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Simultaneous Multilateral Search

Abstract

This paper studies simultaneous multilateral search (SMS) in over-the-counter markets: When search-
ing, a customer simultaneously contacts several dealers and trades with the one offering the best quote.
Higher search intensity (how often one can search) improves welfare, but higher search capacity (how
many dealers one can contact) might be harmful. When the market is in distress, customers might
inefficiently favor bilateral bargaining (BB) over SMS. Such preference for BB speaks to the sluggish
adoption of SMS trading, like request-for-quote protocols, in over-the-counter markets. Furthermore,
a market-wide shift to SMS may not be socially optimal.

Keywords: request-for-quote, over-the-counter market, search, bargaining

(There are no competing financial interests that might be perceived to influence the analysis, the discussion, and/or the
results of this article.)



1 Introduction

Search is a key feature in over-the-counter (OTC) markets. Duffie, Gârleanu, and Pedersen (2005,

hereafter DGP) pioneered the theoretical study of OTC markets in a framework of random matching

and bilateral bargaining (BB): Investors search for counterparties and are randomly matched over

time. Upon successful matching, a buyer and a seller engage in Nash bargaining and split the trading

gain according to their endowed bargaining power.

However, investors’ interaction is not always bilateral. For example, in recent years, there is a

rise of electronic trading in OTC markets, mainly in the form of Request-for-Quote (RFQ). In such

marketplaces, where many corporate bonds and derivatives are traded, a customer contacts multiple

dealers for quotes and then trades with the one offering the best price. Hendershott and Madhavan

(2015) report that more than 10% of trades in the $8tn corporate bond market is completed via RFQ.

O’Hara and Zhou (2021) document a continued growth of RFQ-based trading of corporate bonds, but

only sluggishly, with the highest trading volume share below 14% in their sample.

This paper develops a theoretical model, tailored to the above one-to-many searching. Specifically,

a customer is allowed to query multiple dealers at the same time, hence the name “Simultaneous

Multilateral Search” (SMS). The objective is twofold. First, we examine how the SMS technology

affects assets allocation and welfare. Second, we study how customers choose to search: Do they favor

SMS over BB? Are their choices efficient? How do we understand the sluggish growth of SMS-type

of electronic trading (O’Hara and Zhou, 2021)?

Section 2 sets up the model following Hugonnier, Lester, and Weill (2020, hereafter HLW), where

a continuum of customers trade an asset through a continuum of homogeneous dealers.1 All agents

can hold either zero or one unit of the asset. The customers are subject to stochastic valuation shocks.

Those who hold the asset but have low valuation want to sell, while those without the asset but

with high valuation want to buy. They actively search for dealers according to independent Poisson

1 In HLW the dealers are heterogeneous. We abstract from dealer heterogeneity to focus on SMS in a parsimonious
way.
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processes with intensity 𝜌 . We generalize the search process as follows to model SMS: (i) each

searching customer can request quotes from up to 𝑛 dealers; (ii) the best quote is determined via a

first-price auction and (iii) the customer can potentially improve upon the best quote via bargaining:

with probability 𝑞, the customer can make a take-it-or-leave-it offer (TIOLIO) to the winning dealer

after the auction. Notably, the search process nests BB as a special case when 𝑛 = 1: The searching

customer randomly contacts one dealer and sets the price with probability 𝑞. With probability 1 − 𝑞,

the dealer sets the price. In that special case the parameter 𝑞 thus serves as the customer’s Nash

bargaining power parameter, as in DGP and HLW.

Section 3 characterizes the equilibrium and discusses novel findings. Notably, the two search

parameters, the intensity 𝜌 (how frequently one can search) and the capacity 𝑛 (how many potential

dealers one can reach), have contrasting implications for various equilibrium objects. For instance,

a higher 𝜌 always reduces the sizes of both the buyer- and the seller-customers, improving the asset

allocation and also welfare. In contrast, a larger 𝑛 can drive up the size of the short-side customers

and possibly hurt welfare.

