
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2019

Designated-server identity-based authenticated encryption with Designated-server identity-based authenticated encryption with

keyword search for encrypted emails keyword search for encrypted emails

Hongbo LI

Qiong HUANG

Jian SHEN

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Willy SUSILO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Data Storage Systems Commons, and the Information Security Commons

Citation Citation
LI, Hongbo; HUANG, Qiong; SHEN, Jian; YANG, Guomin; and SUSILO, Willy. Designated-server identity-
based authenticated encryption with keyword search for encrypted emails. (2019). Information Sciences.
481, 330-343.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7291

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7291&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Information Sciences 481 (2019) 330–343

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Designated-server identity-based authenticated encryption

with keyword search for encrypted emails

Hongbo Li a , Qiong Huang

a , ∗, Jian Shen

b , Guomin Yang

c , Willy Susilo

c

a College of Mathematics and Informatics, South China Agricultural University, China
b School of Computer and Software, Nanjing University of Information Science and Technology, China
c School of Computing and Information Technology, University of Wollongong, Wollongong, Australia

a r t i c l e i n f o

Article history:

Received 20 August 2018

Revised 10 November 2018

Accepted 1 January 2019

Available online 2 January 2019

Keywords:

Keyword search

Encrypted email system

Public key encryption

Identity based encryption

Inside keyword guessing attacks

a b s t r a c t

In encrypted email system, how to search over encrypted cloud emails without decryp-

tion is an important and practical problem. Public key encryption with keyword search

(PEKS) is an efficient solution to it. However, PEKS suffers from the complex key manage-

ment problem in the public key infrastructure. Its variant in the identity-based setting ad-

dresses the drawback, however, almost all the schemes does not resist against offline key-

word guessing attacks (KGA) by inside adversaries. In this work we introduce the notion

of designated-server identity-based authenticated encryption with keyword search (dIBAEKS),

in which the email sender authenticates the message while encrypting so that no adver-

sary including the server can launch offline KGA. Furthermore, we strengthen the security

requirement so that only the designated server has the capability to search over encrypted

emails for receivers. We formally define dIBAEKS and its security models, and propose two

dIBAEKS constructions using Type-I and Type-III bilinear pairing, respectively. We com-

pare our schemes with some related IBEKS schemes in the literature, and do experiments

to demonstrate its efficiency. Although they are slightly less computationally efficient than

but still comparable with the related schemes, our schemes provide stronger security guar-

antee and better protect users’ privacy.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Cloud storage has received widespread attentions due to its low-cost and almost unlimited data storage space [26] . Users

are allowed to store their data in the cloud and to access their data anytime and anywhere, which saves the local data

storage. Nowadays, in order to reduce running costs many companies would choose to outsource their email service to an

honest-but-curious cloud service provider (CSP). It provides the email service as promised, but may try its best to learn

users’ emails to discover important information. Due to the high sensitivity of some business emails, these emails would be

encrypted before sending. Generally, users may have lots of emails, and it is not necessary to download and decrypt all of

them.

Considering the scenario shown in Fig. 1 . Suppose that Alice sends encrypted emails via an untrusted cloud email server.

To save local storage space, Bob will store the encrypted emails in the cloud instead of downloading all of them. Among all

the encrypted emails, suppose that Bob wants to retrieve encrypted emails corresponding to some keyword w = ‘ contract ’.

∗ Corresponding author.

E-mail address: qhuang@scau.edu.cn (Q. Huang).

https://doi.org/10.1016/j.ins.2019.01.004

0020-0255/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2019.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.01.004&domain=pdf
mailto:qhuang@scau.edu.cn
https://doi.org/10.1016/j.ins.2019.01.004

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 331

Fig. 1. Encrypted email system with cloud email server.

It is desirable for Bob to download only this email without leaking information about the keyword w it searches and other

privacy. However, cryptographic encryption schemes usually hide the feature/structure of the original data, hence, it is hard

for the cloud server to search over all the encrypted emails using traditional data search mechanisms. Thus we need a

specific encryption mechanism which supports efficient search over encrypted data. The symmetric searchable encryption

(SSE) [27] is not suitable for this scenario, because to use SSE, Bob has to negotiate with Alice a shared key before sending

any encrypted emails, which is rather inconvenient for applications like emails.

PEKS was proposed to address this problem [4] . Different from SSE schemes [12,13,27] , in PEKS anyone could be the

data owner/sender and share (encrypted) data with the data receiver R , and R can authorize someone to search over en-

crypted data by giving them a trapdoor associated with a specified keyword w . In the aforementioned scenario, to realize

the searching functionality, Alice retrieves keywords { w } from emails { F } to be sent to Bob, and encrypts both the keywords

and the emails using Bob’s public key. She then sends both { C w

} and { C F } to the cloud email server, and the server would

notify Bob that there is an email for him. To search over the encrypted emails for a keyword w , Bob generates and sends

a corresponding trapdoor T to the email server, which then searches over { C w

} and returns the emails { C F } associated with

the matching keyword ciphertexts. After downloading these emails, Bob decrypts them to get the desired email contents.

Although PEKS solves the problem of searching over shared encrypted data, there are still some privacy issues. For ex-

ample, it was pointed out in [7] that some PEKS schemes suffer from the risk of offline keyword guessing attacks (KGA). A

malicious adversary tries candidate keywords one-by-one and checks if the given keyword ciphertext matches the candidate.

Due to the small space of real-life keywords, the attack is feasible. Therefore, if the cloud email server becomes malicious,

it may recover private information from users’ emails by initiating offline KGA. How to construct PEKS secure against offline

KGA is a hard problem. Recently, Huang et al. introduced a new primitive named public-key authenticated encryption with

keyword search (PAEKS), which is a novel and effective method to counter this kind of attacks [16,17] . Roughly speaking, data

sender in PAEKS authenticates the keyword while encrypting. However, there are two drawbacks in PAEKS scheme. One is

that an outside adversary could obtain the search pattern of users [19] once it breaks into the cloud server. Informally, search

pattern indicates which searching queries contain the same keyword in the search history. Adversaries may reveal informa-

tion about the plaintext from the searching frequency. The other is that PAEKS works in the public key infrastructure (PKI)

and suffers from issues of complex certificate management and heavy cost of maintenance.

To hide search pattern, Baek et al. proposed to have a designated tester to search over the encrypted data [2] . Anyone,

except the one who owns the tester’s private key, cannot search even if it has the trapdoor. Rhee et al. proposed two

generic constructions of designated tester public-key encryption with keyword search (dPEKS) based on anonymous identity-

based encryption (IBE) [21] . Emura et al. proposed another two generic constructions of dPEKS based on anonymous IBE,

tag-based encryption and one-time signature [9] . However, these dPEKS schemes cannot resist inside offline KGA.

It is pointed in Boneh and Franklin [5] that the identity-based encryption (IBE) can be used in the encrypted email system

in order to reduce the heavy cost of key management. The receiver’s identity, e.g. email address, can be directly used as its

public key. Abdalla et al. initiated the study of identity-based encryption with keyword search (IBEKS), which integrates the

keyword search functionality in IBE [1] . To use the encrypted email system, a sender encrypts an email using IBE and its

keywords using IBEKS, and uploads both the encrypted email and encrypted keywords to the cloud email server. To retrieve

emails of a certain topic, the receiver delegates the server to search over the encrypted keywords by giving a trapdoor

w.r.t. a specific keyword about the topic. After searching, the server returns encrypted emails associated with the matching

(encrypted) keywords to the receiver as the search result. However, to our best knowledge, there is no IBEKS construction

resisting the inside offline KGA, in the meantime, hiding search pattern from outside adversaries.

Most of the PEKS and IBKES schemes mentioned above are constructed based on symmetric (Type-I) bilinear pairing.

However, it is known that Type-III asymmetric bilinear pairing performs more efficiently with high security parameters [14] .

