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Speed Acquisition

Abstract

Speed is a salient feature of modern financial markets. This paper studies investors’ speed ac-
quisition, alongside their information acquisition. Speed heterogeneity arises in equilibrium,
fragmenting the information aggregation process with a nonmonotone impact on the overall price
informativeness. Various competition effects drive speed and information to be either substitutes
or complements. The model cautions the possible dysfunction of price discovery: An improving
information technology might complement speed acquisition, which shifts the concentration of
price discovery over time, possibly hurting price informativeness. Novel predictions are discussed
regarding investor composition, their performance, and trading volume.

Keywords: speed, information, technology, price discovery, price informativeness
JEL code: D40, D84, G12, G14

(There are no competing financial interests that might be perceived to influence the analysis, the discussion, and/or the
results of this article.)



1 Introduction

Information aggregation is a fundamental function of financial markets. It involves two steps. First,

investors acquire information. Second, via trading, such information is incorporated into price.

Intrinsically underlying this second step is the notion of speed, because trading takes time: Not all

investors with information instantaneously gather together (and neither do their trading orders). If

they only slowly arrive in the market, the resulting information aggregation will also be slow.

Indeed, in modern financial markets, investors choose not only how much information to acquire

but also how quickly to trade on it. Consider a hedge fund for example. Its information acquisition

involves, e.g., visiting firms, buying datasets, or developing valuation models. Such investments

determine the amount and the quality of the data (signal precision). Its speed acquisition covers

different aspects: First, the fund can invest in equipment or staff to speed up data processing,

reaching the same trading strategy sooner. Second, before execution, a trading order needs to

journey through the back office (for risk management, due diligence, and compliance; Bouvard and

Lee, 2016). The fund can invest in more personnel to streamline such processes. Third, from trading

desks and onward, the fund can expedite order execution by investing in computational hardware

and connection to exchange servers (e.g., algorithmic and high-frequency trading technology).

Importantly, these three speed investments only reduce the time needed to implement trades, not

affecting the trading strategies’ signal quality.

The canonical frameworks studying information aggregation, like Grossman and Stiglitz (1980)

and Verrecchia (1982), do not feature speed, as investors trade at the same time. The recent high-

frequency trading literature typically bundles information and speed together for fast traders; e.g.,

Hoffmann (2014) and Biais, Foucault, and Moinas (2015). Contrary to this view, Dugast and

Foucault (2018) and Kendall (2018) argue that processing information is time-consuming and fast

traders can only rely on imprecise signals. This paper complements the literature by studying

investors’ separate acquisition of speed and of information, rather than tying the two together.
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A set of questions arises: How much speed technology should different investors acquire?

Is investment in speed favored over information? Which securities attract more fast investors?

What are the implications for the overall “price discovery” (information aggregation and price

informativeness)?

This paper develops a model to address these questions. Consider an economy populated with a

continuum of speculators trading a risky asset. Before trading, there are two technologies available.

The information technology improves speculators’ profitability by increasing signal precision. The

speed technology allows one to execute his trade before the information is capitalized into prices—

fast speculators have a “first-mover advantage.” In equilibrium, speculators optimally choose how

much to invest in each technology to maximize his profit, taking into account the investment costs

and the competition from others.

A driving feature of the model is the “temporal fragmentation effect” of the speed technology.

Though all speculators want to acquire speed to enjoy the “first-mover advantage,” in equilibrium,

not everyone will be equally fast, for otherwise there is no “first-mover” and some will stay slow

to save the speed cost. Speed heterogeneity thus endogenously arises, splitting the trading process

temporally into parts, e.g., an early fragment with fast speculators and a late fragment with slow

ones. The speed technology, affecting the equilibrium size of fast traders, therefore shifts the

concentration of trading over time, affecting various market quality.

There are three main results. First, the speed technology inflicts a nonmonotone impact on the

overall price informativeness. With a more advanced (cheaper) speed technology, more speculators

become fast, boosting the early price discovery. At the same time, fewer remain slow and the late

price discovery decays. The overall price informativeness, therefore, can be either improved or

hurt, depending on whether the (early) boost overcomes the (late) decay.

It is worth emphasizing that this nonmonotone impact of speed technology holds even when

information acquisition is shut down. This result contributes to the literature with how speed

technology alone could affect market quality, refining the understanding from existing theory
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where speed and information are tied together (e.g., Dugast and Foucault, 2018; Kendall, 2018).

Second, speed and information can be either complements or substitutes. Consider, for example,

a positive shock in the information technology, upon which all speculators acquire more informa-

tion. How the demand for speed responds depends on the relative change between fast and slow

speculators’ rents. As everyone acquires more information, competition intensifies, attenuating the

rents within both groups. In addition, the increased early price discovery hurts the slow speculators

(if the early price becomes fully-revealing, no rent will be left for the slow).Taken together, if the

fast (the slow) are hurt more, some of them are better off staying slow (becoming fast) instead, in

which case information substitutes (complements) speed.

Such endogenous complementarity or substitution effects between the two technologies are

novel to the literature. This insight is made possible precisely because the two technologies

are modeled side-by-side, departing from the aforementioned existing models where speed and

information are inseparable.

A number of novel empirical predictions in the cross-section of assets follow this second result.

For example, in terms of investor composition, the model predicts that fast speculators mostly

participate in assets with moderate information acquisition cost, e.g., medium size stocks: In very

small stocks (high information cost), speculators’ information rent is not sufficient to justify the

costly speed acquisition—low demand for both speed and information (complementarity). In large

stocks (low information cost), all speculators acquire a lot of information and the competition

becomes very fierce, making investments in speed unprofitable—high demand for information

but low for speed (substitution). Only with moderate information cost, speed acquisition is most

profitable; hence a hump-shape relation between demands for speed and information arises. The

same intuition predicts that speculators’ performance (expected return) also peaks in assets with

moderate information costs. Such predictions are consistent with empirical findings1 and differ

1 Relating to empirical evidence, this paper argues that hedge funds overall fit the interpretation of fast speculators
in the model, while mutual funds and pension funds can be thought of as slow ones. See Remark 1 and 2 in Section 3.1
for details. Consistent with this interpretation, Griffin and Xu (2009) find that hedge funds (fast) are most active in
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from existing theories.2 (More testable implications are discussed in Section 4.4.)

The third result is that, perhaps surprisingly, a more advanced information technology can

still worsen price informativeness. The key mechanism at work is the joint force of the temporal

fragmentation effect of the speed technology and its endogenous complementarity with information:

Due to complementarity, a better information technology stimulates demand for both information

and speed. The former improves price informativeness. The latter shifts trading concentration

from late to early, thereby improving the initial price discovery but lowering the contribution of

subsequent late trading. When the deterioration in the late price discovery dominates, the overall

price informativeness is weakened by the information technology.

This third result cautions the dysfunction of information aggregation in financial markets.

The “information technology” in the model can be interpreted broadly. For example, recent

years have seen strengthened transparency and disclosure requirements by regulators. Policies

like Sarbanes-Oxley, Regulation Fair Disclosure, and Rule 10b5-1 have arguably reduced the

information acquisition cost. In addition, there is evidence of speed acquisition complementing the

accessibility of information. Du (2015) finds that high-frequency traders are constantly crawling

the website of U.S. SEC in order to trade on the information in latest company filings. Through

such a complementarity channel, this paper argues that transparency and disclosure policies might

generate unintended negative impact on price informativeness. Some recent empirical evidence

echoes this view. Weller (2018) shows that algorithmic trading has risen at the cost of long-run

price discovery. Gider, Schmickler, and Westheide (2016) shows how high-frequency trading hurts

the predictability of earnings in the far future.

Different financial assets are exposed to different levels of information and speed technology.

Bai, Philippon, and Savov (2016) finds a rising trend of the price informativeness of S&P 500

medium size stocks, relative to mutual funds (slow). Shumway, Szefler, and Yuan (2011) examine funds’ holdings and
find that the return predictability is highest in medium stocks.

2 For example, in Dugast and Foucault (2018), the population size of early traders monotonically decreases
(increases) in the cost of the early-raw signal reduces. Similarly, in Kendall (2018) investors are always more likely to
“rush” (trade early) when the quality of the early signal increases.
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nonfinancial firms in a half-century sample period starting from the 1960s. The finding for firms

beyond the S&P 500, however, is the opposite. Farboodi, Matray, and Veldkamp (2017) reproduce

the patterns and explain these phenomena with a composition effect. This paper adds to the

discussion that the distinction in different technologies—speed v.s. information—is important in

determining individual stocks’ respective price informativeness over the years.

The rest of the paper is organized as follows. Section 2 discusses the related literature. Section 3

studies a model of speed acquisition only and Section 4 adds information acquisition alongside to it.

Discussions on model assumptions, robustness, and extensions are collated in Section 5. Section 6

then concludes.

2 Related literature

This paper builds on a number of models featuring (two) sequential trading rounds: Grundy and

McNichols (1989), Froot, Scharfstein, and Stein (1992), Hirshleifer, Subrahmanyam, and Titman

(1994), Holden and Subrahmanyam (1996, 2002), Brunnermeier (2005), Cespa (2008), Malinova

and Park (2014), Banerjee, Davis, and Gondhi (2018), Dugast and Foucault (2018), and Kendall

(2018). A distinguishing feature of the current model is that investors are allowed to engage in

costly speed acquisition, separately from the conventional information acquisition. To compare, in

the above, investors either cannot choose their speed at all or have speed investment decision tied

with information:

• In Grundy and McNichols (1989), Brunnermeier (2005), and Cespa (2008), all investors

trade in both rounds. Hence, there is no speed.

• Investors’ speed are exogenously assigned in Froot, Scharfstein, and Stein (1992); Hirshleifer,

Subrahmanyam, and Titman (1994); and Banerjee, Davis, and Gondhi (2018).

• In Holden and Subrahmanyam (1996), Dugast and Foucault (2018), and Kendall (2018),

speed appears as a by-product of, hence not separable from, different types of information:
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short- v.s. long-horizon; raw v.s. processed; early-weak v.s. late-strong signals. As such,

these models do not address questions about the interaction between speed and information

technologies, like whether they are substitutes or complements.

• Section IV of Holden and Subrahmanyam (2002) directly models speed by letting investors

choose at a cost to observe and trade on a signal early. However, investors cannot separately

invest in information, as the signal is common across investors and across time (this paper

studies such a special case in Section 3). In Malinova and Park (2014), investors with exoge-

nous quality of signals can choose when to trade freely; i.e., no costly speed or information

acquisition.

Separating speed from information, this paper makes a novel contribution to the literature by

identifying endogenous complementarity or substitution between the two technologies. These

theoretical results lead to unique predictions on investor composition, holding-performance relation,

and trading volume (Section 4.4).

Another key result of the paper is that lowering information cost can hurt price informativeness,

even in an environment with a single information source.3 A number of the aforementioned

papers share a similar prediction due to some form of “substitution” in different types/sources of

information. For example, in Brunnermeier (2005), the existence of an insider who monopolizes

the short-run information curbs other analysts’ long-run trading aggressiveness; in Banerjee, Davis,

and Gondhi (2018), a public disclosure pushes investors to instead learn about others’ beliefs, no

longer about fundamentals; in Dugast and Foucault (2018), a cheaper raw signal can crowd out

investment in the processed signal. Such substitution across various signals does not exist in the

current model as there is only one information source.4 Also worth noting is that in Dugast and

3 “A single information source” means that there is no public information (Brunnermeier, 2005; Banerjee, Davis,
and Gondhi, 2018), no independent fundamentals (Froot, Scharfstein, and Stein, 1992), no short- v.s. long-term
information (Holden and Subrahmanyam, 1996), no learning about others’ beliefs (Banerjee, Davis, and Gondhi, 2018)
or about noise (Froot, Scharfstein, and Stein, 1992). In Dugast and Foucault (2018) and Kendall (2018), there is a
single fundamental but there are two different signals with exogenous quality: “raw/weak” for the early signal and
“processed/strong” for the late. As such, the two signals can also be thought of as two different information sources.

4 Hirshleifer, Subrahmanyam, and Titman (1994) and Holden and Subrahmanyam (2002) also have a single
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Foucault (2018) and Kendall (2018), the early signal is always less precise than the late one. Hence,

when all investors are fast, these models predict a worse price informativeness than when all slow.

This is not the case in the current model: When all are fast, price informativeness is the same as

when all slow, as everyone learns from and trades on the same, single information source.

The model predicts that better information technology could worsen price informativeness. Two

recent studies highlight similar results. It is worth emphasizing that the underlying mechanisms

are different, thus leading to contrasting testable implications for other market quality measures.

• Investors in Dugast and Foucault (2018) choose between trading early with a raw (low-

quality) signal or late with a processed (high-quality) one. They need to purchase the

signals from competitive information vendors, who produce the signals at exogenous fixed

costs, as in Veldkamp (2006a,b). When the early signal becomes cheaper to produce, more

investors acquire it and trade early, the short-run price discovery increases, and the residual

information rent reduces. Under some parameters, information vendors will raise the price

of the processed signal, hindering investors’ incentive to acquire the processed signal, and

the overall price informativeness is hurt. The key channel is that through the information

market, the cost of producing the raw signal now affects the prices of both signals, possibly

in opposite directions. Without vendors as in Veldkamp (2006a,b), such a channel does not

exist in the current model as the costs of speed and information are the same as their prices

and they do not affect each other.

• In Kendall (2018), investors choose whether to “rush” to trade early on an imprecise signal

or to “wait” to trade late on a precise one. The benefit of waiting is the better signal quality.

The downside is that there might be a public announcement or another investor trading early,

reducing the information rent—the “time cost”. The key insight is that with such time cost,

investors rush more often to trade on the early imprecise signal, forgoing the opportunity to

information source in their model. While not explicitly studied, a higher precision in endowed signals in those settings
would always lead to higher price informativeness. This is because they do not study investment in speed (separately
from information), hence no endogenous complementarity or substitution between the two.
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acquire the late precise signal, thus hurting informational efficiency. Notably, as the focus

is on the time cost, Kendall (2018) does not explain how monetary costs of different signals

affect market quality. That is, there is no costly technology acquisition and investors obtain

signals for free.

The shared feature of these two papers is that trading fast with high-quality signal is by construction

not possible. Speed and (high-quality) information is mutually exclusive. In contrast, the current

model allows and predicts endogenous complementarity (and sometimes substitution) between the

two, yielding novel findings. To name a few (see Section 4.3 and 4.4 for details): Improvements in

either speed or information can hurt price informativeness in the current model, while in Dugast and

Foucault (2018) only the quality of the early (raw) signal could hurt price informativeness, but not

the late (precise) signal. A better information technology in the current model initially increases but

then reduces investors’ demand for speed—a nonmonotone effect in terms of investor composition.

In Dugast and Foucault (2018), a cheaper raw signal (early) monotonically increases the population

of fast investors because the early raw signals, by construction, substitutes the precise but late

signals. In Kendall (2018), similarly, a more precise early signals monotonically makes investors

more likely to rush (trade early). The current model also shows how different investors’ investment

performance nonmonotonically depends on the technologies. Neither paper studies different types’

investors performance and the relation with technologies.

This paper further contributes to three themes of the literature. First, the literature on costly

information acquisition largely focuses on the magnitude aspect of price discovery, following the

seminal works by Grossman and Stiglitz (1980) and Verrecchia (1982). Recent studies explore

other dimensions. To name a few, Peress (2004, 2011) studies the wealth effect on information

acquisition. Van Nieuwerburgh and Veldkamp (2009, 2010) analyze information acquisition under

limited attention. Goldstein and Yang (2015) explore the implication of information diversity. To

compare, the above literature assumes that the market always clears with all investors trading at the

same time—they have the same speed. With endogenous speed acquisition, this paper allows to
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study the process of price discovery with investors arriving and trading asynchronously.

Second, the temporal fragmentation (due to speed technology) in this paper differs from the

existing literature on spatial market fragmentation.5 Regarding the focus on price discovery, an

important feature of temporal fragmentation is that information revealed early naturally carries

over to the future—the market never forgets. Such natural accumulation of information over time

is critical in determining the complementarity or substitution between the two technologies. In

a model of multiple venues (spatial fragmentation), there is no naturally directional “flow” of

information from one venue to another (more fundamentally, the notion of speed does not apply to

a spatial setting). Speed therefore touches upon a novel angle of market fragmentation.

Third, this paper lends equilibrium support to the literature with endogenous bundling of speed

and information acquisition. The model predicts that fast investors always acquire more information

than the slow. This is because price discovery always accumulates over time and the same piece

of information has higher marginal benefit the sooner it is traded. This insight justifies a popular

connotation for fast traders that they are also more informed. See, e.g., models by Hoffmann (2014)

and Biais, Foucault, and Moinas (2015); evidence by Brogaard, Hendershott, and Riordan (2014)

and Shkilko and Sokolov (2016); and surveys by Biais and Foucault (2014), O’Hara (2015), and

Menkveld (2016).

In a different line, investors’ speed choice has been studied in limit order models with discrete

prices. Examples include Yao and Ye (2018) and Wang and Ye (2017). The main driving feature is

the binding tick size which limits investors’ competition on price and as a result they turn to speed

competition. The current paper focuses on the incentive to acquire speed due to the transitory

nature of information advantage.