The key mechanism is a “dealer bottleneck,” arising from the asymmetric effects of 𝑛 on the

matching of the two sides of the market. To see this, suppose the asset is in excess supply and 90%

of the dealers have inventory while the other 10% do not. Let us examine what happens when the

capacity increases from 𝑛 = 2 to 𝑛 = 3: For a customer-seller, the matching rate with a no-inventory

dealer increases from 1 − 0.92 = 19% to 1 − 0.93 = 27.1%. Such an improvement in matching

significantly adds to the asset inflow to dealers from customer-sellers. However, the outflow rate—the

matching between customer-buyers and dealer-sellers—only increases by 0.9%, from 1 − 0.12 = 99%

to 1 − 0.13 = 99.9%. The negligible increase of the outflow rate is not at all enough to balance the

significant rise in the inflow rate. That is, the asset is “clogged” at the dealers, creating a bottleneck that

leaves more customer-buyers unmatched.2 This leads to a surge in unrealized trading gains and may

2 It is the increase of the unmatched customer-buyers that eventually balances the asset inflow to and the outflow from
dealers in the steady state equilibrium. Whereas the inflow increases with 𝑛 via the higher matching rate, the outflow
increases via the increment in the larger customer-buyer population size.
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reduce welfare. To emphasize, this bottleneck effect is unique to the search capacity 𝑛. In contrast,

the search intensity 𝜌 does not create asymmetry in matching and always improves welfare.

Such bottlenecks arise in our most general setup. In a specialized application, we allow customers

to direct their searches to subsets of dealers of their choosing, based on noisy signals of dealer types.

For example, a customer-buyer might have a rough idea of which dealers have inventory, based on

recently reported trades. She then optimally directs her searches only to those dealers for higher

matching probabilities. A key parameter is the signal quality 𝜓 , which can be interpreted as the

transparency of dealer inventories. We show that a similar bottleneck can arise when 𝜓 increases:

As customers direct their searches more accurately, the matching on the short and on the long side is

improved asymmetrically, hindering the efficient passing of the asset through dealers. Our model thus

highlights a potential channel for how better inventory transparency might hurt welfare.

Another insight from the model is how SMS endogenizes the bargaining powers of customers and

dealers. The key is the dual role of “dealer demographics”—how many dealers have the asset in their

inventories and how many do not: As is standard, dealer demographics affect matching (e.g., how

likely a customer can find a counterparty to trade). New in this model, dealer demographics also affect

the split of trading gains between customers and dealers. For example, if there are many dealers with

inventories, when contacted by a customer-buyer, they will quote more competitively, as they know

that the customer has also contacted 𝑛 − 1 other dealers, who very likely might also have inventories

to sell. Such fiercer competition cuts more trading gains to the searching customer and less to the

dealers. Thus, SMS endogenizes the bargaining powers, which are by and large exogenous in existing

search models. Further, in equilibrium, the dealers quote according to a mixed strategy, creating

price dispersion despite dealer homogeneity. Notably, the distribution of such price dispersion is also

endogenously determined via dealer demographics.

Section 4 studies the customers’ choices between BB and SMS. We show that the choice ultimately

boils down to the comparison between the two technologies’ expected trading gain intensities, which

are the respective products of (i) the search intensity—how frequent one can search, (ii) the matching
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rate—how likely it is to find at least one counterparty, and (iii) the expected trading gain share

above—how much trading gain one can get given a match.

At first glance, one might conclude that SMS has advantages for customers over BB in all three

aspects above: (i) it offers faster connection (via electronic platforms), (ii) it allows customers to

contact multiple dealers, and (iii) it encourages the competition among the contacted dealers, hence

giving larger trading gain shares to customers. The analysis, however, reveals a potential downside,

especially when customers have , i.e., when 𝑞 is low in SMS. In this case, the customer’s expected

trading gain is only determined by the endogenous competition among the contacted dealers. When

such competition is insufficient, the customer expects very little, because any matched counterparty

dealer will charge a monopoly price, knowing that she is likely the only counterparty that the customer

can find (out of the 𝑛). In contrast, in BB, a customer always has some chances to secure some positive

trading gains, given a positive 𝑞 in BB.

