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a b s t r a c t 

Attribute-based encryption (ABE) is an augmentation of public key encryption that allows 

users to encrypt and decrypt messages based on users’ attributes. In a ( t, s ) threshold ABE, 

users who can decrypt a ciphertext must hold at least t attributes among the s attributes 

specified by the encryptor. At PKC 2010, Herranz, Laguillaumie and Ràfols proposed the 

first threshold ABE with constant-size ciphertexts. In order to ensure the encryptor can 

flexibly select the attribute set and a threshold value, they use dummy attributes to satisfy 

the decryption requirement. The advantage of their scheme is that any addition or removal 

of the attributes will not require any change to users’ private keys or public parameters. 

Unfortunately, the need for dummy attributes makes their scheme inefficient, since the 

computational cost of encryption is linear to the size of selected attribute set and dummy 

attribute set. In this work, we improve Herranz et al.’s work, and propose a new threshold 

ABE scheme which does not use any dummy attribute . Our scheme not only retains the nice 

feature of Herranz et al.’s scheme, but also offers two improvements in comparison to 

the previous work. Firstly, the computational costs of encryption and decryption are only 

linear in the size of the selected attribute set. Secondly, without any dummy attribute, 

most of the computations can be conducted without the knowledge of the threshold t . 

Hence, threshold change in the encryption phase does not require complete recomputation 

of the ciphertext. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

As an extension of public key encryption, Attribute-based encryption (ABE) [3,15,24] has been an active area of research 

recently, since it supports fine-grained access control of the encrypted data. ABE allows users to encrypt and decrypt mes- 

sages based on user attributes. It is useful in providing anonymous access control, which is a desirable property in many 

applications, such as encrypted storage in distributed environments. In ciphertext-policy ABE (CP-ABE), a user’s private key 

is generated by the central authority according to his/her attributes. When someone encrypts a message, it selects a policy 

indicating what attributes the decryptor should hold. Unfortunately, this fascinating functionality comes at a cost. In a typ- 

ical implementation, the size of a ciphertext is usually proportional to the number of attributes associated with it and the 

decryption time is proportional to the number of attributes used during decryption. 
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The first CP-ABE scheme with constant-size ciphertexts under AND-gate access structure was proposed in [7] . Subse- 

quently, Herranz, Laguillaumie and Ràfols [16] 1 presented the first threshold ABE scheme with constant-size ciphertexts, 

which supports a more expressive access structure compared to [7] . Their construction works for the ( t, s ) threshold case, in 

which a user who is authorized to decrypt should hold at least t attributes among the s attributes selected by the encryp- 

tor. Due to the ability of the encryptor to select any threshold value t and attribute set during the encryption phase, their 

scheme is practical. Their scheme is inspired by the technique introduced by Delerablée and Pointcheval [9] in achieving 

dynamic threshold identity-based encryption. Herranz et al.’s scheme is proven secure in the standard model based on the 

hardness of the augmented multi-sequence of exponents decisional Diffie-Hellman ( aMSE-DDH ) problem [16] . 

1.1. Motivation 

The technique used by Delerablée and Pointcheval [9] is to incorporate some “dummy information” (or, dummy users in 

their identity-based encryption scheme [9] ) as part of the computation in order to satisfy the decryption requirement. This 

technique was then used to construct threshold ABE in [16] . However, the incorporation of dummy attributes in [16] brings 

efficiency loss in both encryption and decryption, linear in the size of selected attribute set and dummy attribute set. To 

illustrate the efficiency lost, consider the following parameters used in [16] . Let s be the number of attributes in the chosen 

attribute set S, t be the threshold and m be the upper bound of the number of attributes in S . The costs for encryption 

and decryption in [16] are mainly dominated by m + t + 1 exponentiations and O (t 2 + m ) exponentiations, respectively. It 

means, with the choice of small parameters in s and t , we will still require a large computation effort, since m is typically 

large. 

One of the possible application scenarios is the case which usually appears in a Massively Multiplayer Online Game 

(MMOG). As shown in [25] , the recent global epic combat strategy mobile game Clash-of-Clans ®2 is an example of such 

games which will require an access control mechanism as described in this paper. In this game, each player has multiple 

attributes which will elevate after gaining more experience in the gameplay. The attributes are the possible features in the 

game, such as {“dragon”, “canon”, “bomb”, ���}. There is a large set of possible features that a player can acquire during 

the game, as the set of the possible features is very large. If a player acquires a new feature in the game, it means that 

this feature has been authorized by the central server, otherwise people can just simply cheat by creating the new feature 

themselves. Occasionally, the central server would like to broadcast a special feature (such as an advanced weapon in this 

game), which will only be available to people who have gained a particular level, which is measured by the number of fea- 

tures that this player has acquired. This “offer” will be broadcast to all players, but only players that satisfy the requirement 

can read this broadcast message. Therefore, this message needs to be sent in an encrypted form. Only players who have 

satisfied some certain level can decrypt this broadcast message. This certain level is determined by a minimum number of 

attributes that this player has, and hence, the notion of threshold requirement of attributes, t . Referring to the notation that 

was introduced earlier, the number of possible attributes, S , is typically very large, but a player only has a subset of this set, 

which is referred to as s . As an example, the set S = {“dragon”, “snake”, “canon”, “bomb”, “air trap”, ���}, where typically the 

total maximum available in S (which is m in the above notation) are around 10,0 0 0 features in a single game. A user who 

has played for a reasonable amount of time will gain approximately 100 features, and hence s = 100 . If the threshold t is set 

to something like 30, then a user who holds at least 30 out of the possible features will be able to decrypt the broadcast 

ciphertext. Nevertheless, if the scheme in [16] is used, then each eligible user will still have to conduct a large computation, 

since m is large. This will make the scheme impractical, especially in the case where the application will be run in a mobile 

device. We note that in other scenarios, it would be typical to have a large m as well, even the value of s is small. 