5 For example, Admati (1985), Pasquariello (2007), Boulatov, Hendershott, and Livdan (2013), Goldstein, Li,
and Yang (2014), Cespa and Foucault (2014), among many others, study information and cross-market learning of
correlated assets. Pagano (1989), Chowdhry and Nanda (1991), Foucault and Gehrig (2008), and Baruch, Karolyi, and
Lemmon (2007) study trading of the same asset on different venues (e.g., dual-listed stocks). More recently, market
fragmentation has been theorized in the context of dark v.s. lit trading mechanisms, as in Ye (2011), Zhu (2014),
Brolley (2016), and Buti, Rindi, and Werner (2017). Finally, Chao, Yao, and Ye (2017a,b) study the competition
among exchanges by zooming in on fee structure and tick size.
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3 A model of speed acquisition

This section studies a model of speed acquisition. The framework is akin to Section IV of Holden

and Subrahmanyam (2002) (whose focus is on the autocorrelation of price changes, not on price

discovery). Section 3.1 details the model setting. Section 3.2 solves the equilibrium. Section 3.3

examines the equilibrium properties.

3.1 Model setup

Assets. There is a risky asset and a risk-free numéraire. At the end of the game, each unit of the

risky asset will pay off V units of the numéraire. Unconditionally, V is normally distributed with

mean p0 and variance 1/τ0 (> 0). Without loss of generality, p0 is normalized to zero.

Speculators. There is a unity continuum of speculators, indexed by i ∈ [0, 1]. They have constant

absolute risk-aversion (CARA) preference with the same risk-aversion coefficient γ (> 0).

Speed technology. There is a speed technology that can affect speculators’ trading time ti (see

“Timeline” below). All speculators are slow by default, trading at ti = 2. One can instead become

fast and trade at ti = 1 by paying 1/дt units of the numéraire. The exogenous parameter дt measures

the level of the speed technology. The larger is дt , the more advanced (cheaper) is the technology.

Information technology. The information technology is shut down in this section to highlight

the effect of the speed technology. Instead, each speculator is born with a noisy signal si about the

fundamental with fixed precision h◦: si = V + εi , where {εi} are i.i.d. normal with zero mean and

variance 1/h◦ (> 0). Section 4 allows them to endogenously acquire information.

Timeline. There are four dates in the model: t ∈ {0, 1, 2, 3}, illustrated Figure 1. At t = 0, all

speculators independently choose to invest in speed ti ∈ {1, 2}. Time t ∈ {1, 2} are trading rounds.

The set of speculators {i | ti = t } arrive at t ∈ {1, 2} together and they independently submit demand

schedules {xi(pt ; ·)} to trade the risky asset, based on his information set—private signal si and the

10



t = 2t = 0

Invest in speed

t = 1

Trading rounds Consume ter-
minal wealth

Invest in information
(only in Section 4)

t = 3

Figure 1: Timeline of the game. The model has four dates: t ∈ {0, 1, 2, 3}. At t = 0, all speculators invest
in technology; at t ∈ {1, 2}, speculators arrive in the market at the time according to their speed technology
and submit their demand schedules to trade the risky asset; finally, at t = 3 the risky asset pays off and all
consume their terminal wealth.

public history of past prices. Finally, at t = 3, the risky asset pays off at V and all consume their

terminal wealth.

Trading. In each trading round t ∈ {1, 2}, there is noise demand Ut , which is i.i.d. normal with

zero mean and variance 1/τU (> 0). The noises capture unmodeled exogenous trading (due to

sentiment or hedging) by investors who cannot choose speed. The random variables V , {Ut }, and

{εi} are independent. The aggregate demand in round t is

Lt (p) =
∫
i∈[0,1]

xi(p; si,pt−1, ...)1{ti=t}di +Ut(1)

There is a competitive market maker, who sets the price given all existing public information (as in

Kyle, 1985). Thus, the trading price in round t is

pt = E[V | {Lr (·)}r≤t ].(2)

The setup is consistent with, among many others, Hirshleifer, Subrahmanyam, and Titman (1994),

Vives (1995), Holden and Subrahmanyam (1996), and Cespa (2008).

Strategy and equilibrium definition. To sum up, each speculator maximizes his expected utility

over the final wealth by optimizing his demand xi(·) upon trading; and, backwardly, by choosing

his speed ti ∈ {1, 2} at t = 0. Denote by π (ti) the speculator i’s ex ante certainty equivalent (whose
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functional form will be derived below). Define P := {ti}i∈[0,1] as the collection of all speculators’

investment policies. A Nash equilibrium is a collection P, such that for any speculator i ∈ [0, 1],

fixing P\ti , he chooses ti = arg maxti∈{1,2} π (ti).

Remarks regarding the model setup:

Remark 1 (Interpreting speed). The speed technology is fairly stylized in the model. It only

generates two relative speed tiers, t ∈ {1, 2}. The time lapse (between t = 1 and t = 2) can be

interpreted according to any one of the following three frequencies.

• High-frequency speed (in subseconds to minutes; e.g., Budish, Cramton, and Shim, 2015).

An investor (institution) can improve his high-frequency speed by investing in the trading

desk—algorithms, colocation to exchange servers, optic-fibre cables, and microwave towers.

• Medium-frequency speed (in hours to days; e.g., Bouvard and Lee, 2016). When implement-

ing a trading idea, managers in an institution are subject to risk management, due diligence,

and regulatory compliance, which can take hours if not days, especially for large orders. This

process can be expedited by staffing additional personnel in the back office.

• Low-frequency speed (in days to weeks; e.g., Holden and Subrahmanyam, 2002). Processing

raw data to form trading ideas takes time. For example, firms’ announcements might affect

future cash flows projections. It can take analysts days or weeks to update such fundamentals.

Recruiting more analysts or investing in faster computers can speed up this process.

Remark 2 (Who is fast). Based on the above three frequencies of speed, this paper suggests that

hedge funds fit the description of fast speculators, while the slow speculators can be mutual funds

or pension funds. Hedge funds’ high-frequency speed advantage arises from their investment

in trading technology. The U.S. Securities and Exchanges Commission (SEC) defines high-

frequency traders as “proprietary trading firms”, “proprietary trading desks of a multi-service

broker-dealer”, or “hedge funds” (Section IV.B, SEC, 2010). The medium-frequency speed

interpretation can be attributed to different regulatory requirement. Mutual funds are registered
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with the SEC and are subject to extensive regulatory compliance, risk control, and bookkeeping

requirements. Hedge funds, on the other hand, are under less regulatory scrutiny, thus able to

expeditiously trade on their signals. Under the low-frequency interpretation, the fast investors

process information sooner than the slow and should lead subsequent returns. Supporting this

view, Swem (2017) documents that hedge funds’ trades predict rating changes by sell-side

analysts, who are then followed by other buy-side institutions.

Remark 3 (Modeling choices). Several assumptions are worth emphasizing: (1) the speculators’

population size is fixed; (2) the amount of noise trading is exogenous; (3) fast investors only

trade at t = 1; and (4) a competitive market maker sets the price. These assumptions are

made purposefully to, and only to, pinpoint the economics of speed acquisition (and, later,

its interaction with information acquisition in Section 4). Section 5 studies corresponding

extensions to relax these assumptions: (1) to endogenize investor participation; (2) to model

the timing of liquidators (noise traders); (3) to allow fast investors trade also more frequently;

and (4) to replace the competitive market maker with a fringe of uninformed investors. Both the

key mechanisms and the main results of the paper are shown to stand robust to these extensions.

3.2 Equilibrium analysis

The equilibrium can be analyzed in two backward steps. The first is to study speculators’ optimal

demand schedules, fixing their speed acquisition. Suppose there is a fraction of φ1 ∈ [0, 1] of the

speculators who acquire speed and the rest φ2 = 1 − φ1 remain slow; that is

φ1 :=
∫
i∈[0,1]

1{ti=1}di and φ2 :=
∫
i∈[0,1]

1{ti=2}di .

Hence, φ1 denotes the aggregate demand for speed. A speculator i demands xi at ti = t to solve

xi ∈ arg max
xi
E
[
−e−γ ·(V−pt )xi |V + εi = si,pt ,pt−1, ...

]
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where pt is given by the market maker’s pricing as in Equation (2). Standard conjecture-and-verify

analysis as in Vives (1995) yields the following result.

Lemma 3.1 (Equilibrium trading, without information acquisition). Each speculator i sub-

mits a linear demand schedule at t = ti ∈ {1, 2}:

xi =
h◦
γ

(
si − pti

)
.(3)

His ex-ante certainty equivalent at t = 0 is

πti =
1
2γ

ln
(
1 +

h◦
τti

)
− 2 − ti

дt
,(4)

where the price informativeness τt := var[V | {Lr (·)}∀r≤t ]−1 satisfies the recursion of

∆τt = τt − τt−1 =
φ2
t h

2
◦τU

γ 2(5)

with the initial value τ0 = var[V ]−1. The equilibrium price pt satisfies the recursion of

pt =
τt−1
τt

pt−1 +
∆τt
τt

(
V +

γUt

φth◦

)
with initial value p0 = EV (= 0).

A speculator’s demand xi scales with the difference between his private signal and the trading price

(si − pti ), where the scaling factor h◦/γ—his trading aggressiveness—increases with the precision

of his signal and decreases with his risk-aversion.6 His certainty equivalent has two components:

The first term represents the information rent due to his private information, while the second term

corresponds to the cost of speed acquisition.

The second step is to find speculators’ optimal speed acquisition decisions at t = 0. Equation (4)

reveals that one’s speed choice ti affects his ex-ante certainty equivalent in two ways: First, trading

early positively affects his information rent, as τ1 ≤ τ2 = τ1 + ∆τ2. Second, however, speed

6 Note that slow speculators (ti = 2) do not directly trade on the fast round price p1, thanks to the competitive
market maker who sets p2 while recalling the information from t = 1 trading. As such, from a slow speculator’s
perspective, observing only p2 is as good as observing both p1 and p2. This Markov feature inherits from Vives (1995)
and goes back to Kyle (1985), where the dynamic equilibrium only uses the contemporaneous price pt as a state
variable, not the entire price history.
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acquisition is costly, 1/дt > 0. Trading off these two aspects, the marginal speculator must be

indifferent between becoming fast and staying slow, in order to sustain an interior equilibrium; i.e.,

π1 = π2. Otherwise, a corner equilibrium arises.

Proposition 3.1 (Equilibrium speed acquisition, without information acquisition). Fix spec-

ulators’ information acquisition at h◦. There exists a unique equilibrium, depending on the

speed technology дt relative to some threshold д̂t (> 0, see the proof):

Case 1 (corner). When дt ≤ д̂t , all investors stay slow with φ1 = 0 and φ2 = 1.

Case 2 (interior). When д̂t < дt (< ∞), a fraction φ1 ∈ (0, 1) of investors acquire speed and

become fast, while the rest φ2 = 1 − φ1 stay slow. The equilibrium population sizes {φ1,φ2}

uniquely solve π1 = π2 and φ1 + φ2 = 1.

The equilibrium depends on the level of speed technology: When дt ≤ д̂t , investing in speed is

too costly for any speculator and nobody acquires speed. Only for sufficiently advanced speed

technology (дt > д̂t ) will there be some fast speculators.7

Note that the population size pair {φ1,φ2} has an alternative interpretation: They measure spec-

ulators’ ex-ante probability mix between becoming fast or staying slow. At t = 0, each speculator

independently chooses to be fast with probability φ1 and to remain slow with probability φ2. Under

this interpretation, φ1 also represents the individual demand for speed.

3.3 Equilibrium properties

This subsection studies the implications of an advancing speed technology дt . The first result is

the intuitive price effect: The higher is дt , the lower is the cost to be fast, and the demand for speed

increases, as illustrated in Figure 2 (a).

7 However, there are always nonzero mass of speculators staying slow (φ2 > 0). To see the reason, suppose there
is an equilibrium where all speculators are fast, i.e., φ1 = 1 and φ2 = 0. In this case there is no informed trading at
t = 2; thus, τ1 = τ2. Equation (4) then implies that the marginal fast speculator is strictly better off if he instead does
not invest in speed, saving the speed acquisition cost 1/дt . Hence, some fast speculators will deviate to staying slow,
invalidating such an equilibrium.
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Figure 2: Varying speed technology with fixed information. Panel (a) shows how speed technology дt
affects individual investors’ demand for speed φ1 and Panel (b) price informativeness τt . To the right of the
vertical dashed line, the equilibrium is interior (with both fast and slow investors). The primitive parameters
are: τ0 = 1.0, τU = 4.0, and γ = 0.1. The common signal precision is fixed at h◦ = 0.1.

Proposition 3.2 (Speed technology and speed acquisition). Fix all speculators’ signal precision

at hi = h◦ (> 0). In the interior equilibrium, as the speed technology дt advances, more

speculators acquire speed: ∂φ1/∂дt > 0.

As more speculators acquire speed, the intermediate price informativeness τ1 increases. How-

ever, there is a nonmonotone effect on the overall τ2, as seen in Figure 2 (b). This is because

the speed technology temporally fragments price discovery: When speed is affordable (дt > д̂t ), a

fraction φ1 of the speculators trade early at t = 1, while the rest φ2 (= 1 − φ1) trade late at t = 2.

The price discovery process accordingly fragments into an early ∆τ1 and a late ∆τ2.8 Recalling

8 For clarity, throughout this paper, the price informativeness increments ∆τ1 and ∆τ2 are referred to as the “early”
and the “late price discovery”, respectively; while the levels τ1 and τ2 are called the “intermediate” and the “overall
price informativeness”, respectively. Remark 1 suggests three interpretations of the lengths of “early” v.s. “late” and
“intermediate” v.s. “overall”.
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from Equation (5), the early price discovery increases with дt :

∆τ1 =
τU

γ 2h
2
◦φ

2
1,

because φ1 increases in дt (Proposition 3.2). However, the late price discovery drops:

∆τ2 =
τU

γ 2h
2
◦φ

2
2 =

τU

γ 2h
2
◦ · (1 − φ1)2.

The overall τ2 = τ0+∆τ1+∆τ2 is subject to the joint force of the two price discovery and, therefore,

exhibits a nonmonotone trend in the speed technology дt .

Proposition 3.3 (Speed technology and price informativeness). Fix all speculators’ signal

precision at hi = h◦ (> 0). In the interior equilibrium, as the speed technology дt advances,

the intermediate price informativeness τ1 monotonically increases, while the overall τ2 initially

decreases but eventually increases. Mathematically, ∂τ1/∂дt > 0 for allдt > д̂t ; and ∂τ2/∂дt < 0

(> 0) for sufficiently small (large) дt .

Essentially, the speed technology temporally fragments speculators’ participation in the market,

thus shifting the concentration the price discovery process. Jointly, Proposition 3.2 and 3.3 are thus

referred to as the temporal fragmentation effect of speed technology.

Key to the nonmonotone effect is that each price discovery, ∆τt , is a convex function in the

population size φt (Equation 5). Such convexity, inherent from Grossman and Stiglitz (1980),

Hellwig (1980), and Verrecchia (1982)—just to name a few, is due to that price discovery has

increasing returns to scale: Each marginal informed investor’s trading resolves increasingly more

uncertainty (from noise trading). As the speed technology shifts the concentration (φt ) of such a

production process (
∑
∆τt ), the total productivity is affected nonmonotonically.

Mathematically, the impact of a marginal change inφt (due to speed technology) on ∆τt depends

on the initial level of φt . For example, when φ1 is close to zero and φ2 to one (when дt ↓ д̂t ), a small

increase in speed dдt prompts a small population dφ1 to move from slow to fast. The resulting loss
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in the late ∆τ2 is much larger than the gain in the early ∆τ1:

dτ2 =
∂τ2
∂φ1

dφ1 =

(
∂∆τ1
∂φ1

+
∂∆τ2
∂φ1

)
dφ1 =

τU

γ 2h
2
◦
∂

∂φ1

(
φ2

1 + φ
2
2

)
︸           ︷︷           ︸

=2(2φ1−1)<0 for φ1 close to 0

dφ1 < 0.(6)

The reverse holds true when φ1 is close to one and φ2 close to zero. Indeed, the overall τ2 is the

same at the either extreme of дt : limдt↓д̂t τ2 = limдt↑∞ τ2 = τ0 + τUh
2
◦/γ 2; see Figure 2 (b). This

is because in either extreme the speculators are no longer fragmented.9 This feature differentiates

the mechanism from models like Dugast and Foucault (2018) and Kendall (2018). In such models,

the early signal is always less precise than the late one. Hence, when all speculators are fast, these

models predict a worse price informativeness than all slow.

While the model is stylized, the temporal fragmentation effect is a robust feature of the speed

technology. The modeling choices mentioned in Remark 3 can be relaxed: It does not depend on

the assumption that the population size of speculators is fixed (Section 5.1 shows that the effect

remains under free-entry). It does not build on exogenously fixed noise sizes (Section 5.2 explicitly

models liquidity traders’ timing decisions). It does not restrict that fast speculators trade only once

at t = 1 (see Section 5.3 where speed means not only trading earlier but also more frequently).

Neither does it depend on the assumed competitive market maker (Section 5.4).

Proposition 3.3 highlights that speed technology alone could negatively affect market quality,

even when isolated from information. This insight complements existing models where such adverse

effects arise only when information and speed are tied together; see, e.g., Dugast and Foucault (2018)

and Kendall (2018). Section 4 below endogenizes speculators’ information acquisition to explore

the interaction between speed and information and yields additional predictions.

