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A B S T R A C T   

RSA is a well known standard algorithm used by modern computers to encrypt and decrypt messages. In some 
applications, to save the decryption time, it is desirable to have a short secret key d compared to the modulus N. 
The first significant attack that breaks RSA with short secret key given by Wiener in 1990 is based on the 
continued fraction technique and it works with <d N1

184
.25. A decade later, in 2000, Boneh and Durfee presented 

an improved attack based on lattice technique which works with d < N.292. Until this day, Boneh–Durfee attack 
remain as the best attack on RSA with short secret key. In this paper, we revisit the continued fraction technique 
and propose a new attack on RSA. Our main result shows that when < +d t N e(2 2 8/3) / ,.75 where e is the 
public exponent and t is a chosen parameter, our attack can break the RSA with the running time of O(tlog (N)). 
Our attack is especially well suited for the case where e is much smaller than N. When e ≈ N, the Boneh–Durfee 
attack outperforms ours. As a result, we could simultaneously run both attacks, our new attack and the classical 
Boneh–Durfee attack as a backup.   

1. Introduction 

The RSA cryptosystem is one of the most popular and de facto 
public-key encryption standard widely used for secure data transmis-
sion. It is among the most common ciphers used in the SSL/TLS protocol 
which allows sensitive information transmitted securely over the 
Internet. 

A simplified version of the RSA encryption algorithm works as fol-
lows. Two large primes of the same size p and q are selected to form a 
product =N pq – which is called the RSA modulus. Two integers e and d 
are chosen so that 

=ed N1 (mod ( )),

where is the order of the multiplicative group *N . The number e is 
called the encryption exponent and d is called the decryption exponent. 
This is because to encrypt a message m * ,N one calculates the ex-
ponentiation =c m N(mod ),e and to decrypt a ciphertext c * ,N one 
performs the exponentiation =m c N(mod )d . The pair (N, e) is called 
the public key and so that anyone can encrypt, whereas d is called the 
private key and only the owner of d can perform the decryption op-
eration. 

In some applications of RSA, it is desirable to have a short secret key 
d compared to the modulus N. However, it is well known that RSA is not 

secure if the secret key d is relatively small. The first significant at-
tack [1] that breaks RSA with short secret key given by Wiener in 1990 
is based on the continued fraction technique and it works [2,3] with 

<d N1
18

.25
4 . Using an exhaustive search of about + b8 2 bits, Verheul 

et al. [4] improved Wiener’s bound to d < 2bN.25. Another exponential 
time attack similar to this is due to Dujella [5]. 

There are other variants of Wiener’s attack but these attacks need 
more than just the public information (N, e). For example, the Weger 
attack [6] exploited the small distance between the two RSA’s secret 
primes p q| |. The Blomer attack [7] assumed a linear relation between 
e and ϕ(N): + =ex y N0 mod ( ) with bounded x and y. 

In 1999, Boneh and Durfee [8] showed the first significant im-
provement over the Wiener’s result. Based on the Coppersmith tech-
nique, exploiting a non-linear equation satisfied by the secret exponent, 
the Boneh–Durfee method can break the RSA when d < N.292. Using a 
somewhat more optimized lattice, Herrmann and May [9] also derived 
the same bound d < N.292, although their proof is more elementary. 
This bound d < N.292 remains as the best bound to date. 

Our contributions In this paper, we will present an attack on the RSA 
cryptosystem. We show that if the public key e and the private key d are 
smaller than a certain bound then it is possible to efficiently perform 
the RSA number factorization and determine the private key. Our 
bound is different compared to Wiener’s bound [1] and Boneh–Durfee’s 
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bound [8] in that it involves both the private key d and the public key e. 
Our main result shows that when 

< +d t N e(2 2 8/3) / ,.75

where t is a chosen parameter, our attack can break the RSA with the 
running time of O(tlog (N)). The parameter t is an arbitrary positive 
integer. The larger the value of t the wider range of d can be attacked. 