Although Herranz et al.’s scheme [16] is not very computationally efficient, their construction enjoys a nice feature. 

Namely, any addition or removal of the attributes will not require any change to users’ private keys or public parameters. 

We note that there are some subsequent works that achieve threshold ABE but do not have this feature. These works will 

be reviewed in the related work. 

1.2. Summary of our contributions 

The contributions of this paper are twofold: 

• We improve Herranz et al.’s work and propose a threshold ABE scheme which achieves constant-size ciphertexts without 

using dummy attributes . Let s be the number of attributes in the chosen attribute set S, t be the corresponding threshold 

and m be the upper bound of the number of attributes in S . Compared to our scheme, the major computational cost of 

encryption of Herranz et al.’s scheme includes m + t + 1 exponentiations whereas ours requires only s + 3 exponentia- 

tions, and the major computational cost of decryption of Herranz et al.’s scheme includes O (t 2 + m ) exponentiations, but 

ours only needs O (t s + s ) exponentiations. 

• Another fascinating feature of our scheme is that it supports an efficient threshold change during the encryption process. 

The impact of using dummy attributes is that the threshold t must be known in the beginning of the encryption process, 

1 The expanded version of this paper appeared in [1] . 
2 http://www.supercell.net/games/view/clash- of- clans 

http://www.supercell.net/games/view/clash-of-clans
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Table 1 

Comparison between Herranz et al.’s scheme [16] and our scheme in terms of the 

structures of private key and ciphertext. In a private key, A is the set of attributes 

for a user and r is the chosen random number in private key generation. In the 

encryption, S is the set of attributes with s attributes where t is the corresponding 

threshold. κ is the random number chosen during encryption. 

Structures of Private Key and Ciphertext 

Private Key in [16] sk A = 

{{ 
g 

r 
γ + τ ( at ) 

} 
at ∈ A 

, 

{ 
h rγ

i 

} 
i ∈ [0 ,m −2] 

, h 
r−1 
γ

}

Ciphertext in [16] 

(
g κ ·αγ , h 

κ ·α ∏ 
at ∈ S (γ + τ ( at )) 

∏ 
d∈D m + t−1 −s 

(γ + d) 
, e (g α, h ) κ · M 

)

Our Private Key sk A = 

{{ 
g 

r 
γ + τ ( at ) 

} 
at ∈ A 

, 

{ 
h rγ

i 

} 
i ∈ [1 ,m −1] 

, h (r−β) γ m 

}

Our Ciphertext 

(
g κ ·αγ s −t−m 

, h κ ·α ∏ 
at ∈ S (γ + τ ( at )) , e (g β , h αγ s −t 

) κ · M 

)

as this value determines how the ciphertext is being formed. While in our scheme, the value of t only affects one or two 

operations during the encryption, but not the overall computation, and therefore, the encryptor can change the threshold 

t without having to recompute the overall ciphertext. 

1.3. Technical contributions 

In the following we describe an overview of our technique. Following [16] , let A be the set of attributes held by a user, 

and S be the set of attributes specified by the encryptor. Let A S = A ∩ S and F ( γ ) be the polynomial defined as 

F (γ ) = 

∏ 

at ∈ S (γ + τ ( at )) 
∏ 

d∈D m + t−1 −s 
(γ + d) ∏ 

at ∈ A S (γ + τ ( at )) 
, 

which has degree m + t − 1 − | A S | . Here, | A S | denotes the number of attributes in A S and D m + t−1 −s denotes a dummy at- 

tribute set with m + t − 1 − s dummy attributes. 

Given the ciphertext, any user (whose A S � = ∅ ) can compute 

e (g α, h ) −κe (g α, h ) rκ , ∀ i ∈ [1 , m − 1] , e (g α, h ) rκγ i 

and e (g α, h ) rκF (γ ) . 

According to the setting, all redundant group elements e (g α, h ) rκγ i 
must be removed in order to extract the encryption key 

e (g α, h ) −κ from e ( g α , h ) r κF ( γ ) . Therefore, the user will successfully decrypt the ciphertext if and only if F ( γ ) is of degree 

m − 1 at most, which requires | A S | ≥ t . If dummy attributes are not embedded in F ( γ ), the degree of F ( γ ) will be always 

less than m − 1 , such that the user can decrypt the ciphertext even its attribute number does not satisfy the threshold 

requirement. 

We notice that the required degree of F ( γ ) in the construction is mainly dominated by group elements e (g α, h ) rκγ i 
, 

which can be computed by all users. Since all users can compute e (g α, h ) rκγ i 
for all i up to m − 1 , the security requires that 

e ( g α , h ) r κF ( γ ) with an (m − 1) -degree polynomial can only be generated by valid users. 

In our scheme we take a different approach ( Table 1 ). We avoid to use dummy attributes by setting the way that all users 

can only compute e (g α, h ) rκγ i 
for all i up to s − t − 1 , instead of m − 1 . Let A S ⊆A ∩ S be the attribute set with t attributes at 

most and F ( γ ) be the polynomial defined as 

F (γ ) = 

∏ 

at ∈ S (γ + τ ( at )) ∏ 

at ∈ A S (γ + τ ( at )) 
, 

where F ( γ ) is a polynomial in γ with degree s − | A s | . 
Given the ciphertext, any private key user ( A ∩ S � = ∅ ) can compute 

e (g β, h 

αγ s −t 

) −κe (g α, h ) rκγ s −t 

, ∀ i ∈ [1 − m, −1] , e (g α, h ) rκγ s −t+ i 
and e (g α, h ) rκF (γ ) . 

The user will successfully decrypt the ciphertext if and only if F ( γ ) has degree s − t . That is, | A S | = t . If | A S | < t , we have that 

the degree of F ( γ ) is larger than s − t such that all redundancy (that is e (g α, h ) rκγ i 
) cannot be removed for extracting the 

encryption key e (g β, h αγ s −t 
) −κ from e ( g α , h ) r κF ( γ ) . 