1.1. Our contributions

We propose a new notion called designated-server identity-based authenticated encryption with keyword search (dIBAEKS)

to solve the aforementioned problems. As shown in Fig. 2 , there are four entities in dIBAEKS, a private key generator (PKG),

332 H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343

Fig. 2. System model of dIBAEKS.

a cloud email server, a sender (Alice) and a receiver (Bob). Users’ identity information are used as their public keys, and

PKG is in charge of generating user secret keys based on their identities. The cloud email server stores the encrypted emails

and encrypted keywords sent from Alice to Bob. To search over the emails sent from Alice to him, Bob gives to the cloud

email server a searching trapdoor T w.r.t a candidate keyword w , with which the server then searches over the ciphertexts

using its own secret key and returns the matching encrypted emails containing w without knowing what the keyword w

is. Bob then decrypts the returned emails using its secret key and read the contents. In dIBAEKS, no adversary can forge a

valid encrypted keyword sent from Alice to Bob unless it knows Alice’s secret key. Furthermore, no adversary is able to run

the keyword search even if it obtains Bob’s trapdoor unless it knows the cloud email server’s secret key.

We formally define dIBAEKS and present its security models. Then we propose a concrete dIBAEKS scheme based on

symmetric (Type-I) bilinear pairing and prove it to be secure against inside offline KGA. Our scheme is shown to satisfy

the security that only the designated server can search (a.k.a designated testability , see Section 3 for the definition), but

this property is of CPA type, i.e., the adversary is not allowed to query any test result. In order to strengthen the designated

testability to achieve the CCA type security, we show how to modify the scheme to allow the adversary to issue test queries.

In order to further improve the efficiency, we also show how to modify the scheme to work in Type-III asymmetric bilinear

pairing setting. The new scheme, denoted by dIBAEKS-3, is much more efficient than dIBAEKS.

To show the advantage of dIBAEKS, we compare it with some related schemes in the literature in terms of security,

computational complexity, and communication overhead, and demonstrate the computational efficiency of our scheme via

experiments. Although our scheme has a slightly less computationally efficient than but still comparable with the compared

schemes, it provides stronger security guarantee and better protects users’ privacy.

1.2. Related works

Public key encryption with keyword search (PEKS) was introduced in [4] , initiating the study of SE in public key setting.

To protect user privacy, Baek et al. pointed out a secure channel is necessary in PEKS, and proposed a secure-channel-

free PEKS scheme denoted by dPEKS, where only the designated tester can do the test [2] . Byun et al. proposed a new

attack method against PEKS schemes called offline KGA [7] . Yau et al. proved neither schemes in [2,4] is secure against the

offline KGA [32] . Fang et al. enhanced the security of dPEKS and proposed another dPEKS scheme secure against outsider

offline KGA, yet it cannot resist the inside adversaries’ offline KGA [10] . Fang et al. in 2013 proposed a dPEKS scheme secure

against the outside KGA without requiring random oracles [11] . Other dPEKS schemes are also proposed to enhance the

security of dPEKS scheme and to resist the offline KGA, e.g. [15,22–25,31] . Although outside adversaries can be restricted by

these schemes, inside adversaries still can succeed in offline KGA. Recently, Huang et al. proposed to add authorization in

ciphertext generation which makes an inside adversary lose the ability to generate valid ciphertexts, hence solved the inside

offline KGA problem [16,17] . To reduce the heavy cost of public key certification, Abdalla et al. proposed the identity-based

encryption with keyword search (IBEKS) [1] . Recently, to improve the efficiency, Tomida et al. proposed another concrete

IBEKS scheme, denoted by ACIBEKS [28] , and Wu et al. proposed another IBEKS scheme with designated tester [30] , denoted

by EdIBEKS. However, both ACIBEKS and EdIBEKS schemes cannot resist offline KGA launched by the server. Zhang et al.

proposed an IBEKS scheme, denoted by ZXMZ-IBEKS, which can resist outside offline KGA based on the lattice assumption

[33] . Although ZXMZ-IBEKS owns the security against quantum attacks, it cannot prevent the inside offline KGA.

2. Preliminaries

2.1. Bilinear pairing

Let G 1 , G 2 and G T be cyclic groups of the prime order p . A map ˆ e : G 1 × G 2 → G T is a bilinear map if it satisfies: (1)

∀ g 1 ∈ G 1 , g 2 ∈ G 2 and x, y ∈ Z , ˆ e (g x
1
, g

y
2
) = ˆ e (g 1 , g 2)

xy ; (2) if g 1 generates G 1 and g 2 generates G 2 , ˆ e (g 1 , g 1) generates G T ; (3)

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 333

ˆ e (g 1 , g 2) is efficiently computable for any g 1 , ∈ G 1 , g 2 ∈ G 2 [5] . Bilinear pairings can be classified into the following three

types.

• Type-I: G 1 = G 2 ;

• Type-II: G 1 � = G 2 , but an efficiently computable homomorphism h̄ : G 2 → G 1 exists;

• Type-III: G 1 � = G 2 , and no efficiently computable homomorphism from G 2 to G 1 exists [14] .

2.2. Decisional bilinear Diffie–Hellman assumption

Denote by Y = (g, g x , g y , g z ∈ G 1 , ̂ e : G 1 × G 1 → G T , Z ∈ G T) . Let β be a bit such that β = 0 if Z = ˆ e (g, g) xyz , and β = 1 if Z

is randomly selected from G T . The decisional bilinear Diffie–Hellman (DBDH) problem is to determine the value of β [6,18] .

Definition 1 (DBDH assumption [6,18]) . The DBDH assumption holds if the probability to solve DBDH problem is negligible

for any probabilistic polynomial-time (PPT) algorithm A , i.e.

| Pr [0 ← A (Y) | β = 0] − Pr [0 ← A (Y) | β = 1] |
is negligible.

2.3. Decisional bilinear Diffie–Hellman assumption in Type-III pairing

Denote by Y 3 = (g 1 , g
x
1
, g

y
1

∈ G 1 , g 2 , g
y
2
, g z

2
∈ G 2 , ̂ e : G 1 × G 2 → G T , Z ∈ G T) . Let β be a bit such that β = 0 if Z =

ˆ e (g 1 , g 2)
xyz , and β = 1 if Z is randomly selected from G T . The decisional bilinear Diffie–Hellman in Type-III pairing (DBDH-3)

problem is to determine the value of β [8] .

Definition 2 (DBDH-3 assumption [8]) . The DBDH-3 assumption holds if the probability to solve DBDH-3 problem is negli-

gible for any probabilistic polynomial-time (PPT) algorithm A , i.e.

| Pr [0 ← A (Y 3) | β = 0] − Pr [0 ← A (Y 3) | β = 1] |
is negligible.

3. Definitions and system model

3.1. Definition

A dIBAEKS scheme consists of the following (probabilistic) polynomial-time (PPT) algorithms.

• (pp, msk) ← Setup (λ) : Given a security parameter λ, it outputs the public parameter pp and a master secret key msk .

• (Pk s v r , Sk s v r) ← KGen s v r (pp) : Given pp , it returns the server’s public/secret key pair (Pk s v r , Sk s v r) .

• Sk ID i ← KGen usr (pp, msk , ID i) : Given pp , msk and the identity ID i of user i , it outputs the secret key Sk ID i of user i .

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r) : Given pp , a keyword w , Pk s v r , Sk ID s , ID s of a sender, and ID r of the a receiver,

it outputs a ciphertext C w, s, r .

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r) : Given pp, w , Pk s v r , Sk ID r of a receiver, and ID s , ID r , it outputs a trapdoor

T w, s, r .

• β ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r) : Given pp , Sk s v r , ID s , ID r , C w, s, r and T w, s, r , it outputs a bit β , which is 1 if C w, s, r

and T w, s, r contain the same keyword, and 0 otherwise.

3.2. Security models

Below we define the semantic security of dIBAEKS against inside offline KGA via three games between an adversary A

and a challenger B.