In some cases, our attack is weaker than the Boneh–Durfee attack, 
and in some cases, our attack performs better than the Boneh–Durfee 
one. In the following figure, the shaded part shows the area where our 
method is better than Wiener [1] and Boneh–Durfee[8]. 

As can be seen from the figure, our attack is especially well suited 
for the case where e is much smaller than N. When e ≈ N, the 
Boneh–Durfee attack outperforms ours. As a result, we could simulta-
neously run both attacks, our new attack and the classical 
Boneh–Durfee attack as a backup.  

The rest of the paper is organized as follows. In Section 2, we review 
some preliminary results on continued fractions. Section 3 outlines the 
main idea behind our new attack, namely (i) using a better approx-
imation for ,k

d and (ii) using a stronger version of the Legendre Theorem 
on continued fractions. Our main result is presented in Section 4. In  
Section 5, we show our experiment result with a 1024-bit modulus and 
301-bit secret key. We conclude the paper in Section 6. 

2. Preliminaries 

In this section, we review the concept of continued fractions and the 
cryptanalysis technique based on continued fractions. The original 
Wiener attack[1] is based on the Legendre theorem [10]. Our new at-
tack is based on a stronger version of the Legendre theorem which is 
due to Barbolosi and Jager [11]. 

2.1. Continued fractions 

A continued fraction expansion of a rational number u
v

is an ex-
pression of the form 

= +
+

+

u
v

x
x

1 ,0
1

1

xn
1

where the coefficient x0 is an integer and all the other coefficients xi for 
i ≥ 1 are positive integers. The coefficients xi are called the partial 
quotients of the continued fraction. Continued fraction expansion also 
exists for irrational numbers although it runs infinitely. In crypto-
graphy, finite continued fraction for rational numbers suffices our 
purpose. 

There is a standard way to generate a unique continued fraction 
from any rational number. By the Euclidean division algorithm, one can 
efficiently determine all the coefficients …x x x, , , n0 1 of the continued 
fraction. For clarity, we present the following example to show how to 
construct the continued fraction for 1111

2000
. 

By the Euclidean division algorithm, we have 

= × +
= × +
= × +
= × +
= ×

0
1

1
4

222

1111 2000 1111
2000 1111 889
1111 889 222
889 222 1
222 1

and thus, we can see that the coefficients 0, 1, 1, 4, 222 determined by 
the above Euclidean division algorithm become the coefficients for the 
continued fraction as follows, 

= + = + = +
+

= +
+

= +
+

= +
+

= +
+

+ + +
+

0 0 0
1

0
1

0
1

0
1

0
1

1111
2000

1111
2000

1 1 1

1 1 1 .
1 1 1

2000
1111

889
1111

1

1 1 1

4
222

1111
889

222
889

1
889
222

1
1

Given the above continued fraction of ,u
v by truncating the coeffi-

cients, we obtain +n( 1) approximations of u
v
: 
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= = + = +
+

… = +
+

+

c x c x
x

c x
x

c x
x

, 1 , 1 , , 1 .
x

n0 0 1 0
1

2 0
1

1 0
1

1

xn
2 1

The number cj is called the jth convergent of the continued fraction and 
these convergents provide good approximations for u

v
. To write the 

continued fraction expansion for a number ,u
v we use the Euclidean 

division algorithm, which terminates in O(log (max (u, v))) steps. As a 
result, there are O(log (max (u, v))) number of convergents of u

v
. Thus, 

the Wiener continued fraction technique runs very efficiently. 
The convergents …c c c, , , n0 1 of the continued fraction of u

v
give good 

approximation to ,u
v however, an approximation to u

v
is not always a 

convergent. The following classical theorem due to Legendre gives a 
sufficient condition for a rational number a

b
to be a convergent for the 

continued fraction of u
v
. 

Theorem 1 (The Legendre Theorem [10]). Let a and +b such that 

<u
v

a
b b

1
2

.2

Then a
b

is equal to a convergent of the continued fraction of u
v
. 

