocks are of high value. This being the
case, users might be allowed to store one or two copies for
low-value blocks and store more for valuable ones. Each
block in a file will be stored with a different copy number.
At present, it is an exciting challenge to provide variable
copy number storage for multi-replica auditing.

In addition, all of the aforementioned schemes always
assume that CSSs are not entirely trusted in an integrity
auditing model. But in fact, users and the TPA might also
be dishonest [25], [26]. Even though CSSs have passed the
verification, the user/TPA can still claim that the verifica-
tion is unsuccessful to obtain compensation from the CSP.
Additionally, a TPA may collude with CSSs to hide from
users the fact that the stored data has been corrupted to
obtain bribes from the CSP. Therefore, a fair arbitration ser-
vice needs to be provided for multiple-copy storage.

In order to address these issues, we propose an efficient
multi-copy integrity auditing scheme supporting data
dynamics (named MDSS) by employing certificateless sig-
natures [27], which realizes dynamic data support and pro-
vides variable copy number storage simultaneously. Also,
the communication overhead of our MDSS in the dynamic
update procedure is independent of the replica number,
which dramatically improves the dynamic efficiency.

Our Contributions. The main contributions of this work
can be summarized as follows:

� As far as we know, we are the first to implement
multi-copy public auditing construction with certifi-
cateless signatures, which avoids the high costs of
employing expensive certificates in PKI settings and
key escrow threats in ID-based signatures.

� To achieve dynamics for a multi-replica model, we
design a novel dynamic structure (called MD-MHT)
that supports both block value and serial number vali-
dation. The overhead it incurs for dynamic auditing
does not increase with the count of replicas. Based on
the improved structure, a signature exchange verifica-
tion is proposed to deal with disputes that dishonest
auditorsmay frameCSSs for compensation.

� In order to benefit users economically, we provide a
storage strategy for an uncertain copy number. The
strategy allows users to determine the replica count
for different data blocks, thus improving the effi-
ciency and feasibility of multi-replica storage.

� We give the provable security analysis for MDSS in
random oracle model. Moreover, theoretical and

experimental analysis demonstrate that MDSS is
efficient in terms of communication and computa-
tion costs.

Roadmap. The rest of the paper is organized as follows:
we outline the related work in Section 2. We present the sys-
tem and security model in Section 3. Then we propose the
dynamic structure and present detailed algorithms of our
MDSS in Section 4. Provable security analysis and perfor-
mance evaluation are presented in Sections 5 and 6. Finally,
we give the conclusion of our paper in Section 7.

2 RELATED WORK

Ateniese et al. [8] invented the concept of Provable Data Pos-
session (PDP), where an auditor or the user itself can verify
the data stored at untrusted servers. Homomorphic verifiable
authenticators were invented to aggregate many proofs into a
constant value, realizing batch auditing with an acceptable
communication overhead. However, the proposed scheme
was designed only for static data. Subsequently, Erway et al.
[9] extended the model of PDP, and first proposed a fully
dynamic PDP construction, where Rank-based Authenticated
Skip List (RASL) was designed for supporting full dynamic
updating.Wang et al. [10] proposed another dynamic solution
based on the Merkle Hash Tree (MHT). MHT is an in-depth
research verifiable structure [28], which aims to effectively
and safely prove that a set of elements is undamaged and
unchanged. Unfortunately, only verifying the hash values of
the nodes made the proposal vulnerable to replace attacks
launched bymaliciousCSSs. Further, Zhu et al. [11] developed
another fully dynamic scheme for cloud storage data via a
designed structure, Index-Hash Table (IHT). However, any
insert and delete operations will cause the tag recalculation of
all data blocks located behind the operated block, thus incur-
ring high computation costs. Subsequently, similar solutions
are proposed to improve the efficiency of dynamic update [5],
[29]. Other research aspects have also been intensively stud-
ied, such as privacy protection [30], [31], user revocation [32],
[33], group sharing [34], [35], user key updates [14], [15], fog-
based clouds [36], etc. In order to relieve the certificate usage,
Li et al. [37] implemented fuzzy identity-based auditing for
cloud data. Shen et al. [38] achieved identity-based integrity
auditing for secure sharing with hiding sensitive information.
Nevertheless, due to the inherent defect of the identity crypto-
system, the above proposals suffer from the key escrow prob-
lem. To solve this issue, Li et al. [39] utilized the certificateless
signature to enable integrity checking of shared data, where
certificates are not required and key escrow issue is elimi-
nated simultaneously. Recently, Zhang et al. [40] presented
another public auditable proposal by combination certificate-
less signatures with blockchain, which achieves resistance
against procrastinating auditors.

To achieve public auditing in multi-copy storage,
Curtmola et al. [18] proposed the first multi-copy scheme
based on RSA signature. Unfortunately, data dynamics
could not be supported, for block numbers are involved in
calculating validation tags. To support dynamic updates,
Barsoum et al. [19] further proposed two dynamic proposals
by employing BLS signature, TB-DMCPDP and MB-
DMCPDP. However, the costs for TB-DMCPDP and MB-
DMCPDP increase with the number of replicas. Moreover,
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TB-DMCPDP is subject to replay attacks launched by a
malicious CSS. Liu et al. [20] also proposed a multi-copy
public auditing scheme called MuR-DPA by improving a
classic MHT. MuR-DPR was designed for verifying all repli-
cas one by one; thus it incurs a large amount of computing
and communication overhead for users. Zhang et al. [21]
also put forward a multi-copy dynamic construction by
improving the MHT. However, each node of the improved
hash tree stores four elements, which introduces additional
communication overhead for dynamic updates in public
auditing. Peng et al. [22] introduced ID-based signatures
into multi-copy auditing, which reduces the use of certifi-
cates. In the replica generation phase, the replica number
and block number are used to generate differentiable multi-
ple replicas, so the model cannot support data dynamics.
Recently, Li et al. [23] presented another identity-based
multi-copy scheme in multi-cloud storage, which stores
many copies across several CSSs.

In summary, majority of existing multi-copy proposals
incur high overhead costs for certificate management, for
they are designed with PKI technique, and the constructions
predicated on ID-based signatures suffer from the intrinsic
key escrow problem. Besides, all dynamic multi-replica pro-
posals suffer the inefficiency that the costs for updating
increase linearly with the replica count. Therefore, it is moti-
vated to design an effective dynamic multi-copy integrity
auditing scheme, where the overhead for dynamics is inde-
pendent of the replica number.

3 SYSTEM AND SECURITY MODEL

In this section, we will present the system and security
model of the proposal. Additional notations and descrip-
tions for this paper are defined in Table 1.

3.1 System Model

Our multi-copy public auditing model, shown in Fig. 1, con-
tains five entities: a Data Owner (DO), a TPA, several CSSs

supported by a CSP, a Key Generation Center (KGC), and a
Trusted Arbitration Entity (TAE). Their responsibilities and
obligations are as follows.

� DO: The DO identified by IDO generates a few cop-
ies for low-value data blocks and multiple replicas
for high-value blocks, then all blocks are uploaded
into CSSs for storage. To protect data integrity, the
DO needs to generate a tag for each data block by
using its private key.

� TPA: The TPA is an entity with more computing
resources and expertise than users. After the
approval of a DO, it launches a random challenge for
integrity auditing.

� CSSs: CSSs are resource centers with powerful com-
puting power and sufficient storage space. CSSs are
responsible for storing data and responding to chal-
lenges from aDO or TPA at any time. Here we assume
that all CSSs are supported by a CSP,meaning all CSSs
share the same key pair and identity IDC .

� KGC: The KGC is responsible for generating partial
keys for other parties involved in the integrity sys-
tem based on a given identity.

� TAE: The TAE is a trusted party that provides fair
arbitration service in the model. In reality, the TAE
can be a trusted government agency.

Definition 1. Our MDSS system can be implemented by run-
ning an MDSS scheme in four stages, illustrated in Fig. 2,
where the setup stage will be executed at the system beginning,
for only once for one file owned by a DO; the proof stage and
update stage can be executed multiple times in an arbitrary
order. The arbitration stage will be run after the proof stage or
update stage being run at least for once. Specifically, our
MDSS scheme is composed of ten algorithms, described below:

� KeyGen 1�
� �

. The algorithm is run between the KGC
and the DO/CSSs to generate key pairs and system
parameters, which will be used in the following
algorithms.