Game I: Ciphertext indistinguishability

In this game, the semi-trusted server is assumed to be the adversary A . It should fulfill its obligation as required, but try

to obtain information about users’ data. Ciphertext indistinguishability aims to prevent the adversary from distinguishing

a given ciphertext is the encryption of which of the two keywords (selected by the adversary itself) if A does not have

knowledge of the sender and receiver’s secret keys. In other words, ciphertext indistinguishability guarantees that the server

cannot search over the ciphertexts if it is not authorized by the user.

1. Setup : B generates the system parameter pp , the PKG’s key pair (pp, msk) and the server’s key pair (Pk s v r , Sk s v r) . It

invokes A on input pp and (Pk s v r , Sk s v r) .

2. Phase 1 : A is allowed to adaptively issue queries for polynomially many times as below.

• Extract Oracle: Given the identity ID i of user i , it returns the user’s secret key Sk ID i to A .

• Trapdoor Oracle: Given a keyword w, ID s of a sender and ID r of a receiver, it computes and returns to A the corre-

sponding trapdoor T w, s, r .

334 H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343

• Ciphertext Oracle: Given a keyword w, ID s of a sender and ID r of a receiver, it computes and returns to A the corre-

sponding ciphertext C w, s, r .

3. Challenge : A submits to B ID

∗
s of a sender, ID

∗
r of a receiver and two challenge keywords (w

∗
0
, w

∗
1
) . B randomly selects a

bit β ∈ {0, 1}, computes C w

∗
β

,s ∗,r ∗ ← PEKS (pp, w

∗
β
, Pk s v r , Sk ID ∗s , ID

∗
s , ID

∗
r) , and returns C w

∗
β

,s ∗,r ∗ to A .

4. Phase 2 : A continues to issue queries to the oracles as in Phase 1 .

5. Guess : A outputs a bit β ′ ∈ {0, 1}, and wins the game if (1) β ′ = β, (2) I D

∗
s , I D

∗
r have not been queried for secret keys,

and (3) 〈 w

∗
0
, ID

∗
s , ID

∗
r 〉 , 〈 w

∗
1
, ID

∗
s , ID

∗
r 〉 have not been submitted to Trapdoor Oracle nor Ciphertext Oracle.

A ’s advantage of successfully distinguishing the ciphertexts of dIBAEKS is defined as

Adv C A (λ) =

∣
∣Pr [β ′ = β] − 1 / 2

∣
∣.

Definition 3. A dIBAEKS scheme satisfies ciphertext indistinguishability if for any PPT adversary A , Adv C A (λ) ≤ negl (λ) .

Game II: Trapdoor indistinguishability

Same as Game I, the semi-trusted cloud server is also assumed to be the adversary A in this game. The difference is

that now trapdoor indistinguishability aims to prevent A from learning information about the keyword from simply a given

trapdoor if A does not know the sender and receiver’s secret keys. It indicates that even the server cannot generates valid

ciphertexts with respect to the sender and the receiver.

1. Setup : Same as in Game I.

2. Phase 1 : Same as in Game I.

3. Challenge : A submits to B ID

∗
s of a sender, ID

∗
r of a receiver and two challenge keywords (w

∗
0 , w

∗
1) , B randomly selects a

bit β ∈ {0, 1}, computes T w

∗
β

,s ∗,r ∗ ← Trap do or (pp, w

∗
β
, ID

∗
s , Sk ID ∗r) , and returns T w

∗
β

,s ∗,r ∗ to A .

4. Phase 2 : Same as in Game I.

5. Guess : A outputs a bit β ′ ∈ {0, 1}, and wins the game if (1) β ′ = β, (2) I D

∗
s , I D

∗
r have not been queried for secret keys,

and (3) 〈 w

∗
0
, ID

∗
s , ID

∗
r 〉 , 〈 w

∗
1
, ID

∗
s , ID

∗
r 〉 have not been submitted to Trapdoor Oracle nor Ciphertext Oracle.

A ’s advantage of successfully distinguishing the trapdoors of dIBAEKS is defined as

Adv T A (λ) =

∣
∣Pr [β ′ = β] − 1 / 2

∣
∣.

Definition 4. A dIBAEKS scheme satisfies trapdoor indistinguishability if for any PPT adversary A , Adv T A (λ) ≤ negl (λ) .

Remark. If a dIBAEKS scheme � satisfies ciphertext indistinguishability, any PPT adversary A without the knowledge of

secret keys of the sender ID s and the receiver ID r , is unable to forge a valid trapdoor of either of the challenge keywords

w.r.t. ID s and ID r . To understand it, assume that A could forge a valid trapdoor of either w

∗
0

or w

∗
1

without knowledge of

secret keys of ID s and ID r . Then A easily wins Game I by running the Test algorithm taking as input the challenge ciphertext

and the forged trapdoor, which contradicts the ciphertext indistinguishability of �.

Similarly, we can show that if a dIBAEKS scheme satisfies trapdoor indistinguishability, any PPT adversary without the

knowledge of secret keys of ID s and ID r , is unable to forge a valid ciphertext of either of the challenge keywords w.r.t. ID s

and ID r .

Game III: Designated testability

In this game, A is assumed to be an outside adversary which may obtain users’ ciphertexts by breaking into the cloud,

and obtain trapdoors by monitoring the communication channel between users and the cloud. However, A does not have the

server’s secret key. Designated testability aims to ensure that only the designated server could search over the ciphertexts.

1. Setup : B generates the system parameter pp , PKG’s secret key msk and the server’s key pair (Pk s v r , Sk s v r) . It invokes A

on input pp and Pk s v r .

2. Phase 1 : A could adaptively issue queries to the oracle below for polynomially many times.

• Extract Oracle: Given the identity ID i of user i , it returns the secret key Sk ID i .

3. Challenge : A submits ID

∗
s of a sender, ID

∗
r of a receiver and two challenge keywords (w

∗
0 , w

∗
1) to B . B randomly selects a

bit β ∈ {0, 1}, computes C w

∗
β

,s ∗,r ∗ ← PEKS (pp, w

∗
β
, ID

∗
r , Sk ID ∗s) , and returns C w

∗
β

,s ∗,r ∗ to A .

4. Phase 2 : A continues to issuing queries as in Phase 1 .

5. Guess : A outputs a bit β ′ ∈ {0, 1}, and wins the game if β ′ = β .

Different from Game I and Game II , there is no restriction on the two challenge keywords and identities, which means

that A can obtain secret keys of the challenge identities and trapdoors of the challenge keywords. A ’s advantage of success-

fully breaking the Designated Testability is defined as

Adv D A (λ) =

∣
∣Pr [β ′ = β] − 1 / 2

∣
∣.

Definition 5. A dIBAEKS scheme satisfies designated testability if for any PPT adversary A , Adv D A (λ) ≤ negl (λ) .

Notice that the designated testability defined above is actually of CPA type, as the adversary is not allowed to access to

Test Oracle, which on input a ciphertext and a trapdoor, as well as the sender and the receiver’s identities, outputs a bit

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 335

indicating whether the ciphertext contains the same keyword as the trapdoor. Below we define a strengthened version of

the designated testability, called designated testability with test query , which is of CCA type.

Game IV: Designated testability with Test Oracle

The game is almost the same as Game III, except that A is additionally allowed to issue queries to the Test Oracle as

below in both Phase 1 and Phase 2 , and (I D

∗
s , I D

∗
r , C w

∗
β

,s ∗,r ∗ , ·) cannot appear in the Test Oracle in Phase 2 .

• Test Oracle: Given ID s of a sender, ID r of a receiver, C w, s, r and T w, s, r , it returns 1 if C w, s, r and T w, s, r are both valid and

contain the same keyword, and 0 otherwise.

A ’s advantage of breaking the Designated Testability with Test Query is defined as

Adv DT
A (λ) =

∣
∣Pr [β ′ = β] − 1 / 2

∣
∣.

Definition 6. A dIBAEKS scheme satisfies designated testability with Test Oracle if for any PPT adversary A , Adv DT
A (λ) ≤

negl (λ) .