1.4. Related work 

The notion of attribute-based encryption (ABE) was first put forth by Sahai and Waters in [24] , which was originally 

referred to as fuzzy identity-based encryption. Goyal et al [15] . further defined two variants of ABE, namely Key-Policy ABE 

(KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In a KP-ABE scheme, the ciphertext is associated with a set of attributes. The 

decryption key, which is issued by an authority, is associated with an access structure. The ciphertext will be decrypted 
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if and only if the attribute set of ciphertext satisfies the access structure of the decryption key. In contrast, in a CP-ABE 

scheme, the ciphertext is equipped with an access structure, while the decryption key is associated with a set of attributes. 

The decryption is successful if and only if the attribute set fulfills the access structure. CP-ABE is more appropriate in access 

control applications, since it enables the encryptor to select the access structure to decide who is authorized to acquire 

the message. While the notion of CP-ABE has been proposed by Goyal et al. [15] , it was first studied in [3,7] . The work 

of Cheung and Newport [7] only supports AND gates. The first concrete construction with expressiveness was presented 

by Bethencourt, Sahai and Waters [3] by using threshold secret sharing to enforce the policy in the encryption phase. Its 

security was analyzed in the generic group model. Goyal et al. [14] proposed a generic construction to transform a KP-ABE 

scheme into a CP-ABE scheme, with the drawback of large ciphertext size (roughly O ( s 3.4 )) which makes it impractical for 

expressive policies. Subsequently, a number of papers have continued this line to achieve higher security schemes with 

expressive policy [18,21,27] . 

The ciphertext size in most constructions of CP-ABE, for example, [3,7,8,17,22,26] , is (at least) linear in the number of 

selected attributes. The first CP-ABE with constant-size ciphertexts under ( n, n )-threshold access structure was proposed in 

[11] . While the KP-ABE scheme with constant-size ciphertexts was achieved by Attrapadung, Libert and Panafieu in [2] which 

supports general access structures. Herranz, Laguillaumie and Ràfols [16] initiated the study on achieving constant size 

ciphertext in threshold ABE, which is more expressive than merely AND gates (c.f [7] .). They incorporated the technique 

from [9] to achieve the goal, where the original work [9] concentrates on achieving constant-size ciphertext in a dynamic 

threshold identity-based encryption setting. The security in [16] is provable secure against chosen plaintext attacks (CPA) in 

the generic group model. Later, Yamada et al. [28] showed a generic construction for achieving chosen-ciphertext security 

(CCA) under the condition that the ABE scheme is of either delegatability or verifiability. Aiming to achieve CCA security in 

the standard model, Ge et al. [13] presented another threshold CP-ABE scheme with constant size ciphertexts by using the 

technique of [6] . Chen et al. [5] and Doshi and Jinwala [10] presented other constructions of threshold ABE with constant- 

size ciphertexts and full security. 

In [5,13] , the private key generation requires a fixed universal attribute set prior to the private key generation. This 

means, any addition or removal of the attributes will require changes to all of the user’s private keys. In contrast, Herranz 

et al.’s scheme [16] does not have this drawback. It is because there is no requirement to map an attribute to a group 

element in this scheme (cf [5,13] .). The difference between these two approaches are usually referred to as “small universe”

vs. “large universe”. In a small universe constructions, at the setup time, a polynomial sized universe of attributes must 

be fixed. Additionally, the public parameters size is linear to the size of the attribute universe set. On the other hand, in 

a large universe constructions, the size of the attribute universe can be exponentially large. Furthermore, the size of the 

public parameters is linear to the upper bound of attribute number in the selected attribute set in the encryption phase. 

For further details about the differences between small universe and large universe, we refer the readers to [19,28] . The 

notion of ABE was originally proposed for flexible access control. We refer the readers to such as [12,20,23] for some recent 

interesting work on access control. 

2. Preliminaries 

In this section, we revisit the definition and security model of threshold attribute-based encryption given in [16] . We 

also introduce a variant computational hard problem which is related to the security proof of our scheme. 

2.1. Threshold attribute-based encryption 

A ciphertext-policy attribute-based encryption supporting threshold decryption policy consists of the following four al- 

gorithms. 

• Setup( λ, P, m ) The algorithm takes as input a security parameter λ, a universal set of attributes P and the upper bound 

of attribute number in encryption. It returns public parameters params and a master secret key. 

• Key Extraction( params , A, msk ) The algorithm takes as input public parameters, an attribute set A ⊆ P and the master 

secret key. It returns a private key sk A for this attribute set. 

• Encryption( params , S, t, M) The algorithm takes as input public parameters, an attribute set S , a threshold t satisfying 

1 ≤ t ≤ | S | and a message M . It returns a ciphertext CT for ( S, t ). 

• Decryption( CT , (S, t) , A, sk A ) The algorithm takes as input a ciphertext for ( S, t ), an attribute set A and the corresponding 

private key sk A . It returns a message if | A ∩ S | ≥ t , and ⊥ otherwise. 

We notice that the size of P in the original definition [16] is equal to m . However, we find that the size of P can be 

larger than m . The independence is much practical in use and we therefore adopt the latter definition. We show that the 

difference will not affect the construction and the security proof in this work. 

The security of threshold ABE we consider here is indistinguishability under selective security against chosen-plaintext at- 

tacks (IND-sCPA), which is defined by the following game between an attacker A and a challenger. 

1. The challenger specifies a universe of attributes P and upper bound number m , and gives them to the attacker A . 

2. The attacker A selects a subset S ⊆ P with s attributes and a threshold t for challenge, where s and t satisfy 1 ≤ t ≤ s . 
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3. The challenger runs the setup algorithm of ABE algorithm and gives params to the attacker. 

4. Private Key Queries : The attacker adaptively sends any subset of attributes A ⊆ P for private key queries with the re- 

striction | A ∩ S | < t . The challenger runs the key extraction algorithm and gives the corresponding private key sk A to the 

attacker A . 