� CopyGenðF; name; n;mi;mmax; skOÞ. The algorithm
is run by the DO to generate mi differentiable replicas
for each block.

� TagGenðparams; bij; skO; IDO; name;mi;mmaxÞ. The
algorithm is run by the DO to generate verifiable tags,
MD-MHT, the root and the signature over the root.

� Storeðbij; si; skO; SigRO
Þ. The algorithm is run

between the DO and CSSs to agree on uploading

TABLE 1
Notations and Descriptions

Notations Descriptions

q A large prime
G1 Cyclic multiplicative group with order q
G2 Cyclic multiplicative group with order q
Zq 1; 2; . . . ; q � 1f g
e A bilinear pairing e : G1 �G1 ! G2

mmax Maximum number of stored copies for all blocks
mi Number of stored copies for ith block, i 2 ½1; mmax�
bij The jth replica block of ith block
P The proof generated based on the challenge chal
req The dynamic update request created by the DO
Pdy The dynamic update proof generated by the CSSs
Pair The time cost of one bilinear pairing operation
Mul The time cost of one multiplication operation in G1

Exp The time cost of one exponentiation operation in G1

jpj The size of an element in G1 in bits
jqj The size of an element in Zq in bits
n The block number of the original file F
s The number of sectors divided for each block
c The number of challenged blocks for each auditing

Fig. 1. System model.
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information. It outputs 1 or 0, where 1=0 indicates that
the DO and CSSs agree/disagree on the uploading
data.

� ChalGenðparams; n; cÞ. The algorithm is run by the
DO/TPA to generate a random challenge Q.

� ProofGenðQ; params; name; c; bij; si; pkOÞ. The
algorithm is run by the CSSs to generate the integrity
proof P.

� ProofVerifyðP; pkO; IDO; paramsÞ. The algorithm is
run by the DO/TPA to verify the proof P . The algo-
rithm outputs a decision bit b 2 f0; 1g, where 1=0 rep-
resents that the CSSs pass/not pass the DO/TPA’s
verification.

� DynaGenðname; bij; siÞ. The algorithm is run by the
DO to generate a dynamic request req.

� DynaVerifyðreq; params; skO; F; nameÞ. The algo-
rithm is run by the DO to output a decision bit b1 2
f0; 1g, where 1=0 represents that the DO approves/dis-
approves the CSSs’ dynamic updating operation.

� ArbitrationJudðSigRC
;RO;RTPA;RTAEÞ. The algo-

rithm is run by the TAE to output a decision bit b2 2
f�1; 0; 1; 2g, where �1=0=1 represents a dishonest
CSS/DO/TPA respectively and 2 refers to a scenario
where both the DO and TPA are dishonest.

3.2 Security Model

First, we will give two security assumptions that provide
the cornerstone for subsequent provable secure analysis.

Definition 2 (Discrete Logarithm (DL) Problem). For a
unknown value a 2 Zq, given g; ga 2 G1, output a. The DL
Assumption in G1 holds if it is computationally infeasible to
compute a with given tuple ðG1; g; g

aÞ.
Definition 3 (Computing Diffie-Hellman (CDH) Prob-
lem). For unknown a; b 2 Zq, given g; ga; gb 2 G1, output gab.
The CDH Assumption in G1 holds if it is computationally
infeasible to compute gab with given tuple ðG1; g; g

a; gbÞ.
Since our MDSS is constructed based on certificateless

signatures, we consider three types of attackers, A1, A2 and
A3. A1 tries to forge the tag for a block with the capability of
replacing the DO’s public key with any selected value, but
cannot access the master secret key. A2 attempts to forge the
tag for a block with the capability of accessing the master
secret key, but is unable to replace the DO’s public key. A3

aims to forge the integrity proof to cheat the DO. Here we
define our security model through three games between a
challenger C and three types of adversaries respectively.

Game 1. The game is run between C and A1.
Setup. C executes the system initialization to obtain

parameters params and the master secret key msk. Then C
sends params to A1 and keepsmsk secret.

Queries. A1 can pose a series of different queries to C. C
responds to A1’s inquiries as follows.

1) Hash Queries: A1 adaptively makes a series of hash
queries to C. C responds with the hash values to A1.

2) Partial-Key Queries: A1 adaptively sends several
selected IDs to C. C responds with the partial keys
to A1.

3) Secret-Value Queries: A1 adaptively sends several
selected IDs to C. C sends the secret values to A1.

4) Public-Key Queries: A1 adaptively sends several
selected IDs to C. C responds with the public keys
to A1.

5) Public-Key Replace: A1 can replace the public key of
a user identified IDwith any value.

6) Copy Queries: A1 adaptively chooses some blocks
and sends them to C for getting the replicas of them.
C runs CopyGen and sends the replicas to A1.

7) Tag Queries: A1 adaptively chooses the tuple ðb; IDÞ
and sends it to C in order to obtain the tag on block
b, computed by the user ID. C executes TagGen to
produce the tag on block b and responds with the tag
value to A1.

Forge. A1 outputs a signature s0 on all sectors of block b0

with the identity ID0 and pkID0 . A1 will win the game if the
following conditions are achieved:

1) The generated tag s0 forged by A1 is valid for block b0

with the identity ID0 and the public key pkID0 .
2) A1 does not query the whole secret key of the user

identified by the identity ID0.
3) A1 does not query the partial key of the user identi-

fied by ID0 and replaces the public key identified by
ID0.

4) A1 does not query the tag value for ðID0; b0Þ.
Game 2. The game is run between C and A2, which is sim-

ilar to game 1 with some differences: (1) In setup, C sends
both params and msk to A2. (2) C does not make Partial Key
Queries and Public Key Replace.

Forge. A2 outputs a signature s0 on all sectors of block b0

with the identity ID0 and the public key pkID0 . A2 will win
the game if the following conditions are achieved:

1) The generated tag s0 forged by A2 is valid for block b0

with the identity ID0 and the public key pkID0 .
2) A2 does not query the secret value of ID0.
3) A2 does not query the tag value for ðID0; b0Þ.

Definition 4. If the probability of an adversary (A1 or A2) win-
ning game 1 or game 2 is negligible, the signature of the block
copies of each raw block is unforgettable.

Game 3. The game is run between C and A3. Here A3 is
regarded as untrustworthy CSSs. Game 3 focuses on

Fig. 2. The procedure of the proposal.
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whether CSSs can forge the auditing proof without the accu-
rate data. The process of the game is defined as follows.

Setup. C performs KeyGen to obtain msk, params, and
the private key of the user. Then C keeps msk and the pri-
vate key of the user secret and sends params to A3.

CopyGen Query. A3 adaptively sends the tuple (b; ID;mb)
to C to obtain the replicas fblg1�l�mb

, where mb refers to the
copy number of block b. C runs CopyGen to createmb copies
for block b and sends the copies to A3.

Challenge. C presents a random challenge Q to A3 to
require A3 to respond to the corresponding proof.

Forge. A3 generates the proof P according to Q. If P can
pass C0 verification, we will say that A3 wins game 3.

Definition 5. If the probability of an adversary A3 winning
game 3 is negligible, the single signature of each data block is
unforgettable.

4 OUR PROPOSED SCHEME

In this section,we describe the dynamic structure formultiple-
replica updating, namedMD-MHT. Thenwe explain how our
scheme is constructed based onMD-MHT.

4.1 Designed Dynamic Structure MD-MHT

Our MD-MHT is constructed by using a cryptographic hash
function H. Each node N in the MD-MHT stores three ele-
ments; one is the hash value hN , and the others are the loca-
tion information ðlN ; pNÞ of the node, where lN refers to the
level information of the node and pN refers to the position
information of the node in its layer. In order to give each
node unique location information, the MD-MHT is marked
with hierarchical information from top to bottom and posi-
tion information from left to right. Compared with tradi-
tional MHT, our MD-MHT has the following advantages.
(1) MD-MHT significantly reduces the cost for multi-copy
updates. Suppose that the cost of using MHT to support one
copy update is t, and the cost of using MHT to support m
copies update ism � t. In contrast, the cost of employing our
MD-MHT for multi-copy updates is independent of m, and
it is slightly greater than t for each node needs to store the
location information of small size. (2) Only verifying the
hash value makes the MHT suffer from replacing attacks,
while our MD-MHT supports simultaneous verification of
value and location to resist replacing attacks.