Remark. The reason of restricting A from issuing test queries on input (I D

∗
s , I D

∗
r , C w

∗
β

,s ∗,r ∗ , ·) for any trapdoor is that A

is allowed to know any user’s secret key, and thus can compute the trapdoor of any keyword w.r.t. any sender and any

receiver. Due to the trapdoor indistinguishability, we cannot tell a given trapdoor is related to which keyword.

4. Our dIBAEKS scheme

4.1. Construction

Now we propose the construction of dIBAEKS, which makes use of the advantage of bilinear pairing.

• (pp, msk) ← Setup (λ) : Given a security parameter λ, it randomly selects the master secret key msk = α ∈ Z p and

computes mpk = g α . It sets the pp = (G 1 , G T , ̂ e , p, g, h, H, H 1 , mpk) , where G 1 , G T are cyclic groups of prime order p ,

ˆ e : G 1 × G 1 → G T is a bilinear pairing, g, h are generators of G 1 , and H : G T × { 0 , 1 } ∗ → G 1 , H 1 : { 0 , 1 } ∗ → G 1 are crypto-

graphic hash functions. It outputs (pp, msk) .

• (Pk s v r , Sk s v r) ← KGen s v r (pp) : Return the server’s public/secret key pair (Pk s v r , Sk s v r) = (g t , t) , where t is randomly se-

lected from Z p .

• Sk ID ← KGen usr (pp, msk , ID) : Return the secret key Sk ID = H 1 (ID) α .

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r) : It randomly selects s ∈ Z p , computes and returns a ciphertext C w,s,r =

(C 1 , C 2 , C 3) , where

C 1 =

ˆ e (H(k, w) , Pk s s v r) , C 2 = g s , C 3 = h

s , and k =

ˆ e (Sk ID s , H 1 (ID r)) .

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r) : It randomly selects r ∈ Z p , computes and returns a trapdoor T w,s,r =

(T 1 , T 2) , where

T 1 = H(k, w) · h

r , T 2 = g r , and k =

ˆ e (H 1 (ID s) , Sk ID r) .

• 1 / 0 ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r) : Parse the ciphertext C w, s, r as (C 1 , C 2 , C 3) and the trapdoor T w, s, r as (T 1 , T 2).

It returns 1 if

C 1 · ˆ e (T Sk s v r
2

, C 3) =

ˆ e (T Sk s v r
1

, C 2) ,

and 0 otherwise.

4.2. Security analysis

We formally analyze the security of our dIBAEKS scheme as below.

Theorem 1. The proposed dIBAEKS scheme satisfies ciphertext indistinguishability if DBDH assumption holds.

Proof. Suppose A is a PPT adversary trying to break the ciphertext indistinguishability. We build an algorithm B to solve

DBDH problem. Given a problem instance, e.g. Y = (G 1 , G T , ̂ e , p, g, g x , g y , g z , Z), B works as below.

1. Setup : B randomly selects h from G 1 and t ∈ Z p , and sets pp = (G 1 , G T , ̂ e , p, g, h, mpk = g z) and (Pk s v r , Sk s v r) = (g t , t) . It

invokes A on input pp and (Pk s v r , Sk s v r) .

2. Phase 1 : A adaptively issues queries to the following oracles which are simulated by B. We assume that A does not

repeat queries to the same oracle, and that A would not use an identity ID in any computation before issuing it to

random oracle H 1 ; otherwise, the value of H 1 (ID) is random to A and the probability that A guesses the correct value of

H 1 (ID) is negligible.

• Hash Oracle O H : Given an element k ∈ G T and a keyword w , it selects a random element from G T , and returns it as

the output of H (k, w).

336 H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343

• Hash Oracle O H 1
: The oracle maintains an initially empty list L H 1 = {〈·, ·, ·〉} . Assume A issues queries to O H 1

for at

most q H times. it randomly chooses i, j ∈ {1, ���, q }, and guesses that the i -th query and the j -th query issued by A to

O H 1
are the challenge sender and receiver’s identities (I D

∗
s , I D

∗
r) , respectively. Given an identity ID , it returns A based

on the following cases.

– If this is the i -th query, e.g. ID = ID

∗
s , it returns H 1 (ID) = g x , and adds 〈 ID, g x , ⊥〉 into L H 1 .

– If this is the j -th query, e.g. ID = ID

∗
r , it returns H 1 (ID) = g y , and adds 〈 ID, g y , ⊥〉 into L H 1 .

– Otherwise, it randomly selects v ∈ Z p , returns H 1 (ID) = g v , and adds 〈 ID, g v , v 〉 into L H 1 .

• Extract Oracle O E : Taking ID as input, if ID = ID

∗
s or ID = ID

∗
r , it outputs a random bit β ′ and aborts. Otherwise, it

retrieves the tuple 〈 ID, H 1 (ID), v 〉 from L H 1 , and returns the secret key Sk ID = (g z) v to A .

• Ciphertext Oracle O C : Given (w, ID s , ID r), it randomly selects s ∈ Z p , and computes the ciphertext C w,s,r = (C 1 , C 2 , C 3)

based on the following cases.

– If (I D s , I D r) = (I D

∗
s , I D

∗
r) or (I D s , I D r) = (I D

∗
r , I D

∗
s) , it computes

C 1 =

ˆ e (H(Z, w) , Pk s v r)
s , C 2 = g s , C 3 = h

s .

– Otherwise, at least one of ID s and ID r is not equal to ID

∗
s nor ID

∗
r . W.l.o.g., we assume that I D s �∈ { I D

∗
s , I D

∗
r } . It

retrieves the tuple 〈 ID s , H 1 (ID s), v s 〉 from L H 1 , computes k = ˆ e (g z , H 1 (ID r))
v s and returns

C 1 =

ˆ e (H(k, w) , Pk s v r)
s , C 2 = g s , C 3 = h

s .

• Trapdoor Oracle O T : Given (w, ID s , ID r), it randomly selects r ∈ Z p , and computes the trapdoor T w,s,r = (T 1 , T 2) based

on the following cases.

– If (I D s , I D r) = (I D

∗
s , I D

∗
r) or (I D s , I D r) = (I D

∗
r , I D

∗
s) , it computes

T 1 = H(Z, w) · h

r , T 2 = g r .

– Otherwise, at least one of ID s and ID r is not equal to ID

∗
s nor ID

∗
r . W.l.o.g., we assume that I D s �∈ { I D

∗
s , I D

∗
r } . It

retrieves the tuple 〈 ID s , H 1 (ID s), v s 〉 from L H 1 , computes k ′ = ˆ e (g z , H 1 (ID r)) v s and returns

T 1 = H(k ′ , w) · h

r , T 2 = g r .

3. Challenge : A submits two challenge keywords w

∗
0
, w

∗
1
, ID

∗
s of a sender and ID

∗
r of a receiver. B randomly selects a bit

ˆ β ∈ { 0 , 1 } , an element s ∈ Z p , and returns the ciphertext C w

∗
ˆ β
,s ∗,r ∗ = (C ∗1 , C

∗
2 , C

∗
3) , where

C ∗1 =

ˆ e (H(Z, w

∗
ˆ β
) , Pk s v r)

s , C ∗2 = g s , C ∗3 = h

s .

4. Phase 2 : Same as in Phase 1 .

5. Guess : A outputs a bit ˆ β ′ . B outputs β ′ = 0 , if ˆ β ′ =

ˆ β, and 1 otherwise.

B would abort if its guess of the challenge identities is not correct. Denote this event by F . If B aborts, the random bit

output by B is equal to β with probability 1/2. As B makes its guess at random, the probability that F does not happen is

1 /q H (q H − 1) , i.e. Pr [F] = 1 /q H (q H − 1) .