It is worth emphasizing that the 𝑞 in SMS (𝑞SMS) and that in BB (𝑞BB) are exogenous model

parameters. For the customers to favor BB over SMS, the model effectively makes an assumption that

the 𝑞SMS is lower than 𝑞BB, based on the real-world market structure described here. (A more general

condition is given in Lemma 3.) Together with this, the novel equilibrium force of the 𝑛 contacted

dealers’ competition (or the lack of it) makes it possible that SMS becomes less attractive than BB.

Indeed, the customers may favor BB over SMS, especially when the asset is in very imbalanced

demand and supply. Consider the case of excess supply. The large number of customer-sellers flood

the dealer sector with the asset, making most of the dealers full in inventory. Consequently, the

remaining customer-sellers find it very difficult to find dealer-buyers. Even if they do, using SMS, any

matched dealer-buyer will knowingly charge a very low monopoly price. Instead, resorting to BB,

customer-sellers can still negotiate prices with dealers. This prediction echoes the empirical finding

in O’Hara and Zhou (2021) that when corporate bonds are downgraded and under fire sell (i.e., in

excess supply), the electronic trading volume share drops. Such an intrinsic tradeoff between SMS and

BB could have hindered the adoption of electronic OTC trading of corporate bonds. This mechanism
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complements the existing explanation for customers’ reluctance of using SMS, which largely relies on

the concern of leaking private information to too many dealers (Hendershott and Madhavan, 2015).

This information leakage argument, however, does not explain the downgrade-induced reduction of

electronic volume shares, as downgrades are public information.

The customers’ endogenous choices between BB and SMS also have welfare and market design

implications. The analysis shows that when the asset trades very fast, i.e., for high search intensity 𝜌 , a

social planner strictly prefers SMS over BB, simply because SMS offers better matching, which creates

large trading gains. Unlike the planner, who ignores the split of trading gains, the customers might

shy away from SMS because the trading gain split there is inferior compared to BB. Such inefficiency

in technology adoption can be reduced by policies and market designs that incentivizes customers to

use SMS. In the model, this can be achieved by setting a large enough 𝑞 in SMS, e.g., by allowing

customers to further bargain in RFQ platforms, after running auctions among dealers.

However, such patches might not always work, depending on the characteristics of the asset traded.

For example, when the asset is intrinsically slow, i.e., for sufficiently low search intensity 𝜌 , having all

investors using SMS is not efficient. The intuition goes back to the bottleneck: In the case of excess

supply, for example, the planner would like customer-sellers to use BB and buyers SMS to reduce the

asset inflow into the dealers, so as to mitigate the bottleneck. Such a distinction between fast- and

slow-moving assets is realistic and important. While corporate bonds on SMS trade in a few minutes

(Hendershott and Madhavan, 2015), auctions of collateralized loan obligations (CLOs) can take a day

or two (Hendershott et al., 2020). Asset-specific design and policies should be considered, as opposed

to market-wide, blanket recommendations.

Contribution and related literature

The paper contributes to four strands of the literature. First, adding to the search models of OTC

markets, this paper introduces the possibility for investors to contact multiple potential counterparties

at the same time. Previous search models largely focus on BB as in DGP, Weill (2007), Vayanos
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and Weill (2008), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), Üslü (2019),

and HLW. A noteworthy difference is that in SMS, the split of trading gain between customers and

dealers (their respective bargaining powers) is endogenous of the equilibrium dealer demographics.

This feature distinguishes our model from other works that also have multiple dealers competing

simultaneously for a given transaction. For example, Hendershott et al. (2017) consider a stylized

model of how customers choose to form dealer networks. There, a buyer simultaneously contacts

all dealers in her network, who then compete to find the asset for the customer. Similarly, in Wang

(2017), any agent may query quotes within her network simultaneously. In these models, the split of

trading gains between dealers and customers is exogenous. In Zhu (2012) and An (2020), customers

sequentially contact possibly multiple dealers and the resulting endogenous trading gain splits arise

due to other frictions like information asymmetry.

