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a b s t r a c t 

In encrypted email system, how to search over encrypted cloud emails without decryp- 

tion is an important and practical problem. Public key encryption with keyword search 

(PEKS) is an efficient solution to it. However, PEKS suffers from the complex key manage- 

ment problem in the public key infrastructure. Its variant in the identity-based setting ad- 

dresses the drawback, however, almost all the schemes does not resist against offline key- 

word guessing attacks (KGA) by inside adversaries. In this work we introduce the notion 

of designated-server identity-based authenticated encryption with keyword search (dIBAEKS), 

in which the email sender authenticates the message while encrypting so that no adver- 

sary including the server can launch offline KGA. Furthermore, we strengthen the security 

requirement so that only the designated server has the capability to search over encrypted 

emails for receivers. We formally define dIBAEKS and its security models, and propose two 

dIBAEKS constructions using Type-I and Type-III bilinear pairing, respectively. We com- 

pare our schemes with some related IBEKS schemes in the literature, and do experiments 

to demonstrate its efficiency. Although they are slightly less computationally efficient than 

but still comparable with the related schemes, our schemes provide stronger security guar- 

antee and better protect users’ privacy. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

Cloud storage has received widespread attentions due to its low-cost and almost unlimited data storage space [26] . Users 

are allowed to store their data in the cloud and to access their data anytime and anywhere, which saves the local data 

storage. Nowadays, in order to reduce running costs many companies would choose to outsource their email service to an 

honest-but-curious cloud service provider (CSP). It provides the email service as promised, but may try its best to learn 

users’ emails to discover important information. Due to the high sensitivity of some business emails, these emails would be 

encrypted before sending. Generally, users may have lots of emails, and it is not necessary to download and decrypt all of 

them. 

Considering the scenario shown in Fig. 1 . Suppose that Alice sends encrypted emails via an untrusted cloud email server. 

To save local storage space, Bob will store the encrypted emails in the cloud instead of downloading all of them. Among all 

the encrypted emails, suppose that Bob wants to retrieve encrypted emails corresponding to some keyword w = ‘ contract ’. 
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Fig. 1. Encrypted email system with cloud email server. 

It is desirable for Bob to download only this email without leaking information about the keyword w it searches and other 

privacy. However, cryptographic encryption schemes usually hide the feature/structure of the original data, hence, it is hard 

for the cloud server to search over all the encrypted emails using traditional data search mechanisms. Thus we need a 

specific encryption mechanism which supports efficient search over encrypted data. The symmetric searchable encryption 

(SSE) [27] is not suitable for this scenario, because to use SSE, Bob has to negotiate with Alice a shared key before sending 

any encrypted emails, which is rather inconvenient for applications like emails. 

PEKS was proposed to address this problem [4] . Different from SSE schemes [12,13,27] , in PEKS anyone could be the 

data owner/sender and share (encrypted) data with the data receiver R , and R can authorize someone to search over en- 

crypted data by giving them a trapdoor associated with a specified keyword w . In the aforementioned scenario, to realize 

the searching functionality, Alice retrieves keywords { w } from emails { F } to be sent to Bob, and encrypts both the keywords 

and the emails using Bob’s public key. She then sends both { C w 

} and { C F } to the cloud email server, and the server would 

notify Bob that there is an email for him. To search over the encrypted emails for a keyword w , Bob generates and sends 

a corresponding trapdoor T to the email server, which then searches over { C w 

} and returns the emails { C F } associated with 

the matching keyword ciphertexts. After downloading these emails, Bob decrypts them to get the desired email contents. 

Although PEKS solves the problem of searching over shared encrypted data, there are still some privacy issues. For ex- 

ample, it was pointed out in [7] that some PEKS schemes suffer from the risk of offline keyword guessing attacks (KGA). A 

malicious adversary tries candidate keywords one-by-one and checks if the given keyword ciphertext matches the candidate. 

Due to the small space of real-life keywords, the attack is feasible. Therefore, if the cloud email server becomes malicious, 

it may recover private information from users’ emails by initiating offline KGA. How to construct PEKS secure against offline 

KGA is a hard problem. Recently, Huang et al. introduced a new primitive named public-key authenticated encryption with 

keyword search (PAEKS), which is a novel and effective method to counter this kind of attacks [16,17] . Roughly speaking, data 

sender in PAEKS authenticates the keyword while encrypting. However, there are two drawbacks in PAEKS scheme. One is 

that an outside adversary could obtain the search pattern of users [19] once it breaks into the cloud server. Informally, search 

pattern indicates which searching queries contain the same keyword in the search history. Adversaries may reveal informa- 

tion about the plaintext from the searching frequency. The other is that PAEKS works in the public key infrastructure (PKI) 

and suffers from issues of complex certificate management and heavy cost of maintenance. 

To hide search pattern, Baek et al. proposed to have a designated tester to search over the encrypted data [2] . Anyone, 

except the one who owns the tester’s private key, cannot search even if it has the trapdoor. Rhee et al. proposed two 

generic constructions of designated tester public-key encryption with keyword search (dPEKS) based on anonymous identity- 

based encryption (IBE) [21] . Emura et al. proposed another two generic constructions of dPEKS based on anonymous IBE, 

tag-based encryption and one-time signature [9] . However, these dPEKS schemes cannot resist inside offline KGA. 

It is pointed in Boneh and Franklin [5] that the identity-based encryption (IBE) can be used in the encrypted email system 

in order to reduce the heavy cost of key management. The receiver’s identity, e.g. email address, can be directly used as its 

public key. Abdalla et al. initiated the study of identity-based encryption with keyword search (IBEKS), which integrates the 

keyword search functionality in IBE [1] . To use the encrypted email system, a sender encrypts an email using IBE and its 

keywords using IBEKS, and uploads both the encrypted email and encrypted keywords to the cloud email server. To retrieve 

emails of a certain topic, the receiver delegates the server to search over the encrypted keywords by giving a trapdoor 

w.r.t. a specific keyword about the topic. After searching, the server returns encrypted emails associated with the matching 

(encrypted) keywords to the receiver as the search result. However, to our best knowledge, there is no IBEKS construction 

resisting the inside offline KGA, in the meantime, hiding search pattern from outside adversaries. 

Most of the PEKS and IBKES schemes mentioned above are constructed based on symmetric (Type-I) bilinear pairing. 

However, it is known that Type-III asymmetric bilinear pairing performs more efficiently with high security parameters [14] . 