In our MD-MHT, we treat the aggregated hash value of
all replicas of a block as the value of the leaf node. For each
non-leaf node, fhN ¼ HðhlchildrenkhrchildrenkHðlNkpNÞÞ; lN ¼
llchildren � 1 ¼ lrchildren � 1; pN ¼ plchildren=2d e ¼ prchildren=2d eg,
wherehlchildren represents the hash value storedbyN ’s left child
node, and hrchildren represents the hash value stored by N’s
right child node. We set the location information of the root R
as null, namely lR ¼ null; pR ¼ null. According to the bottom-
to-top order, it is easy to get the hash value and location infor-
mation of all nodes to construct ourMD-MHT.Meanwhile, the
verification path is defined as the sibling nodes on the path
upward from the node to the root. For instance, if the fourth
block needs to be updated, we provide the verification path
ðh3; 3; 3Þ; ðha; 2; 1Þ; ðhB; 1; 2Þ. The verifier calculates hb ¼
H h3 h4k kHðlbkpbÞð Þ, where lb is 3� 1 ¼ 2 and pb is 4=2d e ¼ 2.
Then hA ¼ H ha hbk kHðlAkpAÞð Þ; lA ¼ 1; pA ¼ 1f g and hR ¼f

H hA hBk kHðlRkpRÞð Þ; lR ¼ 0; pR ¼ 1g are calculated. As
showed in Fig. 3, assuming the first block has three copies,
namely b11; b12; b13 and the second has two copies, namely
b21; b22. According to our construction, the first leaf node is set
to h1 ¼ HðHðb11ÞkHðb12ÞkHðb13ÞÞ and the second node is set
to h2 ¼ HðHðb21ÞkHðb22ÞÞ. That is, each leaf node stores the
hash value calculated using all copies of the corresponding
block. Note that the dynamic overhead in our proposal is inde-
pendent of the replica number and it can support updates of
blockswith different replicas.

4.2 Construction of Our Proposal

Based on the MD-MHT, we have constructed a proposal
where all algorithms run as follows.

4.2.1 Setup Stage

DO/CSSs interact with the KGC by running KeyGen to
obtain key pairs. For F ¼ fbig1�i�n, the DO runs CopyGen to
generate fbijg1�j�mi

for each block. Then, the DO uses
TagGen to generate an aggregation tag si for all replicas of
bi, create a MD-MHT tree, and produce a signature SigRO

.
Finally, the DO uploads ðfbijg; fsig;MD�MHT; SigRO

Þ into
CSSs, while deleting local storage other than RO. The CSSs
verify the validity of the uploading data, and accept the
DO’s data if the verification passes by executing Store.

KeyGenð1�Þ. Let G1 and G2 be two multiplicative groups
of prime order q, where q is a large prime. e is selected as a
computable bilinear pairing: e : G1 �G1 ! G2, and g is a
generator of G1. Four cryptographic hash functions, H :
f0; 1g� ! G1; H1 : f0; 1g� ! G1; H2 : G1 ! Zq; H3 : Zq

�f0; 1g� ! Zq; H4 : f0; 1g� ! G1, are selected. The KGC
selects a master key msk ¼ s 2 Zq, and computes a system
public key mpk ¼ gs 2 G1. The KGC publishes system pub-
lic parameters params ¼ fG1; G2; q; e; g;H;H1; H2; H3; H4;
mpkg, and keeps the secret key msk private. Given params,
the DO and CSSs obtain a pair of public and private keys,
ðskO; pkOÞ and ðskC; pkCÞ, through the following steps,
respectively. Note that the DO’s secret key is used for three
purposes: one is participating in the replica generation; the
second is involved in the tag generation; the third is pro-
ducing a signature over the root during the update pro-
cess. On the contrary, the secret key obtained by the CSSs
is only used to generate a signature over the root in the
update phase.

� The DO sends its identity IDO 2 f0; 1g� to the KGC
to obtain its partial key. The KGC computes sskO ¼
H1ðIDOÞs and returns sskO to the DO. After receiving

Fig. 3. The structure of the MD-MHT.
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sskO, the DO verifies the formula eðsskO; gÞ ¼
eðH1ðIDOÞ;mpkÞ. If the validation fails, the DO
requests a partial private key again. In this case, the
DO selects xO 2 Zq as a secret value and computes:

skO ¼ fskO1 ¼ sskO; skO2 ¼ ðxO þH2ðsskOÞÞmod qg;
pkO ¼ gskO2 :

(1)

� The CSSs send IDC 2 f0; 1g� to the KGC to obtain a
partial key. The KGC computes sskC ¼ H1ðIDCÞs
and returns it to the CSSs. After receiving sskC , the
CSSs verify the equation eðsskC; gÞ ¼ eðH1ðIDCÞ;
mpkÞ. If the validation fails, the CSSs request a par-
tial private key from the KGC again. In this case, the
CSSs select xC 2 Zq as a secret value, and compute:

skC ¼ ðxC þH2ðsskCÞÞmod q; pkC ¼ gskc : (2)

CopyGenðF; name; n;mi;mmax; skOÞ. Assume an original
file F , and we divide it into n blocks, where each block has
the same size. If the size of the last block is less than that of
others, then fill it with 0 at the end. Note that the length of
the file itself is known, and then the number of blocks will
be obtained in the process of file partitioning. Based on the
above two factors, although the last block may be filled with
0 to achieve the same length as other blocks, its length is still
clear to its owner. Therefore, even if the file ends with 0, the
original number of 0 can be easily recovered. The DO selects
a random name 2 f0; 1g� for F and creates mi copies for ith
block, where mi 2 ½1;mmax�, and the value of mmax is the
max value of replica number mi determined by the DO. For
each block bi, the DO computes bij ¼ bi þH3ðskO2; namekjÞ,
where j 2 ½1;mi�. Note that for any block bij, the DO is able
to recover the plaintext bi ¼ bij �H3ðskO2; namekjÞ easily.
Thus, the DO can get all replica blocks bij of each original
block bi in F . Then the operated block bij is further frag-
mented into s sectors fbijkg1�k�s, where each sector belongs
to Zq. The number of the sectors relies on the value of q and
the block size, namely s ¼ djbijj=jqje ¼ djF j=ðnjqjÞe , where j �
j represents the bit length.

TagGenðparams; bij; skO; IDO; name;mi;mmaxÞ. The DO
selects s values fak 2 Zqg1�k�s randomly and computes s
public values Ak ¼ gak . After that, the DO produces the tag
for bij by computing

sij ¼ skO1 � ðH4ðbidijÞ � g
Ps

k¼1
akbijkÞskO2 ; (3)

where bidij ¼ namekIDOkmmaxkjkhi and hi is the hash
value stored by the ith leaf node in our MD-MHT, namely
hi ¼ HðHðbi1Þk � � � jHðbijÞk � � � kHðbimi

ÞÞ. Then the DO pro-
duces an aggregated tag si ¼

Qmi
j¼1 sij for all the replica

blocks of the same indices. Meanwhile, the DO also initial-
izes the MD-MHT, generates a root RO based on the MD-
MHT, and computes a signature over the root SigRO

¼
H4ðROÞskO2 .

Storeðbij; si; skO; SigRO
Þ. Then the DO forwards all

blocks, corresponding tags and the MD-MHT along with
SigRO

into CSSs for storage, and deletes all information
other than RO. When receiving these data, the CSSs first ver-
ify the consistency between blocks and tags by

eðsi; gÞ ¼eðH1ðIDOÞ;mpkÞ�

e
Ymi

j¼1

H4ðbidijÞ �
Ymi

j¼1

Ys
k¼1

A
bijk
k ; pkO

 !
:

(4)

If the validation fails, the CSSs refuse to store the DO’s data
and the algorithm outputs 0. Otherwise, the CSSs compute
the root RC based on the transmitted MD-MHT and verify
the validity of SigRO

by e SigRO
; g

� � ¼ e H4ðRCÞ; pkOð Þ. If the
validation fails, the algorithm terminates and outputs 0; oth-
erwise the CSSs store all the relevant data, generate SigRC

¼
H4ðRCÞskC and send SigRC

to the DO. The DO checks the
validity of SigRC

by comparing e SigRC
; g

� �
with e H4ðROÞ;ð

pkCÞ. If the verification passes, the algorithm outputs 1,
meaning that the DO believes that the CSSs store the MD-
MHT honestly; otherwise the algorithm terminates and out-
puts 0. After that, the DO sends the root RO to the TAE and
the TPA, and both the TAE and the TPA will store the root
RTAE=RTPA ¼ RO.