Suppose that B does not abort. If Z = ˆ e (g, g) xyz , e.g. β = 0 , the simulation provided by B is identical to A ’s view in a real

attack, and A would win the game with probability Adv C A (λ) + 1 / 2 . If Z is randomly selected from G T , then k = H(Z, w ˆ β
)

will be a random element of G 1 , and thus the challenge ciphertext completely hides the bit ˆ β . Although in this case the C 1
component of a ciphertext (and the T 1 component of a trapdoor) w.r.t. ID

∗
s and ID

∗
r in the simulation above is not exactly the

same as a real ciphertext, B uses the same way to generate the ciphertext C w,s ∗,r ∗ and the trapdoor T w,s ∗,r ∗ so that C w,s ∗,r ∗ and

T w,s ∗,r ∗ will make the Test algorithm output 1 if the keywords are the same. Hence, A would win the game with probability

at most 1/2. Therefore, the advantage of B in solving the DBDH problem is

Adv DBDH
B (λ) =

∣
∣Pr [β ′ = β| F] · Pr [F] + Pr [β ′ = β| F] · Pr [F] − 1 / 2

∣
∣

=

∣
∣
∣

1

2

· (1 − Pr [F]) + (Pr [β ′ = 0 | F ∧ β = 0] · Pr [β = 0]

+ Pr [β ′ = 1 | F ∧ β = 1] · Pr [β = 1]) · Pr [F] − 1

2

∣
∣
∣

≥
∣
∣
∣

1

2

· (1 − Pr [F]) + Pr [F] · ((Adv C A (λ) +

1

2

) · 1

2

+

1

2

· 1

2

) − 1

2

∣
∣
∣

=

1

2

Pr [F] · Adv C A (λ)

=

1

2 q H (q H − 1)
· Adv C A (λ) .

If Adv C A (λ) is non-negligible, so is Adv DBDH
B (λ) . �

Theorem 2. The proposed dIBAEKS scheme satisfies trapdoor indistinguishability if DBDH assumption holds.

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 337

The proof is similar with that of Theorem 1 . The difference is that in the proof of Theorem 2 , B generates the challenge

trapdoor as T w

∗
ˆ β
,s ∗,r ∗ = (T ∗1 , T

∗
2) , where

T ∗1 = H(Z, w

∗
ˆ β
) · h

r , T ∗2 = g r ,

and r ∈ Z p is randomly chosen by B. We omit the detailed proof here for simplicity.

Theorem 3. Our dIBAEKS scheme satisfies designated testability if DBDH assumption holds.

Proof. Suppose A is an adversary trying to break the designated testability of our dIBAEKS scheme. We build an algorithm

B to solve DBDH problem. Given a problem instance, e.g. Y = (G 1 , G T , ̂ e , p, g, g x , g y , g z , Z), B works as below.

1. Setup : B randomly selects α, γ ∈ Z p and sets pp = (G 1 , G T , ̂ e , p, g, h = g γ , mpk = g α) and Pk s v r = g x . It invokes A on

input pp and Pk s v r .

2. Phase 1 : B answers queries of A as below, assuming that A does not repeat its queries.

• Hash Query H : B maintains a lit L H = {〈·, ·, ·〉} , which is initially empty. Given an element k ∈ G T and a keyword w , B
randomly selects v k,w

∈ Z p , returns

H(k, w) = g y · g v k,w ,

and adds 〈 (k, w), H (k, w), v k, w

〉 into L H .

• Hash Query H 1 : Given ID , B selects a random element from G 1 , and returns it to A as the output of H 1 (ID).

• Exact Query: Given ID , B returns Sk ID = H 1 (ID) α .

3. Challenge : A submits to B two challenge keywords (w

∗
0
, w

∗
1
) , ID

∗
s of a sender and ID

∗
r of a receiver. B randomly selects

a bit ˆ β ∈ { 0 , 1 } , and retrieves the tuple 〈 (k ∗, w

∗
ˆ β
) , H(k ∗, w

∗
ˆ β
) , v k ∗,w

∗
ˆ β
〉 from L H , where k ∗ = ˆ e (H 1 (ID

∗
s) , H 1 (ID

∗
r))

α . If there

is no such a tuple, B generates it as in answering A ’s H queries. It then computes and returns the challenge ciphertext

C w

∗
ˆ β
,s ∗,r ∗ = (C ∗

1
, C ∗

2
, C ∗

3
) , where

C ∗1 = Z · ˆ e (g z , g x)
v k,w ∗

ˆ β , C ∗2 = g z , C ∗3 = (g z) γ = h

z .

4. Phase 2 : Same as in Phase 1 .

5. Guess : A outputs a bit ˆ β ′ . B outputs β ′ = 0 , if ˆ β ′ =

ˆ β, and 1 otherwise.

If Z = ˆ e (g, g) xyz , we have that C ∗1 = ˆ e (H(k, w

∗
ˆ β
) , Pk s v r) z , and C w

∗
ˆ β
,s ∗,r ∗ is a well distributed challenge ciphertext. Hence, the

view of A is identical to that in a real attack, and A would win the game with the probability of Adv D A (λ) . If Z is random,

so is C ∗
1

. The challenge ciphertext completely hides the bit ˆ β, and A wins the game only with probability 1/2. We then have

that the probability that B solves the DBDH problem is

Adv DBDH
B (λ) =

∣
∣Pr [β ′ = 1 | β = 1] · Pr [β = 1] + Pr [β ′ = 0 | β = 0] · Pr [β = 0] − 1 / 2

∣
∣

=

∣
∣1 / 2 · 1 / 2 + 1 / 2 · Adv D A (λ) − 1 / 2

∣
∣

= 1 / 2 Adv D A (λ) .

If Adv D A (λ) is non-negligible, so is Adv DBDH
B (λ) . �

4.3. How to achieve designated testability with Test Oracle

In the above subsection, we proved the designated testability of our proposed scheme, which is of CPA type. However,

as both the ciphertext and the trapdoor in our scheme are malleable, it is not hard to see that if A is allowed to access the

Test Oracle (c.f. Def. 6), it will break the designated testability trivially. To solve this issue, we modify the scheme to achieve

the designated testability with Test Oracle . The new scheme dIBAEKS ′ is described as below.

• (pp, msk) ← Setup (λ) : it is the same as that in the original scheme, except that here it selects two additional crypto-

graphic hash function H 2 : G T × G

2
1

→ G 1 and H 3 : G

2
1

→ G 1 .

• (Pk s v r , Sk s v r) ← KGen s v r (pp) : Same as in the original scheme.

• Sk ID ← KGen usr (pp, msk , ID) : Same as in the original scheme.

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r) : Randomly select s ∈ Z p , compute and return C w,s,r = (C 1 , C 2 , C 3 , C 4) , where

C 1 =

ˆ e (H(k, w) , Pk s v r)
s , C 2 = g s , C 3 = h

s ,

C 4 = H 2 (C 1 , C 2 , C 3)
s , k =

ˆ e (Sk ID s , H 1 (ID r)) .

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r) : Randomly select r ∈ Z p , compute and return T w,s,r = (T 1 , T 2 , T 3) , where

T 1 = H(k, w) · h

r , T 2 = g r , T 3 = H 3 (T 1 , T 2)
r , k =

ˆ e (H 1 (ID s) , Sk ID r) .

338 H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343

• 1 / 0 ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r) : Return 1 if the following equations hold:

ˆ e (C 2 , h) =

ˆ e (g, C 3) , (1)

ˆ e (C 2 , H 2 (C 1 , C 2 , C 3)) =

ˆ e (g, C 4) , (2)

ˆ e (T 2 , H 3 (T 1 , T 2)) =

ˆ e (g, T 3) , (3)

C 1 · ˆ e (T 2 , C 3)
Sk s v r =

ˆ e (T 1 , C 2)
Sk s v r , (4)

and 0 otherwise.

Remark. The Test algorithm requires eight pairing evaluations, which is costly. To reduce the computational complexity,

Eqs. (1)–(3) can be combined into one single equation as follows,

ˆ e (C 2 , h

μ1 · H 2 (C 1 , C 2 , C 3)
μ2) · ˆ e (T 2 , H 3 (T 1 , T 2)

μ3) =

ˆ e (g, C
μ1

3
· C

μ2

4
· T

μ3

3
) ,

where μ1 , μ2 , μ3 are randomly selected from Z p . The new equation requires three pairing evaluations only. With over-

whelming probability, if Eq. (4) holds, Eqs. (1)–(3) hold as well.