1.1. Our contributions 

We propose a new notion called designated-server identity-based authenticated encryption with keyword search (dIBAEKS) 

to solve the aforementioned problems. As shown in Fig. 2 , there are four entities in dIBAEKS, a private key generator (PKG), 
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Fig. 2. System model of dIBAEKS. 

a cloud email server, a sender (Alice) and a receiver (Bob). Users’ identity information are used as their public keys, and 

PKG is in charge of generating user secret keys based on their identities. The cloud email server stores the encrypted emails 

and encrypted keywords sent from Alice to Bob. To search over the emails sent from Alice to him, Bob gives to the cloud 

email server a searching trapdoor T w.r.t a candidate keyword w , with which the server then searches over the ciphertexts 

using its own secret key and returns the matching encrypted emails containing w without knowing what the keyword w 

is. Bob then decrypts the returned emails using its secret key and read the contents. In dIBAEKS, no adversary can forge a 

valid encrypted keyword sent from Alice to Bob unless it knows Alice’s secret key. Furthermore, no adversary is able to run 

the keyword search even if it obtains Bob’s trapdoor unless it knows the cloud email server’s secret key. 

We formally define dIBAEKS and present its security models. Then we propose a concrete dIBAEKS scheme based on 

symmetric (Type-I) bilinear pairing and prove it to be secure against inside offline KGA. Our scheme is shown to satisfy 

the security that only the designated server can search (a.k.a designated testability , see Section 3 for the definition), but 

this property is of CPA type, i.e., the adversary is not allowed to query any test result. In order to strengthen the designated 

testability to achieve the CCA type security, we show how to modify the scheme to allow the adversary to issue test queries. 

In order to further improve the efficiency, we also show how to modify the scheme to work in Type-III asymmetric bilinear 

pairing setting. The new scheme, denoted by dIBAEKS-3, is much more efficient than dIBAEKS. 

To show the advantage of dIBAEKS, we compare it with some related schemes in the literature in terms of security, 

computational complexity, and communication overhead, and demonstrate the computational efficiency of our scheme via 

experiments. Although our scheme has a slightly less computationally efficient than but still comparable with the compared 

schemes, it provides stronger security guarantee and better protects users’ privacy. 

1.2. Related works 

Public key encryption with keyword search (PEKS) was introduced in [4] , initiating the study of SE in public key setting. 

To protect user privacy, Baek et al. pointed out a secure channel is necessary in PEKS, and proposed a secure-channel- 

free PEKS scheme denoted by dPEKS, where only the designated tester can do the test [2] . Byun et al. proposed a new 

attack method against PEKS schemes called offline KGA [7] . Yau et al. proved neither schemes in [2,4] is secure against the 

offline KGA [32] . Fang et al. enhanced the security of dPEKS and proposed another dPEKS scheme secure against outsider 

offline KGA, yet it cannot resist the inside adversaries’ offline KGA [10] . Fang et al. in 2013 proposed a dPEKS scheme secure 

against the outside KGA without requiring random oracles [11] . Other dPEKS schemes are also proposed to enhance the 

security of dPEKS scheme and to resist the offline KGA, e.g. [15,22–25,31] . Although outside adversaries can be restricted by 

these schemes, inside adversaries still can succeed in offline KGA. Recently, Huang et al. proposed to add authorization in 

ciphertext generation which makes an inside adversary lose the ability to generate valid ciphertexts, hence solved the inside 

offline KGA problem [16,17] . To reduce the heavy cost of public key certification, Abdalla et al. proposed the identity-based 

encryption with keyword search (IBEKS) [1] . Recently, to improve the efficiency, Tomida et al. proposed another concrete 

IBEKS scheme, denoted by ACIBEKS [28] , and Wu et al. proposed another IBEKS scheme with designated tester [30] , denoted 

by EdIBEKS. However, both ACIBEKS and EdIBEKS schemes cannot resist offline KGA launched by the server. Zhang et al. 

proposed an IBEKS scheme, denoted by ZXMZ-IBEKS, which can resist outside offline KGA based on the lattice assumption 

[33] . Although ZXMZ-IBEKS owns the security against quantum attacks, it cannot prevent the inside offline KGA. 

2. Preliminaries 

2.1. Bilinear pairing 

Let G 1 , G 2 and G T be cyclic groups of the prime order p . A map ˆ e : G 1 × G 2 → G T is a bilinear map if it satisfies: (1) 

∀ g 1 ∈ G 1 , g 2 ∈ G 2 and x, y ∈ Z , ˆ e (g x 
1 
, g 

y 
2 
) = ˆ e (g 1 , g 2 ) 

xy ; (2) if g 1 generates G 1 and g 2 generates G 2 , ˆ e (g 1 , g 1 ) generates G T ; (3) 
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ˆ e (g 1 , g 2 ) is efficiently computable for any g 1 , ∈ G 1 , g 2 ∈ G 2 [5] . Bilinear pairings can be classified into the following three 

types. 

• Type-I: G 1 = G 2 ; 

• Type-II: G 1 � = G 2 , but an efficiently computable homomorphism h̄ : G 2 → G 1 exists; 

• Type-III: G 1 � = G 2 , and no efficiently computable homomorphism from G 2 to G 1 exists [14] . 

2.2. Decisional bilinear Diffie–Hellman assumption 

Denote by Y = (g, g x , g y , g z ∈ G 1 , ̂  e : G 1 × G 1 → G T , Z ∈ G T ) . Let β be a bit such that β = 0 if Z = ˆ e (g, g) xyz , and β = 1 if Z 

is randomly selected from G T . The decisional bilinear Diffie–Hellman (DBDH) problem is to determine the value of β [6,18] . 

Definition 1 (DBDH assumption [6,18] ) . The DBDH assumption holds if the probability to solve DBDH problem is negligible 

for any probabilistic polynomial-time (PPT) algorithm A , i.e. 

| Pr [0 ← A (Y) | β = 0] − Pr [0 ← A (Y) | β = 1] | 
is negligible. 

2.3. Decisional bilinear Diffie–Hellman assumption in Type-III pairing 

Denote by Y 3 = (g 1 , g 
x 
1 
, g 

y 
1 

∈ G 1 , g 2 , g 
y 
2 
, g z 

2 
∈ G 2 , ̂  e : G 1 × G 2 → G T , Z ∈ G T ) . Let β be a bit such that β = 0 if Z = 

ˆ e (g 1 , g 2 ) 
xyz , and β = 1 if Z is randomly selected from G T . The decisional bilinear Diffie–Hellman in Type-III pairing (DBDH-3) 

problem is to determine the value of β [8] . 

Definition 2 (DBDH-3 assumption [8] ) . The DBDH-3 assumption holds if the probability to solve DBDH-3 problem is negli- 

gible for any probabilistic polynomial-time (PPT) algorithm A , i.e. 

| Pr [0 ← A ( Y 3 ) | β = 0] − Pr [0 ← A ( Y 3 ) | β = 1] | 
is negligible. 

3. Definitions and system model 

3.1. Definition 

A dIBAEKS scheme consists of the following (probabilistic) polynomial-time (PPT) algorithms. 

• (pp, msk ) ← Setup (λ) : Given a security parameter λ, it outputs the public parameter pp and a master secret key msk . 

• ( Pk s v r , Sk s v r ) ← KGen s v r (pp) : Given pp , it returns the server’s public/secret key pair ( Pk s v r , Sk s v r ) . 