4.2.2 Proof Stage

The proof stage involves multiple proof sessions. In each
proof session, as shown in Fig. 4, the TPA first computes a
random challenge Q by performing ChalGen. Based on Q,
the CSSs generate the proof P by launching ProofGen. The
TPA checks the validity of P by launching ProofVerify.

ChalGenðparams; n; cÞ. In each audit, the TPA creates a
random Q ¼ i; rið Þf g, where i is randomly selected from I
selected subset of ½1; n� with c elements and ri 2 Zq

� �
i2I are

randomly chosen as c coefficients. Afterwards the TPA
sends Q to the CSSs for integrity auditing.

ProofGenðQ;params;name; c; fbijg; si; pkOÞ. When receiv-
ing the challenge Q, the CSSs generate the integrity proof
P ¼ fs;mg by validating the following formula: s ¼Q

i2Q s
ri
i 2 G1, mk ¼

P
i2Q ri �

Pmi
j¼1 bijk. Ultimately, the CSSs

return P to the TPA. In addition, the CSSs also return some
auxiliary verification information ffhi;Vigi2Q;SigRC

g, where
fVigi2Q represents the node siblings on the path from leaf
nodes fhigi2Q to the root R in our MD-MHT.

ProofVerifyðP; pkO; IDO; paramsÞ. Upon receiving the
responses from the CSSs, the TPA computes the root R
using fhi;Vigi2Q and authenticates R by checking eðSigRC

;
gÞ ¼ eðH4ðRÞ; pkCÞ. If the verification fails, the TPA rejects

Fig. 4. The description of the proof stage.
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by emitting 0 to the DO. Otherwise, the TPA verifies the
proof P by verifying the following formula:

eðs; gÞ ¼ eðH1ðIDOÞ
P

i2Q ri ;mpkÞ�

e
Y
i2Q

Ymi

j¼1

H4ðbidijÞri �
Ys
k¼1

A
mk
k ; pkO

 !
:

(5)

If the equation is established, the TPA sends 1 to the DO,
which means the CSSs have stored replicas correctly as the
DO required. Otherwise, the TPA sends 0 to the DO.

4.2.3 Update Stage

For each update, the DO sends an update request req to the
CSSs by running DynaGen. Upon receiving req, the CSSs
update the stored data and compute the proof Pdy as a
response. Further, the DO will decide to agree/disagree on
the updating operation with the CSSs by running
DynaVerify. The details of the update stage are illustrated
in Fig. 5. In our proposal, three kinds of dynamic opera-
tions will be realized via Modification, Insertion, and
Deletion. The previous data update constructions only
require the DO to verify the updating evidence returned
by the CSSs. If the verification is passed, the DO believes
that the CSSs have performed the updating operations
honestly. As for our construction, both the DO and CSSs
are required to agree on each update, which prevents the
DO from deliberately framing the CSSs who have per-
formed the update operation honestly.

DynaGenðname; bij; siÞ. When updating data, the DO
sends a request req ¼ fname;OP; i; fb�ijg1�j�mi

; s�
i g to the

CSSs. We denote OP as M for modification, OP as I for
insertion, and OP as D for deletion. b�ij and s�

i represent the
new replica values for the operated block and the corre-
sponding tag. The value of b�ij and s�

i is null when OP is D.
Finally, the update request is sent to the CSSs.

DynaVerifyðreq; params; skO; F; nameÞ. When receiving
req, the CSSs interact with the DO as follows.

� Modification: Given F ¼ fbig1�i�n, we suppose
ith data block bi is modified as b0i. The DO creates
mi copy blocks b0ij ¼ b0i þH3ðskO2; namekjÞ, and

computes s0
ij ¼ skO1 � ðH4ðbid0ijÞ � g

Ps

k¼1
akb

0
ijkÞskO2 and

s0
i ¼

Qm0
i

j¼1 s
0
ij, where bid0ij ¼ namekIDOkmmaxkjkh0

i.
Then the DO sends a modification request req ¼
fname;M; i; fb0ijg1�i�mi

; s0
ig to the CSSs. When

receiving req, the CSSs replace bij8j with b0ij8j, and
replace si with s0

i. Then the CSSs update the MD-
MHT and generate the signature SigR0

C
¼ H4ðR0

CÞskC
on the new root R0

C . Finally, the CSSs respond to the
DO with an update proof Pdy ¼ fhi;Vi; SigR0

C
; R0

Cg,
whereVi represents the verification path of old block
bi. After receiving the evidence, the DO first gets the
old root by using fhi;Vig and compares it with
the stored RO. If the verification is unsuccessful, the
algorithm terminates and outputs 0; otherwise the
DO checks the validity of SigR0

C
by eðSigR0

C
; gÞ ¼

eðH4ðR0
CÞ; pkCÞ. If SigR0

C
is found to be invalid, the

algorithm terminates and outputs 0; otherwise, the
DO stores the new root R0

O ¼ R0
C and generates a

new signature SigR0
O
¼ H4 R0

O

� �skO2 , and sends it to
the CSSs. the CSSs verify the validity of SigR0

O
by

eðSigR0
O
; gÞ ¼ eðH4ðR0

CÞ; pkOÞ. If SigR0
O
is found to be

invalid, the algorithm terminates and outputs 0. Oth-
erwise the algorithm outputs 1, which means the
CSSs believe that the DO has approved the modifica-
tion operation. Afterwards, the DO sends the root
R0

O to the TAE and the TPA, and the CSSs send
SigR0

C
to the TAE and the TPA. Then the TAE and

the TPA will update RTAE=RTPA ¼ R0
O if SigR0

C
is

proved to be valid.
� Insertion: Given F ¼ bif g1�i�n, we suppose a block

b00i is inserted after position i. The DO creates mi cop-
ies b00ij ¼ b00i þH3ðskO2; namekjÞ, and computes s00

ij ¼
skO1 � ðH4ðbid00ijÞ � g

Ps

k¼1
akb

00
ijkÞskO2 and s00

i ¼Qm00
i

j¼1 s
00
ij,

where bid00ij ¼ namekIDOkmmaxkjkh00
i . Then the DO

sends an insertion request fname; I; i; fb00ijg1�i�mi
; s00

i g
to CSSs. When receiving req from the DO, the CSSs add
b00ij8j and s00

i into storage. Then the CSSs update the
MD-MHT and generate SigR0

C
on the new root R0

C .
Finally, the CSSs respond to the DO with an update
proof Pdy ¼ fVi; hi; SigR0

C
;R0

Cg, where Vi represents
the verification path of bi in the old tree. After receiving
Pdy, the DO first gets the old root by using fVi; hig and
compares it with the stored RO. If the verification fails,
the algorithm terminates; otherwise the DO continues
to check the validity of SigR0

C
. An example of inserting

block b00i before b4 is illustrated in Fig. 6, only the new

Fig. 5. The description of the update stage.

Fig. 6. An example of block insertion in MD-MHT.
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node fh0
4 ¼ HðHðb41ÞkHðb42ÞkHðb43ÞÞ; l04 ¼ 4; p04 ¼ 2�

4� 1 ¼ 7g and an internal node fhN1 ¼ ðHðb04Þ
kh4kHðlN1kpN1ÞÞ; lN1 ¼ 3; pN1 ¼ 4g are added into the
tree and the old node fh4; l4 ¼ 3; p4 ¼ 4g is changed to
fh4; l4 ¼ 4; p4 ¼ 8g. The DO further computes the new
root R0

O using fVi; hi;Hðb00i Þg and checks SigR0
C

by
eðSigR0

C
; gÞ ¼ eðH4ðR0

OÞ; pkCÞ. If SigR0
C
is proved to be

invalid, the algorithm terminates; otherwise the DO
stores the new root R0

O and generates a new signature
SigR0

O
¼ H4ðR0

OÞskO , and sends SigR0
O
to CSSs for stor-

age. The CSSs verify the validity of SigR0
O

by
eðSigR0

O
; gÞ ¼ eðH4ðR0

OÞ; pkOÞ. If the validation fails, the
algorithm terminates and outputs 0; otherwise the
algorithm outputs 1, which means the CSSs believe
the DO has approved the insertion operation. After-
wards, the DO sends R0

O to the TAE and the TPA,
and the CSSs send SigR0

C
to the TAE and the TPA.