5. Challenge : The attacker outputs two messages M 0 , M 1 for challenge. The challenger randomly chooses a bit b ∈ {0, 1} and 

runs the encryption algorithm on the message M b for ( S, t ) specified in the second step. The corresponding ciphertext 

CT ∗ is then given to the attacker as the challenge ciphertext. 

6. The attacker continues to issue private key queries as in Step 4. 

7. The adversary outputs a guess b ′ and wins the game if b ′ = b. 

The advantage of the attacker in the above game is defined as | Pr [ b ′ = b] − 1 
2 | . A Threshold ABE is said to be IND-sCPA 

secure if for all probabilistic polynomial-time attackers A its advantage in the game is negligible in λ. 

2.2. The aMSE-DDH problem 

Our scheme is based on bilinear pairing. Its security relies on a hard problem slightly different from the problem defined 

in [9,16] . Here, we still call this problem as augmented multi-sequence of exponents decisional Diffie-Hellman problem (aMSE- 

DHE) since the main difference is in the given exponents. We prove that this aMSE-DDH problem is one of the generic 

Diffie-Hellman problems defined by Boneh, Boyen and Goh in [4] . 

Let BG = (G , G T , p, e ) be a bilinear pairing group, where p is the prime order of both G and G T , and e is the bilinear 

map. Let g 0 , h 0 be two generators of G . The input of aMSE-DDH problem consists of q, s, t, f (x ) , g(x ) , T ∈ G T where f ( x ), g ( x ) 

are random co-prime polynomials in the following formulas 

f (x ) = 

q ∏ 

i =1 

(x + x i ) , g(x ) = 

s ∏ 

i =1 

(x + x ′ i ) , 

and group elements 

g 0 , h 0 

g α0 

0 
, g 

α0 γ
0 

, g 
α0 γ

2 

0 
, · · · , g 

α0 γ
q + m 

0 
, g 

κα0 f (γ ) γ s −t 

0 

g 
β0 

0 
, g 

β0 γ
0 

, g 
β0 γ

2 

0 
, · · · , g 

β0 γ
q + t 

0 

g ω 0 , g 
ωγ
0 

, g 
ωγ 2 

0 
, · · · , g 

ωγ q + t 

0 

h 

α0 

0 
, h 

α0 γ
0 

, h 

α0 γ
2 

0 
, · · · , h 

α0 γ
2 m 

0 
, h 

κα0 g(γ ) γ m 

0 

h 

β0 

0 
, h 

β0 γ
0 

, h 

β0 γ
2 

0 
, · · · , h 

β0 γ
m −1+(t−1) 

0 

h 

ω 
0 , h 

ωγ
0 

, h 

ωγ 2 

0 
, · · · , h 

ωγ m + t 

0 
. 

All roots x i , x 
′ 
i 

are given but all exponents α0 , β0 , γ , ω are unknown. The aim of this problem is to decide whether the 

given group element T is 

T = e (g 0 , h 0 ) 
κα0 β0 f (γ ) γ m + s −1 

, 

or T is a random element from G T . 

Theorem 1. The aMSE-DDH assumption is a ( P, Q, F ) -Generic Diffie-Hellman Exponent (GDHE) assumption. 

Proof. Given q, s, t, f (x ) , g(x ) , T ∈ G T where f ( x ), g ( x ) are co-prime polynomials in the following formulas 

f (x ) = 

q ∏ 

i =1 

(x + x i ) , 

g(x ) = 

s ∏ 

i =1 

(x + x ′ i ) , 

and group elements 

g 0 , h 0 

g α0 

0 
, g 

α0 γ
0 

, g 
α0 γ

2 

0 
, · · · , g 

α0 γ
q + m 

0 
, g 

κα0 f (γ ) γ s −t 

0 

g 
β0 

0 
, g 

β0 γ
0 

, g 
β0 γ

2 

0 
, · · · , g 

β0 γ
q + t 

0 

g ω 0 , g 
ωγ
0 

, g 
ωγ 2 

0 
, · · · , g 

ωγ q + t 

0 

h 

α0 

0 
, h 

α0 γ
0 

, h 

α0 γ
2 

0 
, · · · , h 

α0 γ
2 m 

0 
, h 

κα0 g(γ ) γ m 

0 
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h 

β0 

0 
, h 

β0 γ
0 

, h 

β0 γ
2 

0 
, · · · , h 

β0 γ
m −1+(t−1) 

0 

h 

ω 
0 , h 

ωγ
0 

, h 

ωγ 2 

0 
, · · · , h 

ωγ m + t 

0 
, 

the aim of this problem is to decide whether 

T = e (g 0 , h 0 ) 
κα0 β0 f (γ ) γ m + s −1 

or T is a random element from G T . 

In the following theorem, we prove that this hard problem captures the independence as required in the ( P, Q, F )-GDHE 

problem. 

Theorem 2. The aMSE-DDH assumption is a ( P, Q, F ) -GDHE assumption. 

Proof. Let h 0 = g 
η
0 

for some integer η. The aMSE-DDH problem can be reformulated as a ( P, Q, F )-GDHE structure where 

P = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 η κα0 f (γ ) γ s −t ηκα0 g(γ ) γ m 

α0 α0 γ α0 γ
2 · · · α0 γ

q + m 

β0 β0 γ β0 γ
2 · · · β0 γ

q + t 

ω ωγ ωγ 2 · · · ωγ q + t 

ηα0 ηα0 γ ηα0 γ
2 · · · ηα0 γ

2 m 

ηβ0 ηβ0 γ ηβ0 γ
2 · · · ηβ0 γ

m + t−2 

ηω ηω γ ηω γ 2 · · · ηω γ m + t 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

Q = 1 , 

F = ηκα0 β0 f (γ ) γ m + s −1 . 