• Sk ID i ← KGen usr (pp, msk , ID i ) : Given pp , msk and the identity ID i of user i , it outputs the secret key Sk ID i of user i . 

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r ) : Given pp , a keyword w , Pk s v r , Sk ID s , ID s of a sender, and ID r of the a receiver, 

it outputs a ciphertext C w, s, r . 

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r ) : Given pp, w , Pk s v r , Sk ID r of a receiver, and ID s , ID r , it outputs a trapdoor 

T w, s, r . 

• β ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r ) : Given pp , Sk s v r , ID s , ID r , C w, s, r and T w, s, r , it outputs a bit β , which is 1 if C w, s, r 

and T w, s, r contain the same keyword, and 0 otherwise. 

3.2. Security models 

Below we define the semantic security of dIBAEKS against inside offline KGA via three games between an adversary A 

and a challenger B. 

Game I: Ciphertext indistinguishability 

In this game, the semi-trusted server is assumed to be the adversary A . It should fulfill its obligation as required, but try 

to obtain information about users’ data. Ciphertext indistinguishability aims to prevent the adversary from distinguishing 

a given ciphertext is the encryption of which of the two keywords (selected by the adversary itself) if A does not have 

knowledge of the sender and receiver’s secret keys. In other words, ciphertext indistinguishability guarantees that the server 

cannot search over the ciphertexts if it is not authorized by the user. 

1. Setup : B generates the system parameter pp , the PKG’s key pair (pp, msk ) and the server’s key pair ( Pk s v r , Sk s v r ) . It 

invokes A on input pp and ( Pk s v r , Sk s v r ) . 

2. Phase 1 : A is allowed to adaptively issue queries for polynomially many times as below. 

• Extract Oracle: Given the identity ID i of user i , it returns the user’s secret key Sk ID i to A . 

• Trapdoor Oracle: Given a keyword w, ID s of a sender and ID r of a receiver, it computes and returns to A the corre- 

sponding trapdoor T w, s, r . 
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• Ciphertext Oracle: Given a keyword w, ID s of a sender and ID r of a receiver, it computes and returns to A the corre- 

sponding ciphertext C w, s, r . 

3. Challenge : A submits to B ID 

∗
s of a sender, ID 

∗
r of a receiver and two challenge keywords (w 

∗
0 
, w 

∗
1 
) . B randomly selects a 

bit β ∈ {0, 1}, computes C w 

∗
β

,s ∗,r ∗ ← PEKS (pp, w 

∗
β
, Pk s v r , Sk ID ∗s , ID 

∗
s , ID 

∗
r ) , and returns C w 

∗
β

,s ∗,r ∗ to A . 

4. Phase 2 : A continues to issue queries to the oracles as in Phase 1 . 

5. Guess : A outputs a bit β ′ ∈ {0, 1}, and wins the game if (1) β ′ = β, (2) I D 

∗
s , I D 

∗
r have not been queried for secret keys, 

and (3) 〈 w 

∗
0 
, ID 

∗
s , ID 

∗
r 〉 , 〈 w 

∗
1 
, ID 

∗
s , ID 

∗
r 〉 have not been submitted to Trapdoor Oracle nor Ciphertext Oracle. 

A ’s advantage of successfully distinguishing the ciphertexts of dIBAEKS is defined as 

Adv C A (λ) = 

∣
∣Pr [ β ′ = β] − 1 / 2 

∣
∣. 

Definition 3. A dIBAEKS scheme satisfies ciphertext indistinguishability if for any PPT adversary A , Adv C A (λ) ≤ negl (λ) . 

Game II: Trapdoor indistinguishability 

Same as Game I, the semi-trusted cloud server is also assumed to be the adversary A in this game. The difference is 

that now trapdoor indistinguishability aims to prevent A from learning information about the keyword from simply a given 

trapdoor if A does not know the sender and receiver’s secret keys. It indicates that even the server cannot generates valid 

ciphertexts with respect to the sender and the receiver. 

1. Setup : Same as in Game I. 

2. Phase 1 : Same as in Game I. 

3. Challenge : A submits to B ID 

∗
s of a sender, ID 

∗
r of a receiver and two challenge keywords (w 

∗
0 , w 

∗
1 ) , B randomly selects a 

bit β ∈ {0, 1}, computes T w 

∗
β

,s ∗,r ∗ ← Trap do or (pp, w 

∗
β
, ID 

∗
s , Sk ID ∗r ) , and returns T w 

∗
β

,s ∗,r ∗ to A . 

4. Phase 2 : Same as in Game I. 

5. Guess : A outputs a bit β ′ ∈ {0, 1}, and wins the game if (1) β ′ = β, (2) I D 

∗
s , I D 

∗
r have not been queried for secret keys, 

and (3) 〈 w 

∗
0 
, ID 

∗
s , ID 

∗
r 〉 , 〈 w 

∗
1 
, ID 

∗
s , ID 

∗
r 〉 have not been submitted to Trapdoor Oracle nor Ciphertext Oracle. 

A ’s advantage of successfully distinguishing the trapdoors of dIBAEKS is defined as 

Adv T A (λ) = 

∣
∣Pr [ β ′ = β] − 1 / 2 

∣
∣. 

Definition 4. A dIBAEKS scheme satisfies trapdoor indistinguishability if for any PPT adversary A , Adv T A (λ) ≤ negl (λ) . 

Remark. If a dIBAEKS scheme � satisfies ciphertext indistinguishability, any PPT adversary A without the knowledge of 

secret keys of the sender ID s and the receiver ID r , is unable to forge a valid trapdoor of either of the challenge keywords 

w.r.t. ID s and ID r . To understand it, assume that A could forge a valid trapdoor of either w 

∗
0 

or w 

∗
1 

without knowledge of 

secret keys of ID s and ID r . Then A easily wins Game I by running the Test algorithm taking as input the challenge ciphertext 

and the forged trapdoor, which contradicts the ciphertext indistinguishability of �. 

Similarly, we can show that if a dIBAEKS scheme satisfies trapdoor indistinguishability, any PPT adversary without the 

knowledge of secret keys of ID s and ID r , is unable to forge a valid ciphertext of either of the challenge keywords w.r.t. ID s 

and ID r . 

Game III: Designated testability 

In this game, A is assumed to be an outside adversary which may obtain users’ ciphertexts by breaking into the cloud, 

and obtain trapdoors by monitoring the communication channel between users and the cloud. However, A does not have the 

server’s secret key. Designated testability aims to ensure that only the designated server could search over the ciphertexts. 

1. Setup : B generates the system parameter pp , PKG’s secret key msk and the server’s key pair ( Pk s v r , Sk s v r ) . It invokes A 

on input pp and Pk s v r . 

2. Phase 1 : A could adaptively issue queries to the oracle below for polynomially many times. 

• Extract Oracle: Given the identity ID i of user i , it returns the secret key Sk ID i . 