9 More generally, if there are T tiers of speed (T trading rounds), the overall price informativeness becomes
τT = τ0 +

∑T
t=1 ∆τt = τ0 +

τU
γ 2 h

2
◦
∑T

t=1 φ
2
t , where

∑T
t=1 φ

2
t is the Herfindahl-Hirschman index measuring speculators’

temporal concentration. The speed technology дt nonmonotonically drives such trading concentration.

18



4 Endogenizing information acquisition

This section studies a model where speculators can endogenously acquire both speed and informa-

tion. Section 4.1 extends the setup, Section 4.2 derives the equilibrium, Section 4.3 explores the

equilibrium properties, and Section 4.4 discusses empirical implications.

4.1 Model setup

Assets, speculators, speed technology, timing, and trading are the same as in Section 3.1.

Information technology. There is an information technology available at t = 0 (see Figure 1

where t = 0 is shown with the dashed circle). Each speculator i can choose to spend ci (≥ 0) units

of the numéraire to improve his signal precision hi :

hi = дhk(ci),

where k(·) is twice-differentiable, concave, and strictly increasing; andдh (≥ 0) gauges the marginal

productivity of this information technology (c.f. дt ). Without investing in this technology, the

speculator gets no signal; i.e. k(0) = 0.

Due to the monotonicity of k(·), a speculator’s information acquisition can be referred to as

either hi (the precision) or ci (the cost) interchangeably: There exists a convex, strictly increasing

cost function c(·;дh), so that ∀hi ≥ 0, ci = c(hi ;дh) := k−1(hi/дh). To ensure that there is always

some information in the market, let Ûc(0) = 0.

Strategy and equilibrium definition. Each speculator maximizes his expected utility over the

final wealth by optimizing his demand xi(·) upon trading; and, backwardly, by choosing his tech-

nology pair (ti,hi) ∈ {1, 2} × [0,∞) at t = 0. Denote by π (ti,hi) speculator i’s ex ante certainty

equivalent. Define P := {(ti,hi)}i∈[0,1] as the collection of all speculators’ investment policies.

A Nash equilibrium is a collection P, such that for any speculator i ∈ [0, 1], fixing P\(ti,hi), he

chooses (ti,hi) = arg max(ti ,hi )∈{1,2}×[0,∞) π (ti,hi).
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4.2 Equilibrium analysis

The analysis proceeds as in Section 3.2 by first solving speculators’ optimal trading and then

backwardly their optimal technology investment at t = 0.

To begin with, conjecture (and later verify) that all speculators of the same speed ti = t ∈ {1, 2}

acquire the same amount of information hi = ht . That is, all fast (slow) speculators have signal

precision h1 (h2). As before, write the population size of the fast (slow) speculators as φ1 (φ2 =

1 − φ1). The trading equilibrium is summarized by the following lemma.

Lemma 4.1 (Equilibrium trading, with information acquisition). Each speculator i submits

a linear demand schedule at t = ti ∈ {1, 2}:

xi =
hti
γ

(
si − pti

)
.(7)

His ex-ante certainty equivalent at t = 0 is

πti =
1
2γ

ln
(
1 +

hti
τti

)
− c

(
hti ;дh

)
− 2 − ti

дt
,(8)

where the price informativeness τt := var[V | {Lr (·)}∀r≤t ]−1 satisfies the recursion of

∆τt = τt − τt−1 =
φ2
t h

2
t τU

γ 2(9)

with the initial value τ0 = var[V ]−1. The equilibrium price pt satisfies the recursion of

pt =
τt−1
τt

pt−1 +
∆τt
τt

(
V +

γUt

φtht

)
with initial value p0 = EV (= 0).

Compared to Lemma 3.1, it can be seen that all results remain in the same structure except that the

speed-specific hti , which is endogenous and to be determined, takes the place of h◦.

Turn to the speculators’ optimal technology acquisition next. Consider a speculator i’s optimal

information acquisition hi , fixing his speed choice ti = t and all others’ choice (tj,htj ) for ∀j , i.
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To maximize his ex-ante certainty equivalent (8), speculator i solves the first-order condition

1
2γ

1
τt + hi

− ∂c(hi ;дh)
∂hi

= 0 ⇐⇒ hi = h
∗(τt ,дh),(10)

where the solution h∗(·) is unique and nonnegative and satisfies the second-order condition, thanks

to the convexity in c(·;дh). Note that the speculator’s individual choice hi does not affect the

price informativeness τt , because each i alone is infinitesimally small. By symmetry, therefore, all

speculators of the same speed ti = t ∈ {1, 2} acquire the same amount of informationht := h∗(τt ,дh).

This verifies the conjecture made at the beginning of Section 4.2.

The equilibrium speed acquisitionφ1 can be pinned down byπ1 = π2, i.e. the marginal speculator

being indifferent between becoming fast or staying slow. Note that φt affects price efficiency τt

(Equation 9), which indirectly also affects information acquisition ht (first-order condition 10).

Together, ht and τt again affect πt . It is through these channels that the speed acquisition φ1 chains

all equilibrium objects together.

Proposition 4.1 (Equilibrium technology acquisition). There exists a unique equilibrium,

depending on the speed technology дt relative to some threshold д̂t (> 0, see the proof):

Case 1 (corner). When дt ≤ д̂t , all speculators invest in (ti,hi) = (2,h2), where h2 and τ2

uniquely solve the first-order condition (10) and the recursion (9) with φ1 = 0 and φ2 = 1.

Case 2 (interior). When д̂t < дt (< ∞), a fraction φ1 ∈ (0, 1) of speculators invest in

(ti,hi) = (1,h1), while the rest φ2 speculators invest in (ti,hi) = (2,h2), such that {h1,h2,φ1,φ2}

uniquely solve the following equation system:

Optimal information acquisition: h1 = h
∗(τ1;дh) and h2 = h

∗(τ2;дh);

Indifference in speed: π1 = π2;

Population size identity: φ1 + φ2 = 1;

where the expressions of h∗(·), π , and τ are given by Equations (10), (8), and (9).

Just like in Proposition 3.1 (no information acquisition), the speculators only acquire speed when
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it is advanced enough. It turns out the same holds true for the information technology:

Corollary 4.1. Fixing the speed technology дt , there exists a threshold д̂h (> 0) such that the

equilibrium is interior if and only if (∞ >) дh > д̂h.

That is, when the information technology is too poor, the additional information rent of becoming

fast is not sufficient to compensate for the cost of speed and as such, all speculators stay slow.

4.3 Equilibrium properties

The equilibrium properties are explored by means of comparative statics regarding the two tech-

nology levels, дt for speed and дh for information.

4.3.1 The temporal fragmentation effect of speed technology

The first result is that the temporal fragmentation effect of the speed technology remains robust.

Proposition 4.2 (Temporal fragmentation of speed). The comparative statics stated in Propo-

sitions 3.2 and 3.3 hold whether or not the speculators can endogenously acquire information.

Figure 3 (a) replicates the patterns seen in Figure 2 (b): The intermediate price informative-

ness τ1 monotonically increases with the speed technology дt , while the overall τ2 initially dips but

eventually rises.

It should be emphasized that Proposition 3.3 does not state that τ2 is strictly U-shape (e.g.,

quasiconvex) in дt . It only describes the nonmonotone pattern via the two extremes of дt ↓ д̂t

and дt ↑ ∞. In fact, the pattern of τ2 for moderate levels of дt can fluctuate when there is

information acquisition, especially when the information technology дt is high. Figure 3 (b) shows

such an example. This novel fluctuating pattern turns out to be driven by the interaction (the

complementarity, to be exact) between the two technologies, as explained below.
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(b) High information technology (дh = 4.0)
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Figure 3: Varying speed technology with information acquisition. This figure shows how the speed
technology дt affects price informativeness τt . With a low information technology дh = 0.2, Panel (a)
qualitatively replicates the pattern shown in Figure (2.b) where there is no information acquisition. Withдh =
4.0, Panel (b) shows a fluctuating overall price informativeness τ2 as дt increases. The other primitive
parameters are: τ0 = 1.0, τU = 4.0, γ = 0.1, and k(c) = √

c. (There is no endowed signal; i.e. h◦ = 0.)

4.3.2 Cross-technology effects: complementarity and/or substitution

An advancement inдt orдh can be equivalently interpreted as a reduction in the respective (marginal)

acquisition cost. The impacts on the other technology—the cross-technology effects—are graphed

in Figure 4. In both panels, it can be seen that the aggregate demand for one technology is

first increasing but eventually decreasing in the other technology level: The technologies can be

either complements or substitutes. (Note that in Panel (a), the aggregate demand of information,∫
i∈[0,1] hidi = φ1h1 + φ2h2, is shown in the red-dashed line.)

Proposition 4.3 (Complementarity and substitution between technologies). In the interior

equilibrium, as one technology increases, fixing the other, speculators’ aggregate speed and

information acquisition are initially complements but eventually substitutes. Mathematically,

∂φ1/∂дh > 0 (< 0) for small (large) дh; and ∂(φ1h1 + φ2h2)/∂дt > 0 (< 0) for small (large) дt .
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Figure 4: Cross-technology effects. This figure illustrates how an advancement in one technology affects
the demand for the other. Panel (a) shows the cross-technology effect of the speed technology дt and
Panel (b) дh . The vertical dashed lines indicate the thresholds of the corresponding technology, below which
all investors stay slow. The red-dashed lines in Panel (a) indicates the aggregate demand for information,∫
i ∈[0,1] hidi. The primitive parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1,

and k(c) = √
c. For Panel (a), дh = 0.2. For Panel (b), дt = 10.0.

In addition, ∂h1/∂дt < 0; but ∂h2/∂дt > 0 (< 0) for small (large) дt .

Such nonmonotone cross-technology effects are driven by various competition effects, i.e.,

crowding-out forces. Consider Figure 4 (b) for example. Three crowding-out effects arise after an

advancement in дh:

(1) intratemporally, each fast speculator acquires more informationh1 and crowds out each other,

as in Grossman and Stiglitz (1980), Hellwig (1980), and Verrecchia (1982);

(2) similarly, the slow at t = 2 crowd out each other; and

(3) intertemporally the fast crowd out the slow, because an increase in the intermediate τ1 also

improves the overall τ2 (the market never forgets), hurting the certainty equivalent of slow

speculators (from Equation 8, πt decreases in τt and hence also in τt−1).
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The first effect hurts fast speculators’ rent π1, making them less willing to acquire speed—reducing

demand for speed. The second and the third effects hurt the slow, pushing them to compete with

the fast at t = 1 instead—raising demand for speed. It is these countervailing crowding-out effects

that drive the net demand for the two technologies.10

The endogenous complementarity/substitution between the two technologies is a key insight

revealed by the model with speed acquisition. Only with endogenous speed heterogeneity, there

arise three different inter/intratemporal crowding-out effects, which interact with investors’ demand

for information.

Returning to Figure 3 (b), the fluctuating τ2 can now be understood as a combination of (1) the

temporal fragmentation of the speed technology дt and (2) its complementarity with information

acquisition: As дt starts to increase from д̂t , initially τ2 is hurt due to the temporal fragmentation

effect (Proposition 3.3). Without information acquisition, this would result in a U-shaped τ2

similar to Figure 2 (b). With information acquisition, however, the initial higher дt also raises

(slow speculators’) demand for information (Proposition 4.3) and ∆τ2 sees a boost. When such

complementarity is strong, it can overturn the temporal fragmentation effect, giving a fluctuating τ2

as seen in Figure 3 (b). In Figure 3 (a), дh is very low and the complementarity is not strong enough,

thus generating no fluctuation in τ2.

4.3.3 Information technology might hurt price efficiency

The effects of an advancing information technology are shown in Figure 5. Intuitively, as informa-

tion becomes cheaper (higher дh), both the fast and the slow speculators acquire more information,

as shown in Panel (a).

10 When the information technology дh is low (close to д̂h), there are very few fast speculators (φ1 close to zero).
Therefore, Effect (2) dominates, stimulating slow ones to acquire speed and move to t = 1. As more speculators have
acquired speed, Effect (3) strengthens and the remaining slow ones have growing incentive to become fast. These
two forces result in complementarity between speed and information. However, when there are already many fast
speculators (φ1 close to one), Effect (1) dominates, as the intratemporal crowding-out effect scales with the population
size φ1. When it is no longer profitable to acquire speed, information substitutes speed, as shown in Figure 3 (b) for
the range of roughly дh ≥ 0.5. Figure 3 (a) can be explained with these three crowding-out effects similarly.
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Figure 5: Varying information technology, with speed acquisition. This figure shows how the information
technology дh affects demand for information in Panel (a) and price informativeness τt in Panel (b). Only the
region ofдh ≥ д̂h where there is interior equilibrium is shown. The red-dashed lines in Panel (a) indicates the
aggregate demand for information,

∫
i ∈[0,1] hidi. The primitive parameters are: τ0 = 1.0, τU = 4.0, γ = 0.1,

дt = 10.0, and k(c) = √
c.
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Figure 6: Varying information technology, without speed acquisition. This figure contrasts Figure 5 by
shutting down speed acquisition. Specifically, a fixed population of φ1 = 0.3 are fast speculators and the
rest φ2 = 0.7 are slow. The other primitive parameters are kept the same as in Figure 5: τ0 = 1.0, τU = 4.0,
γ = 0.1, and k(c) = √

c.
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Perhaps surprisingly, whereas everyone in the economy acquires more information (higher h1

and h2), only the intermediate price informativeness τ1 is monotone increasing with дh. The

overall τ2 sees an initial dip, which is only recovered when дh further improves, as seen in Panel (b).

Proposition 4.4 (Information technology and price informativeness). In the interior equi-

librium, advancement in the information technology always improves the intermediate price

informativeness τ1. However, the overall τ2 is initially hurt but eventually improved. Mathemat-

ically, ∂τ1/∂дh > 0; and ∂τ2/∂дh < 0 (> 0) for small (large) дh.

How could more intensive information acquisition by everyone still worsen the overall price infor-

mativeness? The answer lies in the process of price discovery—the speed. Recall (1) that speed

technology temporally fragments price discovery; and (2) that the two technologies can exhibit

complementarity (when дh close to the threshold д̂h). As such, when дh improves from д̂h, due to

the complementarity, investors acquire both information and speed, triggering the temporal frag-

mentation effect. It turns out that when дh is close to д̂h, the negative temporal fragmentation effect

always overturns the positive effect of more intensive information acquisition.

To emphasize, the alarming message that better information technology (e.g., disclosure, an-

nouncements, etc.) can hurt price efficiency is a novel insight revealed only through the channel

of speed acquisition. For example, without speed acquisition, the model reduces to a version

of Verrecchia (1982) (with two sequential trading rounds), who shows that lowering the cost of

information always improves price informativeness. Formally, in the current model:

Proposition 4.5 (Information technology and price informativeness, without speed acquisi-

tion). Fixing speculators’ speed, an increase in the information technology дh always monotoni-

cally increases the demand for information and improves price informativeness. Mathematically,

∂ht/∂дh ≥ 0 and ∂τt/∂дh ≥ 0 when φ1 ∈ [0, 1] and φ2 = 1 − φ1 are exogenously given.

This contrast is illustrated by Figure 6, which shows that the nonmonotone pattern of τ2 disappears

without speed acquisition.
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(1) Information acquisition (2) Speed acquisition (3) Price informativeness

h1 h2
∫ 1
0 hidi φ1 φ2

∫ 1
0 1{ti=1}di τ1 τ2

(a) Only speed acquisition (Section 3)

дt : ↗ ↘ ↗ ↗ ↘↗(i)

(b) Both speed and information acquisition (Section 4)

дt : ↘ ↗↘ ↗↘(ii) ↗ ↘ ↗ ↗ ↘↗(i)

дh: ↗ ↗ ↗ ↗↘ ↘↗ ↗↘(ii) ↗ ↘↗(iii)

(c) Only information acquisition (Proposition 4.5)

дh: ↗ ↗ ↗ ↗ ↗

Table 1: Summary of effects of technology shocks. This table summarizes how technology affects the
market in terms of (1) investors’ information acquisition; (2) speed acquisition; and (3) price informativeness.
Three settings are considered: the speculators (a) have exogenous information but can endogenously acquire
speed; (b) can endogenously acquire both speed and information; and (c) have exogenous speed but can
endogenously acquire information. Each row represents a positive shock in the respective technology, дh
for information and дt for speed. Monotone increasing and decreasing effects are denoted by ↘ and ↗,
respectively. Nonmonotone effects are denoted by ↘↗ (initially decreasing but eventually increasing) and
↗↘ (initially increasing but eventually decreasing), respectively. Shaded cells highlight the key findings
(i)-(iii) summarized in Section 4.3.4.

4.3.4 Summary of results

Table 1 provides a summary of all the comparative statics studied so far. Each column corresponds

to a specific equilibrium outcome: information acquisition, speed acquisition, and price informa-

tiveness. Each row shows a (positive) shock in a specific technology. Three scenarios are studied:

(a) only speed acquisition as in Section 3; (b) both speed acquisition and information acquisition

as in this section; and for completeness, (c) only information acquisition.

The shaded cells highlight the three main findings: (i) the temporal fragmentation of speed,

Proposition 3.3; (ii) the complementarity and substitution between speed and information, Propo-

sition 4.3; and (iii) the nonmonotone effect of information technology on price informativeness,
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Proposition 4.4. In particular, comparing Panel (b) and (c), note that effect (iii) only arises when

there is endogenous speed acquisition.