The following Euler-Wallis Theorem gives us the recursive formulas 
to calculate the convergent sequence {ci} efficiently based on the 
coefficients …x x x, , , n0 1 . 

Theorem 2 (The Euler-Wallis Theorem [12]). For any j ≥ 0, the jth 
convergent can be determined as =c ,j

a
b

j
j

where the numerator and the 
denominator sequences {ai} and {bi} are calculated as follows: 

= = = +
= = = +

a a a x a a i
b b b x b b i

0, 1, , 0,
1, 0, , 0.

i i i i

i i i i

2 1 1 2

2 1 1 2

The following example shows how to calculate the convergents of 
the continued fraction of 1111

2000
. As previously shown, by the Euclidean 

division algorithm, we have the continued fraction 

= = +
+

+
+

0
1

1111
2000

1 .
1

1

4
222

1
1

with coefficients 

= = = = =x x x x x0, 1, 1, 4, 222.0 1 2 3 4

By using the Euler-Wallis Theorem, we calculate the numerator and the 
denominator sequences {ai} and {bi}:         

i 2 1 0 1 2 3 4  

xi 0 1 1 4 222 
ai 0 1 0 1 1 5 1111 
bi 1 0 1 1 2 9 2000 

and obtain the following 5 convergents: 

= = = = = = = = = =c a
b

c a
b

c a
b

c a
b

c a
b

0
1

, 1
1

, 1
2

, 5
9

, 1111
2000

.0
0

0
1

1

1
2

2

2
3

3

3
4

4

4

Based on the Euler-Wallis Theorem, the following identity involving 
the numerator ai and the denominator bi of the convergent ci can be 
easily obtained by mathematical induction. 

Theorem 3. Hardy and Wright [12] The numerator ai and the denominator 
bi of the convergent ci satisfy the following identity 

=b a a b i( 1) , 0.i i i i
i

1 1 (1)  

2.2. A stronger version of Legendre theorem 

In 1994, Barbolosi and Jager [11] proved a stronger version of the 

Legendre Theorem which requires an additional constraint on the sig-
nature of a

b
with respect to ,u

v which is defined as follows. 

Definition 1. If 

= +
+

+

a
b

1 ,0
1

1

m
1

then we define 

=a
b

( 1)m

and 

=

>

=

<
x a

b

x

x

x
,

1, for

0, for .

1, for

a
b
a
b
a
b

The signature of a rational number a
b

with respect to x is defined by 

=x a
b

a
b

x a
b

, , .

The following theorem due to Barbolosi and Jager [11] gives a 
stronger version of the Legendre Theorem which requires an additional 
constraint on the signature of a

b
with respect to u

v
. 

Theorem 4. Barbolosi and Jager [11] Let a and +b such that 

<u
v

a
b b

2
3 2

and =( , ) 1,u
v

a
b then a

b
is equal to a convergent of the continued fraction of 

u
v
. 

The following observation is useful for our attack. 

Theorem 5. If 

< <a
b0 1

then 

= =a
b

a
b

, 1 or , 1,0 1

i.e., the signature of a
b

with respect to either ϕ0 or ϕ1 is 1. 

Proof. Since < < ,a
b0 1 we have 

= =a
b

a
b

, 1 and , 1.0 1

Since ( )a
b is 1 or 1, the two products 

= =a
b

a
b

a
b

a
b

a
b

a
b

, , and , ,0 0 1 1

have opposite signs, so one of the signatures ( ), a
b0 and ( ), a

b1 must 
be equal to 1. □ 

3. “Divide and capture” algorithm 

In this section, we present a new technique of “divide and capture” 
to break RSA with short secret key. Our algorithm is an improvement of 
the Wiener attack. 

Let us first recall the idea behind the original Wiener attack [1]. 
Since 

=ed N1 (mod ( )),

we have 
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=ed k N( ) 1

for some integer k, i.e. ed ≈ kϕ(N) and thus, 

k
d

e
N

e
N( )

.