3. Challenge : A submits ID 

∗
s of a sender, ID 

∗
r of a receiver and two challenge keywords (w 

∗
0 , w 

∗
1 ) to B . B randomly selects a 

bit β ∈ {0, 1}, computes C w 

∗
β

,s ∗,r ∗ ← PEKS (pp, w 

∗
β
, ID 

∗
r , Sk ID ∗s ) , and returns C w 

∗
β

,s ∗,r ∗ to A . 

4. Phase 2 : A continues to issuing queries as in Phase 1 . 

5. Guess : A outputs a bit β ′ ∈ {0, 1}, and wins the game if β ′ = β . 

Different from Game I and Game II , there is no restriction on the two challenge keywords and identities, which means 

that A can obtain secret keys of the challenge identities and trapdoors of the challenge keywords. A ’s advantage of success- 

fully breaking the Designated Testability is defined as 

Adv D A (λ) = 

∣
∣Pr [ β ′ = β] − 1 / 2 

∣
∣. 

Definition 5. A dIBAEKS scheme satisfies designated testability if for any PPT adversary A , Adv D A (λ) ≤ negl (λ) . 

Notice that the designated testability defined above is actually of CPA type, as the adversary is not allowed to access to 

Test Oracle, which on input a ciphertext and a trapdoor, as well as the sender and the receiver’s identities, outputs a bit 
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indicating whether the ciphertext contains the same keyword as the trapdoor. Below we define a strengthened version of 

the designated testability, called designated testability with test query , which is of CCA type. 

Game IV: Designated testability with Test Oracle 

The game is almost the same as Game III, except that A is additionally allowed to issue queries to the Test Oracle as 

below in both Phase 1 and Phase 2 , and (I D 

∗
s , I D 

∗
r , C w 

∗
β

,s ∗,r ∗ , ·) cannot appear in the Test Oracle in Phase 2 . 

• Test Oracle: Given ID s of a sender, ID r of a receiver, C w, s, r and T w, s, r , it returns 1 if C w, s, r and T w, s, r are both valid and 

contain the same keyword, and 0 otherwise. 

A ’s advantage of breaking the Designated Testability with Test Query is defined as 

Adv DT 
A (λ) = 

∣
∣Pr [ β ′ = β] − 1 / 2 

∣
∣. 

Definition 6. A dIBAEKS scheme satisfies designated testability with Test Oracle if for any PPT adversary A , Adv DT 
A (λ) ≤

negl (λ) . 

Remark. The reason of restricting A from issuing test queries on input (I D 

∗
s , I D 

∗
r , C w 

∗
β

,s ∗,r ∗ , ·) for any trapdoor is that A 

is allowed to know any user’s secret key, and thus can compute the trapdoor of any keyword w.r.t. any sender and any 

receiver. Due to the trapdoor indistinguishability, we cannot tell a given trapdoor is related to which keyword. 

4. Our dIBAEKS scheme 

4.1. Construction 

Now we propose the construction of dIBAEKS, which makes use of the advantage of bilinear pairing. 

• (pp, msk ) ← Setup (λ) : Given a security parameter λ, it randomly selects the master secret key msk = α ∈ Z p and 

computes mpk = g α . It sets the pp = (G 1 , G T , ̂  e , p, g, h, H, H 1 , mpk ) , where G 1 , G T are cyclic groups of prime order p , 

ˆ e : G 1 × G 1 → G T is a bilinear pairing, g, h are generators of G 1 , and H : G T × { 0 , 1 } ∗ → G 1 , H 1 : { 0 , 1 } ∗ → G 1 are crypto- 

graphic hash functions. It outputs (pp, msk ) . 

• ( Pk s v r , Sk s v r ) ← KGen s v r (pp) : Return the server’s public/secret key pair ( Pk s v r , Sk s v r ) = (g t , t) , where t is randomly se- 

lected from Z p . 

• Sk ID ← KGen usr (pp, msk , ID ) : Return the secret key Sk ID = H 1 (ID ) α . 

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r ) : It randomly selects s ∈ Z p , computes and returns a ciphertext C w,s,r = 

(C 1 , C 2 , C 3 ) , where 

C 1 = 

ˆ e (H(k, w ) , Pk s s v r ) , C 2 = g s , C 3 = h 

s , and k = 

ˆ e ( Sk ID s , H 1 (ID r )) . 

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r ) : It randomly selects r ∈ Z p , computes and returns a trapdoor T w,s,r = 

(T 1 , T 2 ) , where 

T 1 = H(k, w ) · h 

r , T 2 = g r , and k = 

ˆ e (H 1 (ID s ) , Sk ID r ) . 

• 1 / 0 ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r ) : Parse the ciphertext C w, s, r as ( C 1 , C 2 , C 3 ) and the trapdoor T w, s, r as ( T 1 , T 2 ). 

It returns 1 if 

C 1 · ˆ e (T Sk s v r 
2 

, C 3 ) = 

ˆ e (T Sk s v r 
1 

, C 2 ) , 

and 0 otherwise. 

4.2. Security analysis 

We formally analyze the security of our dIBAEKS scheme as below. 

Theorem 1. The proposed dIBAEKS scheme satisfies ciphertext indistinguishability if DBDH assumption holds. 

Proof. Suppose A is a PPT adversary trying to break the ciphertext indistinguishability. We build an algorithm B to solve 

DBDH problem. Given a problem instance, e.g. Y = (G 1 , G T , ̂  e , p, g, g x , g y , g z , Z ), B works as below. 

1. Setup : B randomly selects h from G 1 and t ∈ Z p , and sets pp = (G 1 , G T , ̂  e , p, g, h, mpk = g z ) and ( Pk s v r , Sk s v r ) = (g t , t) . It 

invokes A on input pp and ( Pk s v r , Sk s v r ) . 

2. Phase 1 : A adaptively issues queries to the following oracles which are simulated by B. We assume that A does not 

repeat queries to the same oracle, and that A would not use an identity ID in any computation before issuing it to 

random oracle H 1 ; otherwise, the value of H 1 ( ID ) is random to A and the probability that A guesses the correct value of 

H 1 ( ID ) is negligible. 

• Hash Oracle O H : Given an element k ∈ G T and a keyword w , it selects a random element from G T , and returns it as 

the output of H ( k, w ). 
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• Hash Oracle O H 1 
: The oracle maintains an initially empty list L H 1 = {〈·, ·, ·〉} . Assume A issues queries to O H 1 

for at 

most q H times. it randomly chooses i, j ∈ {1, ���, q }, and guesses that the i -th query and the j -th query issued by A to 

O H 1 
are the challenge sender and receiver’s identities (I D 

∗
s , I D 

∗
r ) , respectively. Given an identity ID , it returns A based 

on the following cases. 

– If this is the i -th query, e.g. ID = ID 

∗
s , it returns H 1 (ID ) = g x , and adds 〈 ID, g x , ⊥〉 into L H 1 . 