The TAE and the TPA will update the root
RTAE=RTPA ¼ R0

O if SigR0
C
is valid.

� Deletion: The deletion request is fname;D; i; null;
nullg. Other steps are similar toModification.

4.2.4 Arbitration Stage

When ProofVerify outputs 0 and the CSSs disagree with the
auditing result, the CSSs will apply to the TAE to judge the
honesty of auditors by running ArbitrationJud.

ArbitrationJudðSigRC
;RO;RTPA;RTAEÞ. The current chal-

lengeQ on the TPA’s side and the proofP on the CSSs’ side are
provided to the TAE. IfP is found to be invalid, the TAE rejects
the CSSs’ appeal and the algorithm outputs �1; otherwise the
DO and TPA are required to provideRO andRTPA to the TAE.
IfRO ¼ RTAE 6¼ RTPA, the TAE considers the TPA to be dishon-
est and the algorithmoutputs 0. IfRO 6¼ RTAE ¼ RTPA, the TAE
considers the DO to be dishonest and the algorithm outputs 1.
If RO 6¼ RTAE and RTAE 6¼ RTPA the TAE considers both the
DO and the TPA to be dishonest and the algorithm outputs 2. If
RO ¼ RTAE ¼ RTPA, the algorithm terminates.

5 SECURITY ANALYSIS

In this section, we provide a provable security analysis of
our scheme via the following theorems.

Theorem 1 (Correctness). If the DO, the CSSs, the KGC, the
TPA, and the TAE are honest in obeying the specified proce-
dures, then the proof can pass the TPA’s verification.

Proof. According to the characteristics of bilinear pairings,
Equation (5) in the ProofVerify algorithm is proven to be
correct according to the deduction from left to right

eðs; gÞ
¼ e
�Y

i2Q
s
ri
i ; g
�

¼ e
�Y

i2Q

�Ymi

j¼1

sij

�ri
; g
�

¼ e
�Y

i2Q

�Ymi

j¼1

ðskO1 � ðH4ðbidijÞ � g
Ps

k¼1
akbijkÞskO2Þ

�ri
; g
�

¼ e
�Y

i2Q
sk

ri
O1; g

�
�

e
�Y

i2Q

Ymi

j¼1

H4ðbidijÞri �
Y
i2Q

Ymi

j¼1

g
Ps

k¼1
akbijk ; gskO2

�

¼ e
�Y

i2Q
H1ðIDOÞri ; gs

�
�

e
�Y

i2Q

Ymi

j¼1

H4ðbidijÞri �
Ys
k¼1

Y
i2Q

Ymi

j¼1

A
bijk
k ; pkO

�

¼ e
�Y

i2Q
H1ðIDOÞri ;mpk

�
�

e
�Y

i2Q

Ymi

j¼1

H4ðbidijÞri �
Ys
k¼1

A

P
i2Q
Pmi

j¼1
ri�bijk

k ; pkO

�

¼ eðH1ðIDOÞ
P

i2Q ri ;mpkÞ�

e
�Y

i2Q

Ymi

j¼1

H4ðbidijÞri �
Ys
k¼1

A
mk
k ; pkO

�
:

tu
Theorem 2 (Unforgeability of Tags). If the probability of an

attacker (A1, A2) winning the game is negligible, then our
MDSS satisfies tag unforgeability under Definition 4.

Proof. First, we provide validation that if the probability of
A1 winning the game 1 is not negligible, then there exists
an extractor B can calculate gab through a given instance
ðg;G; ga; gbÞ with the probability of A1. Therefore, an
extractor B can solve the CDH problem. Here B simulates
each interaction with A1 through the following steps.

Setup. B executes the system initialization to obtain
params and sets the master public keympk ¼ ga.

H1-Query. A1 adaptively performs H1-Query for any
selected ID0. B maintains a list LH1

¼ ðID; h1;D;T Þ for the
H1-Query. If the selected ID0 belongs to LH1

, B extracts the
corresponding tuple ðID0; h1

0;D0; T 0Þ and responds D0 to
A1. If not, B chooses a value h1

0 2 Zq randomly and tosses
a coin T 2 f0; 1g. Let’s assume that the probability of T tak-
ing 0 is g, then the probability of T taking 1 is 1� g. When
T ¼ 0 with the probability of g, B computes D0 ¼ gh1

0
.

When T ¼ 1, D0 ¼ ðgbÞh1 0 . Then B returns D0 to A1 and
adds the tuple ðID0; h1

0;D0; T 0Þ intoLH1
.

Partial-Key-Query. A1 adaptively runs Partial-Key-
Query for any selected ID0. B maintains a list Lssk ¼
ðID; sskID; xIDÞ for the Partial-Key-Query. B checks
whether ðID0; h1

0; D0; T 0Þ belongs to LH1
. If not, B per-

forms H1-Query for ID0. If T 0 ¼ 1, B terminates.

1) If ID0 is in Lssk, B checks whether sskID0 ¼? . If
sskID ¼? , B inquires ðID0; h1

0; D0; T 0Þ from LH1
,

and computes sskID0 ¼ D0a ¼ gah1
0
for T 0 ¼ 0, and

renews sskID0 . When T 0 ¼ 1, B terminates. If
sskID0 6¼? , B extracts sskID0 directly. Then B
sends sskID0 to A1.

2) If ID0 is not in Lssk, B gets ðID0; h1
0; D0; T 0Þ from

LH1
, and computes sskID0 ¼ D0a ¼ gah1

0
when

T 0 ¼ 0. When T 0 ¼ 1, B terminates. Then B sends
sskID0 to A1 and adds ðID0; sskID0 ;?;?Þ into Lssk.

Secret-Value-Query. A1 adaptively runs Secret-Value-
Query for any selected ID0. B checks whether ðID0; h1

0;
D0; T 0Þ belongs to LH1

. If not, B performs H1-Query for
ID0. Next, B checks whether ID0 is in Lssk.
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1) If ID0 is in Lssk, B checks whether xID0 equals to ?
. If xID0 ¼? , B chooses a random value x 2 Zq,
and sets xID0 ¼ x. Then B renews xID0 . When T 0 ¼
1, B terminates. If xID0 6¼? , B obtains xID0 . Then B
sends xID0 to A1.

2) If ID0 is not in Lssk, B chooses x 2 Zq randomly,
and computes xID0 ¼ x. Then B sends xID0 to A1

and adds ðID0;?; xÞ into Lssk.
H2-Query. A1 adaptively performs H2-Query for any

selected ID0. B maintains a list LH2
¼ ðID; h2; sskID;

skID2; pkIDÞ for the H2-Query. B checks whether ID0 is in
LH1

. If ID0 is in LH1
, B extracts the tuple. If not, B per-

forms H1-Query for ID0. Next, B checks whether ID0 is in
Lssk. If ID0 is in Lssk, B searches the tuple ðID0; sskID0 ;
xID0 Þ from Lssk. If not, B performs H2-Query for ID0.

1) B checks whether ID0 exists in LH2
. If it does, B sets

skID02 ¼ xID0 þ h2
0 mod q; pkID0 ¼ gskID02 , updates skID02

and pkID0 , and sends skID02 toA1. If not, B selects a random
value h2

0 2 Zq, sets skID02 ¼ xID0 þ h2
0 mod q; pkID0 ¼

gskID02 , adds ðID0; h2
0; sskID0 ; skID02; pkID0 Þ into LH2

, and
sends skID02 toA1 for response.

Public-Key-Query. A1 adaptively runs Public-Key-
Query for any selected ID0.

1) If ðID0; h2
0; sskID0 ; skID02; pkID0 Þ is in LH2

, B checks
whether pkID0 equals to ? . If pkID0 ¼? , B chooses
a random value x 2 Zq, and sets xID0 ¼ x; skID02 ¼
xID0 þ h2

0 mod q; pkID0 ¼ gskID02 . Then B renews
fxID0 ; skID02; pkID0 g and sends pkID0 to A1. If pkID0
6¼? , B obtains pkID0 directly. Then B sends pkID0
to A1.