Now one knows that the convergentsof the continued fraction expansion 
of a number provide good rational approximations to the number, so in 
the Wiener attack, we search for k

d
among the convergents of the con-

tinued fraction of e
N

. The Legendre Theorem is used to give a sufficient 
condition for k

d
to be a convergent of ,e

N which is <d N1
18

.25
4 . 

Our new attack improves upon the Wiener attack by two in-
gredients. The first ingredient is that we use a better approximation for 

,k
d and the second ingredient is that we use a stronger version of the 
Legendre Theorem which is due to Barbolosi and Jager [11]. The two 
ingredients are employed in the following two steps of our algorithm: 
the “divide” step and the “capture” step. 

The “divide” step Instead of using e
N

as an approximation for k
d

as in 
the original Wiener attack, we will use a better approximation. We 
show that we can narrow down the intervals for ϕ(N) and k

d
as follows: 

N( ) [ , ],min max

and 

k
d

e e, ,
max min

where 

= + = +N N N N3
2

1 , 2 2 .min max
1
2

1
2

Thus, if we divide the interval ,e e
max min

into t equal sub-intervals 

= …e e X X X X X X, [ , ] [ , ] [ , ]t t
max min

0 1 1 2 1

then k
d

must be in one of these intervals. By dividing the interval, those 

sub-interval end-points Xj are better approximations for ,k
d and the 

larger value of t, the finer approximation it gets. The parameter t is 
chosen by our algorithm and our run-time depend linearly on t. Our 
main theorem shows that a larger value of t enable us to break a wider 
range of secret key d. 

The “capture” step Similar to the Wiener attack, where we search for 
k
d

among the convergents of e
N

. In our algorithm, by searching among 
the convergents of the sub-interval end-points Xj we “capture” k

d
. We 

use a stronger version of the Legendre Theorem [11] to work out a 
sufficient condition for k

d
to be a convergent of Xj. 

If k
d

is equal to a convergent a
b

i
i

of Xj. Then since =ed k N( ) 1, we 
have 

=k dgcd( , ) 1,

and by the identity (1) in Theorem 3, we also have 

=a bgcd( , ) 1.i i

Therefore, if = ,k
d

a
b

i
i

we must have =k ai and =d bi. In that case, using 
the equation =ed k N( ) 1, we have 

=eb a N( ) 1,i i

and 

=N eb
a

( ) 1 .i

i

From here, we obtain 

= + = +S p q N N( ) 1,

and with =N pq, we can solve for p and q from the quadratic equation 

+ =x Sx N 0.2

In the Algorithm 1, we can see that if k
d

is equal to a convergent of 
the continued fraction of Xj, then the secret information p, q, d, k can be 
recovered from the public information (e, N). By the Euclidean division 
algorithm, we obtain O(log (N)) number of convergents of the con-
tinued fraction of Xj, so for each 0 ≤ j ≤ t, the run-time is O(log (N)). 
Therefore, if k

d
is indeed equal to a convergent of the continued fraction 

of Xj as asserted by our main Theorem 7, then our algorithm will suc-
ceed to factor N and output p, q, d, k in O(tlog (N)) time complexity. 

4. Our new attack 

In this section, we present our new attack which is an improvement 
over the Wiener attack. Our algorithm has one parameter t, which is an 
arbitrary positive integer. The larger the value of t the wider range of d 
can be attacked. The running time is linearly depending on t. 
Specifically, we show that if 

+d e t N(2 2 8
3

)2 1.5

or equivalently, 

+d t N e2 2 8
3

/0.75

then we can determine the secret information p, q, d, k from the public 
parameter (e, N) in time complexity of O(tlog (N)). 

We first need the following lemma. 

Lemma 6. Let t be a fixed positive integer. Define 

= + = +N N N N3
2

1 , 2 2 ,min max
1
2

1
2

If the following conditions are satisfied   

• q < p < 2q  
• 0 < e, d < ϕ(N)  
• =ed k N( ) 1

then 

<e k
d

e .
max min

Proof. It follows from q < p < 2q that < <1 2 ,p
q

so since the 

function = +f x x( ) x
1 is increasing on +[1, ), we have 

< + < + =p
q

q
p

2 2 1
2

3
2

.