The main purpose of introducing C 4 in the ciphertext and T 3 in the trapdoor is to prevent an adversary from modifying

the ciphertext and the trapdoor. Below we analyze the security of the new scheme dIBAEKS ′ .

Theorem 4. The new scheme dIBAEKS ′ satisfies ciphertext indistinguishability if DBDH assumption holds.

Theorem 5. The new scheme dIBAEKS ′ satisfies trapdoor indistinguishability if DBDH assumption holds.

Theorem 6. The new scheme dIBAEKS ′ satisfies designated testability with Test Oracle if DBDH assumption holds.

The proofs of Theorems 4 and 5 are the same as those of Theorems 1 and 2 , respectively, and thus we omit them for

simplicity. Below we provide the proof of Theorem 6 .

Proof. Suppose A is an adversary trying to break the designated testability of our dIBAEKS scheme. We build an algorithm

B to solve DBDH problem. Given a problem instance, e.g. Y = (G 1 , G T , ̂ e , p, g, g x , g y , g z , Z), B works as below.

1. Setup : Same as that in the proof of Theorem 3 .

2. Phase 1 : Same as that in the proof of Theorem 3 , except that the additional Hash Oracles and Test Oracle are answered

by B as follows.

• Hash Oracle H 2 : it maintain an initially empty list L H 2 = {〈·, ·, ·〉} . Given (C 1 , C 2 , C 3), B randomly selects δ ∈ Z p , returns

H 2 (C 1 , C 2 , C 3) = (g x) δ, and adds the tuple 〈 (C 1 , C 2 , C 3), H 2 (C 1 , C 2 , C 3), δ〉 into L H 2 .

• Hash Oracle H 3 : it maintain an initially empty list L H 3 = {〈·, ·, ·〉} . Given (T 1 , T 2), B randomly selects ξ ∈ Z p , returns

H 3 (T 1 , T 2) = (g x) ξ , and adds the tuple 〈 (T 1 , T 2), H 2 (T 1 , T 2), ξ 〉 into L H 3 .

• Test Oracle: Given (ID s , ID r , C w, s, r , T w, s, r), where C w,s,r = (C 1 , C 2 , C 3 , C 4) and T w,s,r = (T 1 , T 2 , T 3) , it returns 0 if either

of Eqs. (1)–(3) does not hold. Otherwise, it retrieves the tuple 〈 (C 1 , C 2 , C 3), H 2 (C 1 , C 2 , C 3), δ〉 from L H 2 and the tuple

〈 (T 1 , T 2), H 3 (T 1 , T 2), ξ 〉 from L H 3 . If there are no such tuples, it generates them as in answering H 2 and H 3 queries. It

returns 1 if the following equation holds:

C 1 · ˆ e (T 3
1
ξ , C 3) =

ˆ e (T 1 , C 4
1
δ) ,

and 0 otherwise. Notice that if either C w, s, r , or T w, s, r , is not well-formed, it would not pass the checks above.

3. Challenge : At some point, A submits to B ID

∗
s of a sender, ID

∗
r of a receiver, and two challenge keywords

(w

∗
0 , w

∗
1) . B randomly selects a bit ˆ β ∈ { 0 , 1 } , and retrieves the tuple 〈 (k ∗, w

∗
ˆ β
) , H(k ∗, w

∗
ˆ β
) , v k ∗,w

∗
ˆ β
〉 from L H , where

k ∗ = ˆ e (H 1 (ID

∗
s) , H 1 (ID

∗
r))

α . If there is no such a tuple, B generates it as in answering A ’s H queries. It randomly selects

δ∗ ∈ Z p , returns the challenge ciphertext C w

∗
ˆ β
,s ∗,r ∗ = (C ∗1 , C

∗
2 , C

∗
3 , C

∗
4) , where

C ∗1 =

ˆ e (H(k ∗, w

∗
ˆ β
) , Pk s v r)

z = Z · ˆ e (g z , g x)
h k,w ∗

ˆ β ,

C ∗2 = g z , C ∗3 = (g z) r
′
, C ∗4 = (g z) δ

∗
,

and adds the tuple 〈 (C ∗
1
, C ∗

2
, C ∗

3
) , g δ

∗
, δ∗〉 into L H 2 .

4. Phase 2 : Same as in Phase 1 except that the inputs (I D

∗
s , I D

∗
r , C w

∗
ˆ β
,s ∗,r ∗ , ·) cannot appear in the Test Oracle.

5. Guess : A outputs a bit ˆ β ′ . B outputs β ′ = 0 , if ˆ β ′ =

ˆ β, and 1 otherwise.

By a similar probability analysis, we have that if A breaks the designated testability with test query with non-negligible

advantage, B breaks the DBDH assumption with non-negligible advantage as well.

�

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 339

Table 1

Comparison of security.

Schemes OKGA/w OKGA/o IKGA DT ID-based

PAEKS [16]
√ √ √ × ×

ACIBEKS [28]
√ × × × √

EdIBEKS [30]
√ √ × √ √

dIBAEKS
√ √ √ √ √

dIBAEKS-3
√ √ √ √ √

OKGA/w: security against outside keyword guessing attacks with se-

cure channel. OKGA/o: security against outside keyword guessing at-

tacks without secure channel. IKGA: security against inside keyword

guessing attacks. DT: designated testability.

5. dIBAEKS scheme based on type-III pairing

As pointed out by Chatterjee et al. [8] , the symmetric bilinear pairing runs slower than asymmetric bilinear pairing. To

further improve the computational efficiency in practice, we modify our dIBAEKS scheme to work in the Type-III bilinear

pairing setting, and propose another scheme, denoted by dBIAEKS-3.

• (pp, msk) ← Setup (λ) : Given a security parameter λ, the algorithm randomly selects a master secret key msk = α ∈ Z p

and computes mpk = g α ∈ G 1 . It sets pp = (G 1 , G 2 , G T , ̂ e , p, g ∈ G 1 , h ∈ G 2 , H, H 1 , H 2 mpk) , where G 1 , G 2 , G T are cyclic

groups of prime order p , ˆ e : G 1 × G 2 → G T is a Type-III bilinear pairing, g is a generator of G 1 , h is a generator of G 2 ,

and H : G T × { 0 , 1 } ∗ → G 1 , H 1 : { 0 , 1 } ∗ → G 1 , H 2 : { 0 , 1 } ∗ → G 2 are cryptographic hash functions. The algorithm outputs

(pp, msk) .

• (Pk s v r , Sk s v r) ← KGen s v r (pp) : Return the server’s public/secret key pair (Pk s v r , Sk s v r) = (h t , t) , where t is randomly se-

lected from Z p .

• Sk ID ← KGen usr (pp, msk , ID) : Return the secret key Sk ID = (Sk (1)
ID

, Sk (2)
ID

) = (H 1 (ID) α, H 2 (ID) α).

• C w,s,r ← PEKS (pp, w, Pk s v r , Sk ID s , ID s , ID r) : It randomly selects s ∈ Z p , computes and returns a ciphertext C w,s,r =

(C 1 , C 2 , C 3) , where

C 1 =

ˆ e (H(k, w) s , Pk s v r) , C 2 = g s , C 3 = h

s , and k =

ˆ e (Sk
(1)
ID s

, H 2 (ID r)) .

• T w,s,r ← Trap do or (pp, w, Pk s v r , Sk ID r , ID s , ID r) : It randomly selects r ∈ Z p , computes and returns a trapdoor T w,s,r =

(T 1 , T 2) , where

T 1 = H(k, w) · g r , T 2 = h

r , and k =

ˆ e (H 1 (ID s) , Sk
(2)
ID r

) .

• 1 / 0 ← Test (pp, Sk s v r , ID s , ID r , C w,s,r , T w,s,r) : Parse the ciphertext C w, s, r as (C 1 , C 2 , C 3) and the trapdoor T w, s, r as (T 1 , T 2).