2) If ðID0; h2
0; sskID0 ; skID02; pkID0 Þ is not in LH2

, B
chooses x 2 Zq randomly, and computes xID0 ¼
x; skID02 ¼ xID0 þ h2

0 mod q; pkID0 ¼ gskID02 . Then
B sends pkID0 to A1 and adds ðID0; h2

0;?
; skID02; pkID0 Þ into LH2

.
Public-Key-Replace. A1 adaptively runs Public-Key-

Replace with selected ðID0; pk�ID0 Þ.
1) If ðID0; h2

0; sskID0 ; skID02; pkID0 Þ is contained in LH2
,

B replaces ðID0; h2
0; sskID0 ; skID02; pkID0 Þ with

ðID0; h2
0; sskID0 ;?; pk�ID0 Þ.

2) If ðID0; h2
0; sskID0 ; skID02; pkID0 Þ is not contained in

LH2
, B adds ðID0;?; sskID0 ;?; pk�ID0 Þ.

H3-Query. A1 adaptively performs H3-Query for
any selected b0 2 Zq. B maintains a list LH3

¼
ðb; fh3;ig1�i�mb

; fbig1�i�mb
;MÞ for the H2-Query, where b

denotes a raw block with replica number mb. If LH3
con-

tains b0, B sends fh0
3;ig1�i�mb

to A1. If not, B randomly
choosesmb values h

0
3;i 2 Zq and sends them to A1.

Copy-Query. A1 adaptively runs Copy-Query with
ððb0; ID0Þ. B checks whether T 0 ¼ 0 in LH1

for ID0. If T 0 ¼
1, B terminates. Otherwise, B gets h0

3;i 2 Zq from LH3
,

computes b0i ¼ b0 þ h0
3;i, divides b0i into fb0ikg1�k�s renews

b0ik in LH3
and sends fb0ikg1�i�mb

to A1.
H4-Query. A1 adaptively runs H4-Query for b0. B also

maintains a list LH4
¼ ðbid; h4Þ for the H4-Query. If LH4

contains bid0, B sends gh
0
4 to A1. If not, B randomly choo-

ses a value h0
4 2 Zq and sends gh

0
4 to A1, then B adds

ðbid0; h0
4Þ into LH4

.
Tag-Query. A1 runs Tag-Query with ðbid0; b0; ID0Þ. B

checks whether T 0 ¼ 0 in LH1
for ID0. If T 0 ¼ 1, B

terminates. Otherwise, B gets H4ðbid0Þ from LH4
, sskID0

from LH1
, skID02 from LH2

, and fbikg1�i�mb
from LH3

.
Then B generates the tag for ðbid0; b0; ID0Þ by performing
TagGen and sends the tag value to A1.

Forge. A1 outputs a tuple O ¼ ðs�; bid�; b�; ID�; pkID� Þ,
where s� is the forged tag of block b� divided into
fb�kg1�k�s with the identity ID� and the public key pkID� .

Analysis. When A1 wins game 1, B can obtain eðs�; gÞ ¼
eðH1ðIDOÞ;mpkÞ � eðH4ðbid�Þ �

Qs
k¼1 A

b�
k
k ; pkID�Þ. B extracts

the tuple ðID�; h�
1;D

�; T �Þ fromLH1
. If T � ¼ 1,B terminates.

Then B extracts H1ðID�Þ ¼ gbh1
�
from L1 and H4ðbid�Þ ¼

gh
0
4 from LH4

. According to the validation equation, B can

obtain eðs�; gÞ ¼ eðgbh1� ; gaÞ � eðgh04 �Qs
k¼1 A

b�
k
k ; pkID�Þ. Then

B can derive gab ¼ ð s�Qs

k¼1
A
b�
k
k
�pkID� h

0
4

Þ 1
h1

� . We evaluate the

probability ofB getting the right result. Herewe denote that

A1 wins game 1 at the advantage � within time t after

querying H1-Query, Partial-Key-Query, Secret-Value-
Query, H2-Query, Public-Key-Query, Public-Key-Replace,

H3-Query, Copy-Query, H4-Query, and Tag-Query for up

to q1, qssk, qsv, q2, qpk, qpkr, q3, qc, q4, qt times respectively. If B
and A1 interact perfectly, that is, B does not terminate the

algorithm in the query process, then H1-Query, Secret-

Value-Query, H2-Query, Public-Key-Query, Public-Key-

Replace,H3-Query, andH4-Query are executed successfully

without needing additional requirements. B may terminate
the algorithm in Partial-Key-Query, Copy-Query and Tag-

Query, and the probability of B andA1 interacting perfectly

is greater than ð1� gÞqsskqcqt . Thus the probability of B get-

ting the right result is �� 	 �gð1� gÞqsskqcqt 	 �
ðqsskþqcþqtÞ2e . B

can therefore solve the CDH problem with the probability

�� 	 �
ðqsskþqcþqtÞ2e in time t� � tþOðq1 þ qssk þ qsv þ q2 þ

qpkþ qpkr þ q3 þ qc þ q4 þ qtÞ.
We now provide validation for a case in which the

probability of A2 winning game 2 is not negligible. Here
an extractor B can calculate gab through a given instance
ðg;G; ga; gbÞ with the probability of A2. Therefore B can
solve the CDH problem defined in Definition 2. B simu-
lates each interaction with A2 through the following steps.

Setup. B chooses a value s 2 Zq randomly as msk and
generates params. B sendsmsk and params to A2.

H1-Query. A2 adaptively performs H1-Query for any
selected ID0. B maintains a list LH1

¼ ðID; h1Þ for the
H1-Query. If the selected ID0 belongs to LH1

, B extracts
the tuple ðID0; h1

0Þ and responds gh1
0
toA1. If not, B choo-

ses a value h1
0 2 Zq randomly and returns gh1

0
to A2 and

adds the tuple ðID0; h1
0Þ into LH1

.
H2-Query. A1 adaptively performs H2-Query for any

selected ID0. B maintains a list LH2
¼ ðID; h2Þ for the

H2-Query. If ID0 belongs to LH1
, B searches the tuple

ðID0; h1
0Þ. If not, B performs H1-Query for ID0. Next, B

checks whether ID0 is in LH2
. If ID0 is in LH2

, B searches
the tuple ðID0; h2

0Þ from LH2
. If not, B chooses a value

h2
0 2 Zq randomly and returns h2

0 to A2 and adds the
tuple ðID0; h2

0Þ into LH2
.

Secret-Value-Query. B does not run Partial-Key-Query,
as it already possesses the master key.A2 adaptively runs
Secret-Value-Query for any selected ID0. B maintains a
list Lsv ¼ ðID; xID; pkID; T Þ for the Secret-Value-Query. If
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ID0 belongs to LH2
. If not, B performs H2-Query for ID0. B

checks whether ID0 belongs to Lsv.

1) If not,B chooses a value x0 2 Zq randomly and tosses
a coin T 0 2 f0; 1g. Let’s assume that the probability
of T 0 taking 0 is g; then the probability of T 0 taking 1
is 1� g. When T 0 ¼ 0 with the probability of g, B
computes pkID0 ¼ gxþh2

0 mod q. When T ¼ 1, pkID0 ¼
ðgaÞxþh2

0 mod q. Then B returns xID0 to A2 and adds
the tuple ðID0; xID

0; pkID0 ; T 0Þ intoLsv.
2) Otherwise, B checks T 0. When T 0 ¼ 1, B termi-

nates. When T 0 ¼ 0, B extracts xID
0 and returns it

to A2.
Public-Key-Query. A1 adaptively runs Public-Key-

Query for any selected ID0.