Hence, 

< + <N p q N2 3
2

.1
2

1
2

Since = + +N N p q( ) 1 ( ), we have 

+ < < +N N N N N1 3
2

( ) 1 2 ,1
2

1
2

and since ϕ(N) is an integer, it follows that 

+ +N N N N N1 3
2

( ) 1 2 .1
2

1
2

From the definition of ϕmin and ϕmax, we have the following bound 
for ϕ(N): 

N( ) 1.min max

It follows that 

< +k k N k1 ( )min max
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and since = +ed k N1 ( ), we have 

<k ed kmin max

and so we have the following bound for k
d
: 

<e k
d

e .
max min

□ 

In our attack, instead of using the convergents of the continued 
fraction of e

N
as in the Wiener’s original attack, we will use the con-

vergents of the continued fraction of Xj where Xj is a better approx-
imation of e

N( )
. 

In the above lemma, ,k
d

e e
max min

. By dividing the interval 

,e e
max min

into t equal sub-intervals 

…X X X X X X[ , ] [ , ] [ , ]t t0 1 1 2 1

and we contend that k
d

must be in one of this sub-interval. This narrow- 
down technique gives a better approximation for k

d
. 

This is our main theorem. 

Theorem 7. Let t be a fixed positive integer. Define 

= + = +N N N N3
2

1 , 2 2 ,min max
1
2

1
2

= +X e j
t

e e j t, 0 .j
max min max

If the following conditions are satisfied   

• q < p < 2q  
• 0 < e, d < ϕ(N)  
• =ed k N( ) 1

• < +d e t N(2 2 )t2 2
3( )

8
3

1.5min max
max min

then k
d

is a convergent of Xj for some j ∈ [0, t] and there is an algorithm 
with time complexity O(tlog (N)) that can determine the secret information 
p, q, d, k from the public parameter (e, N). 

Proof. From the definition of Xj, we have 

= =X e X e, t0
max min

and the interval [X0, Xt] is divided into t equal sub-intervals +X X[ , ]j j 1
with j t0 1. 

Input: e,N, t
Output: (d , p,q) or⊥

1: Calculate

φmin =

⌈
N − 3√

2
N

1
2 + 1

⌉
, φmax =

⌊
N − 2N

1
2 + 2

⌋
.

2: for 0 ≤ j ≤ t do
3: Calculate

Xj =
e
φmax

+
j
t

(
e
φmin

− e
φmax

)
4: Run the Euclidean division algorithm to obtain the coefficientsx0, x1, . . ., xn of the continued fraction ofXj .
5: Use the Euler-Wallis Theorem to calculate the convergents ofXj :

c0 =
a0

b0
, c1 =

a1

b1
, . . ., cn =

an

bn
.

6: for 0 ≤ i ≤ n do
7: if ai |(ebi − 1) then

8: λi =
ebi − 1

ai
. λi = φ(N) if ai

bi
= k

d

9: S = N − λi + 1 . S = p+ q if λi = φ(N)
10: Find the two rootsp′ andq′ by solving the quadratic equation

x2 − S x+ N = 0

11: if p′ andq′ are prime numbersthen
12: return (d = bi , p = p′, q = q′) . Successfully factorise N
13: end if
14: end if
15: end for
16: end for
17: return ⊥ . Fail to factorise N

Algorithm 1. “Divide and capture” algorithm based on continued fraction.  
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Since X X[ , ],k
d t0 it must belong to one of the sub-interval 