– If this is the j -th query, e.g. ID = ID 

∗
r , it returns H 1 (ID ) = g y , and adds 〈 ID, g y , ⊥〉 into L H 1 . 

– Otherwise, it randomly selects v ∈ Z p , returns H 1 (ID ) = g v , and adds 〈 ID, g v , v 〉 into L H 1 . 

• Extract Oracle O E : Taking ID as input, if ID = ID 

∗
s or ID = ID 

∗
r , it outputs a random bit β ′ and aborts. Otherwise, it 

retrieves the tuple 〈 ID, H 1 ( ID ), v 〉 from L H 1 , and returns the secret key Sk ID = (g z ) v to A . 

• Ciphertext Oracle O C : Given ( w, ID s , ID r ), it randomly selects s ∈ Z p , and computes the ciphertext C w,s,r = (C 1 , C 2 , C 3 ) 

based on the following cases. 

– If (I D s , I D r ) = (I D 

∗
s , I D 

∗
r ) or (I D s , I D r ) = (I D 

∗
r , I D 

∗
s ) , it computes 

C 1 = 

ˆ e (H(Z, w ) , Pk s v r ) 
s , C 2 = g s , C 3 = h 

s . 

– Otherwise, at least one of ID s and ID r is not equal to ID 

∗
s nor ID 

∗
r . W.l.o.g., we assume that I D s �∈ { I D 

∗
s , I D 

∗
r } . It 

retrieves the tuple 〈 ID s , H 1 ( ID s ), v s 〉 from L H 1 , computes k = ˆ e (g z , H 1 (ID r )) 
v s and returns 

C 1 = 

ˆ e (H(k, w ) , Pk s v r ) 
s , C 2 = g s , C 3 = h 

s . 

• Trapdoor Oracle O T : Given ( w, ID s , ID r ), it randomly selects r ∈ Z p , and computes the trapdoor T w,s,r = (T 1 , T 2 ) based 

on the following cases. 

– If (I D s , I D r ) = (I D 

∗
s , I D 

∗
r ) or (I D s , I D r ) = (I D 

∗
r , I D 

∗
s ) , it computes 

T 1 = H(Z, w ) · h 

r , T 2 = g r . 

– Otherwise, at least one of ID s and ID r is not equal to ID 

∗
s nor ID 

∗
r . W.l.o.g., we assume that I D s �∈ { I D 

∗
s , I D 

∗
r } . It 

retrieves the tuple 〈 ID s , H 1 ( ID s ), v s 〉 from L H 1 , computes k ′ = ˆ e (g z , H 1 (ID r )) v s and returns 

T 1 = H(k ′ , w ) · h 

r , T 2 = g r . 

3. Challenge : A submits two challenge keywords w 

∗
0 
, w 

∗
1 
, ID 

∗
s of a sender and ID 

∗
r of a receiver. B randomly selects a bit 

ˆ β ∈ { 0 , 1 } , an element s ∈ Z p , and returns the ciphertext C w 

∗
ˆ β
,s ∗,r ∗ = (C ∗1 , C 

∗
2 , C 

∗
3 ) , where 

C ∗1 = 

ˆ e (H(Z, w 

∗
ˆ β
) , Pk s v r ) 

s , C ∗2 = g s , C ∗3 = h 

s . 

4. Phase 2 : Same as in Phase 1 . 

5. Guess : A outputs a bit ˆ β ′ . B outputs β ′ = 0 , if ˆ β ′ = 

ˆ β, and 1 otherwise. 

B would abort if its guess of the challenge identities is not correct. Denote this event by F . If B aborts, the random bit 

output by B is equal to β with probability 1/2. As B makes its guess at random, the probability that F does not happen is 

1 /q H (q H − 1) , i.e. Pr [ F ] = 1 /q H (q H − 1) . 

Suppose that B does not abort. If Z = ˆ e (g, g) xyz , e.g. β = 0 , the simulation provided by B is identical to A ’s view in a real 

attack, and A would win the game with probability Adv C A (λ) + 1 / 2 . If Z is randomly selected from G T , then k = H(Z, w ˆ β
) 

will be a random element of G 1 , and thus the challenge ciphertext completely hides the bit ˆ β . Although in this case the C 1 
component of a ciphertext (and the T 1 component of a trapdoor) w.r.t. ID 

∗
s and ID 

∗
r in the simulation above is not exactly the 

same as a real ciphertext, B uses the same way to generate the ciphertext C w,s ∗,r ∗ and the trapdoor T w,s ∗,r ∗ so that C w,s ∗,r ∗ and 

T w,s ∗,r ∗ will make the Test algorithm output 1 if the keywords are the same. Hence, A would win the game with probability 

at most 1/2. Therefore, the advantage of B in solving the DBDH problem is 

Adv DBDH 
B (λ) = 

∣
∣Pr [ β ′ = β| F ] · Pr [ F ] + Pr [ β ′ = β| F ] · Pr [ F ] − 1 / 2 

∣
∣

= 

∣
∣
∣

1 

2 

· (1 − Pr [ F ]) + ( Pr [ β ′ = 0 | F ∧ β = 0] · Pr [ β = 0] 

+ Pr [ β ′ = 1 | F ∧ β = 1] · Pr [ β = 1]) · Pr [ F ] − 1 

2 

∣
∣
∣

≥
∣
∣
∣

1 

2 

· (1 − Pr [ F ]) + Pr [ F ] · ((Adv C A (λ) + 

1 

2 

) · 1 

2 

+ 

1 

2 

· 1 

2 

) − 1 

2 

∣
∣
∣

= 

1 

2 

Pr [ F ] · Adv C A (λ) 

= 

1 

2 q H (q H − 1) 
· Adv C A (λ) . 

If Adv C A (λ) is non-negligible, so is Adv DBDH 
B (λ) . �

Theorem 2. The proposed dIBAEKS scheme satisfies trapdoor indistinguishability if DBDH assumption holds. 
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The proof is similar with that of Theorem 1 . The difference is that in the proof of Theorem 2 , B generates the challenge 

trapdoor as T w 

∗
ˆ β
,s ∗,r ∗ = (T ∗1 , T 

∗
2 ) , where 

T ∗1 = H(Z, w 

∗
ˆ β
) · h 

r , T ∗2 = g r , 

and r ∈ Z p is randomly chosen by B. We omit the detailed proof here for simplicity. 

Theorem 3. Our dIBAEKS scheme satisfies designated testability if DBDH assumption holds. 

Proof. Suppose A is an adversary trying to break the designated testability of our dIBAEKS scheme. We build an algorithm 

B to solve DBDH problem. Given a problem instance, e.g. Y = (G 1 , G T , ̂  e , p, g, g x , g y , g z , Z ), B works as below. 

1. Setup : B randomly selects α, γ ∈ Z p and sets pp = (G 1 , G T , ̂  e , p, g, h = g γ , mpk = g α) and Pk s v r = g x . It invokes A on 

input pp and Pk s v r . 