4.4 Empirical implications

4.4.1 Endogenous bundling of speed and information technology

It can be seen from the above numerical illustrations (e.g., Figure 4.a, 5.a, and 6.a) that conditional

on their speed acquisition, a fast speculator always acquires more information than a slow one:

h1 ≥ h2.(11)

This is a robust result, for the price discovery process is always cumulative—rational agents do not

forget (∆τt ≥ 0 by Equation 9). As such, the sooner a speculator can trade, the less price discovery

has already happened (τt ≤ τt+1), and the more valuable is his private information. To take this

advantage, a fast speculator always has stronger incentive to acquire more information.11

This insight justifies a common connotation for fast traders that they are also more informed,

popular in the high-frequency trading literature like Hoffmann (2014), Biais, Foucault, and Moinas

(2015), and Budish, Cramton, and Shim (2015). In contrast, the current model predicts “endogenous

bundling” of acquiring both information and speed. A large volume of empirical evidence, surveyed

in Biais and Foucault (2014), O’Hara (2015), and Menkveld (2016), also echoes this view.

This result also contrasts against models like Dugast and Foucault (2018) and Kendall (2018)

sharply, who assume that early signals are less informative than late ones. In those models,

information acquisition and speed acquisition are “negatively” tied together, because information

processing is time-consuming. The current model assumes away this friction and allows the

speculators to speed up information processing (reaching the same trading strategy sooner).

11 One should not mistake h1 ≥ h2 for the complementarity between speed and information, as h1 and h2 are the
information demand conditional on a speculator’s speed. When acquiring technologies at t = 0, the unconditional
demand for information is φ1h1 + φ2h2.
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4.4.2 Testable predictions in the cross-section

The discussion below turns to the cross-section of assets for sharper predictions. The premise is

that different assets are subject to varying information acquisition cost дh. In the equity market, the

empirical literature has examined changes in дh using exogenous shocks (Hong and Kacperczyk,

2010; Kelly and Ljungqvist, 2012). The following predictions can be tested in similar settings.

Investor composition. Figure 4 (b) shows that fast speculators’ participation in an asset is hump-

shaped in its дh. Consider for example a reduction in analyst coverage (e.g., due to merges of

brokerage houses) in a stock, raising its information acquisition cost and lowering дh. The model

then predicts (Proposition 4.3) that fast speculators’ participation in the affected stock can either

go up or down, depending on the stock’s pre-shock coverage. For an extensively covered stock

(high дh), the reduction in дh will increase the number of fast speculators. For a lesser-known stock

(low дh, close to д̂h), the effect is the opposite.

Two empirical measures can be used to proxy for fast speculators’ participation. A stock’s

quote-to-trade ratio is often used to gauge the prevalence of algorithmic and high-frequency trading

(Hendershott, Jones, and Menkveld, 2011). Alternatively, to the extent that hedge funds are subject

to less stringent regulatory compliance and reporting requirement (Remark 2), they can be thought

of as the faster speculators than, e.g., mutual funds and pension funds. Under this measure of fast

speculators, the hump-shape in Figure 4 (b) is consistent with the empirical finding by Griffin and

Xu (2009, Figure 3).

Holdings, predictability, and performance. The model also yields cross-sectional predictions

on speculators’ (e.g., funds’) performance. A speed-t speculator’s (expected) trading profit is

E[(V − pt )xi] =
ht
γτt
.

Following the literature (e.g., Kacperczyk, van Nieuwerburgh, and Veldkamp, 2016), such per-

formance can be equivalently interpreted as the return predictability of funds’ holdings: cov[V −
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Figure 7: Performance. This figure illustrates fast and slow speculators’ performance in the cross-section
of assets sorted along information technology дh . The blue-solid (the red-dashed) line shows the expected
trading profit for the fast on the left axis (the slow on the right axis). The primitive parameters used in this
numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1,дt = 10.0, and k(c) = √

c.

pt , xi] = E[(V − pt )xi]. Intuitively, a fund’s performance (information rent) is higher if and only if

it predicts future return more precisely.

Figure 7 shows that both fast and slow speculators’ performance exhibit hump-shapes in infor-

mation technology дh. Due to the initial complementarity, there are more speculators acquiring

both speed and information. With fewer slow ones, their intratemporal competition alleviates, im-

proving their performance. In the meantime, the increasing information technology overcomes the

mild competition among the fast, also improving their performance. However, as all traders acquire

more and more information, prices become very revealing, eventually crowding out everyone’s rent.

Both the fast and the slow’ performance worsen.

To examine the above patterns, one can again focus on the different return predictability of fast

and slow funds’ holding changes. Since holding position data is usually at low frequency (monthly

or quarterly), the “low-frequency speed” in Remark 1, i.e., the speed of acquiring and processing
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Figure 8: Trading volume and information technology. This figure illustrates how trading volume varies
along the information technology дh in the cross-section. Panel (a) shows the fast and the slow speculators’
aggregate volume. Panel (b) plots the proportion of fast volume. The primitive parameters used in this
numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, дt = 10.0, and k(c) = √

c.

long-term information, is more appropriate. In this context, Swem (2017) provides evidence that

(fast) hedge funds’ trading predicts future returns better than other (slow) buy-side institutions.

Such return predictability in the cross-section of information technology is still subject to further

empirical examination. One existing evidence supportive of Figure 7 is by Shumway, Szefler, and

Yuan (2011), who find that the return predictability of funds’ holdings mainly manifests in medium

stocks (assuming дh is lower for larger stocks).

Trading volume. A more direct measure of fast and slow speculators’ participation is to look at

their trading volume. The total trading volume across all speed-t speculators is given by∫
i∈[0,1]

1{ti=t} |x(si,pt )|di = φtE
����htγ (si − pt )

���� = φthtγ

√
1
τt
+

1
ht

√
2
π
.

Figure 8 plots the volume patterns in the asset cross-section, sorted along exogenous дh. Panel (a)

shows that the fast speculators’ volume monotonically increases with дh. This is intuitive as in
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assets with easier access to information, speculators’ signal precision is generally higher and they

trade more aggressively (recall that xi = hi · (si − pt )/γ ). This intuition, however, is challenged

for the slow speculators, whose trading volume first drops with дh before increasing again. This is

because of the initial complementarity between information and speed: There are more speculators

acquire speed, so fewer slow speculators and lower volume by them. Consistently, Panel (b) plots

the proportion of fast speculators’ volume, relative to the total volume. It is initially increasing but

then gradually decreasing along the дh cross-section of assets.

4.4.3 Market-wide trends

Speed technology. The advancement of speed technology is one of the most salient phenomenon

in securities trading in recent years. Such speed technology speaks not only to the subsecond

high-frequency trading technology, but more broadly also to how algorithms automate the whole

trading process, from information processing (live streaming of news and data like Bloomberg) to

risk management and compliance (Bouvard and Lee, 2016).

With this trend, the model suggests the following narrative: On the one hand, the market has

seen a drastic rise of machines, characterized most noticeably by their ability to trade fast. This is

consistent with the prediction of increasing fast traders in investor composition (Proposition 3.2).

On the other, the implication on price informativeness appears mixed. In particular, short-term

(intraday) measures of price efficiency (order flow predictability, serial correlation, etc.) seem

to improve (Brogaard, Hendershott, and Riordan, 2014; Hirschey, 2018), while long-term price

informativeness seems negatively affected (e.g., Weller, 2018). Such mixed findings are consistent

with the patterns shown in Figure 2 (b) (Proposition 3.3).

Information technology (accessibility). Regulators have strengthened transparency and disclo-

sure requirements in recent years. Policies like Sarbanes-Oxley, Regulation Fair Disclosure, and

Rule 10b5-1 have arguably reduced the cost of information acquisition. In this context, the model

cautions against how the improved information accessibility (technology) might negatively impact
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price informativeness, through the complementarity with speed acquisition (Proposition 4.4). Such

complementarity is evidenced by Du (2015), who finds that high-frequency traders are constantly

crawling the website of the SEC in order to trade on the information in latest company filings.

A number of recent studies share qualitatively similar caveats. For example, Dugast and Foucault

(2018) shows that the acquisition of raw information can crowd out processed information, thus

hurting the overall price informativeness. Banerjee, Davis, and Gondhi (2018) show that a public

announcement could worsen price informativeness, because investors would switch to learning

about others’ beliefs instead of the fundamental. Both mechanisms feature some substitution

between different sources of information. To compare, the novel mechanism studied here is due to

the joint effect of the endogenous complementarity between information and speed (Proposition 4.3)

and the temporal fragmentation of speed (Proposition 3.3). Note that the effect does not exist if

speed acquisition is shutdown; c.f. Panel (c) of Table 1.

5 Discussion and robustness

The model builds on a number of specific assumptions, as highlighted in Remark 3, to facilitate

tractability. The purpose of this section is to relax these assumptions. For comparison, the model

presented in Section 3 and 4 will be referred to as “the baseline,” while the subsections below will

be “the extensions.” Detailed analyses of the extensions are deferred to the supplementary material.

The discussion here mainly focuses on the intuition of the robustness.

5.1 Endogenous population size

In the baseline model, the population size is fixed at φ1 + φ2 = 1. This appears to “mechanically”

create the temporal fragmentation effect: As the speed technology prompts speculators to acquire

speed, a higher φ1 implies a lower φ2, thus fragmenting price discovery.

An extension in Section S1 in the supplementary material studies the robustness of the results
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by endogenizing the speculator population. The analysis is briefly summarized here. The only

modification of the baseline is the free-entry of speculators: There is a continuum of speculators

indexed on i ∈ [0,∞) who can choose to trade or not. Following the literature (e.g., Bolton, Santos,

and Scheinkman, 2016), they are sorted according to their reservation value R(i) for not trading

(e.g., an opportunity cost). Specifically, if speculator i chooses not to trade, he obtains a certainty

equivalent of R(i), which is monotone increasing in i. Equivalently, R(i) can be interpreted as

speculator i’s entry cost and ∀i < j, speculator i has higher comparative advantage in trading than j.

As no other model assumptions are changed, conditional on entry, speculators trade just like in

the baseline and Lemma 4.1 holds. The (interior) equilibrium is pinned down by conditions similar

to those stated in Proposition 4.1. Each speed-t speculator acquires informationhi according to first-

order condition ∂π/∂hi = 0; and should be indifferent between fast or slow: π1 − R(i) = π2 − R(i).

The condition that endogenously determines the population size is

π1 = π2 = R(φ1 + φ2),

which says that the marginal investor is indifferent of trading fast, trading slow, or no trading.

Equivalently, if the monotonicity of R(·) is strict, φ1 + φ2 = R−1(π1) = R−1(π2). To compare, the

population size condition under the baseline is φ1 + φ2 = 1.

Consider a speed technology shock in дt , after which φ1 increases (more fast speculators),

implying more early price discovery; i.e., ∆τ1 increases. Having resolved more price discovery at

t = 1, there is less information rent left for the slow. Therefore, there will be fewer speculators

who enter to trade slowly; i.e., φ2 decreases. This is the temporal fragmentation effect: an

advancement in дt increases φ1 but reduces φ2. Panel (a) of Figure 9 demonstrates the patterns

of the key results under a linear parametrization of R(i) = i. They are qualitatively the same as

in the baseline. (Extensive numerical analysis suggests that the choice of R(·) does not affect the

qualitative patterns.)

The key intuition behind the robustness of temporal fragmentation is that the fast and the slow
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split the same piece of pie. When the speed technology benefits the fast, the slow are hurt (relative

to the fast) and thus some of them must be crowded out from t = 2. Either they become fast as

in the baseline (where the total population is fixed), or they stay out of trading as in this extension

(where there is free entry). In either case, temporal fragmentation arises: There will be relatively

more fast speculators than slow ones after a positive speed shock.

5.2 Liquidity timing

The overall price informativeness can be expressed as

τ2 = τ0 + ∆τ1 + ∆τ2 = τ0 +
(φ1h1/γ )2
var[U1]

+
(φ2h2/γ )2
var[U2]

where each fragment of price discovery ∆τt (Equation 9) is essentially the information-to-noise

ratio in that trading round. In the baseline model, technology shocks only affect the numerators

of ∆τt , via speculators’ equilibrium responses.12 A natural question is whether there are effects on

the denominators and if so, how they would affect price informativeness.

To address this question, Section S2 of the supplementary material endogenizes the denomina-

tors. The extension is briefly described here. Following the literature (e.g., Admati and Pfleiderer,

1988), two types of liquidity (noise) traders are introduced. First, there are nondiscretionary liq-

uidators who must trade U1 at t = 1 and U2 at t = 2. These correspond to the noises in the

baseline. Second, there are discretionary liquidators, who upon paying the same speed acquisition

cost 1/дt can trade early at t = 1 but otherwise late at t = 2. They optimally time their liquidation

to minimize expected execution cost. Taken together, the amount of liquidation flow (noise) at t

aggregates toUt +ψtQt , whereψ1 ∈ [0, 1] is the discretionary liquidators’ endogenous demand for

speed and Qt is their (time-varying) systemic liquidation need. The price discovery ∆τt can then

12 Recall from Lemma 4.1 that ht/γ is a speed-t speculator’s trading aggressiveness on his private signal. The

numerator in ∆τt is essentially the square of the aggregate aggressiveness: (φtht/γ )2 =
(∫

{ti=t } hi/γdi
)2

.
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be written as an information-to-noise ratio with numerator and denominator both endogenized:

∆τt =
(φtht/γ )2

τ−1
U +ψ

2
t τ

−1
Q

.(12)

Note that this extension nests the baseline as a special case when the discretionary liquidators’

trading need vanishes; i.e., when var[Qt ] = τ−1
Q → 0. The nondiscretionary liquidators can also be

shut down by taking var[Ut ] = τ−1
U → 0.

The analytic tractability of the extension is very limited, due to the complexity in analyzing

the highly nonlinear equilibrium conditions. Fortuitously, extensive numerical analyses seem to

suggest that there exists a stable equilibrium. The key results of the baseline remain robust in such

an equilibrium, as shown in Panel (b) of Figure 9. In particular, the overall τ2 is still nonmonotone

in the speed technology дt : The temporal fragmentation effect stays. Note from the left-most

panel that φ1 rises butψ1 drops with дt ; i.e. more speculators acquire speed but fewer discretionary

liquidators do so. This makes ∆τ1 increasingly larger, while ∆τ2 smaller.

Intuitively, shocks in the speed technology дt have two opposing forces on discretionary liq-

uidators’ demand for speed ψ1. On the one hand, the speed cost is lower and the demand should

rise. On the other, the speculators’ demand also rises and their trading at t = 1 imposes additional

adverse-selection cost for the discretionary liquidators, reducing their demand for speed. In the

extensive numerical analyses, the second negative effect always dominates. One potential explana-

tion is that the adverse-selection at t = 2 is always reduced with more speculators acquiring speed

(more price discovery has already happened at t = 1). Thus, the incentive for the discretionary

liquidator not to acquire speed becomes stronger, pulling them back to t = 2.

The bottom line is that even φ1 and ψ1 move hand-in-hand, the temporal fragmentation effect

of the speed technology is hard to be silenced completely. A necessary condition for the overall τ2

to be immune from дt is that the changes in the numerator and the denominator of ∆τt—the

information-to-noise ratio—exactly offset each other (Equation 12). The only knife-edge case

where such offsetting holds seems to be the irrelevance result in Dávila and Parlatore (2017), where
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all market participants are ex-ante homogeneous, subject to the same hedging shocks. As soon as

there is some minimum heterogeneity across agents, ∆τt will be affected nonmonotonically by the

technology shocks and the temporal fragmentation effect will manifest.

5.3 Frequent fast trading

The overall price informativeness τ2 comprises of two endogenous fragments, ∆τ1 and ∆τ2. In

the baseline model, fast speculators only trade at t = 1 and thus only contribute to the early ∆τ1.

This is a simplification to capture the main intuition of the results. More realistically, speed

technology should enable speculators not only to trade early, but also frequently. Would more

frequent trading by fast speculators smooth out the price discovery process {∆τt } and undo the

temporal fragmentation of the speed technology?

To answer this question, Section S3 in the supplementary material allows the fast speculators

to trade in both t ∈ {1, 2}; i.e., “frequent fast trading”. All other model structures remain the same

as in the baseline. There it is shown that a fast speculator i’s cumulative demand at time t has the

form of xit = hi
γ (si − pt ), a special case of Vives (1995) with two trading periods. This means at

t = 2, he only trades his net demand:

xi2 − xi1 =
hi
γ
(si − p2) −

hi
γ
(si − p1) = −hi

γ
(p2 − p1),

which does not reflect his private signal si . In fact, the only reason he trades at t = 2 is to rebalance

his holding according to the price change p2 − p1. As such, a fast speculator’s trading at t = 2

contributes nothing to the price discovery ∆τ2. Only the slow speculators’ trading adds to ∆τ2. The

resulting dynamics of price discovery ∆τt are exactly the same as in the baseline (Lemma 4.1) and

all results go through. Panel (c) of Figure 9 replicates the key results.