Second, this paper contributes to the theory of electronic OTC markets. Vogel (2019) studies a

hybrid OTC market where investors can trade in both the traditional voice market and the electronic

RFQ platform. Liu, Vogel, and Zhang (2017) compare the the electronic RFQ protocol in an OTC

market with a centralized exchange market. Both papers model the RFQ trading similarly to the current

paper, with the key difference being that their RFQ matching rates are exogenous, whereas they are

endogenous of dealer demographics in this paper. Riggs et al. (2019) study the RFQ trading in Swap

Exchange Facilitites. Their analysis highlights order size as an important determinant of customers’

choice of trading mechanism. Our analysis complements theirs and highlights another factor, dealer

demographics. In a different line, Saar et al. (2020) compare dealers’ market making (direct liquidity

provision) and matchmaking (searching on the customers’ behalf for counterparties) and study the

effects of bank dealers’ balance sheet costs.

Third, there is a growing body of literature comparing centralized versus decentralized trading

(Pagano, 1989; Chowdhry and Nanda, 1991) in various aspects. Babus and Parlatore (2017) study

the endogenous formation of fragmented markets due to investors’ strategic behavior. Glode and

Opp (2019) compare the efficiency of OTC and limit-order markets in a setting where investors
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endogenously acquire expertise. Lee and Wang (2019) study uninformed and informed investors’

venue choice through an adverse selection channel. Dugast, Üslü, and Weill (2019) examine banks’

choice among centralized trading, OTC trading, or both, in a setting where the banks differ in their risky

asset endowment and in their capacity of OTC trading. This paper instead compares the conventional

voice trading versus the relatively new electronic trading within the OTC setting.

Finally, this paper contributes to the auctions literature with uncertain number of bidders (see,

e.g., the survey by Klemperer, 1999) and to the literature on pricing with heterogeneously informed

consumers (e.g., Butters, 1977; Varian, 1980; and Burdett and Judd, 1983). Apart from the above

literature on OTC markets, applications of such “random pricing” mechanisms are also seen recently in

exchange trading, as in Jovanovic and Menkveld (2021). The main insight from this paper is that such

uncertainty about the number of quoters (bidders) can arise endogenously from the search process.

2 Model setup

Time is continuous. The model concerns the trading of an asset in fixed supply 𝑠.

Customers and dealers. There is a continuum of customers with mass 𝑚𝑐 and a continuum of

dealers with mass𝑚𝑑 . Both groups are risk-neutral, discount future utility at the same rate 𝑟 , and can

each hold either zero or one unit of the asset. An asset owner will be denoted by 𝑜 and a non-owner 𝑛.

The agents derive flow utility when holding the asset. A customer owner derives 𝑦 (𝑡) ∈

{𝑦ℎ, 𝑦𝑙 } (high or low), which evolves stochastically according to a continuous time Markov chain:

P[𝑦 (𝑡 + d𝑡) = 𝑦ℎ |𝑦 (𝑡) = 𝑦𝑙 ] = 𝜆𝑢d𝑡 and P[𝑦 (𝑡 + d𝑡) = 𝑦𝑙 |𝑦 (𝑡) = 𝑦ℎ ] = 𝜆𝑑d𝑡 , where 𝜆𝑑 and 𝜆𝑢 are the

respective switching intensities. A dealer-owner instead derives constant flow utility 𝑦𝑑 .

In summary, there are four types of customers, {ℎ𝑜, ℎ𝑛, 𝑙𝑜, 𝑙𝑛}, and two types of dealers, {𝑑𝑜, 𝑑𝑛}.

Their population size at any time 𝑡 are denoted by𝑚𝜎 (𝑡) for 𝜎 ∈ {ℎ𝑜, ℎ𝑛, 𝑙𝑜, 𝑙𝑛, 𝑑𝑜, 𝑑𝑛}, with𝑚ℎ𝑜 (𝑡) +

𝑚ℎ𝑛 (𝑡) +𝑚𝑙𝑜 (𝑡) +𝑚𝑙𝑛 (𝑡) =𝑚𝑐 and𝑚𝑑𝑜 (𝑡) +𝑚𝑑𝑛 (𝑡) =𝑚𝑑 .