2. Phase 1 : B answers queries of A as below, assuming that A does not repeat its queries. 

• Hash Query H : B maintains a lit L H = {〈·, ·, ·〉} , which is initially empty. Given an element k ∈ G T and a keyword w , B
randomly selects v k,w 

∈ Z p , returns 

H(k, w ) = g y · g v k,w , 

and adds 〈 ( k, w ), H ( k, w ), v k, w 

〉 into L H . 

• Hash Query H 1 : Given ID , B selects a random element from G 1 , and returns it to A as the output of H 1 ( ID ). 

• Exact Query: Given ID , B returns Sk ID = H 1 (ID ) α . 

3. Challenge : A submits to B two challenge keywords (w 

∗
0 
, w 

∗
1 
) , ID 

∗
s of a sender and ID 

∗
r of a receiver. B randomly selects 

a bit ˆ β ∈ { 0 , 1 } , and retrieves the tuple 〈 (k ∗, w 

∗
ˆ β
) , H(k ∗, w 

∗
ˆ β
) , v k ∗,w 

∗
ˆ β
〉 from L H , where k ∗ = ˆ e (H 1 (ID 

∗
s ) , H 1 (ID 

∗
r )) 

α . If there 

is no such a tuple, B generates it as in answering A ’s H queries. It then computes and returns the challenge ciphertext 

C w 

∗
ˆ β
,s ∗,r ∗ = (C ∗

1 
, C ∗

2 
, C ∗

3 
) , where 

C ∗1 = Z · ˆ e (g z , g x ) 
v k,w ∗

ˆ β , C ∗2 = g z , C ∗3 = (g z ) γ = h 

z . 

4. Phase 2 : Same as in Phase 1 . 

5. Guess : A outputs a bit ˆ β ′ . B outputs β ′ = 0 , if ˆ β ′ = 

ˆ β, and 1 otherwise. 

If Z = ˆ e (g, g) xyz , we have that C ∗1 = ˆ e (H(k, w 

∗
ˆ β
) , Pk s v r ) z , and C w 

∗
ˆ β
,s ∗,r ∗ is a well distributed challenge ciphertext. Hence, the 

view of A is identical to that in a real attack, and A would win the game with the probability of Adv D A (λ) . If Z is random, 

so is C ∗
1 

. The challenge ciphertext completely hides the bit ˆ β, and A wins the game only with probability 1/2. We then have 

that the probability that B solves the DBDH problem is 

Adv DBDH 
B (λ) = 

∣
∣Pr [ β ′ = 1 | β = 1] · Pr [ β = 1] + Pr [ β ′ = 0 | β = 0] · Pr [ β = 0] − 1 / 2 

∣
∣

= 

∣
∣1 / 2 · 1 / 2 + 1 / 2 · Adv D A (λ) − 1 / 2 

∣
∣

= 1 / 2 Adv D A (λ) . 

If Adv D A (λ) is non-negligible, so is Adv DBDH 
B (λ) . �

4.3. How to achieve designated testability with Test Oracle 

In the above subsection, we proved the designated testability of our proposed scheme, which is of CPA type. However, 

as both the ciphertext and the trapdoor in our scheme are malleable, it is not hard to see that if A is allowed to access the 

Test Oracle (c.f. Def. 6 ), it will break the designated testability trivially. To solve this issue, we modify the scheme to achieve 

the designated testability with Test Oracle . The new scheme dIBAEKS ′ is described as below. 

• (pp, msk ) ← Setup (λ) : it is the same as that in the original scheme, except that here it selects two additional crypto- 

graphic hash function H 2 : G T × G 

2 
1 

→ G 1 and H 3 : G 

2 
1 

→ G 1 . 

• ( Pk s v r , Sk s v r ) ← KGen s v r (pp) : Same as in the original scheme. 

• Sk ID ← KGen usr (pp, msk , ID ) : Same as in the original scheme. 

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r ) : Randomly select s ∈ Z p , compute and return C w,s,r = (C 1 , C 2 , C 3 , C 4 ) , where 

C 1 = 

ˆ e (H(k, w ) , Pk s v r ) 
s , C 2 = g s , C 3 = h 

s , 

C 4 = H 2 (C 1 , C 2 , C 3 ) 
s , k = 

ˆ e ( Sk ID s , H 1 (ID r )) . 

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r ) : Randomly select r ∈ Z p , compute and return T w,s,r = (T 1 , T 2 , T 3 ) , where 

T 1 = H(k, w ) · h 

r , T 2 = g r , T 3 = H 3 (T 1 , T 2 ) 
r , k = 

ˆ e (H 1 (ID s ) , Sk ID r ) . 
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• 1 / 0 ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r ) : Return 1 if the following equations hold: 

ˆ e (C 2 , h ) = 

ˆ e (g, C 3 ) , (1) 

ˆ e (C 2 , H 2 (C 1 , C 2 , C 3 )) = 

ˆ e (g, C 4 ) , (2) 

ˆ e (T 2 , H 3 (T 1 , T 2 )) = 

ˆ e (g, T 3 ) , (3) 

C 1 · ˆ e (T 2 , C 3 ) 
Sk s v r = 

ˆ e (T 1 , C 2 ) 
Sk s v r , (4) 

and 0 otherwise. 

Remark. The Test algorithm requires eight pairing evaluations, which is costly. To reduce the computational complexity, 

Eqs. (1 )–( 3) can be combined into one single equation as follows, 

ˆ e (C 2 , h 

μ1 · H 2 (C 1 , C 2 , C 3 ) 
μ2 ) · ˆ e (T 2 , H 3 (T 1 , T 2 ) 

μ3 ) = 

ˆ e (g, C 
μ1 

3 
· C 

μ2 

4 
· T 

μ3 

3 
) , 

where μ1 , μ2 , μ3 are randomly selected from Z p . The new equation requires three pairing evaluations only. With over- 

whelming probability, if Eq. (4) holds, Eqs. (1 )–( 3) hold as well. 

The main purpose of introducing C 4 in the ciphertext and T 3 in the trapdoor is to prevent an adversary from modifying 

the ciphertext and the trapdoor. Below we analyze the security of the new scheme dIBAEKS ′ . 

Theorem 4. The new scheme dIBAEKS ′ satisfies ciphertext indistinguishability if DBDH assumption holds. 

Theorem 5. The new scheme dIBAEKS ′ satisfies trapdoor indistinguishability if DBDH assumption holds. 

Theorem 6. The new scheme dIBAEKS ′ satisfies designated testability with Test Oracle if DBDH assumption holds. 

The proofs of Theorems 4 and 5 are the same as those of Theorems 1 and 2 , respectively, and thus we omit them for 

simplicity. Below we provide the proof of Theorem 6 . 

Proof. Suppose A is an adversary trying to break the designated testability of our dIBAEKS scheme. We build an algorithm 

B to solve DBDH problem. Given a problem instance, e.g. Y = (G 1 , G T , ̂  e , p, g, g x , g y , g z , Z ), B works as below. 