It returns 1 if

C 1 · ˆ e (C Sk s v r
2

, T 2) =

ˆ e (T Sk s v r
1

, C 3) ,

and 0 otherwise.

Theorem 7. The proposed dIBAEKS-3 scheme satisfies ciphertext indistinguishability if DBDH-3 assumption holds.

Theorem 8. The proposed dIBAEKS-3 scheme satisfies trapdoor indistinguishability if DBDH-3 assumption holds.

Theorem 9. The proposed dIBAEKS-3 scheme satisfies designated testability if DBDH-3 assumption holds.

Security proofs of dIBAEKS-3 scheme are quite similar with those of dIBAEKS scheme in Section 4 , hence we omit them

here. The difference is that the security of the dIBAEKS-3 scheme is now based on DBDH-3 assumption instead of DBDH

assumption.

6. Analysis and comparison

We compare our dIBAEKS and dIBAEKS-3 schemes with related schemes in the literature, e.g. PAEKS [16] , ACIBEKS

[28] and EdIBEKS [30] , in terms of security, computational overhead and communication overhead. Table 1 shows the secu-

rity comparison between these schemes and our dIBAEKS schemes. In the PKI setting, PAEKS is secure against outside and

inside offline KGA, but it does not satisfy the designated testability and suffers from the complex certificate management

problem. In identity based encryption setting, ACIBEKS is only secure against outside KGA attacks, and needs a secure chan-

nel. EdIBEKS can resist outside offline KGA attacks, but is vulnerable to inside offline KGA attacks. Our dIBAEKSs are secure

against inside offline KGA attacks and satisfy the designated testability.

Computational complexity comparison of the five schemes is given in Table 2 . We denote by E the evaluation of a modu-

lar exponentiation on a G 1 element in the Type-I symmetric bilinear pairing setting, and denote by E 1 and E 2 the evaluation

340 H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343

Fig. 3. Running time of PEKS algorithm.

Fig. 4. Running time of Trap do or algorithm.

of a modular exponentiation on a G 1 element and that on a G 2 element, respectively. Commonly, in both settings, we de-

note the evaluation of a hash function by H, a bilinear pairing by P, a multiplication by M and a division by D, respectively.

We compare the running overhead of PEKS , Trap do or and Test algorithms of schemes in Table 2 . Overall, the computational

cost of our dIBAEKS schemes are slightly larger than but still comparable with PAEKS, ACIEKS and EdIBEKS.

Communication overhead of the four schemes is given in Table 3 . Denote the length of an element in G 1 , G 2 , G T , and

set Z p by L 1 , L 2 , L T , and L p , respectively. We unify the lengths of the collision-resistant hash functions in different schemes

and denote the length by h . In identity-based encryption, because users’ public keys are their identities, which could be of

arbitrary length, so we omit the lengths of public keys in identity-based schemes. According to Table 3 , the communication

overhead of our IBAEKS scheme is almost the same as EdIBEKS, and is slightly larger than PAEKS and ACIEKS.

We implemented the four schemes using C language in a VMware virtual machine (VMware Workstation 14 Pro v14.1.3)

[29] with 2GB memory. The host machine is a workstation with a 14-core 3.10 GHz Intel i9-7940X CPU, 64GB memory and

Windows 10 Professional OS. We used PBC library [20] to implement the bilinear pairing, and chose Type-A curve (with

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 341

Fig. 5. Running time of Test algorithm.

Fig. 6. Average running time of each algorithm.

qbits = 2048) of the PBC in the symmetric setting and Type-F curve (with 451-bit base field) in the asymmetric setting

[3,20] .

Figs. 3 and 4 show the running time of PEKS and Trap do or algorithms of the schemes, respectively. The x -axis is the

number of keywords to be encrypted, and the y -axis is the time needed for the PEKS algorithm to encrypt all the keywords

(resp. Trap do or algorithm to generate trapdoors for all the keywords).

Fig. 5 shows the running time of Test algorithm of the schemes. The x -axis is the number of ciphertexts to be tested,

and the y -axis is the running time needed for Test to finish all the tests. Fig. 6 shows the average running time of each

algorithm of the schemes. Overall, our dIBAEKS is slightly less computationally efficient than but still comparable with

the three related schemes, but it provides stronger security guarantee and better protects users’ privacy. Furthermore, our

dIBAEKS-3 scheme owns the fastest Test algorithm among the schemes, due to the employment of Type-III bilinear pairing,

which means that users need the least time to search over encrypted data in practice.

342 H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343

Table 2

Comparison of computational complexity.

Schemes PEKS Trap do or Test

PAEKS [16] 3E + H + M E + H + P 2P + M

ACIBEKS [28] 3E + H + P E + H H + P

EdIBEKS [30] 3E + H + P + M 2E + H + D 2E + H + 2P + M

dIBAEKS 3E + H + 2P 2E + H + P + M 2E + 2P + M

dIBAEKS-3 2E 1 + 1E 2 + H + 2P 1E 1 + 1E 2 + H + P + M 2E 1 + 2P + M

Table 3

Comparison of communicational overhead.

Schemes Pk / ID Sk ID C T w

PAEKS [16] 1 L 1 1 L p 2 L 1 1 L T
ACIBEKS [28] ∗ 1 L 1 1 L 1 + h 1 L 1
EdIBEKS [30] ∗ 1 L 1 2 L 1 + h 2 L 1
dIBAEKS ∗ 1 L 1 2 L 1 + 1 L T 2 L 1
dIBAEKS-3 ∗ 1 L 1 + 1 L 2 1 L 1 + 1 L 2 + 1 L T 1 L 1 + 1 L 2

∗: The length is not fixed.

7. Conclusion and future works

We introduced the notion of designated-server identity-based authenticated encryption with keyword search, and pro-

posed a concrete dIBAEKS scheme. We proved it to be secure against inside offline KGA and achieve designated testability

based on a simple number-theoretic assumption. The scheme could be slightly modified to satisfy the CCA-type designated

testability. We also showed how to modify the scheme to work in asymmetric bilinear pairing setting to improve the ef-

ficiency. dIBAEKS can be well applied to the encrypted email system to protect users’ privacy. However, our dIBAEKS and

dIBAEKS-3 schemes have the property that a trapdoor can only be used to search over ciphertexts sent from a specific

sender, as both ciphertexts and trapdoors are binded with the identity of the sender (and that of the receiver). We consider

to construct a more flexible dIBAEKS scheme in which a trapdoor can be used to search over multiple users’ encrypted data

in the future work.

Acknowledgments

We are grateful to the anonymous reviewers for their invaluable comments, which help us to improve the quality of

the paper. This work is supported by National Natural Science Foundation of China (Nos. 61872152 , 61472146), Guangdong

Natural Science Funds for Distinguished Young Scholar (No. 2014A030306021), Guangdong Program for Special Support of

Top-notch Young Professionals (No. 2015TQ01X796), Pearl River Nova Program of Guangzhou (No. 201610010037), and the

Graduate Student Overseas Study Program of South China Agricultural University (No. 2018LHPY025).

References

[1] M. Abdalla , M. Bellare , D. Catalano , E. Kiltz , T. Kohno , T. Lange , J. Malone-Lee , G. Neven , P. Paillier , H. Shi , Searchable encryption revisited: consistency

properties, relation to anonymous IBE, and extensions, in: Crypto, 3621, Springer, 2005, pp. 205–222 .
[2] J. Baek , R. Safavi-Naini , W. Susilo , Public key encryption with keyword search revisited, in: International Conference on Computational Science and Its

Applications, Springer, 2008, pp. 1249–1259 .
[3] R. Barbulescu, S. Duquesne, Updating key size estimations for pairings, J. Cryptol. (2018), doi: 10.10 07/s0 0145- 018- 9280- 5 .