To prove aMSE-DDH problem is a ( P, Q, F )-GDHE problem, we need to prove that no coefficients { a i, j } and b 1 exist such 

that 

F = 

| P| ∑ 

i, j=1 

a i, j p i p j + b 1 q 1 , 

where p i , p j are from P and q 1 is from Q . By making all possible products of two polynomials from P that contains common 

parameter ηκα0 β0 , we prove that there is no linear combination from the set R below which can generate F . 

R = 

(
ηκα0 β0 · g(γ ) γ m ηκα0 β0 · g(γ ) γ m +1 · · · ηκα0 β0 · g(γ ) γ q + m + t 

ηκα0 β0 · f (γ ) γ s −t ηκα0 β0 · f (γ ) γ s −t+1 · · · ηκα0 β0 · f (γ ) γ m + s −2 

)
. 

If there exists such a combination, it can be written as 

ηκα0 β0 f (γ ) γ m + s −1 = ηκα0 β0 g(γ ) γ m · A (γ ) + ηκα0 β0 f (γ ) γ s −t · B (γ ) , 

where A ( γ ) is a polynomial in γ of degree at most (q + t) and B ( γ ) is a polynomial of degree at most (m + t − 2) . Let the 

degree of A ( x ) be d A in the above formula. We firstly simplify the formula as 

f (γ ) γ m + s −1 = g(γ ) γ m · A (γ ) + f (γ ) γ s −t · B (γ ) . 

Then, we have that 

f (γ ) 
(
γ m + t−1 − B (γ ) 

)
= g(γ ) γ m + t−s A (γ ) . 

The degree of B ( γ ) is at most m + s − 2 so that the left polynomial cannot be equivalent to zero. Therefore, the above 

equation implies that the two non-zero polynomials must have the same degree. The degree of the left polynomial is q + 

m + t − 1 while the degree of the right polynomial is s + m + t − s + d A . Hence, we have that d A = q − 1 . 

Since f ( γ ) and g(γ ) γ m + t−s are co-prime, we therefore have f ( γ )| A ( γ ) or A ( γ ) ≡ 0. The degree d A = q − 1 implies that 

A ( γ ) ≡ 0 and then f (γ ) 
(
γ m + t−1 − B (γ ) 

)
≡ 0 , which is contrary to non-zero f (γ ) 

(
γ m + t−1 − B (γ ) 

)
. This indicates no A ( α), 

B ( α) exist and then no { a i, j , b 1 } exist. This yields the theorem. �

3. Our new threshold ABE scheme 

In this part we describe our threshold ABE scheme in details, which does not use any dummy attributes during encryp- 

tion and decryption. 
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3.1. Description of scheme 

Setup( λ, P, m ). The master entity chooses a suitable encoding τ 3 which maps each of the attributes at ∈ P to a different 

element τ ( at ) ∈ Z p . It also chooses a bilinear group BG = (G , G T , p, e ) and generators g, h of G 1 . Next, the master entity 

picks at random α, β, γ ∈ Z p and sets 

g i = g 
α

γ i , h i = h 

αγ i 

, u = g β, i ∈ [0 , m ] . 

The master secret key is msk = (g, h, β, γ ) and the public parameters for P are 

params = 

{ 

BG , m, g 0 , g 1 , g 2 , · · · , g m 

, h 0 , h 1 , h 2 , · · · , h m 

, u, τ
} 

. 

Key Extraction( params , A, msk ). Given any subset A ⊆ P, the master entity picks r ∈ Z p at random and computes sk A as 

sk A = 

{ { 

g 
r 

γ + τ ( at ) 

} 

at ∈ A 
, h 

rγ 1 

, h 

rγ 2 

, · · · , h 

rγ m −1 

, h 

(r−β) γ m 
} 

. 

Encryption( params , S, t, M). Given a subset S ⊆ P with s = | S| attributes, a threshold t satisfying 1 ≤ t ≤ s , and a message 

M ∈ G T , the sender picks at random κ ∈ Z p and computes ⎧ ⎨ 

⎩ 

C 1 = 

(
g m −(s −t) 

)κ

C 2 = h 

κ ·α·∏ 

at ∈ S (γ + τ ( at )) 

K = e (h s −t , u ) κ . 

The group element C 2 could be computed from h αγ i 
given in the public parameters params . Let f S (x ) = 

∏ 

at ∈ S (x + τ ( at )) 

be the polynomial in x and a i be the coefficient of x i . We have C 2 = 

∏ s 
i =0 (h αγ i 

) a i κ . The ciphertext is ( C 1 , C 2 , C 3 ), where 

C 3 = K · M. 

Decryption( (C 1 , C 2 , C 3 ) , (S, t) , A, sk A ). Any user with a set of attributes A satisfying | A ∩ S | ≥ t can decrypt the ciphertext 

by using the private key sk A . The decryption works as follows. Let A S be any subset of A ∩ S with | A S | = t, and f S\ A S (x ) = ∏ 

at ∈ S\ A S (x + τ ( at )) be the polynomial in x and b i be the coefficient of x i . 

The user first computes the aggregation value as 4 

Aggregate 

({ 

g 
r 

γ + τ ( at ) , τ ( at ) 
} 

at ∈ A S 

)
= g 

r ∏ 
at ∈ A S (γ + τ ( at )) 

. 

Then, it computes 

L = e 

(
g 

r ∏ 
at ∈ A S (γ + τ ( at )) 

, C 2 

)

K 

−1 · L = e 

(
C 1 , h 

(r−β) γ m ·
s −t−1 ∏ 

i =0 

(
h 

rγ i + m −(s −t) 
)b i 

)

Finally, the user recovers the message by computing M = C 3 · K 

−1 L/L . 