1. Setup : Same as that in the proof of Theorem 3 . 

2. Phase 1 : Same as that in the proof of Theorem 3 , except that the additional Hash Oracles and Test Oracle are answered 

by B as follows. 

• Hash Oracle H 2 : it maintain an initially empty list L H 2 = {〈·, ·, ·〉} . Given ( C 1 , C 2 , C 3 ), B randomly selects δ ∈ Z p , returns 

H 2 (C 1 , C 2 , C 3 ) = (g x ) δ, and adds the tuple 〈 ( C 1 , C 2 , C 3 ), H 2 ( C 1 , C 2 , C 3 ), δ〉 into L H 2 . 

• Hash Oracle H 3 : it maintain an initially empty list L H 3 = {〈·, ·, ·〉} . Given ( T 1 , T 2 ), B randomly selects ξ ∈ Z p , returns 

H 3 (T 1 , T 2 ) = (g x ) ξ , and adds the tuple 〈 ( T 1 , T 2 ), H 2 ( T 1 , T 2 ), ξ 〉 into L H 3 . 

• Test Oracle: Given ( ID s , ID r , C w, s, r , T w, s, r ), where C w,s,r = (C 1 , C 2 , C 3 , C 4 ) and T w,s,r = (T 1 , T 2 , T 3 ) , it returns 0 if either 

of Eqs. (1 )–( 3) does not hold. Otherwise, it retrieves the tuple 〈 ( C 1 , C 2 , C 3 ), H 2 ( C 1 , C 2 , C 3 ), δ〉 from L H 2 and the tuple 

〈 ( T 1 , T 2 ), H 3 ( T 1 , T 2 ), ξ 〉 from L H 3 . If there are no such tuples, it generates them as in answering H 2 and H 3 queries. It 

returns 1 if the following equation holds: 

C 1 · ˆ e ( T 3 
1 
ξ , C 3 ) = 

ˆ e (T 1 , C 4 
1 
δ ) , 

and 0 otherwise. Notice that if either C w, s, r , or T w, s, r , is not well-formed, it would not pass the checks above. 

3. Challenge : At some point, A submits to B ID 

∗
s of a sender, ID 

∗
r of a receiver, and two challenge keywords 

(w 

∗
0 , w 

∗
1 ) . B randomly selects a bit ˆ β ∈ { 0 , 1 } , and retrieves the tuple 〈 (k ∗, w 

∗
ˆ β
) , H(k ∗, w 

∗
ˆ β
) , v k ∗,w 

∗
ˆ β
〉 from L H , where 

k ∗ = ˆ e (H 1 (ID 

∗
s ) , H 1 (ID 

∗
r )) 

α . If there is no such a tuple, B generates it as in answering A ’s H queries. It randomly selects 

δ∗ ∈ Z p , returns the challenge ciphertext C w 

∗
ˆ β
,s ∗,r ∗ = (C ∗1 , C 

∗
2 , C 

∗
3 , C 

∗
4 ) , where 

C ∗1 = 

ˆ e (H(k ∗, w 

∗
ˆ β
) , Pk s v r ) 

z = Z · ˆ e (g z , g x ) 
h k,w ∗

ˆ β , 

C ∗2 = g z , C ∗3 = (g z ) r 
′ 
, C ∗4 = (g z ) δ

∗
, 

and adds the tuple 〈 (C ∗
1 
, C ∗

2 
, C ∗

3 
) , g δ

∗
, δ∗〉 into L H 2 . 

4. Phase 2 : Same as in Phase 1 except that the inputs (I D 

∗
s , I D 

∗
r , C w 

∗
ˆ β
,s ∗,r ∗ , ·) cannot appear in the Test Oracle. 

5. Guess : A outputs a bit ˆ β ′ . B outputs β ′ = 0 , if ˆ β ′ = 

ˆ β, and 1 otherwise. 

By a similar probability analysis, we have that if A breaks the designated testability with test query with non-negligible 

advantage, B breaks the DBDH assumption with non-negligible advantage as well. 

�
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Table 1 

Comparison of security. 

Schemes OKGA/w OKGA/o IKGA DT ID-based 

PAEKS [16] 
√ √ √ × ×

ACIBEKS [28] 
√ × × × √ 

EdIBEKS [30] 
√ √ × √ √ 

dIBAEKS 
√ √ √ √ √ 

dIBAEKS-3 
√ √ √ √ √ 

OKGA/w: security against outside keyword guessing attacks with se- 

cure channel. OKGA/o: security against outside keyword guessing at- 

tacks without secure channel. IKGA: security against inside keyword 

guessing attacks. DT: designated testability. 

5. dIBAEKS scheme based on type-III pairing 

As pointed out by Chatterjee et al. [8] , the symmetric bilinear pairing runs slower than asymmetric bilinear pairing. To 

further improve the computational efficiency in practice, we modify our dIBAEKS scheme to work in the Type-III bilinear 

pairing setting, and propose another scheme, denoted by dBIAEKS-3. 

• (pp, msk ) ← Setup (λ) : Given a security parameter λ, the algorithm randomly selects a master secret key msk = α ∈ Z p 

and computes mpk = g α ∈ G 1 . It sets pp = (G 1 , G 2 , G T , ̂  e , p, g ∈ G 1 , h ∈ G 2 , H, H 1 , H 2 mpk ) , where G 1 , G 2 , G T are cyclic 

groups of prime order p , ˆ e : G 1 × G 2 → G T is a Type-III bilinear pairing, g is a generator of G 1 , h is a generator of G 2 , 

and H : G T × { 0 , 1 } ∗ → G 1 , H 1 : { 0 , 1 } ∗ → G 1 , H 2 : { 0 , 1 } ∗ → G 2 are cryptographic hash functions. The algorithm outputs 

(pp, msk ) . 

• ( Pk s v r , Sk s v r ) ← KGen s v r (pp) : Return the server’s public/secret key pair ( Pk s v r , Sk s v r ) = (h t , t) , where t is randomly se- 

lected from Z p . 

• Sk ID ← KGen usr (pp, msk , ID ) : Return the secret key Sk ID = ( Sk (1) 
ID 

, Sk (2) 
ID 

) = (H 1 (ID ) α, H 2 ( ID ) α). 

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r ) : It randomly selects s ∈ Z p , computes and returns a ciphertext C w,s,r = 

(C 1 , C 2 , C 3 ) , where 

C 1 = 

ˆ e (H(k, w ) s , Pk s v r ) , C 2 = g s , C 3 = h 

s , and k = 

ˆ e ( Sk 
(1) 
ID s 

, H 2 (ID r )) . 

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r ) : It randomly selects r ∈ Z p , computes and returns a trapdoor T w,s,r = 

(T 1 , T 2 ) , where 

T 1 = H(k, w ) · g r , T 2 = h 

r , and k = 

ˆ e (H 1 (ID s ) , Sk 
(2) 
ID r 

) . 