It is well-known that in such rational expectations equilibrium models, informed investors’

aggressiveness on their private signal si is always the ratio between the precision of the signal hi

and their risk-aversion γ , even in a dynamic framework, with (Vives, 1995; and Cespa, 2008) or
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without the competitive market maker (Cespa and Vives, 2012, 2015). This is because the investors

are competitive. If one does not trade on his private signal as much and as early as possible,

his information rent will be eroded by others. Thus, everyone only contributes once to the price

discovery process at his earliest opportunity. To this extent, the baseline results remain robust

with frequent fast trading, as long as the economy in question can be reasonably approximated by

competitive speculators.

Two further extensions along this line are worth exploring in future research: 1) to consider

large speculators’ price impact and study how that would interact with the technologies differently,

e.g., in models like Kyle (1985, 1989); and 2) to allow fast speculators to acquire information

multiple times. Such extensions will enrich the current model but its key mechanisms (like the

speed technology’s temporal fragmentation effect) will remain.

5.4 The market clearing mechanism

The speculators’ demand schedules are cleared by a competitive market maker, who sets the price

conditional all available information. The purpose of having such a market maker is that he helps

ensure the trading price pt is always (semi-strong) efficient (as in Kyle, 1985; and Vives, 1995) and

this suits the focus on price informativeness of this study.

A competitive market maker is not the only way to facilitate trading. An alternative is to

determine the price pt via market clearing, e.g., as in Grossman and Stiglitz (1980). Section S4

of the supplementary material re-examines the model by replacing the competitive market maker

with a fringe of uninformed investors of mass n. All other model specifications remain the same

as in Section 4. It is shown that a speculator i’s cumulative demand at round t always takes the

well-known form

xit =
hi
γ
(si −mt ) − ait · (pt −mt )

where pt is the market clearing price, mt := E[V | pt ,pt−1, ... ] is the (semi-strong) efficient price,
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and ai,t is some constant up to speculator i and time t . The demand function shows that there

are two trading motives for the speculator: First, his demand scales with the valuation difference

between his private signal and the efficient price. Second, he trades against the mispricing pt −mt

(i.e., the price pressure). Compared to the baseline, the second component is new, because when

the competitive market maker exists and sets pt =mt , the above demand reduces to xit =
hi
γ (si −pt )

as in Lemma 4.1. Similarly, an uninformed investor’s demand in round t is shown to be

yit = −bit · (pt −mt ).

That is, he only trades against the mispricing, serving as a market maker. (It can be shown that this

extension nests the baseline as a special case with the measure of uninformed investors n → ∞.)

It turns out that all baseline results remain robust in this extension. Panel (d) of Figure 9

shows the patterns. Intuitively, as speculators still trade on private signals si with the same

aggressiveness as in the baseline, the price discovery recursion of ∆τt remains the same as stated in

Equation (9). Their additional trading on mispricing pt −mt does not contribute to price discovery.

More specifically, consider the aggregate demand Lt (pt ) in round t (similar to Equation 7). In the

baseline, the competitive market maker sets price efficiently: pt = mt = E[V | Lt (·), Lt−1(·), ... ]. In

this extension, while the market clearing price is solved from Lt (pt ) = 0, in terms of information

and learning, the (semi-strong) efficient price mt is the same mt = E[V | Lt (·), Lt−1(·), ... ]. This

explains why introducing the competitive market maker in the baseline model is without loss of

generality for the purpose of understanding price informativeness and price discovery.13

5.5 Dependence between the two technologies

In the baseline model, the two technology levels do not affect each other. Such independence

between дt and дh need not necessarily be the case. They can complement each other, for example,

13 It is worth emphasizing that allowing frequent fast trading in this setting still does not affect price discovery. Just
as in Section 5.4, fast speculators’ net demand at t = 2, xi2 − xi1, remains independent of the private signal si—they
only contribute to the early price discovery ∆τ1.
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because of the shared hardware (e.g., CPUs). Having invested in one technology can therefore

reduce the cost for the other (e.g., дh increases in дt ).

Substitution between the two is also possible. Dugast and Foucault (2018) argue that because

processing information takes time, investors trading on “processed” information are intrinsically

slower than those trading on “raw” information. That is, investing in one technology might increase

the (marginal) cost for the other (e.g., дh decreases in дt ).

Exactly how speed and information technologies interfere with each other is perhaps a question

of engineering and computer science. The current model sets a benchmark with independent

technologies—an agnostic view. The outcomes of the model, therefore, offer a clean set of

predictions on investors’/speculators’ endogenous demand for the two technologies, as opposed to

the exogenous, built-in substitution/complementarity.

One can use the current model as a starting point to study implications of built-in substitution

or complementarity between the two technologies. Figure 10 plots price informativeness τ1 (red-

dashed line) and τ2 (blue-solid line) on a contour of (дt ,дh).14 When there is complementarity, the

effect of an increase in one technology can be examined by, e.g., the left (green) arrow in the figure

(дh increases from 0.15 to 0.16, while дt increases from about 10 to 100). If instead the substitution

of the technologies dominates, the effect can be seen from, e.g., the right (blue) arrow (дh mildly

increases from 0.125 to 0.135, while дt drops sharply from about 4,000 to 50). In both examples,

the long-run price informativeness τ2 (blue-solid contour lines) drops. Note that the right (blue)

arrow is consistent with Dugast and Foucault (2018) and Kendall (2018), who show that when

processing information takes time, better information might hurt price informativeness.

14 Note the pattern shown is consistent with Propositions 3.3 and 4.4. Moving right on a horizontal cut of Figure 10,
the information technology дh is fixed and as the speed technology дt improves, the short-run price informativeness τ1
monotonically increases, while the long-run price informativeness τ2 first decreases and then increases. Moving upward
on a vertical cut, дt is fixed and as дh increases, τ1 monotonically increases but τ2 first decreases and then increases.
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Figure 10: Price informativeness plotted against both technologies. This contour graph plots how the
long-run price informativeness τ2, in blue-solid line, and the short-run price informativeness τ1, in red-
dashed line, vary with the two technologies, дt and дh . The two arrows illustrates the different effects of
an information technology advancement. The left arrow (green) shows complementarity between the two,
while the right arrow (blue) shows substitution. The primitive parameters used in this numerical illustration
are: τ0 = 1.0, τU = 4.0, γ = 0.1, and k(c) = √

c.

6 Conclusion

This paper studies a model with endogenous speed acquisition, alongside the conventional infor-

mation acquisition. In the interior equilibrium, some speculators acquire speed and become fast,

while the rest stay slow—trading is endogenously fragmented into parts, and so is the price dis-

covery process. Such “temporal fragmentation effect” of the speed technology drives the fraction

of fast speculators in the economy, affecting the concentration of trading and price discovery. In

addition, speculators’ demand for information and speed can be either complements or substitutes,

depending on the relative strengths of various competition effects. Based on the interaction of

these two novel mechanisms, the model generates testable implications for how technologies could
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affect various market quality. Most notably, when either the speed or the information technology

improves, price informativeness can be hurt. This provides a cautionary tale of the disruptive

effects of how technological advancement, as seen in recent years, might hinder the price discovery

function of financial markets.

Appendix

Proofs

Lemma 3.1 and 4.1

Proof. This proof encompasses both lemmas as special cases by allowing each speculator’s signal
precisionhi to differ, as analyzed more generally in Vives (1995). Conjecture that a fast speculator i’s
demand schedule is xi = ai,1si − bi,1p1 and that a slow speculator i’s demand schedule is xi =

ai,2si − bi,2p1 − ci,2p2. At t = 1, there are only fast speculators and the aggregate demand is

L1(p1) =
∫
i∈[0,1]

xi(p1, si)1{ti=1}di +U1 =

(∫
ti=1

ai,1di
)
V −

(∫
ti=1

bi,1di
)
p1 +U1,

where the convention
∫
εidi = 0 is used. From the market maker’s perspective, the sufficient

summary statistic, therefore, is the intercept of the above linear demand, which can be transformed
into z1 := V +U1/

(∫
ti=1 ai,1di

)
. Therefore, using standard property of normal distribution,

τ1 = var[V | L1(·) ]−1 = τ0 +

(∫
ti=1

ai,1di
)2
τU.(13)

The incremental price discovery is ∆τ1 =
(∫

ti=1 ai,1di
)2
τU. The maker maker sets the efficient price

p1 = E[V | L1(·) ] = E[V | z1 ] =
τ0
τ1
p0 +

∆τ1
τ1

z1.(14)

As such, the trading price p1 is an equivalent statistic of z1. From a fast speculator’s perspective,
var[V | si,p1 ]−1 = var[V | si, z1 ]−1 = hi+τ1 andE[V | si,p1 ] = E[V | si, z1 ] = (τ0p0+hisi+∆τ1z1)/(τ1+

hi). Using the above, a CARA fast speculator i’s optimal demand is

xi =
E[V | si,p1 ] − p1

γvar[V | s1,p1 ]
=

1
γ
(hisi + ∆τ1z1 − (τ0 + hi + ∆τ1)p1) =

hi
γ
(si − p1).
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(Recall the normalization p0 = 0.) The conjectured linear demand xi = ai,1si − bi,1p1 for fast
speculators has thus been verified with coefficients ai,1 = bi,1 = hi/γ .

At t = 2, the slow speculators’ aggregate demand is

L2(p2;p1) =
∫
i∈[0,1]

xi(p2, si ;p1)1{ti=2}di +U2

=

(∫
ti=2

ai,2di
)
V −

(∫
ti=2

bi,2di
)
p1 −

(∫
ti=2

ci,2di
)
p2 +U2,

Recallingp1, the market maker updates his information set to {p1, z2}, wherez2 := V+U2/
(∫

ti=2 ai,2di
)

summarizes the new information in L2(·). Then,

τ2 = var[V | p1, L2(·) ]−1 = var[V | z1, z2 ]−1 = τ1 +

(∫
ti=2

ai,2di
)2
τU,(15)

where the incremental price discovery ∆τ2 =
(∫

ti=2 ai,2di
)2
τU. The market maker then sets the

efficient price

p2 = E[V | p1, L2(·) ] = E[V | z1, z2 ] =
τ0
τ2
p0 +

∆τ1
τ2

z1 +
∆τ2
τ2

z2.(16)

A slow speculator updates var[V | si,p1,p2 ]−1 = var[V | si, z1, z2 ]−1 = h1 + τ2 and E[V | si,p1,p2 ] =
E[V | si, z1, z2 ] = (τ0p0 +∆τ1z1 +∆τ2z2 +hisi)/(τ2 +hi). Solving a quadratic optimization problem,
a CARA slow speculator’s optimal demand is

xi =
E[V | si,p1,p2 ] − p2

γvar[s1,p1,p2]
=

1
γ
(hisi + ∆τ1z1 + ∆τ2z2 − (τ0 + ∆τ1 + ∆τ2 + hi)p2) =

hi
γ
(si − p2).

Thus the conjectured linear demand for slow speculators is also verified with coefficients ai,2 =
ci,2 = hi/γ and bi,2 = 0. That is, the slow speculator’s demand is independent of p1.

The analysis so far has proved the speculators’ optimal demand as stated in the lemmas. In
particular, for Lemma 3.1, hi = h◦ for all i ∈ [0, 1]; and for Lemma 4.1, hi = hti . In the meantime,
Equations (13) through (16) verify the recursion systems of pt and ∆τt . It remains to compute
the speculators’ ex ante certainty equivalent. Consider a fast speculator. Before accounting for
the technology acquisition cost, his expected utility at t = 0 is −E

[
exp

{
− [E[V | si ,p1 ]−p1]2

2var[V | si ,p1 ]
}]
. The

expressions derived earlier yield the following: E[V | si,p1 ] − p1 =
hi

τ1+hi

(
τ0
τ1
V + εi − ∆τ1

τ1

U1∫
tj=1(hj/γ )dj

)
and var[V | si,p1 ]−1 = τ1 + hi . Plug the above into the t = 0 expected utility for a fast speculator,
simplify, and the resulting ex ante certainty equivalent before technology acquisition costs is
1
2γ ln

(
1 + hi

τ1

)
. Subtracting the information acquisition cost and the speed acquisition cost gives the

expression stated in the lemmas, with hi = h◦ for Lemma 3.1; and hi = hti for Lemma 4.1. The
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calculation for slow speculators repeats the above and is omitted. □

Proposition 3.1 and 4.1

Proof. This proof encompasses both propositions. Write the speculators’ certainty equivalent π1

and π2 as functions of the fast population size φ1 ∈ [0, 1]. To see this, note from Equation (8) that πt
is a function of ht and τt . Then, from the first-order condition (10), speculators’ endogenous choice
of hi can be written as a function of τti . (For Proposition 3.1, there is no information acquisition
and hi = h◦ is a degenerate function of τti .) Finally, τ1 = τ0 + ∆τ1 and τ2 = τ1 + ∆τ2, where
∆τt = τUφ

2
t h

2
t /γ 2. Hence, τ1 is effectively a function of φ1, while τ2 of both φ1 and φ2 = 1 − φ1.

As such, speculators’ certainty equivalent πt are functions of φ1. Then, depending on φ1, there are
three cases.
Case 1: Suppose φ1 = 1 and φ2 = 0; i.e. all speculators pay the speed technology cost 1/дt and
become fast. If this is the case, then in equilibrium π1 ≥ π2 must hold. Consider a speculator i’s
unilateral deviation to not investing in the speed technology, saving the cost of 1/дt and becomes
slow. By Equation (9), the price informativeness remains the same, τ1 = τ2, because a single
speculator’s deviation has zero population measure. Then i’s optimal technology investment hi , by
the first-order condition (10), remains the same as if he were fast: hi = h∗(τ2;дh) = h∗(τ1;дh) = h1.
(For Proposition 3.1, without information acquisition, hi = h◦ always holds.) As a result, his
certainty equivalent π2 = π1 + 1/дt > π1 and he indeed will deviate. Such a case of φ1 = 1 and
φ2 = 0, therefore, can never be an equilibrium.
Case 2: Consider next the case ofφ1 = 0 andφ2 = 1. (This will correspond to the corner equilibrium
stated in the propositions.) If this is an equilibrium, it has to be the case that π1 ≤ π2, i.e., all stay
slow. The argument below shows that fixing all other primitive parameters, π1 ≤ π2 holds if and
only if дt < д̂t , for some threshold д̂t . At φ1 = 0, τ1 = τ0 < τ2 and thus a slow speculator’s unilateral
deviation to fast yields π1 |φ1=0 =

1
2γ ln

(
1 + h1

τ0

)
− Ûc(h1) − 1

дt
, where h1 is the unique solution implied

by the first-order condition (10) with τ1 = τ0. By envelope theorem, ∂π1/∂дt = 1/д2
t > 0. (For

Proposition 3.1, h1 = h◦ is constant and the above inequality also holds.) Therefore, π1 |φ1=0 is
monotone increasing in дt with limits limдt↓0 π1 = −∞ < 0 < π2 < limдt↑∞ π1. (Note that π2 |φ1=0

is a finite number unaffected by дt in this case.) By continuity, therefore, there exists a unique д̂t
such that π1 = π2 when φ1 = 0. As such, π1 ≤ π2, supporting φ1 = 0 and φ2 = 1, if and only if
дt ≤ д̂t . When instead дt > д̂t , this corner equilibrium does not hold.
Case 3: Now consider the interior case of φ1 ∈ (0, 1), requiring π1 = π2. The key is to show that the
difference π1 − π2 strictly decreases in φ1. Evaluate the partial derivative of π1 − π2 with respect
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to φ1 and after some simplification,

∂(π1 − π2)
∂φ1

· 2γ =
[
h2/τ2
τ2 + h2

− h1/τ1
τ1 + h1

]
∂τ1
∂φ1
+

h2/τ2
τ2 + h2

∂∆τ2
∂φ1
.