1) If ðID0; xID0 ; pkID0 ; T 0Þ is in Lsv, B sends pkID0 to A2.
2) If ðID0; xID0 ; pkID0 ; T 0Þ is not in Lsv, B chooses x0 2

Zq randomly, and tosses a coin T 0 2 f0; 1g. Let’s
assume that the probability of T 0 taking 0 is g,
then the probability of T 0 taking 1 is 1� g. When
T 0 ¼ 0 with the probability of g, B computes
pkID0 ¼ gxþh2

0 mod q. When T ¼ 1, pkID0 ¼
ðgaÞxþh2

0 mod q. Then B returns pkID0 to A2 and adds
the tuple ðID0; xID

0; pkID0 ; T 0Þ into Lsv.
H3-Query. A1 adaptively performs H3-Query for any

selected b0 2 Zq. B maintains a list LH3
¼ ðb; fh3;ig1�i�mb

;
fbig1�i�mb

;MÞ for the H3-Query. If LH3
contains b0, B

sends fh0
3;ig1�i�mb

to A2. If not, B randomly chooses mb

values h0
3;i 2 Zq and sends them to A2.

Copy-Query. A1 adaptively runs Copy-Query with
ðb0; ID0Þ. B checks whether T 0 ¼ 0 in LH1

for ID0. If T 0 ¼
1, B terminates. Otherwise, B gets h0

3;i 2 Zq from LH3
,

computes b0i ¼ b0 þ h0
3;i, divides b0i into fb0ikg1�k�s renews

b0ik in LH3
and sends fb0ikg1�i�mb

to A2.
H4-Query. A1 adaptively runs H4-Query for b0. B also

maintains a list LH4
¼ ðbid; h4Þ for the H4-Query. If LH4

contains the value bid0, B sends gh
0
4 to A2. If not, B ran-

domly chooses a value h0
4 2 Zq and sends gh

0
4 to A2, then

B adds ðbid0; h0
4Þ into LH4

.
Tag-Query. A2 runs Tag-Query with ðbid0; b0; ID0Þ. B

checks whether T 0 ¼ 0 in LH1
for ID0. If T 0 ¼ 1, B termi-

nates. Otherwise, B gets H4ðbid0Þ from LH4
, skID02 from

LH2
, and fbikg1�i�mb

from LH3
. Then B generates the tag

for ðbid0; b0k; ID0Þ by performing TagGen and sends the tag
value to A2.

Forge. A1 outputs a tuple O ¼ ðs�; bid�; b�; ID�Þ, where
s� is the forged tag of block b� divided into fb�kg1�k�s

with the identity ID�.
Analysis. When A2 wins game 2, B can obtain

eðs�; gÞ ¼ eðH1ðIDOÞ;mpkÞ � eðH4ðbid�Þ �
Qs

k¼1 A
b�
k
k ; pkID� Þ.

B extracts the tuple ðID�; h�
1Þ from LH1

. If T � ¼ 0, B termi-
nates. Otherwise B extracts H1ðID�Þ ¼ gh1

�
from LH1

,
H4ðbid�Þ ¼ gbh

�
4 from LH4

and pkID� ¼ ðgaÞxþh2
� mod q from

Lsv. According to the validation equation, B can obtain

eðs�; gÞ ¼ eðgh1� ; gsÞ � eðgbh4�Qs
k¼1 A

b�
k
k ; gaðxþh2

� mod qÞÞ. Then

B can derive gab ¼ ðs�Þ
1

sh1
�h4�
Qs

k¼1
A
b�
k
k
ðxþh2

� mod qÞ. Here we

evaluate the probability of B getting the right result. We

denote that A1 wins game 2 at the advantage � within

time t after querying H1-Query, Secret-Value-Query,

H2-Query, Public-Key-Query, H3-Query, Copy-Query,
H4-Query, and Tag-Query for up to q1, qsv, q2, qpk, q3, qc,

q4, qt times respectively. Then Secret-Value-Query,

H2-Query, Public-Key-Query, H3-Query, Copy-Query,

and H4-Query are executed successfully without needing

additional requirements. B may terminate the algorithm

in H1-Query, Copy-Query and Tag-Query, and the prob-

ability of B and A2 interacting perfectly is greater than

ð1� gÞq1qcqt . Thus the probability of B getting the right
result is �� 	 �gð1� gÞq1qcqt 	 �

ðq1þqcþqtÞ2e . Thus B can solve

the CDH problem with the probability �� 	 �
ðq1þqcþqtÞ2e in

time t� � tþOðq1 þ qsv þ q2 þ qpk þ q3 þ qc þ q4 þ qtÞ. tu
Theorem 3 (Unforgeability of Proof). If the probability of

an attacker (A3) winning game 3 is negligible without possess-
ing the correct data, then our MDSS scheme satisfies the unfor-
geability of proof under Definition 5.

Proof. To make the Equation (5) hold, the CSSs should gen-
erate a valid proof P ¼ s; uf g based on the undamaged
data. However, the CSSs must generate a proof P 0 ¼
s0; u0f g based on the corrupted data to win game 3. If the
Equation (5) is validated by using the proof, then the
CSSs win the game; otherwise, they lose. Since a valid
proof can pass the verification, we can get the following
formula:

eðs; gÞ ¼ eðH1ðIDOÞ
P

i2Q ri ;mpkÞ�

e
Y
i2Q

Ymi

j¼1

H4ðbidijÞri �
Ys
k¼1

A
mk
k ; pkO

 !
:

Supposing the CSSs win the game, we also can get the
following formula:

eðs0; gÞ ¼ eðH1ðIDOÞ
P

i2Q ri ;mpkÞ�

e
Y
i2Q

Ymi

j¼1

H4ðbidijÞri �
Ys
k¼1

A
m0
k

k ; pkO

 !
:

Then, we denote Dmk ¼ mk � m0
k, where s ¼ s0. With

the properties of bilinear pairings, we derivePs
k¼1 akDm

0 ¼ 0. If we let G be a multiplicative cyclic
group of a large prime q, and we suppose there are � dif-
ferent Dmk ¼ mk � m0

k, where 1 � � � s. We know that
the tuple ða1; a2; . . . ; asÞ are randomly chosen and kept
secret from the CSSs. Thus the probability of makingP

i2Q Dmb hold is less than q��1=qs, where q��1=qs �
q��1=q� ¼ 1=q. As q is selected as a large prime, 1=q is
negligible. Therefore, the CSSs cannot pass the data
integrity verification by forging a integrity auditing proof
without storing the correct data. tu

6 PERFORMANCE ANALYSIS

In this section, we will demonstrate the efficiency of our
MDSS by comparing it with other the-state-of-art schemes,
namely TB-DMCPDP [19], MuR-DPR [20], and ID-MRPDP
[23]. To our knowledge, TB-DMCPDP and MuR-DPR are
the two classic BLS-based schemes to provide multi-replica
dynamics, saving more costs than RSA-based multi-replica
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schemes. ID-MRPDP is a quite advanced proposal designed
with ID-based signatures. Thus we select the above three
proposals as comparison options to highlight the efficiency
of our MDSS from different aspects.

6.1 Theoretical Analysis

We analyze the computation and communication cost of our
scheme in tag generation of setup stage, proof stage, and
update stage, for they are themost resource-consuming phases
in our proposal. Some definitions used for theoretical analysis
are given in Table 1. In the table, Pair denotes the time cost of
performing one bilinear pairing operation, Mul denotes the
time cost of running one multiplication operation in G1, and
Exp denotes the time cost of executing one exponentiation
operation in G1. Other operations, such as addition and multi-
plication operations inZq and hash, are neglected here because
their overheads are nearly negligible. In our assessment, the
experiment file F is divided into n blocks and m replicas are
generated for the file (mn blocks in total). Each block is further
segmented into s sectors. The TPA challenges c blocks for each
challenge, and theDOupdatesw data blocks for each updating.
jpj represents the size of an element inG1=G2 and jqj represents
the size of an element in Zq. Note that both TB-DMCPDP and
our MDSS take advantage of the fragment structure [41] to
maximize the storage efficiency and audit performance, while
MuR-DPR and ID-MRPDP only divide the file into blocks.
When the samefileF is segmented inton blocks and each block
is divided into s sectors by employing TB-DMCPDP and our
MDSS, there will be n� s blocks by applying MuR-DPR and
MuR-DPR. In this case, our MDSS only consists of n block-tag
pairs rather than n� s block-tag pairs in the settings without
employing the fragment structure. In other words, the over-
head for storing and transferring signature tags will decrease
with the increase of s for s sectors making up each block only
corresponds to one tag. Thus, this structure can reduce the
additional storage space and communication overhead for
tags, improving the audit performance. In addition, the unit
measurement unit of communication cost is bits, and the unit
ofmeasurement of computation cost is seconds. For readability,
we omit them in subsequent analysis.