Both customers and dealers experience independent exogenous exit shocks: at a Poisson intensity
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𝑓𝑑 (resp., 𝑓𝑐) a dealer (resp., a customer) leaves the market and gets zero utility flow going forward.

Immediately after leaving, she is replaced by a trader of the same type, so that the total population

sizes,𝑚𝑐 and𝑚𝑑 , do not change.

Search. The setup above follows HLW (with all dealers having the same preference). Notably,

customers cannot contact each other and have to search for dealers to trade with. We generalize how

customers interact with dealers by introducing a trading technology characterized by {𝜌, 𝑛, 𝑞}. Using

the technology, at a Poisson process with intensity 𝜌 , each customer can contact up to 𝑛 dealers.3

Each contact by a customer-buyer (-seller) is a “match” if the contacted dealer is of type-𝑑𝑜 (-𝑑𝑛).

The probability that any given contact turns into a match is 𝜋𝑑𝑜 for a buyer (𝜋𝑑𝑛 for a seller). A

customer-buyer’s probability of finding at least one matching dealer is then 1 − (1 − 𝜋𝑑𝑜)𝑛; and,

similarly, 1 − (1 − 𝜋𝑑𝑛)𝑛 for a customer-seller. Both 𝜋𝑑𝑜 and 𝜋𝑑𝑛 are functions of the “availability”

of the target dealer type; that is, 𝜋𝑑𝑜 = 𝜋
(
𝑚𝑑𝑜
𝑚𝑑

)
and 𝜋𝑑𝑛 = 𝜋

(
𝑚𝑑𝑛
𝑚𝑑

)
. We assume the function 𝜋 (𝑥) has

support 𝑥 ∈ [0, 1] and is monotone increasing with 𝜋 (0) = 0, 𝜋 (1) = 1, 𝜋 ′(0) < ∞, and 𝜋 (𝑥) ≥ 𝑥 .

Consider the following two examples:

• Pure random matching: Each dealer is selected from the whole dealer population at random.

In this case, 𝜋 (𝑥) = 𝑥 ∈ [0, 1], which is standard, as in DGP and HLW.

• Random matching with signals: Right before contacting the dealers, each customer can observe

signals {𝛿𝑖}, 𝑖 ∈ [0,𝑚𝑑]. Each signal 𝛿𝑖 ∈ {1, 0} reveals correctly the inventory of dealer 𝑖

with probability 𝜓 ∈ ( 1
2 , 1]: 𝜓 = P[𝛿𝑖 = 1| 𝜎𝑖 = 𝑑𝑜 ] = P[𝛿𝑖 = 0| 𝜎𝑖 = 𝑑𝑛 ] . One can think of 𝜓

as the signal quality and interpret it as the transparency of dealer inventories. (The signals are

conditionally independent of each other.) Customers can direct their search to the subset of

dealers with a particular realization of a signal. Within the chosen subset, the search is random.

A customer-buyer (-seller) would then like to direct her search only to the subset of dealers

3 Customers can choose to contact fewer than 𝑛 dealers. Since there is no cost of contacting more, in equilibrium, they
will always choose to contact 𝑛 dealers. With contact costs, investors in Riggs et al. (2019) choose an interior number of
contacts. Such a cost does not bring novel insights in the current model and, hence, is set to zero.
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whose signals equal one (zero). Define

𝜋 (𝑥) :=
𝜓𝑥

𝜓𝑥 + (1 −𝜓 ) (1 − 𝑥) .(1)

Then by Bayes’ rule, each contact by a customer-buyer (-seller) has success rate 𝜋𝑑𝑜 = 𝜋
(
𝑚𝑑𝑜
𝑚𝑑

)
(𝜋𝑑𝑛 = 𝜋

(
𝑚𝑑𝑛
𝑚𝑑

)
). Note that 𝜋 (𝑥) degenerates to 𝜋 (𝑥) = 𝑥 if𝜓 → 1

2 (uninformative signals).