Note that the term in the square-brackets is nonpositive, because τ2 ≥ τ1 by construction and be-
causeht = h∗(τt ;дh) decreases inτt as implied by the first-order condition (10). (For Proposition 3.1,
ht = h◦ is constant and the term in the square-brackets is still negative.)
Both ∂τ1/∂φ1 and ∂∆τ2/∂φ1 still need to be signed. For Proposition 3.1, this is straightfor-
ward as one can immediately see from Equation (9) with constant ht = h◦ that ∂τ1/∂φ1 > 0
and ∂∆τ2/∂φ1 < 0. For Proposition 4.1, rearrange the first-order condition (10) for t = 1 as
(τ0 + ∆τ1 + дhk(c1))/ Ûk(c1) = дh/(2γ ) with ∆τ1 = φ2

1д
2
h
k(c1)2τU/γ 2 following Equation (9). It

can then immediately be concluded that the information expense c1 must decrease in φ1, as
otherwise the left-hand side of the above equation is always increasing in φ1, unable to main-
tain the equality. (Recall that k(·) is concavely increasing.) Using the same argument, it is
also known that τ1 (= τ0 + ∆τ1) must decrease in c1. Hence, τ1 (and ∆τ1) increases in φ1.
For t = 2, (τ0 + ∆τ1 + ∆τ2 + h2)/ Ûk(c2) = дh/(2γ ) with ∆τ2 = (1 − φ1)2д2

h
k(c2)2τU/γ 2. Note that

∂∆τ2
∂φ1
=

(
−2(1 − φ1)h2

2 + 2(2 − φ1)2h2
∂h2
∂φ1

)
τU
γ 2 . As such, if ∆τ2 increases in φ1, then it has to be the

case that ∂h2/∂φ1 > 0. Because h2 = дhk(c2), c2 is also increasing in φ1. It then follows that the
left-hand side of the above equation strictly increases in φ1—∆τ1, ∆τ2, and c2 all increase with φ1,
invalidating the equality. Therefore, it must be ∆τ2 decreases in φ1. As τ1 increases in φ1 but ∆τ2

decreases in φ1, one can conclude from the above partial derivative that the difference π1 − π2

indeed strictly decreases in φ1.
To sum up from the above three cases, recall from the first cases that at φ1 = 1, π1 < π2. From

the second case, at φ1 = 0, π1 > π2 if and only if дt > д̂t . Hence, when дt ≤ д̂t , the equilibrium
with interior φ1 does not exist due to the above monotonicity of π1 − π2 in φ1. When дt > д̂t , there
exists a unique φ1 ∈ (0, 1) such that π1 = π2, sustaining this equilibrium. This completes the proof
of both propositions. □

Proposition 3.2 (also part of Proposition 4.2)

Proof. In the interior equilibrium, π1 − π2 = 0. From the proof of Proposition 3.1 and 4.1
above, it is known that π1 − π2 can be written as a function of the endogenous φ1 and hence
in the form of F (φ1(дt );дt ). Take derivative of F (·) = 0 with respect to дt on both sides gives
(∂(π1 − π2)/∂φ1)(∂φ1/∂дt ) + 1/д2

t = 0. Case 3 in the proof of Proposition 3.1 and 4.1 shows that
∂(π1 − π2)/∂φ1 < 0. Therefore, ∂φ1/∂дt > 0 in the interior equilibrium. (The above holds whether
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hi is endogenous or not, thus proving both propositions.) □

Proposition 3.3 (also part of Proposition 4.2)

Proof. For Proposition 3.3 (no information acquisition), as shown in the proof of Proposition 3.2,
φ1 is increasing with дt , which directly implies that τ1 is increasing with дt . For the overall τ2, by
the implicit function theorem, ∂τ2/∂φ1 = 2τUh

2
oφ1/γ 2 − 2τUh

2
oφ2/γ 2, or ∂τ2/∂дt = 2(τUh

2
oφ1/γ 2 −

2τUh
2
oφ2/γ 2)(∂дt/∂φ1). It is clear that ∂τ2/∂дt < 0 when φ1 is close to zero and φ2 close to one

(i.e., дt is small), and ∂τ2/∂дt > 0 when φ1 is close to one and φ2 close to zero (i.e., дt is large).
For Proposition 4.2 (with information acquisition), two steps are involved. The first step is

to prove that ∂τ1/∂дt > 0. In the interior equilibrium, the first-order condition (10) for t = 1,
together with τ1 = τ0 + τUh

2
1φ

2
1/γ 2, implies an implicit function of h1 = дhk(c1) and φ1, from which

∂h1/∂φ1 = − 2τUφ1h
2
1/γ

2

2τUφ2
1h1/γ 2+1−Ük(c1)/ Ûk(c1)

< 0, where the inequality follows because k(·) is concavely
increasing. From the effect of speed technology and population of sizes, ∂φ1/∂дt > 0. Therefore,
by chain rule, ∂h1/∂дt < 0. The first-order condition (10) also implies that τ1 decreases with c1

and, hence, also with h1, yielding ∂τ1/∂дt > 0.
The second step is to prove that τ2 first decreases and then increases with дt . Recall τ2 =

τ0 + τUτ
2
1φ

2
1/γ 2 + τUτ

2
2φ

2
2/γ 2. By implicit function theorem on the first-order condition (10),

∂h2
∂φ2
= −4τU

γ

φ2h
2
2 − φ1h

2
1 − φ2

1h1∂h1/∂φ1

−Ük(c2)/ Ûk(c2) + 2γ + 4τUφ
2
2τ2/γ

.

As done in the proof of step 1, the idea is to first sign the above partial derivative and then
sign ∂h2/∂дt using chain rule: ∂h2

∂дt
=
∂h2
∂φ2

∂φ2
∂φ1

∂φ1
∂дt
, where ∂φ2/∂φ1 = −1 following the identity φ1 +

φ2 = 1 and ∂φ1/∂дt > 0. In particular, consider the limits of ∂h2/∂φ2 as дt ↑ ∞ and дt ↓ д̂t ,
respectively.

To evaluate these limits, one needs to show that h1, h2, and ∂h1/∂φ1 are have finite bounds. The
finite bounds for ht can be easily established by noting from the first-order condition (10) that τt in
equilibrium is monotone decreasing in τt . From the model setting, it is known that τt has strictly
positive lower bound τ0. Therefore, both h1 and h2 have finite upper bounds. (They also have lower
bounds of zero by construction.) Finally, from the expression of ∂h1/∂φ1 derived in the proof of the
previous step, it can be seen that φ1 · (∂h1/∂φ1) = − 2τUφ2

1h1/γ 2

2τUφ2
1τ1/γ 2+1−Ük(c1)/ Ûk(c1)

h1 > −h1 is also bounded.
Now the limits can be evaluated. When speed technologyдt ↑ ∞, almost all speculators become

fast andφ2 ↓ 0 and limφ2↓0( ∂h2
∂φ2

) = −4τU
γ

−φ1h
2
1−φ

2
1h1∂h1/∂φ1

−Ük(c2)/ Ûk(c2)+2γ > 0. Similarly, when speed technologyдt ↓

д̂t , almost all speculators stay slow, φ1 ↓ 0, and limφ1↓0( ∂h2
∂φ2

) = −4τU
γ

φ2h
2
2

−Ük(c2)/ Ûk(c2)+2γ+4τUφ2
2h2/γ

< 0. As
the above shows, for sufficiently large (low) дt , h2 increases (decreases) in φ2 and hence decreases
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(increases) in дt by the chain rule expression above. The first-order condition (10) implies that τ2

decreases with τ2 and the stated results are proved. □

Proposition 4.3

Proof. Fixing дt , дh increases from д̂h to ∞. The aggregate demand for speed in the economy
is

∫
[0,1] 1{ti=1}di = φ1. From ∆τ1 = τUh

2
1φ

2
1/γ 2, by implicit function theorem,

∂φ1

∂дh
=

γ 2

2τUφ1h
2
1

(
∂∆τ1
∂дh

−
2τUφ

2
1h1

γ 2
∂h1
∂дh

)
.(17)

Hence, the sign of ∂φ1/∂дh depends on the difference between the two terms in the brackets.
Consider first the case of a very small дh. Corollary 4.1 establishes the existence of a lower
bound д̂h for дh, such that the equilibrium is interior if and only if дh ≥ д̂h. In particular, when
дh ↓ д̂h, the marginal speculator is just indifferent between becoming fast or not, implying φ1 ↓ 0.
The first-order condition (10) at this limit gives 1/(2(τ0 + h1)γ ) − Ûc(h1) = 0, which has interior
solution of 0 < h1 < ∞, thanks to the assumption of Ûc(0) = 0. By differentiability, therefore,
∂h1/∂дh is finite in this limit as well. Taken together, the second term in the above brackets
has limit zero as φ1 ↓ 0, when дh ↓ д̂h. The remaining term is ∂∆τ1/∂дh, which is shown by
Proposition 4.4 to be strictly positive. Thus, ∂φ1/∂дh is positive in the case of a very small дh,
close to the lower bound of д̂h.

Consider next the case of a very large дh, i.e. дh ↑ ∞. First, there exists an upper bound
for speculators’ expense on information acquisition, ct . To see this, note from the first-order
condition (10):

1
2γ

Ûk(ct ) >
1
2γ

Ûk(ct ) −
1
дh
τt = k(ct ) ≥ k(0) + ct Ûk(ct ) = ct Ûk(ct )(18)

where the first inequality holds because τt ≥ τ0 > 0 and the last inequality holds by concavity of k(·)
and by k(0) = 0. Therefore, for t ∈ {1, 2}, there exists an upper bound for ct ≤ 1/(2γ ), an upper
bound for k(ct ) ≤ k(1/(2γ )), and a lower bound for Ûk(ct ) ≥ Ûk(1/(2γ )) > 0. Second, in the limit
of дh ↑ ∞, the equilibrium is always interior (following Corollary 4.1). Hence, the limit of the fast
speculator’s ex ante certainty equivalent limдh↑∞ π1 =

1
2γ limдh↑∞ ln

(
1 + h1

τ1

)
− limдh↑∞ c1 − 1

дt
exists

and must be nonnegative to sustain the interior equilibrium. Since c1 is bounded from above, it
follows that limдh↑∞(h1/τ1) also exists and is strictly positive. That is, there exists some a ∈ (0,∞),
such that limдh↑∞(τ1/h1) = a. Equivalently, as τ0 is a finite constant, limдh↑∞(∆τ1/h1) = a. Further,
a fast speculator’s first-order condition (10) can be rewritten as 1

2γ
дh

τ1+h1
− Ûc(h1/дh) = 0. Since the

above holds under дh ↑ ∞, it follows that h1 ∼ дh; or limдh↑∞(h1/дh) = b ∈ (0,∞). (If h1 is of higher
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magnitude than дh, the limit of the first term above falls to zero, while the limit of the second term
is strictly positive as c(·) is strictly convex. If instead h1 is of lower magnitude than дh, the limit of
the first term approaches infinity, while the second term falls to zero.) Now consider the limit of
the difference in the brackets of Equation (17):

lim
дh↑∞

(
∂∆τ1
∂дh

− 2
τUφ

2
1h1

γ 2
∂h1
∂дh

)
= lim

дh↑∞

(
∂∆τ1
∂дh

− 2
∆τ1
h1

∂h1
∂дh

)
= (ab − 2ab) < 0

where the last equality follows L’Hôpital’s rule. Therefore, in the limit of дh ↑ ∞, ∂φ1/∂дh < 0.
Finally, consider the value of φ1 in this limit. Note that ∆τ1 = τ0 + τUφ

2
1h

2
1/γ 2. Therefore, in order

for limдh↑∞(∆τ1/h1) = a ∈ (0,∞) to hold, it must be such that limдh↑∞(φ2
1h1) = c ∈ (0,∞), i.e., φ1

in this limit is of magnitude h−1/2
1 . As h1 ↑ ∞, this also implies that φ1 ↓ 0 in this limit.

Fixing дh, дt increases from д̂t to ∞. The aggregate demand for information is h̄ := φ1h1 + φ2h2.
Since φ1 is monotone in дt (Proposition 3.2), it is sufficient to examine the partial derivative of the
above aggregate demand with respect to φ1: ∂h̄/∂φ1 = h1 − h2 + φ1 · (∂h1/∂φ1) − φ2 · (∂h2/∂φ2).
At the initial extreme of дt ↓ д̂t , the proof of Proposition 3.3 has shown that 1) φ1 ↓ 0, 2)
φ1 · ∂h1/∂φ1 is bounded, and 3) ∂h2/∂φ2 < 0. Taking these into the above partial derivative yields
∂h̄/∂φ1 → h1 −h2 −φ2 · (∂h2/∂φ2) > 0, recalling that h1 ≥ h2 from Equation (11). At the eventual
extreme of дt ↑ ∞, the proof of Proposition 3.3 has shown that 1) φ2 ↓ 0, 2) ∂h1/∂φ1 < 0, and 3)
∂h2/∂φ2 > 0. In addition, since φ2 ↓ 0, ∆τ2 = φ

2
2h

2
2τU/γ 2 ↓ 0 (h2 is bounded), implying τ2 ↓ τ1 and

4) h2 ↑ h1. Taking the above into h̄ yields ∂h̄/∂φ1 → φ1 · (∂h1/∂φ1) − φ2 · (∂h2/∂φ2) < 0. □

Proposition 4.4

Proof. Two inequalities (20) and (22) below will be useful. The first-order condition (10) can be
written as Ûk(ct )/(2γ ) − k(ct ) = τt/дh, which uniquely solves ct . Fixing дh,

∂ct
∂τt
=

1
дh

( Ük(ct )
2γ

− Ûk(ct )
)−1

≤ 0(19)

where the inequality follows the concavity of k(c). In addition,

∂ct
∂дh
= − τt

д2
h

( Ük(ct )
2γ

− Ûk(ct )
)−1

= − τt
дh

∂ct
∂τt

≥ 0.(20)

Note that the above hold with or without speed acquisition.
The proof then proceeds as follows. By construction, τ1 = τ0+∆τ 1 and τ2 = τ0+∆τ 1+∆τ 2. The

first-order condition implicitly has c1 and c2 as functions of c1(∆τ1) and c2(∆τ1,∆τ2). Further, ∆τt =
τUд

2
h
k(ct )2φ2

t /γ 2, or φt =
γ√
τU

√
∆τt

дhk(ct ) . Therefore, the unconstrained equilibrium (with endogenous
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acquisition of both speed and information) is pinned down by a two-equation, two-unknown system:
π1 − π2 = 0 and φ1 + φ2 − 1 = 0; or, equivalently, with a vector function F (∆τ1,∆τ2;дh),

F =


(

1
2γ ln

(
1 + дhk(c1)

τ1

)
− c1 − 1

дt

)
−

(
1
2γ ln

(
1 + дhk(c2)

τ2

)
− c2

)
√
∆τ1

k(c1) +
√
∆τ2

k(c2) −
√
τU
γ дh

 =
[
0
0

]
,(21)

where {ct }t∈{1,2} are functions of ∆τ1 and ∆τ2 following the first-order condition (10), which can
be rewritten as Ûk(ct )/(2γ ) − k(ct ) = τt/дh.

Take total derivatives with respect toдh on the equilibrium condition F = 0 to get

[
F11 F12

F21 F22

] [
d∆τ1

d∆τ2

]
+[

F1д

F2д

]
dдh =

[
0
0

]
. One can easily evaluate, using envelope theorem,

F1д =
1
2γ

k(c1)
τ1 + дhk(c1)

− 1
2γ

k(c2)
τ2 + дhk(c2)

=
1
дh

(
k(c1)
Ûk(c1)

− k(c2)
Ûk(c2)

)
> 0,

where the second equality follows the first-order condition (10), while the last inequality follows
the concavity of k(c), knowing that c1 > c2. Also,

F2д = −
√
∆τ1

k(c1)2
Ûk(c1)

∂c1
∂дh

−
√
∆τ2

k(c2)2
Ûk(c2)

∂c2
∂дh

−
√
τU

γ

= −
√
τU

γ
φ1дh

Ûk(c1)
k(c1)

∂c1
∂дh

−
√
τU

γ
φ2дh

Ûk(c2)
k(c2)

∂c2
∂дh

−
√
τU

γ
< −

√
τU

γ
< 0,

where the equality uses the expression of φt and the inequality holds because ∂ct/∂дh is derived
earlier to be positive (inequality 20).

The elements in the Jacobian matrix can also be evaluated. Using envelope theorem,

F11 = − k(c1)
Ûk(c1)τ1

+
k(c2)
Ûk(c2)τ2

≤ 0

where the inequality holds because k(c1)/ Ûk(c1) ≥ k(c2)/ Ûk(c2) (concavity) and τ1 ≤ τ2. Similarly,

F12 =
k(c2)
Ûk(c2)τ2

> 0.

Now consider the partial derivatives with respect to F2:

F21 =
1

2
√
∆τ1k(c1)

−
√
∆τ1

k(c1)2
Ûk(c1)
∂c1
∂τ1�

�
�∂τ1

∂∆τ1
−

√
∆τ2

k(c2)2
Ûk(c2)
∂c2
∂τ2 �

��
τ2
∆τ1

=
1

2
√
∆τ1k(c1)

−
√
τU

γ
φ1дh

Ûk(c1)
k(c1)

∂c1
∂τ1

−
√
τU

γ
φ2дh

Ûk(c2)
k(c2)

∂c2
∂τ2
> 0

where the equality follows the expression of φt and the inequality holds because ∂ct/∂τt ≤ 0 as
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shown before (inequality 22).

∂mt

∂τt
=

1
дh

( Ük(mt )
2γ

− Ûk(mt )
)−1

≤ 0(22)

Similarly,

F22 =
1

2
√
∆τ2k(c2)

−
√
∆τ2

k(c2)2
Ûk(c2)
∂c2
∂τ2�

�
�∂τ2

∂∆τ2
> 0.

By Cramer’s rule,

∂∆τ1
∂дh

=

�����−F1д F12

−F2д F22

����������F11 F12

F21 F22

�����
and

∂∆τ2
∂дh

=

�����F11 −F1д

F21 −F2д

����������F11 F12

F21 F22

�����
.

The the denominator is easy to sign: F11F22 − F12F21 < 0. It remains to examine the numerators.
For τ1, it can be seen that −F1дF22 + F12F2д < 0; hence ∂τ1/∂дh = ∂∆τ1/∂дh > 0.

To sign ∂τ2/∂дh is equivalent to signing the sum of the numerators of ∂∆τ1/∂дh and ∂∆τ2/∂дh:

(−F1дF22 + F12F2д) + (−F11F2д + F1дF21) = (F21 − F22)F1д + (F12 − F11)F2д .