3.2. Correctness 

The decryption is correct since we have 

L = e 

(
g 

r ∏ 
at ∈ A S (γ + τ ( at )) 

, C 2 

)

= e 

(
g 

r ∏ 
at ∈ A S (γ + τ ( at )) 

, h 

κ ·α·∏ 

at ∈ S (γ + τ ( at )) 
)

= e (g, h ) 
rκα

∏ 

at ∈ (S−A S ) 

(
γ + τ ( at ) 

)
, 

K 

−1 L = e 

(
C 1 , h 

(r−β) γ m ·
s −t−1 ∏ 

i =0 

(
h 

rγ i + m −(s −t) 
)b i 

)

= e 

(
g 

κα

γ m −(s −t) , h 

(r−β) γ m ·
s −t−1 ∏ 

i =0 

(
h 

rγ i + m −(s −t) 
)b i 

)

3 We adopt the encoding τ used in the original paper [16] for scheme construction and security proof. 
4 The detail aggregation algorithm can be found in [9] , which requires O ( t 2 ) exponentiations. 
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= e 

(
g κα, h 

(r−β) γ s −t ·
s −t−1 ∏ 

i =0 

(
h 

rγ i 
)b i 

)

= e 

(
g κα, h 

−βγ s −t ·
s −t ∏ 

i =0 

(
h 

rγ i 
)b i 

)

= e (g, h ) −καβγ s −t ·
s −t ∏ 

i =0 

e (g, h ) καr·b i γ i 

= e (g, h ) −καβγ s −t · e (g, h ) 
rκα

∏ 

at ∈ (S−A S ) 

(
γ + τ ( at ) 

)
. 

3.3. Security proof 

Theorem 3. For any adversary A against the IND-sCPA security of our ABE scheme with advantage ε for a universe P of q 

attributes, and a challenge pair ( S, t ) with s = | S| , there exists an algorithm for solving the ( q, m, s, t ) -aMSE-DDH problem with 

at least the same advantage ε. 

Proof. Let A be an adversary against the IND-sCPA security of our ABE scheme. We construct an algorithm (simulator) 

B that uses A as a sub-routine to solve the aMSD-DDH problem. In particular, the simulator B is given an instance of this 

hard problem and its aim is to solve this problem by using A ’s guess of the encrypted message. The interaction between A 

and B works as follows. 

Initialize: The simulator B specifies a universe of attributes P = { at 1 , · · · , at q } . Next, the adversary selectively chooses 

( S, t ) to attack, where S is a set with s attributes and t is a threshold t satisfying 1 ≤ t ≤ s . Without loss of generality, let 

S = { at 1 , at 2 , · · · , at s } be the challenge set. 

Setup: Let group elements in the instance that B receives be 

g α0 

0 
, g 

α0 γ
0 

, g 
α0 γ

2 

0 
, · · · , g 

α0 γ
q + m 

0 
, g 

κα0 f (γ ) γ s −t 

0 
, (1) 

g 
β0 

0 
, g 

β0 γ
0 

, g 
β0 γ

2 

0 
, · · · , g 

β0 γ
q + t 

0 
, (2) 

g ω 0 , g 
ωγ
0 

, g 
ωγ 2 

0 
, · · · , g 

ωγ q + t 

0 
, (3) 

h 

α0 

0 
, h 

α0 γ
0 

, h 

α0 γ
2 

0 
, · · · , h 

α0 γ
2 m 

0 
, h 

κα0 g(γ ) γ m 

0 
, (4) 

h 

β0 

0 
, h 

β0 γ
0 

, h 

β0 γ
2 

0 
, · · · , h 

β0 γ
m −1+(t−1) 

0 
, (5) 

h 

ω 
0 , h 

ωγ
0 

, h 

ωγ 2 

0 
, · · · , h 

ωγ m + t 

0 
, (6) 

where f ( x ), g ( x ) are co-prime polynomials with degrees q and s , respectively, defined as 

f (x ) = 

q ∏ 

i =1 

(x + x i ) , g(x ) = 

s ∏ 

i =1 

(x + x ∗i ) . 

The simulator B defines the encoding of each attribute into a unique root as below: 

τ ( at ) = 

{
x is a root of f (x ) if at / ∈ S, 
x is a root of g(x ) if at ∈ S. 

Then it sets g, h, α, β , γ using the group elements and unknown exponents in the instance as 

g = g 
f (γ ) 
0 

, h = h 0 , α = α0 γ
m , β = β0 γ

t−1 , γ = γ . 

Then we have 

g i = g 
α

γ i = g 

f (γ ) α0 γ
m 

γ i 

0 
= g 

α0 γ
m −i f (γ ) 

0 
: i ∈ [0 , m ] , 

h i = h 

α0 γ
m γ i 

0 
= h 

α0 γ
m + i 

0 
: i ∈ [0 , m ] , 

u = g β = g 
β0 f (γ ) γ t−1 

0 
. 
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The degree of polynomial γ m −i f (γ ) in γ is at most q + m . And we have that all g i can be computed from the line (1) of 

the instance, all h i are available from the line (4) of the instance, and u can be computed from the line (2) of the instance 

because f (γ ) γ t−1 in u has degree q + t − 1 only. 

The algorithm B then simulates the rest of the game as below. 

KeyGen: For a key extraction query on the attribute set A ⊆ P, let A S = A ∩ S where S is the challenge attribute set. We 

should have that | A S | ≤ t − 1 . The corresponding private key for this attribute set is 

sk A = 

{ { 

g 
r 

γ + τ ( at ) 

} 

at ∈ A 
, h 

rγ 1 

, h 

rγ 2 

, · · · , h 

rγ m −1 

, h 

(r−β) γ m 
} 

, 

which requires the simulator to compute without knowing α and β . 

The simulator first randomly chooses r ′ ∈ Z p and sets the random number r in the above private key as 

r = (r ′ ωγ + β0 ) γ
t−1 −| A S | ∏ 

at ∈ A S 
(γ + τ ( at )) , 

where β0 , γ , ω are from the instance. We have that r is uniformly random due to r ′ . 
Since each attribute at in A is either in the set A \ A S or A S , we have 

x + τ ( at i ) 

∣∣∣ f (x ) 
∏ 

at ∈ A S 
(x + τ ( at )) . 