Note that it is natural to require 𝜋 (𝑥) ≥ 𝑥 : the least a customer can do is to randomly search among all

dealers, in which case each contact by a customer-buyer (-seller) has probability 𝜋𝑑𝑜 =
𝑚𝑑𝑜
𝑚𝑑

(𝜋𝑑𝑛 = 𝑚𝑑𝑛
𝑚𝑑

)

to be a match as in “pure random matching.”

Price determination. When a searching customer is in contact with 𝑛 dealers:

• With probability 𝑞, the customer makes a take-it-or-leave-it offer (TIOLIO) to all the contacted

dealers, who then choose to accept the offer or walk away. If more than one dealer accepts, the

customer randomly chooses one to trade with.

• With probability 1−𝑞, the𝑛 dealers simultaneously make independent TIOLIOs to the customer,

who then chooses the best quote or walks away.

A contacted dealer may be unable to accommodate the contacting customer due to the inventory

constraint (i.e., not a match). Importantly, each dealer makes his decision independently, not knowing

the types of the other (𝑛 − 1) contacted dealers. To note, this specific price determination mechanism

does not affect the results about demographics and welfare (Sections 3.1–3.3), which we show hold

much more generally.

Parameter values and supports. We normalize the customer mass to𝑚𝑐 = 1 and require the dealer

mass𝑚𝑑 > 0. We also require 𝑠 ∈ (0, 1+𝑚𝑑) so as to study asset allocation meaningfully. All Poisson

processes are independent of one another. The customers’ preference-switching intensities 𝜆𝑢 > 0

and 𝜆𝑑 > 0. The agents’ exit rates 𝑓𝑐 ≥ 0 and 𝑓𝑑 ≥ 0. We set 𝑦ℎ > 𝑦𝑙 so that some customers are

of “high” type and some “low.” An additional constraint on 𝑦𝑑 will be introduced in Proposition 1 to

ensure positive trading gains. The technology parameters have supports 𝜌 ∈ (0,∞), 𝑛 ∈ N (the natural

numbers), and 𝑞 ∈ [0, 1].
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Remarks

Remark 1. The trading technology is general enough to encompass some of the most common protocols

in OTC trading. For example, the case of 𝑛 = 1 can be thought of as customers reaching dealers by

phone and negotiating the terms of trade via bargaining (BB, as in DGP and in HLW). The case of

𝑛 > 1 captures technologies that allow a customer to reach multiple dealers in one click, hence the

name “simultaneous multilateral search” (SMS). For example, this is the case for the RFQ protocol

on electronic platforms (like MarketAxess and Swap Execution Facilities, SEFs); for auctions like

bid/offer-wanted-in-competition (B/OWIC); and in housing markets where a seller can be in touch

with possibly many buyers at the same time.

Remark 2. In practice, customers can choose how to get in touch with dealers. They can always call

dealers (BB) but they can also click buttons on electronic platforms like RFQs (SMS). After exploring

the equilibrium properties of one general technology in Section 3, we study how customers choose

between “call” and “click” in Section 4.

Remark 3. The general trading technology is governed by three parameters:

• The search intensity 𝜌 , inherited from DGP and HLW, implies that the technology connects a

customer with dealers in exponential waiting time with mean 1/𝜌 . For example, auctions on

MarketAxess vary in length, from 5 to 20 minutes (Hendershott and Madhavan, 2015). Trading of

collateralized loan obligations (CLOs) is typically organized through B/OWIC by email (Hendershott

et al., 2020) and can take a considerably longer time.

• The search capacity 𝑛, new in this paper, flexibly nests BB (𝑛 = 1) with SMS (𝑛 > 1). For example,

on Bloomberg Swap Execution Facility (SEF), this upper bound is set to 𝑛 = 5 (Riggs et al., 2019).