To prove the statement made in the proposition, the objective is to show that under the limits of
дh ↑ ∞ and of дh ↓ д̂h, the sign of the above term is negative and positive, respectively (recall that
the determinant for the denominator is negative). The proof of Proposition 4.3 shows that in the
upper limit, φ1 ↓ 0 and φ2 ↑ 1. The proof of Corollary 4.1 shows that in the lower limit, speculators
are just indifferent between acquiring the speed or not, implying again φ1 ↓ 0 and φ2 ↑ 1. Using
these limiting values of φ1 and φ2, the above simplifies to(

1
2
√
∆τ1k1

− 1
2
√
∆τ2k2

)
F1д +

k1
Ûk1τ1

F2д,(23)

where, simplifying the notation, k(·) and Ûk(·) are replaced by subscripts of t ∈ {1, 2}.
Consider the limit of дh ↑ ∞ first. Equation (23) satisfies the following inequality:(

1
2
√
∆τ1k1

− 1
2
√
∆τ2k2

)
F1д +

k1
Ûk1τ1

F2д <
F1д

2
√
∆τ1k1

because F1д > 0 and F2д < −√τU/γ < 0. The proof of Proposition 4.3 establishes that ∆τ1 → ∞
. In addition, the inequality (18) establishes that in equilibrium, both c1 and c2 have finite upper
and lower bounds, implying that both k1 and F1д is also finite (since k(·) is twice-differentiable).
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Therefore, limдh↑∞(F1д/(2
√
∆τ1k1) = 0 and

lim
дh↑∞

[(
1

2
√
∆τ1k1

− 1
2
√
∆τ2k2

)
F1д +

k1
Ûk1τ1

F2д

]
< lim

дh↑∞

F1д

2
√
∆τ1k1

= 0.

This proves that in this upper limit, τ2 is increasing with дh.
Finally, consider the limit of дh ↓ д̂h. As дh ↓ д̂h, clearly F1д and F2д are finite. However,

φ1 ↓ 0, ∆τ1 ↓ 0, and the first term of Equation (23) approaches +∞. The sum of numerators above
therefore has a positive sign. Given the negative sign of the denominator, it can be concluded that
∂τ2/∂дh < 0 in the limit of дh ↓ д̂h. □

Proposition 4.5

Proof. Recall from inequality (22) that ct is always increasing in дh, which holds true irrespective
of the speed technology. Therefore, with or without speed acquisition, the equilibrium ht = k(ct )
is increasing in the information technology дh.

At t = 1, as дh increases, h1 also increases as shown above. It then follows that ∂τ1/∂дh > 0
because τ1 = τ0 + τUh

2
1φ

2
1/γ 2 with φ1 exogenous. For t = 2, suppose the opposite, ∂τ2/∂дh < 0, is

true. Then h2 should be decreasing with дh because τ2 = τ1 + τUh
2
2φ

2
2/γ 2 with τ1 is increasing in

дh. However, the transformation of first-order condition (10), дh/(2γ ) = (τ2 +h2)k−1(h2/дh), shows
that it is impossible for both τ2 and h2 to be decreasing with дh at the same time. Thus, the assumed
inequality is wrong and τ2 increases with дh. □

Corollary 4.1

Proof. Consider the threshold д̂t , at which the benefit of investing in speed to trade at t = 1 is small
enough, so that the marginal speculator is just willing to stay slow. Therefore, at this threshold
φ1 = 0 and φ2 = 1, implying π1 =

1
2γ ln

(
1 + дhk(c1)

τ0

)
− c1 − 1

д̂t
and π2 =

1
2γ ln

(
1 + дhk(c2)

τ2

)
− c2,

where τ2 = τ0 + τUд
2
h
k(c2)2/γ 2. In equilibrium, it has to be such that π1 = π2 = π

∗, which implies
τ2/(τ2 + дhk(c2)) > τ0/(τ0 + дhk(c1)) because c1 + 1/д̂t > c1 > c2. Subtract by 1 on both sides and
rearrange to get k(c2)/(τ2 + дhk(c2)) < k(c1)/(τ0 + дhk(c1)).

Next, from the expression of π1, by envelope theorem, ∂π ∗

∂дh
= 1

2γ
k(c1)

τ0+дhk(c1) +
1
д̂2
t

∂д̂t
∂дh
. Similarly,

from the expression of π2, ∂π ∗

∂дh
= 1

2γ
1

τ2+дhk(c2)

(
1 − 2hд2

hk(c2)2
γ 2τ2

)
k(c2) < 1

2γ
k(c2)

τ2+дhk(c2) <
1
2γ

k(c1)
τ0+дhk(c1) =

∂π ∗

∂дh
− 1

д̂2
t

∂д̂t
∂дh
. Therefore, ∂д̂t/∂дh < 0.

Further, consider the extremes of дh ↓ 0 and дh ↑ ∞. Toward the lower bound 0, from the
expression of π1 it can be seen that the first term in π1 drops down to zero. Since a speculator
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always has the option not to trade, π1 is bounded below by zero. This leads to c1 ↓ 0 and 1/д̂t ↓ 0,
implying limдh↓0 д̂t = ∞. On the other hand, the first-order condition (10) applied to π1 implies
0 =

Ûk(c1)
2γ −k(c1)− τ0

дh
<

(
1
2γ − c1

)
Ûk(c1), where the inequality follows because τ0/дh > 0 and because

k(m) ≥ Ûk(m)m by concavity. Hence, c1 is always bounded from above by 1/(2γ ). From the
first-order condition, with τ1 fixed at τ0, it follows the concavity of k(·) that c1 monotone increases
in дh, and so does k(c1). Taken together, limдh↑∞ π1 >

1
2γ limдh↑∞ ln

(
1 + дhk(c1)

τ0

)
− 1

2γ − limдh↑∞
1
д̂t
.

If limдh↑∞ д̂t > 0, then the above limit of π1 shoots to infinity. In that case, the assumed equilibrium
will not hold, however, because all slow speculators will have incentive to acquire speed by
paying 1/д̂t to earn infinite profit. Therefore, it has to be the case that limдh↑∞ д̂t = 0.

Finally, the above concludes that д̂t is a strictly decreasing function in дh, with д̂t (0) → ∞ and
д̂t (∞) → 0. As the strict monotonicity implies invertibility, there exists д̂h(дt ) for all дt ∈ (0,∞)
such that the equilibrium is interior if and only if дh ≥ д̂h(дt ). □
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Supplementary material for

“Speed Acquisition”
This note adds to the paper by studying four extensions and verifying the robustness of the main

results: endogenous population size in Section S1; liquidity timing in Section S2; repeated fast

trading in Section S3; and and market clearing in Section S4 . Numerical illustrations are contained

in Section S5.

S1 Endogenous population size

The baseline model fixes the speculator population size at 1. This seems to drive the temporal

fragmentation effect (Proposition 3.2): When the speed technology дt improves, more speculators

becoming fast (higherφ1) “mechanically” implies fewer remaining slow (lowerφ2), thus temporally

fragmenting trading and price discovery.

To clarify that the temporal fragmentation does not build on such mechanical structure, this

extension studies speculators’ free entry. Consider be an infinite-measure continuum of speculators,

indexed on i ∈ [0,∞). Following the literature (see, e.g., Bolton, Santos, and Scheinkman, 2016),

sort them according to their reservation value R(i) for not trading. If speculator i chooses not to

trade, he obtains a certainty equivalent of R(i), which is monotone increasing in i. To ensure at

least some participation, normalize R(0) = 0.

As no other model assumptions are changed, speculators trade just like in the baseline and

Lemma 4.1 holds. Speculators’ certainty equivalents are also in the same form as in Equations (8)

in the paper. The conditions characterizing technology acquisition in an interior equilibrium are:

Optimal information acquisition: h1 = h
∗(τ1;дh) and h2 = h

∗(τ2;дh);

Indifference in speed: π1 = π2;

Indifference in entry: R(φ1 + φ2) = π1 = π2.
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Compared with Proposition 4.1, the only different condition is the last one which determines the

population size φ1 + φ2. In the baseline, the population is fixed, hence φ1 + φ2 = 1. Here, due to

free entry, the marginal (i.e., the (φ1 + φ2)-th) speculator, must be indifferent from trading or not.

It turns out that this only change in the equilibrium conditions does not affect the main results

from the baseline. In particular, the temporal fragmentation effect of the speed technology remains

robust. Figure S1 numerically demonstrates the pattern. It can be seen from the top-left panel

that as the speed technology increases, the population size of fast speculators φ1 increases, while

the slow φ2 reduces. The same intuition as in the baseline applies here: The fast and the slow

compete for the same piece of pie. With better speed technology, it is more advantageous (upon

entry) to become fast rather than slow. In the baseline, the worse-off slow speculators are “crowded

in” to acquire speed and trade fast. Here, they might get “crowded out” of trading. In either case,

φ1 rises and φ2 reduces.1 The other panels replicate the other key results: complementarity and

substitution; and the nonmonotone effects on cumulative price informativeness.

It is acknowledged that the nonmonotone effects on cumulative price informativeness τ2 (the

lower two panels) relies on the heterogeneity across the pool of speculators; that is, R(i) is strictly

increasing. In the special case of R(i) = R̄ ∀i, both the fast and the slow speculators’ ex-ante

certainty equivalents π1 = π2 = R̄ are exogenously fixed. In particular, from Equation (8),

R̄ = π2 =
1
2γ

ln
(
1 +

h∗(τ2;дh)
τ2

)
− c(h∗(τ2;дh);дh),

where it is easy to see that the right-hand side is monotone in τ2. The exogenous constant R̄ hence

uniquely pins down the cumulative price informativeness τ2—neither the speed or information

technology would affect price discovery! This case, however, appears as rather special, for it

requires all agents to be homogeneous. Arguably, it is more reasonable to assume different agents

1 More formally, the result can be proved by contradiction. Suppose φ2 also (weakly) increases with дt . Then the
total speculator population φ1 + φ2 increases and the marginal speculator’s certainty equivalent π1 = π2 = R(φ1 + φ2)
must increase to support his entry. However, a higher π2 can only be achieved with a lower τ2 (less price discovery,
hence more information rent left; Equation 8). This leads to a contradiction as the increasing φ1 and φ2 imply a
higher τ2: more informed trading, more price discovery.
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in the economy face heterogeneous outside options (e.g., aptness in financial securities’ trading).

The case of monotone increasing R(i) is therefore possibly the more suitable assumption. The

numerical illustration in Figure S1 uses a linear R(i) = i but the patterns remain robust for a variety

versions of convex or concave R(i).

S2 Liquidity timing

In the baseline model, the amount of liquidity trading (noise) is exogenous and fixed. This extension

investigates into endogenous liquidity timing. Following the literature (e.g., Admati and Pfleiderer,

1988), two types of liquidity traders are introduced. First, there are nondiscretionary liquidity

traders, who in aggregate tradeUt units of the asset at each t . These correspond to the noise trading

in the baseline. Second, there is a continuum of discretionary liquidators, indexed by j ∈ [0, 1]. At

both dates t ∈ {1, 2}, each of them suffers random liquidation needs (specified below), which if not

executed results in a holding cost of δ (Han, Tang, and Yang, 2016). They are discretionary in the

sense that by paying a speed acquisition cost of 1/дt , one can liquidate early at tj = 1; otherwise

he stays slow and liquidates at tj = 2. A discretionary liquidator j’s liquidation need at t is ηjt +Qt

units of the asset, where {ηjt } is i.i.d. with zero mean, representing the idiosyncratic liquidation

shocks; and {Qt } the systemic component, i.i.d. normal with zero mean and variance τ−1
Q . To be

consistent with the baseline, a fast liquidator can only trade once at t = 1, thus incurring the holding

cost δ at t = 2; vice versa.

The setup above deserves some comments. First, it nests the baseline. By setting τQ → ∞, i.e.,

var[Qt ] → 0, the discretionary liquidation needs shrink to zero (the idiosyncratic components ηjt

always average out). In this case, only the nondiscretionary shocks Ut remain, returning to the

baseline setting (Section 4 in the paper). Second, the independence between the systemic com-

ponents Q1 and Q2 is assumed for simplicity. This can be read as a special case of Cespa and

Vives (2012, 2015), where the amount of noise trading follows an autoregressive structure. Here
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the autoregressive coefficient is set to zero. When there is non-zero autocorrelation, the analysis

will become more complicated as an additional learning channel arises (from price p1, one can

imperfectly infer the amount of noiseQ2). Third, the structure is in fact a special case of Section 4 of

Admati and Pfleiderer (1988), with the key simplification of replacing strategic large investors with

the continuum of competitive speculators and liquidators. The structure has also been used to study

geographical (not temporal) fragmentation by Chowdhry and Nanda (1991), Baruch, Karolyi, and

Lemmon (2007), and Foucault and Gehrig (2008). In this line of the literature, the discretionary

liquidator optimally times his trading to minimize the total execution cost. In doing so, they jointly

determine the amount of “noise” in each trading round (venue), thus affecting market quality.

The analysis proceeds as follows. First, Section S2.1 derives the equilibrium trading for the

speculators. Second, backwardly, Section S2.2 studies the equilibrium condition for the speculators

and the discretionary liquidators. Finally, the numerical results are discussed in Section S2.3.

S2.1 Trading

Suppose there are φ1 ∈ [0, 1] fast speculators and each fast (slow) speculator has signal precision h1

(h2). In addition, a proportion of ψ1 ∈ [0, 1] of the liquidators choose to acquire speed and trade

early, while the rest ψ2 = 1 − ψ1 remain slow. Conjecture (and verify later) that a speculator i

with speed t submits demand schedule xit = atsi − btpt . Then the aggregate demand function at

t ∈ {1, 2} is

Lt (pt ) =
∫ 1

0
1{ti=t}(atsi − btpt )di +

∫ 1

0
1{tj=t}(ηjt +Qt )di +Ut

= φt · (atV − btpt ) +ψtQt +Ut = φtat ·
(
V +

Wt

φtat
− bt
at
pt

)

4



where Wt := ψtQt + Ut . Hence, the new information in the aggregate demand L(pt ) can be

summarized as zt := V +Wt/(φtat ). Standard filtering gives the market maker’s competitive prices:

p1 = E[V | L1(·) ] =
τ0
τ1
p0 +

∆τ1
τ1

z1

p2 = E[V | L1(·), L2(·) ] =
τ1
τ2
p1 +

∆τ2
τ2

z2

(S1)

where the price informativeness τt satisfies τt = τt−1 + ∆τt with

∆τt =
φ2
t a

2
t

var[Wt ]
= φ2

t a
2
t

τQτU

ψ 2
t τU + τQ

.(S2)

It remains to verify the conjecture of the speculators’ demand schedules. The analysis is standard.

From the first-order condition of his utility maximization, a speed-t speculator has demand schedule

xit =
E[V | si,pt ,pt−1, ... ] − pt
γvar[V | si,pt ,pt−1, ... ]

=
1
γ
(htsi + τt−1pt−1 + ∆τtzt − (τt + ht )pt ) =

ht
γ
(si − pt ).

This verifies the conjecture with at = bt = ht/γ . It is easy to show that the speculators’ ex-ante

certainty equivalents remain in the same form of πt shown in Equation (8). Summing up, the

trading equilibrium in this extension has the same structure as in Lemma 4.1, except thatψtQt +Ut

replacesUt .

S2.2 Technology acquisition

The speculators’ information acquisition follows the same first-order condition (10) as in the

baseline. Similarly, their speed acquisition must be such that π1 = π2 (for an interior equilibrium).

Turn to the discretionary liquidators next. A liquidator j with speed tj = t expects a total cost of

E
[
pt · (ηjt +Qt )

]
+

2 − t

дt
+ δ = λt

ψt
τQ
+

2 − t

дt
+ δ

where

λt :=
∆τt
φtatτt

5



is the liquidator’s price impact at time t .2 To sustain an interior equilibrium, the total costs for a

fast and a slow liquidator must be the same: 1
дt
+ λ1

ψ1
τQ
+ δ = λ2

ψ2
τQ
+ δ ; i.e.,

1
дt
+ λ1

ψ1

τQ
− λ2

ψ2

τQ
= 0.

This condition is reminiscent of those seen in Chowdhry and Nanda (1991), Baruch, Karolyi, and

Lemmon (2007), and Foucault and Gehrig (2008), where discretionary liquidators split their orders

across venues. The differences are two-fold. First, here the fast liquidators incur an additional speed

acquisition cost of 1/дt . Second, implicit in the expressions of {λt } lies how the temporal split of

noise affects the expected execution costs sequentially. That is, fast liquidators’ total flow ψ1Q1

affects the early price discovery ∆τ1, which affects both λ1 and λ2. Such a feature does not exist in

the above models, where ∆τ1 does not accumulate across markets.

To sum up, to characterize the equilibrium, for the speculators there are two parameters for speed

acquisition φ1 and φ2 and two for information acquisition h1 and h2. There are two new parameters

ψ1 and ψ2 for the discretionary liquidators’ speed acquisition. In an (interior) equilibrium, the six

parameters must jointly solve the following equation system:

Speculators’ information acquisition h1 = h
∗(τ1;дh) and h2 = h

∗(τ2;дh);

Speculators’ indifference in speed: π1 = π2;

Liquidators’ indifference in speed:
1
дt
+ λ1

ψ1

τQ
− λ2

ψ2

τQ
= 0;

Population size identity: φ1 + φ2 = 1; andψ1 +ψ2 = 1.