6.1.1 Computational Overhead

We evaluate the computational cost of our scheme against
three other schemes in tag generation of the setup stage,

proof generation and proof verification of the proof stage,
for they are the most resource-consuming phases. Table 2
shows the comparison of the four proposals.

In the tag generation, we can derive that the computation
overhead in MDSS is independent of the sector number,
while ID-MRPDP, TB-DMCPDP and MuR-DPR have
increased linearly with the count of sectors. Moreover, we
can see that our MDSS costs 2mnExpþ ð2mnþm� 1ÞMul
for computing all tags for the DO’s file.

In the proof stage, the computation overhead of the four
proposals are mainly affected by the replica count and the
number of challenged blocks. In our MDSS, the CSSs are
required to cost cExpþmðc� 1ÞMul to generate the audit-
ing proof and the TPA needs to cost 3Pairþ ðmcþ sþ
1ÞExpþ ðmcþ sÞMul for verifying the proof.

6.1.2 Communication Cost

The communication cost of integrity schemes consists of
several parts: transmitting a random challenge and relevant
integrity proof in the proof stage, and transmitting the
update proof in the update stage. In the data update phase,
the size of the update request is ignored here, for it accounts
for a small proportion of the whole overhead. Here we give
the comparison of communication overhead as shown in
Table 3, whereN represents dlog 2ne for readability.

In the proof stage, the random challenges in four
schemes have the same size, and the proof size in MDSS is
(jpj þ sjqj), which is not affected by the replica number. In
short, the total communication cost of our MDSS in the
proof stage is jpj þ ðsþ 1Þjqj þN .

For the update stage, the size of the update proof Pdy in
our MDSS is wdlog2 neðjpj þ 2dlog2 neÞ þ 2jpj, which is inde-
pendent of the number of replicas, while the communica-
tion cost of TB-DMCPDP and MuR-DPR increases with the
growth of the replica number.

6.1.3 Storage Cost

In our scheme, the storage overhead is the extra space for
storing some information except for the copies of outsourc-
ing files, in which the tag storage overhead accounts for an
important proportion. For a data file divided into n blocks
with m copies, our MDSS is required to produce n aggrega-
tion tags, where each tag is an element in G1. Then we can
obtain that the storage cost for tag storing is njG1j, which has

TABLE 2
Computational Overhead Comparison

TABLE 3
Communication Cost Comparison
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nothing to dowith the number of replicas or sectors. Herewe
illustrate that the storage overhead is relatively small com-
pared with that used to store the uploaded copies. Without
losing generality, we select the security level as 80-bit. For a
16MB file with five replicas, we can divide it into 8389 blocks
and each block is segmented into 100 sectors, we choose the
elliptic curve group with jqj ¼ 512 bits. Under the condi-
tions, our proposal costs 8389� 512 bits 
 525 KB to store
all tags into the cloud, where 525 KB=ð16 MB� 5Þ 
 0:65%
is relatively small compared to the size of the outsourced file
copies.

6.2 Experimental Result

To performed our experiments, we have implemented MDSS
and related comparison schemes by using the Pair Based
Cryptography (PBC) library [42]. In the implementation, we
conduct CSS computations on Alibaba Elastic Compute
Cloud (ECS. G5. xlarge) with 16 GB RAM while TPA compu-
tations are executed on a laptop with dual Intel Core CPU
running at 2.40 GHz with 8 GB RAM, and DO computations
are simulated on a laptop with dual Intel Core CPU running
Ubuntukylin-15.10-desktop-i386 with an Intel 2.4 GHz CPU
and 4 GB memory. Without loss of generality, we choose the
elliptic curve group of Type A defined over 512-bit base field
with 160-bit group order. Note that all the experiments are
carried out for 100 rounds for pursuing more precise results.

6.2.1 Computational Overhead

In this section, we evaluate the computational overhead of
all four schemes for tag generation, and the total cost of
proof generation and verification in the proof stage.

We first measure the computation overhead for tag gen-
eration under different parameters, such as block number
n, replica number m, and sector number s. Without loss of
generality, we increase the block count from 0 to 10000 at
intervals of 500 when creating 5 copies for each block
divided into 100 sectors. As illustrated in Fig. 7, the com-
putation overhead of all proposals increases linearly with
n. To generate tags for 10000 blocks copied into 5 replicas
and segmented into 100 sectors, it only needs about 119
seconds by employing our MDSS. When creating 5000
blocks that contain 100 sectors for each, the comparison
result is illustrated in Fig. 8. As observed, the computa-
tional cost of our MDSS is much smaller than that of the
other schemes. Besides, we create 5 copies for 5000 blocks
that contain 0 to 200 sectors, and the comparison result is
shown in Fig. 9. It can be concluded that our MDSS always
has better efficiency with respect to tag generation, and the
computation cost is not affected by the sector number.

Then we test howm and c can influence the computational
cost for proof stage. For comparison, we used 5000 blocks of
160 bits each. The experimental results are depicted in Figs. 10
and 11. For proof generation and verification, the other three
schemes have the same cost except MuR-DPR since all copies
need to be verified one by one in MuR-DPR. Our MDSS, TB-
DMCPDP and ID-MRPDP need to spend about the same
amount of pairing and exponent operations of group G1, so
their computation cost in the proof stage is almost the same.

We conclude that our MDSS performs well in tag genera-
tion and proof stage, especially since when the sector num-
ber increases, the advantage of our MDSS for tag generation
is more obvious.

Fig. 7. Computation overhead in tag generation (m=5,s=100). Fig. 9. Computation overhead in tag generation (m=5,n=5000).

Fig. 8. Computation overhead in tag generation (n=5000,s=100). Fig. 10. Computation overhead in proof stage (c=300).
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6.2.2 Communication Cost

In this section, we evaluate the communication cost of the
four schemes for transmitting the total information in the
proof stage and update stage, respectively.

We first assess the communication overhead in proof
phase. The testing file is 16 MBwith randomly selected data.
When fixing s ¼ 1, we vary the count of generated replicas
for the testing file from 0 to 10, as illustrated in Fig. 12. Then
we divide each block into 100 sectors, and the results are in
Fig. 13. Although our MDSS need a little more communica-
tion overhead than MuR-DPR and ID-MRPDP, the storing
and computing of tags will soar without taking advantage of
the fragment structure in MuR-DPR and ID-MRPDP. In a
word, the advantage of our MDSS will become obvious
when m increases, and our communication cost is only
affected by the sector count.

Then, we evaluate the communication overhead for the
update stage. Fig. 14 shows the comparison of communication
cost between ourMDSS and TB-DMCPDP andMuR-DPRwith
m varies from 1 to 10. Obviously, our scheme has the lowest
overhead and does not vary with m. When the number of
updated blocks grows from 0 to 100 at the interval of 10 when
settingm ¼ 5, the comparison of the three schemes is shown in
Fig. 15. We can observe that our proposal still has the lowest
communication overhead. In addition, the phenomenon that
the communication overhead of the three schemes varies with
the block number is shown in Fig. 16. Again we conclude that
our scheme has the smallest communication overhead.

Whether in proof stage or update stage, our MDSS shows
good performance in contrast to other proposals. Moreover,
the communication overhead of our scheme is independent
of the replica number in both the proof and update stage.

Fig. 12. Communication cost in proof stage (s=1).

Fig. 11. Computation overhead in proof stage (m=5).

Fig. 13. Communication cost in proof stage (s=100).

Fig. 14. Communication cost in update stage (w=100,n=5000).

Fig. 15. Communication cost in update stage (m=5,n=5000).

Fig. 16. Communication cost in update stage (m=5,w=100).
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7 CONCLUSION

In this paper, we propose an effective multi-copy auditing
scheme by using certificateless signatures. The inherent
characteristics of the certificateless cryptosystem make our
system more efficient due to certificate removal. To realize
dynamics, we design a dynamic structure to update all rep-
licas through one interaction. Meanwhile, we also provide
users with an optional replica number storage strategy,
allowing users to decide the storage copy number. Finally,
based on the dynamic structure, we employ signature
authentication to provide arbitration services between audi-
tors and servers. Security analysis and experimental results
confirm that our proposal is provably secure and efficient.
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