• 1 / 0 ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r ) : Parse the ciphertext C w, s, r as ( C 1 , C 2 , C 3 ) and the trapdoor T w, s, r as ( T 1 , T 2 ). 

It returns 1 if 

C 1 · ˆ e (C Sk s v r 
2 

, T 2 ) = 

ˆ e (T Sk s v r 
1 

, C 3 ) , 

and 0 otherwise. 

Theorem 7. The proposed dIBAEKS-3 scheme satisfies ciphertext indistinguishability if DBDH-3 assumption holds. 

Theorem 8. The proposed dIBAEKS-3 scheme satisfies trapdoor indistinguishability if DBDH-3 assumption holds. 

Theorem 9. The proposed dIBAEKS-3 scheme satisfies designated testability if DBDH-3 assumption holds. 

Security proofs of dIBAEKS-3 scheme are quite similar with those of dIBAEKS scheme in Section 4 , hence we omit them 

here. The difference is that the security of the dIBAEKS-3 scheme is now based on DBDH-3 assumption instead of DBDH 

assumption. 

6. Analysis and comparison 

We compare our dIBAEKS and dIBAEKS-3 schemes with related schemes in the literature, e.g. PAEKS [16] , ACIBEKS 

[28] and EdIBEKS [30] , in terms of security, computational overhead and communication overhead. Table 1 shows the secu- 

rity comparison between these schemes and our dIBAEKS schemes. In the PKI setting, PAEKS is secure against outside and 

inside offline KGA, but it does not satisfy the designated testability and suffers from the complex certificate management 

problem. In identity based encryption setting, ACIBEKS is only secure against outside KGA attacks, and needs a secure chan- 

nel. EdIBEKS can resist outside offline KGA attacks, but is vulnerable to inside offline KGA attacks. Our dIBAEKSs are secure 

against inside offline KGA attacks and satisfy the designated testability. 

Computational complexity comparison of the five schemes is given in Table 2 . We denote by E the evaluation of a modu- 

lar exponentiation on a G 1 element in the Type-I symmetric bilinear pairing setting, and denote by E 1 and E 2 the evaluation 
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Fig. 3. Running time of PEKS algorithm. 

Fig. 4. Running time of Trap do or algorithm. 

of a modular exponentiation on a G 1 element and that on a G 2 element, respectively. Commonly, in both settings, we de- 

note the evaluation of a hash function by H, a bilinear pairing by P, a multiplication by M and a division by D, respectively. 

We compare the running overhead of PEKS , Trap do or and Test algorithms of schemes in Table 2 . Overall, the computational 

cost of our dIBAEKS schemes are slightly larger than but still comparable with PAEKS, ACIEKS and EdIBEKS. 

Communication overhead of the four schemes is given in Table 3 . Denote the length of an element in G 1 , G 2 , G T , and 

set Z p by L 1 , L 2 , L T , and L p , respectively. We unify the lengths of the collision-resistant hash functions in different schemes 

and denote the length by h . In identity-based encryption, because users’ public keys are their identities, which could be of 

arbitrary length, so we omit the lengths of public keys in identity-based schemes. According to Table 3 , the communication 

overhead of our IBAEKS scheme is almost the same as EdIBEKS, and is slightly larger than PAEKS and ACIEKS. 

We implemented the four schemes using C language in a VMware virtual machine (VMware Workstation 14 Pro v14.1.3) 

[29] with 2GB memory. The host machine is a workstation with a 14-core 3.10 GHz Intel i9-7940X CPU, 64GB memory and 

Windows 10 Professional OS. We used PBC library [20] to implement the bilinear pairing, and chose Type-A curve (with 
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Fig. 5. Running time of Test algorithm. 

Fig. 6. Average running time of each algorithm. 

qbits = 2048) of the PBC in the symmetric setting and Type-F curve (with 451-bit base field) in the asymmetric setting 

[3,20] . 

Figs. 3 and 4 show the running time of PEKS and Trap do or algorithms of the schemes, respectively. The x -axis is the 

number of keywords to be encrypted, and the y -axis is the time needed for the PEKS algorithm to encrypt all the keywords 

(resp. Trap do or algorithm to generate trapdoors for all the keywords). 

Fig. 5 shows the running time of Test algorithm of the schemes. The x -axis is the number of ciphertexts to be tested, 

and the y -axis is the running time needed for Test to finish all the tests. Fig. 6 shows the average running time of each 

algorithm of the schemes. Overall, our dIBAEKS is slightly less computationally efficient than but still comparable with 

the three related schemes, but it provides stronger security guarantee and better protects users’ privacy. Furthermore, our 

dIBAEKS-3 scheme owns the fastest Test algorithm among the schemes, due to the employment of Type-III bilinear pairing, 

which means that users need the least time to search over encrypted data in practice. 
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Table 2 

Comparison of computational complexity. 

Schemes PEKS Trap do or Test 

PAEKS [16] 3E + H + M E + H + P 2P + M 

ACIBEKS [28] 3E + H + P E + H H + P 

EdIBEKS [30] 3E + H + P + M 2E + H + D 2E + H + 2P + M 

dIBAEKS 3E + H + 2P 2E + H + P + M 2E + 2P + M 

dIBAEKS-3 2E 1 + 1E 2 + H + 2P 1E 1 + 1E 2 + H + P + M 2E 1 + 2P + M 

Table 3 

Comparison of communicational overhead. 

Schemes Pk / ID Sk ID C T w 

PAEKS [16] 1 L 1 1 L p 2 L 1 1 L T 
ACIBEKS [28] ∗ 1 L 1 1 L 1 + h 1 L 1 
EdIBEKS [30] ∗ 1 L 1 2 L 1 + h 2 L 1 
dIBAEKS ∗ 1 L 1 2 L 1 + 1 L T 2 L 1 
dIBAEKS-3 ∗ 1 L 1 + 1 L 2 1 L 1 + 1 L 2 + 1 L T 1 L 1 + 1 L 2 

∗: The length is not fixed. 

7. Conclusion and future works 

We introduced the notion of designated-server identity-based authenticated encryption with keyword search, and pro- 

posed a concrete dIBAEKS scheme. We proved it to be secure against inside offline KGA and achieve designated testability 

based on a simple number-theoretic assumption. The scheme could be slightly modified to satisfy the CCA-type designated 

testability. We also showed how to modify the scheme to work in asymmetric bilinear pairing setting to improve the ef- 

ficiency. dIBAEKS can be well applied to the encrypted email system to protect users’ privacy. However, our dIBAEKS and 

dIBAEKS-3 schemes have the property that a trapdoor can only be used to search over ciphertexts sent from a specific 

sender, as both ciphertexts and trapdoors are binded with the identity of the sender (and that of the receiver). We consider 

to construct a more flexible dIBAEKS scheme in which a trapdoor can be used to search over multiple users’ encrypted data 

in the future work. 
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