S2.3 Results

The six-equation system is highly nonlinear and complex to analyze. The properties of equilibrium

existence, uniqueness, or corners are not known. Fortunately, extensive numerical analysis seems

to suggest there exists a stable equilibrium. Figure S2 shows a specific example, demonstrating the
2 While each liquidator is infinitesimally small, he knows that his liquidation position ηjt +Qt contains the systemic

component Qt . This creates expected price impact for his liquidation.
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robustness of the key results highlighted in the baseline. In particular, the temporal fragmentation

effect of the speed technology remains, as seen in the top-left panel. As the speed technology дt

increases, it is the discretionary liquidators who first acquire speed (ψ1 > 0 while φ1 = 0). This is

intuitive, because without sufficient noise at t = 1, the speculators’ information rent would not be

enough to justify the speed acquisition cost 1/дt . As дt continues to rise, speculators also start to

acquire speed (φ1 > 0). This hurts the fast discretionary liquidators as they are adversely selected

when trading with the informed: The fractionψ1 therefore starts to drop as the fraction φ1 increases.

The lower-left panel shows that in the interior equilibrium (φ1 > 0 andψ1 > 0), the cumulative

price informativeness τ2 is again nonmonotone in дt (Proposition 4.2). To see the intuition of the

robustness, recall from the above analysis that

∆τt =
h2
t

γ 2φ
2
t

τQτU

ψ 2
t τU + τQ

=
h2
t

γ 2
φ2
t τU

ψ 2
t τUτ

−1
Q + 1

.

(When there is no common liquidity shock Qt , i.e., when τQ ↑ ∞, the above converges to the

baseline Equation 9.) For the sake of the argument, consider exogenous information; i.e., ht = h◦

as in Section 3 in the baseline. A necessary condition to overturn the nonmonotonicity of τ2 is to

have the effects on φt andψt exactly offset. In particular, this will require φt (in the numerator) and

ψt (in the denominator) to move in the same direction. However, this can hardly be the case: If

more speculators trade at t , the discretionary liquidators will want to avoid the escalated adverse-

selection and avoid trading at t . Therefore, whenever a shock in дt stimulates higher φ1, ψ1 will

go down (see the top-left panel), thus making the signal-to-noise ratio at t = 1 even higher than

the baseline, where the denominator does not change. That is, the temporal fragmentation effect

is amplified, rather than neutralized, by the endogenous liquidity timing. Indeed, comparing the

lower-left panels in Figure S0 and S2, it can be seen that the initial drop in τ2 after дt rises beyond

the threshold д̂t is more salient with liquidity timing.

The complementarity and substitution between the two technologies are shown in the top-right

and the middle-left panels. The patterns predicted by Proposition 4.3 remain robust. This is unsur-
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prising as the various crowding-out effects among speculators persist in the interior equilibrium.

Note that the complementarity still drives the nonmonotone price informativeness τ2 when the

information technology дh rises (Proposition 4.4), as shown in the lower-right panel.

S3 Frequent fast trading

There are two aspects of speed: being able to trade early and frequently. The baseline model only

looks at the “trading early” aspect. This extension allows fast speculators to trade also “frequently”.

Specifically, the setting is largely the same as in Section 4 in the baseline, except that now the fast

speculators can trade at both t = 1 and t = 2.

The main concern is whether fast speculators would “hoard” their private information and

evenly trade it across the two rounds, thus affecting the intuition behind the temporal fragmentation

effect of the speed technology. This turns out to be not the case. While they do trade in both rounds,

the fast speculators do not reveal additional information in t = 2. Just like in the baseline, they only

contribute to price discovery once at t = 1. As such, frequent fast trading does not affect any of

the baseline results. The detailed analysis below proceeds backwardly as usual, by first solving the

trading equilibrium and speculators’ certainty equivalents, and then solving the optimal technology

acquisition.

Consider speculators’ demand at t = 2 first. All speculators, i ∈ [0, 1], submit their demand

schedule xi2(·). Specifically, an arbitrary speculator i solves

max
xi2

E
[
− exp{−γ · [(p2 − p1)xi1 + (V − p2)xi2]}

��xi1, si,p1,p2
]
,

where xi1 is his inventory after t = 1 (for a slow speculator, xi1 = 0). Equivalently,

exp{−γ · [(p2 − p1)xi1]}max
xi2

E
[
− exp{−γ · [(V − p2)xi2]}|si,p1,p2

]
.

Hence, the optimization problem reduces to the same one as the one faced by the slow speculators

in the main model. The same conjecture-and-verify analysis as in Lemma 4.1 applies and gives the

8



optimal linear cumulative demand,

xi2 =
hi
γ
(si − p2),

for both the fast and the slow speculators.

It remains to solve for the fast speculators’ trading at t = 1. A fast speculator i’s terminal

wealth is (p2 − p1)xi1 + (V − p2)xi2, where xi1 is to be solved and xi2 follows the above. Recall that

p2 = E[V | p1,p2 ] (competitive market making) and var[V | si,p1,p2 ]−1 = τ2 + hi . Therefore, a fast

speculator’s t = 1 optimization becomes

max
xi1

[
− exp

{
−γ · (p2 − p1)xi1 −

h2
i

2(τ2 + hi)
(si − p2)2

}�� si,p1

]
,

or, equivalently,

max
xi1

[
− exp

{
γ · (si − p2)xi1 − γ (si − p1)xi1 −

h2
i

2(τ2 + hi)
(si − p2)2

}
|si,p1

]
.

To simplify notations, let zi = si − p2 and then it follows:

E[zi | si,p1 ] = si −
τ1
τ2
p1 −

∆τ2
τ2

(
hi

τ1 + hi
si +

τ1
τ1 + hi

p1

)
;

var[zi
�� si,p1 ] =

(
∆τ2
τ2

)2 ( 1
τ1 + hi

+
1
∆τ2

)
.

Denote also by

µ := E[zi
�� si,p1 ] =

(
1 − ∆τ2

τ2

hi
τ1 + hi

)
(si − p1);

β := var[zi
�� si,p1 ] =

(
∆τ2
τ2

)2 ( 1
τ1 + hi

+
1
∆τ2

)
.

The above t = 1 optimization problem reduces to:

max
xi1

−1√
1 + h2

i
(τ2+hi )var(zi |si,p1)

· exp
γ · µxi1 − γ (si − p1)xi1 −

h2
i

2(τ2 + hi)
µ2 +

1
2
(γxi1 −

h2
i

(τ2+hi )µ)
2β

1 + h2
i

(τ2+hi )β


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or after some simplification,

max
xi1

−1√
1 + h2

i
(τ2+hi )var(zi |si,p1)

· exp
−γ (si − p1)xi,1 +

1
2
(γxi1)2β + 2γ · µxi1 −

h2
i

(τ2+hi )µ
2

1 + h2
i

(τ2+hi )β


The first-order condition with respect to xi,1 is

−(si − p1) +
xi1βγ + µ

1 + h2
i

(τ2+hi )β
= 0,

which uniquely pins down xi1. Substituting in µ and β and simplifying yield

xi1 =
hi
γ
(si − p1),

which is exactly the same form as in the main model.

Next consider the recursions of τt and pt . They can be found using the above optimal demand

functions. At t = 1, since the fast speculators’ optimal demand is the same as shown in Lemma 4.1,

the same results hold (see the proof of Lemma 4.1): ∆τ1 = τ1 − τ0 =
(∫

{tj=1}
hj
γ dj

)2
τU and

p1 = p0 +
∆τ1
τ1

(
V +

γU1∫
{tj=1} hjdj

)
. At t = 2, the market maker observes the aggregate demand

L2(p2) =
∫
{tj=1}

(
xj2(sj,p2) − xj1(sj,p1)

)
dj +

∫
{tj=2}

xj2(sj,p2)dj +U2

= p1

∫
{tj=1}

hj

γ
dj − p2

∫
∀j

hj

γ
dj +V

∫
{tj=2}

hj

γ
dj +U2,

where the second equality follows the optimal demand schedules derived earlier. Observe how the

fast speculators’ signals are exactly offset, not contributing to the price discovery in the second

fragment (t = 2).This is an interesting insight: The “trading frequently” aspect of speed does not

contribute to price discovery. Only fast speculators’ first trading at t = 1 contributes their private

signals to the market. This result is robust also in similar settings like Cespa and Vives (2012,

2015). The resulting recursions are just like in Lemma 4.1: ∆τ2 = τ2 − τ1 =
(∫

{tj=2}
hj
γ dj

)2
τU and

p2 = p1 +
∆τ2
τ2

(
V +

γU2∫
{tj=2} hjdj

− p1

)
.

Finally, consider speculators’ ex ante certainty equivalents. Since slow speculators only trade
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once at t = 2, they expect the same certainty equivalent as given in Equation (8):

π2 =
1
2γ

ln
(
1 +

hi
τ2

)
− c(hi ;дh).

The first-order condition leads to the same amount of information acquisition by all slow speculators:

hi = h2 = h∗(τ2;дh). A fast speculator i’s unconditional expected utility, before paying the

technology cost, is

E[− exp{−γ · (p2 − p1)xi1 − γ · (V − p2)xi2}]

=E

[
− exp

{
−hi · (si − p1)2 + hi · (si − p2)(si − p1) −

h2
i

2(τ2 + hi)
(si − p2)2

}]
where the equality follows the optimal demand xi1(·) and xi2(·) derived above. Define Y :=

[si − p1; si − p2] as a bivariate normal (column) random vector, with

EY =


0

0

 and varY =


τ−1

1 + h
−1
i τ−1

2 + h
−1
i

τ−1
2 + h

−1
i τ−1

2 + h
−1
i

 .
Then the above expected utility can be rewritten as E[−eYTAY ] where the coefficient matrix A is

given by A = [−hi,hi/2;hi/2,−h2
i /(2(τ2 + hi))]. Evaluating the expectation with the density of the

bivariate normal Y yields the expected utility of −τ1τ2/
√
τ1 · (hi + τ2)(−hiτ1 + (hi + τ1)τ2). Solving

the certainty equivalent yields

π1 =
1
2γ

ln

(
1 +

h1
τ1
+
h1

τ 2
2

∆τ2
τ1

)
− c(h1;дh) −

1
дt
,

where the symmetric hi = h1 is solved by the first-order condition. Compared to the π1 in the

baseline, it can be seen that there arises an extra term in the ln(·). This extra term represents the

additional benefit of “trading frequently” and it is the only difference with the baseline model.
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The equilibrium technology acquisition are then characterized by the following conditions:

Optimal information acquisition: ∂π1/∂h1 = ∂π2/∂h2 = 0;

Indifference in speed: π1 = π2;

Population size identity: φ1 + φ2 = 1.

(It is easy to verify the second-order conditions for optimal information acquisition hold.)

It turns out that due to the additional term in fast speculators’ certainty equivalent, the model is

no longer analytically tractable. Extensive numerical searches however do suggest the existence of a

stable equilibrium. Very much like the baseline, depending on the relative level of the technologies,

the equilibrium can either be cornered (no fast speculator) or interior. The key patterns are illustrated

in Figure S3, where all patterns are qualitatively the same as in the baseline in Figure S0. This

is unsurprising given that frequent fast trading does not affect how the acquired information is

aggregated. The price and the trade informativeness dynamics remain exactly the same as in the

baseline.

S4 Market clearing

In the baseline, there is always a competitive market maker who clears the market at the efficient

price (à la Kyle, 1985). This extension studies an alternative setting, where the market marker is

replaced by a continuum of uninformed investors of measure n, as in, e.g., Grossman and Stiglitz

(1980). All agents, speculators and market makers, have the same constant absolute risk-aversion

utility with a risk-aversion coefficient γ . All other assumptions are the same as in the baseline. In

particular, all agents only trade once (buy-and-hold investors). The benefit of such a structure is that

it nests the baseline as a special case of n → ∞, i.e., the uninformed market makers in aggregate

have infinite risk-bearing capacity.

This alternative setting has been studied in, e.g, Section 1 of Brennan and Cao (1996). For
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completeness, the key steps are reproduced below. Conjecture that at t , a speculator has linear

demand xit = atsi − btpt + ct , while an uninformed investor has yit = −dtpt + et . The aggregate

demand function then becomes

Lt (pt ) =
∫
{ti=1}

xit (si,pt )di + nyit +Ut = φt · (atV − btpt + ct ) + n · (−dtpt + et ) +Ut

= −(φtbt + ndt )pt + (φtct + net ) + φtat ·
(
V +

Ut

φtat

)
Market clearing means to solve pt from Lt (pt ) = 0, while in the baseline pt = E[V | Lt (·) ] is set by

competitive market makers. Note that in either case, the informationally sufficient statistic for Lt (·)

is the same

zt := V +
Ut

φtat
;

see, e.g., the proof of Lemma 3.1 and 4.1. Further, as will be shown very soon, in equilibrium,

speculators’ aggressiveness on their private information at are also exactly the same in either case.

Therefore, under either market structure, the price informativeness dynamics ∆τt will be exactly

the same. This is the key intuition why, for the purpose of understanding price informativeness τt ,

it is equivalent to set the price by competitive market makers or by market clearing.

Standard optimization for CARA speculators and uninformed investors yield the following

demand functions:

xit =
E[V | si,pt ,pt−1, ... ] − pt
γvar[V | si,pt ,pt−1, ... ]

and yit =
E[V | pt ,pt−1, ... ] − pt
γvar[V | pt ,pt−1, ... ]

.

The joint normal distribution of the random variables ensures that the above demand functions have
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linear structures:

fast speculator: xi1 =
hi
γ
(si −m1) −

hi + τ1
γ

(p1 −m1),

slow speculator: xi2 =
hi
γ
(si −m2) −

hi + τ2
γ

(p2 −m2),

fast uninformed: yi1 = −τ1
γ
(p1 −m1),

slow uninformed: yi2 = −τ2
γ
(p2 −m2).

where

m1 = E[V | p1 ] = E[V | z1 ] =
1
τ1
(τ0pt + ∆τ1z1)

m2 = E[V | p2,p1 ] = E[V | z2, z2 ] =
1
τ2
(τ1m1 + ∆τ2z2)

and under the market clearing condition Lt (pt ) = 0, zt =
(
φtbt+ndt
φtat

)
pt − φtct+net

φtat
. The above verifies

that speculators’ aggressiveness, ait , on their private signals remains the same as in the baseline.

The market clearing prices can be then solved as (with p0 = 0 for notation simplicity):

p1 =
φ1h1 + (φ1 + n)γ∆τ1

φ1h1 + (φ1 + n)γτ1
z1;

p2 =
(φ2 + n)γ∆τ1

φ2h2 + (φ2 + n)γn
z1 +

φ2h2 + (φ2 + n)γ∆τ2

φ2h2 + (φ2 + n)γτ2
z2.

Brennan and Cao (1996) show that the speculators’ ex-ante certainty equivalents are

πt =
1
2γ

ln
(
1 +

ht
τt

)
+

1
2γ

ln(τtvar[V − pt ]) − c(ht ;дh) −
2 − t

дt
.

Compared to the baseline, the difference lies in the second ln(·) term. When the asset price is set

by the competitive market maker, pt = E[V | pt ,pt−1, ... ] and var[V − pt ] = 1/τt , under which the

above certainty equivalents reduce to those stated in the paper (Equation 8). When such market

maker is replaced by uninformed liquidity providers, var[V − pt ] no longer takes such simple form

and the certainty equivalents change accordingly. (Intuitively, as the price is no longer efficient,

speculators acquire additional trading gains from providing liquidity to noise trading.)3

3 Recall that the current setup nests the baseline. To see this, consider the special case of n → ∞. In this limit, the
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The conditions for an interior equilibrium of technology acquisition remain the same as before:

Optimal information acquisition: ∂π1/∂h1 = ∂π2/∂h2 = 0;

Indifference in speed: π1 = π2;

Population size identity: φ1 + φ2 = 1.

In particular, note that the speculators’ first-order conditions for information acquisition remains

exactly the same as in Equation (10). The only affected part in the analysis is the ln(τtvar[V − pt ])

in the certainty equivalent πt . As alluded earlier, this component is related to the market making

capacity n. With finite market makers, the noise tradingUt is able to push the market clearing price

away from the efficient price E[V | pt ,pt−1, ... ] and speculators can trade against such price pressure

and extract rent from the noise traders. Such rent, however, is not related to information or price

discovery. Therefore, it does not affect the intuition of the results in the baseline model, as confirmed

by extensive numerical analysis. Figure S4 illustrates the patterns, which are qualitatively the same

as seen in the baseline (Figure S0).

S5 Numerical illustrations

This section collects the numerical illustrations studied in this note, from Figures S1 to S4. To

compare, the patterns from the baseline model is shown in Figure S0. In each figure, there are

two columns. The left columns show patterns after shocks in the speed technology дt and the

right columns the information technology дh. Each column has three panels, in the sequence of

demand for speed, demand for information, and price informativeness, from top to bottom. The

common primitive parameters used in these numerical exercises are: τ0 = 1.0, τU = 4.0, γ = 0.1,

and k(c) = √
c; in the left column, дh = 0.2; and in the right column, дt = 10.0.

uninformed investors approximate the competitive market maker in the baseline. Indeed, it is easy to see in this case
that p1 = E[V | z1 ] = E[V | L1(·) ] and p2 = E[V | z1, z2 ] = E[V | L1(·), L2(·) ].
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Figure S0: Baseline as in the paper.
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Figure S2: Liquidity timing. The extension specific primitive parameter used in this numerical illustration
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Figure S3: Frequent fast trading. There are no primitive parametrization specific to this extension.
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Figure S4: Market clearing. The extension-specific parameter used in this numerical illustration isn = 1.0,
the size of uninformed investors.
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