Let f at i (x ) be 

f at i (x ) = 

x t−1 −| A S | f (x ) 
∏ 

at ∈ A S (x + τ ( at )) 

x + τ ( at i ) 
, 

which therefore is a polynomial in x of degree at most q + t − 1 . Define the following polynomials f i 
1 
(x ) and f 2 ( x ): 

f i 1 (x ) = x i + t−1 −| A S | ∏ 

at ∈ A S 
(x + τ ( at )) , ∀ i ∈ [1 , m − 1] , 

f 2 (x ) = x m + t−1 −| A S | ∏ 

at ∈ A S 
(x + τ ( at )) − x m + t−1 . 

Their degrees are both at most m + t − 2 . Then we have 

g 
r 

γ + τ ( at ) = g 

(r ′ ωγ + β0 ) γ
t−1 −| A S | ∏ at ∈ A S (γ + τ ( at )) · f (γ ) 

γ + τ ( at ) 

0 

= g 
r ′ ωγ f at i (γ )+ β0 f at i (γ ) 

0 
, 

h 

rγ i = h 

(r ′ ωγ + β0 ) γ
t−1 −| A S | ∏ 

at ∈ A S (γ + τ ( at )) ·γ i 

0 

= h 

(r ′ ωγ + β0 ) γ
i + t−1 −| A S | ∏ 

at ∈ A S (γ + τ ( at )) 

0 

= h 

r ′ ωγ f i 1 (γ )+ β0 f 
i 
1 (γ ) 

0 
, 

h 

(r−β) γ m = h 

(
(r ′ ωγ + β0 ) γ

t−1 −| A S | ∏ 

at ∈ A S (γ + τ ( at )) −β

)
γ m 

0 

= h 

(r ′ ωγ + β0 ) γ
m + t−1 −| A S | ∏ 

at ∈ A S (γ + τ ( at )) −βγ m 

0 

= h 

(r ′ ωγ + β0 ) γ
m + t−1 −| A S | ∏ 

at ∈ A S (γ + τ ( at )) −β0 γ
m + t−1 

0 

= h 

r ′ ωγ f m 1 (γ )+ β0 f 2 (γ ) 

0 
, 

and 

• ωγ f at i (γ ) is a polynomial in γ with q + t degree at most; 

• β0 f at i (γ ) is a polynomial in γ with q + t − 1 degree at most; 

• ωγ f i 
1 
(γ ) is a polynomial in γ with m + t − 1 degree at most; 

• β0 f 
i 
1 
(γ ) is a polynomial in γ with m + t − 2 degree at most; 

• ωγ f m 

1 
(γ ) is a polynomial in γ with m + t − 1 degree at most; 

• β0 f 2 ( γ ) is a polynomial in γ with m + t − 2 degree at most. 

Finally, the simulator B computes g 
r 

γ + τ ( at i ) for all at i from the lines (2) and (3) of the instance, h rγ
i 

for all i ∈ [1 , m − 1] 

and h (r−β) γ m 
from the lines (5) and (6) of the instance. 
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Challenge: Once the adversary A sends two messages M 0 , M 1 ∈ G T for challenge, the simulator B flips a random coin 

b ∈ {0, 1} and sets the challenge ciphertext on message M b for ( S, t ) as ⎧ ⎨ 

⎩ 

C ∗1 = g 
κα0 f (γ ) γ s −t 

0 
, 

C ∗2 = h 

κα0 α0 g(γ ) γ m 

0 
, 

C ∗3 = T · M b , 

where g 
κα0 f (γ ) γ s −t 

0 
is from the last element of the line (1), h 

κα0 α0 g(γ ) γ m 

0 
is from the last element of the line (2) and T is the 

unknown element to be decided. 

Let κ in the instance be the random number for encryption. If T = e (g 0 , h 0 ) 
α0 β0 f (γ ) γ m + s −1 

, we have ⎧ ⎪ ⎨ 

⎪ ⎩ 

C ∗1 = 

(
g m −(s −t) 

)κ

= g καγ s −t−m = g 
κα0 f (γ ) γ s −t 

0 
, 

C ∗2 = h 

κ ·α·∏ 

at ∈ S (γ + τ ( at )) = h 

κα0 g(γ ) γ m 

0 
, 

C ∗3 = e (h s −t , u ) κ · M b = e (h 

α0 γ
m + s −t 

0 
, g 

f (γ ) β0 γ
t−1 

0 
) · M b = T · M b . 

Therefore, CT ∗ is a valid challenge ciphertext for ( S, t ) on the message M b . On the other hand, if T is random, C 3 is random 

and independent of the choice of the bit b . 

Guess: The adversary returns a guess b ′ of b , and the simulator returns true if b ′ = b which means T = 

e (g 0 , h 0 ) 
α0 β0 f (γ ) γ m + s −1 

. Otherwise, the simulator returns a random T . 

There is no abortion during the simulation as all private keys and the challenge ciphertext are computable from the in- 

stance of the hard problem. It is easy to see that g, h are random group elements because of g 0 , h 0 and α, β , γ are uniformly 

random and independent due to α0 , β0 , γ in the instance. Notice that each random number r in the private key genera- 

tion is computed by (r ′ ωγ + β0 ) γ
t−1 −| A S | ∏ 

at ∈ A S (γ + τ ( at )) where r ′ is chosen randomly and independently. Therefore, the 

simulation is indistinguishable from the real scheme when T is true. The adversary cannot distinguish the simulation from 

the real scheme and will break the scheme with advantage ε according to the definition of security. When T is false, it is 

uniformly random and independent from the view of C ∗
1 
, C ∗

2 
so that it is a one-time pad and hence the adversary has no 

advantage in guessing the chosen bit b . Therefore we have that 

εreduction = 

∣∣ Pr [ B guess T=True | T=True ] − Pr [ B guess T=True | T=False ] 
∣∣

= 

∣∣ Pr [ b ′ = b| T=True ] − Pr [ b ′ = b| T=False ] 
∣∣

= 

1 

2 

+ ε − 1 

2 

= ε. 