+X X[ , ]m m 1 . If k
d

is equal to one of the end points Xm or +Xm 1 then the 

theorem is proved, otherwise, we have +X X( , ),k
d m m 1 and by  

Theorem 5, 

= =+X k
d

X k
d

( , ) 1 or ( , ) 1.m m 1

Suppose that =X( , ) 1j
k
d where =j m or = +j m 1. We also have 

< = <+X k
d

X X
t

e e
d

1 2
3

,j m m1
min max

2

so by Theorem 4, k
d

is equal to a convergent of Xj. 
Now, since k

d
is equal to a convergent of Xj, we need to go through 

the list of all convergents of Xj for each 0 ≤ j ≤ t to determine the secret 
information p, q, d, k. Since there are +t 1 such numbers Xi and each of 
these numbers Xi has O(log N) convergents, so the algorithm runs with 
time complexity O(tlog N). □ 

5. Experiment result 

In this experiment, we use a 1024-bit modulus N. With this 1024-bit 
modulus, the Wiener [1] upper bound N1

3
1
4 is 255-bit and the Boneh 

et al [8] upper bound N0.292 is 300-bit. Here, we show an example of a 
301-bit secret key d. 

=N 1126684696 7960415267 9715205320 8764730377 0468843729
7602869626 8742679673 7565392691 1896720899 7817225421
9456563825 7598607299 8228483966 7277977750 0846524256
5405192174 3404715392 4111131445 2806998666 0800802542
6667428651 5822067868 3332139684 8178848647 1862041996
8307733888 2654976426 1652555778 0660037933 7429836710
469844689

=e 3546827515 0449892821 4645483994 9072354169 9917854105
3777881480 5556306506 8030441497 9123832858 1104189334
5269595865 1561530906 7787860350 8234271208 8372493244
0491567538 7082443615 0635715027 6983721999 4359528508
5507420733 6971847203 5998068636 3860035748 5766592157
1443573804 3230094162 2668134824 7084765906 3039

= 1126684696 7960415267 9715205320 8764730377 0468843729
7602869626 8742679673 7565392691 1896720899 7817225421
9456563825 7598607299 8228483966 7277977750 0846524256
5404967005 9338159387 5629893840 6790640806 5978949505
5190048763 1806998912 0018798869 8456552744 0343256918
0947602140 5998331016 7031165930 7924380180 5083193694
447678024

min

= 1126684696 7960415267 9715205320 8764730377 0468843729
7602869626 8742679673 7565392691 1896720899 7817225421
9456563825 7598607299 8228483966 7277977750 0846524256
5404979883 5307980122 5008117646 2984182057 4395408755
2375219678 2506148712 8274248859 4636262332 4878439474
0682918249 5327161306 0062525305 7397996939 6556133164
889091144

max

We are searching for k
d

among the convergents of Xi for i ∈ [0, 238] 
and found it at the convergent =c p

q153
153
153

of X274877906943: 

= =k p 6412632807 1602446527 2583222705 5821078117 6686722401
4569475530 8687145037 898787

153

= =d q 2037035976 3344860862 6844568840 9378161061 4683903318
9250127228 0898753762 5995266734 1973464393 9

153

which gives the factorization of N: 

=p 1501122711 0373365654 1584030677 5719063214 5686914318
2532589343 3793042208 8938766481 5306021012 5233858240
0878317771 0969396414 2598981823 7718354897 7620106814
43971

=q 7505613555 1866828270 7920153387 8595316072 8434571591
2662946716 8965211044 4693832407 6530105062 6169291200
4391588855 4846982071 2994909118 8591774488 8100534072
2459

This experiment result shows that our usage of continued fractions 
of Xi is essential. If we use continued fractions of e

N
as in Wiener’s ori-

ginal attack then no convergent ci is found for which =ci
k
d . 

6. Conclusion 

In this paper, we revisit Wiener’s continued fraction technique and 
propose a new attack on RSA. For a parameter t, our attack can break 
the RSA when 

< +d t N e(2 2 8/3) /.75

and the running time is O(tlog (N)). Our attack is especially well suited 
for the case where e is much smaller than N. When e ≈ N, the 
Boneh–Durfee attack outperforms ours. It is an open problem to extend 
the attack to the case e ≈ N that goes beyond the Boneh–Durfee’s 
bound. 
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