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption with keyword search, in: International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, 2004, pp. 506–522, doi: 10.1007/978- 3- 540- 24676- 3 _ 30 .
[5] D. Boneh , M. Franklin , Identity-based encryption from the weil pairing, in: Annual International Cryptology Conference, Springer, 2001, pp. 213–229 .

[6] X. Boyen , The uber-assumption family., in: Pairing-Based Cryptography - Pairing 2008, Second International Conference, Egham, UK, September 1–3,
2008. Proceedings, 2008, pp. 39–56 .

[7] J.W. Byun, H.S. Rhee, H.-A. Park, D.H. Lee, Off-line keyword guessing attacks on recent keyword search schemes over encrypted data, in: Workshop on
Secure Data Management, Springer, 2006, pp. 75–83, doi: 10.1007/11844662 _ 6 .

[8] S. Chatterjee , A. Menezes , On cryptographic protocols employing asymmetric pairings – the role of ψ revisited, Discrete Appl. Math. 159 (13) (2011)

1311–1322 .
[9] K. Emura , A. Miyaji , M.S. Rahman , K. Omote , Generic constructions of secure-channel free searchable encryption with adaptive security, Secur. Com-

mun. Netw. 8 (8) (2015) 1547–1560 .
[10] L. Fang , W. Susilo , C. Ge , J. Wang , A secure channel free public key encryption with keyword search scheme without random oracle, in: Cryptology

and Network Security, International Conference, CANS 2009, Kanazawa, Japan, December 12–14, 2009. Proceedings, 2009, pp. 248–258 .
[11] L. Fang , W. Susilo , C. Ge , J. Wang , Public key encryption with keyword search secure against keyword guessing attacks without random oracle, Inf. Sci.

238 (2013) 221–241 .

[12] Z. Fu, X. Wu, C. Guan, X. Sun, K. Ren, Toward efficient multi-Keyword fuzzy search over encrypted outsourced data with accuracy improvement, IEEE
Trans. Inf. Foren. Secur. 11 (12) (2016) 2706–2716, doi: 10.1109/TIFS.2016.2596138 .

[13] Z. Fu, X. Wu, Q. Wang, K. Ren, Enabling central keyword-based semantic extension search over encrypted outsourced data, IEEE Trans. Inf. Forens.
Secur. 12 (12) (2017) 2986–2997, doi: 10.1109/TIFS.2017.2730365 .

[14] S.D. Galbraith , K.G. Paterson , N.P. Smart , Pairings for cryptographers, Discrete Appl. Math. 156 (16) (2008) 3113–3121 .
[15] L. Guo , W.-C. Yau , Efficient secure-channel free public key encryption with keyword search for EMRS in cloud storage, J. Med. Syst. 39 (2) (2015) 11 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100009334
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0002
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0002
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/978-3-540-24676-3_30
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0005
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0006
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0006
https://doi.org/10.1007/11844662_6
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0009
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0010
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0011
https://doi.org/10.1109/TIFS.2016.2596138
https://doi.org/10.1109/TIFS.2017.2730365
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0014
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0015
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0015

H. Li, Q. Huang and J. Shen et al. / Information Sciences 481 (2019) 330–343 343

[16] Q. Huang , H. Li , An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks, Inf. Sci. 403–404 (2017) 1–14 .
[17] Q. Huang, H. Li, An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks, 2018, (Cryptology ePrint Archive:

Report 2018/007). http://eprint.iacr.org/ .
[18] A. Joux , A one round protocol for tripartite diffie ̊A!‘chellman, J. Cryptol. 17 (4) (2006) 385–393 .

[19] C. Liu, L. Zhu, M. Wang, Y.-a. Tan, Search pattern leakage in searchable encryption: attacks and new construction, Inf. Sci. 265 (2014) 176–188, doi: 10.
1016/j.ins.2013.11.021 .

[20] B. Lynn, et al., Pairing-Based Cryptography Library, 2013 https://crypto.stanford.edu/pbc/ .

[21] H.S. Rhee , J.H. Park , D.H. Lee , Generic construction of designated tester public-key encryption with keyword search, Inf. Sci. 205 (2012) 93–109 .
[22] H.S. Rhee , J.H. Park , W. Susilo , D.H. Lee , Improved searchable public key encryption with designated tester, in: International Symposium on Information,

Computer, and Communications Security, 2009, pp. 376–379 .
[23] H.S. Rhee , J.H. Park , W. Susilo , D.H. Lee , Trapdoor security in a searchable public-key encryption scheme with a designated tester, J. Syst. Softw. 83 (5)

(2010) 763–771 .
[24] H.S. Rhee, W. Susilo, H.-J. Kim, Secure searchable public key encryption scheme against keyword guessing attacks, IEICE Electronics Express 6 (5)

(2009) 237–243, doi: 10.1587/elex.6.237 .
[25] Z.-Y. Shao , B. Yang , On security against the server in designated tester public key encryption with keyword search, Inf. Process. Lett. 115 (12) (2015)

957–961 .

[26] J. Shen, T. Zhou, X. Chen, J. Li, W. Susilo, Anonymous and traceable group data sharing in cloud computing, IEEE Trans. Inf. Forens. Secur. PP (99)
(2017) 1, doi: 10.1109/TIFS.2017.2774439 .

[27] D.X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted data, in: Proceeding 20 0 0 IEEE Symposium on Security and Privacy. S
P 20 0 0, 20 0 0, pp. 44–55, doi: 10.1109/SECPRI.20 0 0.848445 .

[28] K. Tomida , M. Mohri , Y. Shiraishi , Keyword searchable encryption with access control from a certain identity-based encryption, in: Future Information
Technology, Springer, 2014, pp. 113–118 .

[29] VMware, Vmware, 2017, (http://www.vmware.com).

[30] T.-Y. Wu , T.-T. Tsai , Y.-M. Tseng , Efficient searchable id-based encryption with a designated server, Ann. Telecommun. 69 (7) (2014) 391–402 .
[31] Y. Yang, M. Ma, Conjunctive keyword search with designated tester and timing enabled proxy re-encryption function for e-health clouds, IEEE Trans.

Inf. Forens. Secur. 11 (4) (2016) 746–759, doi: 10.1109/TIFS.2015.2509912 .
[32] W.-C. Yau, S.-H. Heng, B.-M. Goi, Off-line keyword guessing attacks on recent public key encryption with keyword search schemes, in: International

Conference on Autonomic and Trusted Computing, Springer, 2008, pp. 100–105, doi: 10.1007/978- 3- 540- 69295- 9 _ 10 .
[33] X. Zhang , C. Xu , L. Mu , J. Zhao , Identity-based encryption with keyword search from lattice assumption, China Commun. 15 (4) (2018) 164–178 .

http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0016
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0016
http://eprint.iacr.org/
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0017
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0017
https://doi.org/10.1016/j.ins.2013.11.021
https://crypto.stanford.edu/pbc/
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0020
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0022
https://doi.org/10.1587/elex.6.237
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0024
https://doi.org/10.1109/TIFS.2017.2774439
https://doi.org/10.1109/SECPRI.2000.848445
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0027
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0027
http://www.vmware.com
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0028
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0028
https://doi.org/10.1109/TIFS.2015.2509912
https://doi.org/10.1007/978-3-540-69295-9_10
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30005-2/sbref0031

	Designated-server identity-based authenticated encryption with keyword search for encrypted emails
	Citation

	Designated-server identity-based authenticated encryption with keyword search for encrypted emails
	1 Introduction
	1.1 Our contributions
	1.2 Related works

	2 Preliminaries
	2.1 Bilinear pairing
	2.2 Decisional bilinear Diffie-Hellman assumption
	2.3 Decisional bilinear Diffie-Hellman assumption in Type-III pairing

	3 Definitions and system model
	3.1 Definition
	3.2 Security models

	4 Our dIBAEKS scheme
	4.1 Construction
	4.2 Security analysis
	4.3 How to achieve designated testability with Test Oracle

	5 dIBAEKS scheme based on type-III pairing
	6 Analysis and comparison
	7 Conclusion and future works
	Acknowledgments
	References