This completes the proof for theorem. �

4. Discussion and comparison 

4.1. Benefits of encryption without dummy attributes 

Let f ( γ ) be the polynomial in γ whose degree is m − 1 . We have the computation on h καf ( γ ) from κ, h αγ i 
: i ∈ [0 , m − 1] 

requires m exponentiations. In particular, let f i be the coefficient of γ i in f ( γ ). We have h καf ( γ ) is computed by 

h 

κα f (γ ) = 

m ∏ 

i =0 

(h 

αγ i 

) f i . 

If we want to compute h κα f (γ )(γ + d) , w e cannot save the overload computation with the additional input h καf ( γ ) as 

h κα f (γ )(γ + d) must be computed by 

h 

κα f (γ )(γ + d) = 

m ∏ 

i =0 

(h 

αγ i +1 

) f i ·
(
h 

κα f (γ ) 
)d 

, 

which still requires a linear number of exponentiations in the degree of f (γ )(γ + d) . 

The main computation in encryption of [16] is dominated by 

C 2 = h 

κ ·α ∏ 

at ∈ S (γ + τ ( at )) 
∏ 

d∈D m + t−1 −s 
(γ + d) 

, 

while in our scheme it is dominated by C 2 = h κ ·α ∏ 

at ∈ S (γ + τ ( at )) . Based on the above analysis, our encryption time is liner in 

the number of s while the scheme in [16] is linear in the number of m , where m is the upper bound of s . The corresponding 

decryption is also different and ours will be much faster. The detailed efficiency comparison is provided in Table 2 . 
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Table 2 

Efficiency Comparison of related CP-ABE schemes. p and e are paring computation and expo- 

nentiation computation, respectively. n is the number of universal attributes. � is the size of 

an access formula. s is the number of attributes in the chosen attribute set S. t is the cor- 

responding threshold number and m is the upper bound of attribute number in S . | A | and 

| I | are the numbers of attributes in a user’s key and the number of attributes satisfied the 

function, respectively. We notice that the pairing computation in the encryption can be saved 

if all e (h αγ i 
, u ) have been precomputed in the public parameters. 

Schemes Key size Ciphertext size Encryption cost Decryption cost 

CN [7] (2 n + 1) | G | (n + 1) | G | + | G T | (n + 2) e (n + 1) p 

DJ [10] (| A | + 2) | G | 2 | G | + | G T | 3 e 2 p 

EMN + [11] 2 | G | 2 | G | + | G T | 3 e 2 p + 3 e 

BSW [3] (2 | A | + 1) | G | (� + 1) | G | + | G T | (2 � + 2) e | I | p 

W [27] (| A | + 2) | G | (� + 2) | G | + | G T | (2 � + 2) e | I | p 

GZC + [13] 2 n (n + | A | ) | G | 2 | G | + | G T | 3 e 2 p + 2 n e 

HLR [16] (m + | A | ) | G | 2 | G | + | G T | (m + t + 1) e 3 p + O (t 2 + m ) e 

Ours (m + | A | ) | G | 2 | G | + | G T | 1 p + (s + 3) e 2 p + O (t 2 + s ) e 

Table 3 

Comparison of related CP-ABE schemes. The symbol “ × ” means that it does not 

support the corresponding functionality. 

Schemes Universe Threshold change Security Expressiveness 

CN [7] Small × Selective AND-gate 

DJ [10] Small × Full AND-gate 

EMN + [11] Small × Selective (n,n)-Threshold 

BSW [3] Large × Selective Access Tree 

W [27] Small × Selective LSSS 

GZC + [13] Small ≈ 1 e Selective Threshold 

HLR [16] Large (m + t − 1) e Selective Threshold 

Ours Large 2 e Selective Threshold 

4.2. Efficient threshold change 

Another benefit of our encryption is the dynamic choice of the threshold t after the selection of attribute set S . Notice 

that an encryption is to compute C 1 , C 2 and K , which costs one exponentiation, | S | exponentiations and one exponentiation, 

respectively. In our scheme, upon receiving the set S , the encryptor can compute C 2 without the need of the threshold t , 

which dominates most of exponentiations in encryption. Once the threshold t is given, only two exponentiations are required 

to compute C 1 and K . While in [16] , both S and t must be provided before the encryption, otherwise the encryptor cannot 

perform the computation of C 2 . This property allows the encryptor to flexibly change the threshold during the application 

before publishing the ciphertext. More precisely, suppose the encryptor has already created a ciphertext for ( S, t ) using the 

random number κ and the ciphertext is not yet published. If the threshold t needs to be revised with t ′ for any t ′ , the 

encryptor can use the old C 2 and re-compute C 1 , K for the updated threshold t ′ , which allows the encryptor to quickly 

change ( S, t ) into ( S, t ′ ) with two exponentiations. There is no security issue in this variant encryption because only the 

ciphertext for ( S, t ′ ) is published and it is equivalent to a ciphertext generation from the encryption algorithm directly. The 

detailed performance comparison is provided in Table 3 . 

5. Conclusion 

Attribute-based encryption (ABE) has proven to be a very promising cryptographic primitive that offers fine-grain ac- 

cess control. Herranz et al. proposed the first constant-size threshold ABE. However, their scheme makes use of dummy 

attributes, which leads to inefficiency. In this work, we improved Herranz et al.’s work and proposed a new threshold ABE 

scheme which does not require any dummy attributes . We made two specific improvements in comparison to the previous 

work. First, the cost for encryption and decryption is only linear to the size of the selected attribute set. Second, the thresh- 

old can be decided after the selection of the attribute set in the encryption phase. These two properties make our scheme 

more attractive in practical use. 
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