On MarketAxess, a customer typically contacts 20 to 30 dealers (Hendershott and Madhavan, 2015;

O’Hara and Zhou, 2021).

• The probability 𝑞 reflects the customer’s ability to extract rents above and beyond the direct compe-

tition among dealers. In BB (𝑛 = 1) such ability arises due to customers’ opportunities to bargain
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with dealers, where 𝑞 reflects the customers’ Nash bargaining power as in DGP and HLW. In SMS

(𝑛 > 1) such ability arises as the searching customer may further negotiate the price after soliciting

dealers’ (non-firm) quotes.4 On typical RFQ platforms like MarketAxess, 𝑞 is effectively zero, as

customers can only solicit quotes from dealers but cannot further negotiate with them afterwards

(O’Hara and Zhou, 2021). Instead, when trading is less formally organized, 𝑞 can be large. The

BWICs to sell CLOs are conducted by email, where dealers often report “soft” quotes, that customer

can improve upon. In housing markets, sellers often post indicative, negotiable asks.

Remark 4. Dealers sometimes broadcast indicative bids and offers to customers on electronic platforms

(called “dealer runs,” Section III.B of Bessembinder, Spatt, and Venkataraman, 2020). This feature

likens the RFQ interpretation of the current model to models of “directed search,” where dealers first

post quotes and then customers direct their queries to selected dealers (see, e.g., Wright et al., 2020).

Supplementary Appendix S2 studies a directed search model and shows that it is the limiting case of

𝜓 → 1, i.e., when the signals of dealer inventories become perfect in our special case of “random

matching with signals.” Thus, similar to Shi (2019) but with a different approach, our setup bridges

“random matching” and “directed search.”

Remark 5. This paper focuses on SMS technologies like RFQ trading, which, to our knowledge, only

lets customers search for dealers, not the other way. The model thus shuts down dealer-to-customer

searches. However, in reality, dealers probably do take initiatives to reach customers (though not via

SMS) to, e.g., arrange riskless principal trades. Studying dealers’ search for customers will be an

interesting and fruitful future research that goes beyond the scope of this paper. See, e.g., Saar et al.

(2020) for an analysis of dealers’ matchmaking versus market making.

Remark 6. We generalise the standard framework of DGP and HLW by introducing the exit shocks: the

model without such shocks is a special case with 𝑓𝑑 = 𝑓𝑐 = 0. In reality such shocks might come from

4 Supplementary Appendix S6 provides an alternative price-setting mechanism that allows customers to first run a
first-price auction among 𝑛 contacted dealers and then bargain bilaterally with the winning dealer. We show that such an
alternative price-setting mechanism is equivalent to the one presented here, in that, in expectation, it results in exactly the
same split of trading gains.
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the labor market, where an employee-trader might be fired or assigned to a different post, or might be

due to changing investment opportunities, where traders exit one market in order to participate in the

other. These exit shocks provide parameter flexibility that ensures strictly positive trading gains (see

Proposition 1 for details).

3 Stationary equilibrium

There are three sets of equilibrium objects: i) the demographics {𝑚𝜎 } (Section 3.1); ii) the value

functions {𝑉𝜎 } (Section 3.2); and iii) the split of trading gains (Section 3.4, together with the dealer’s

pricing strategies). We look for a stationary Markov perfect equilibrium, under which these objects

are time-invariant constants. We also focus on symmetric equilibrium; that is, the agents of the same

type have the same value functions and receive the same fraction of the trading gain. We discuss in

Section 3.3 how welfare is affected by search parameters.

3.1 Demographics

There are in total six demographic variables, {𝑚ℎ𝑜,𝑚𝑙𝑛,𝑚ℎ𝑛,𝑚𝑙𝑜 ,𝑚𝑑𝑜 ,𝑚𝑑𝑛}, one for each agent type.

The following three conditions must hold in equilibrium by definition:

market clearing: 𝑚ℎ𝑜 +𝑚𝑙𝑜 +𝑚𝑑𝑜 = 𝑠;(2)

total customer mass: 𝑚ℎ𝑜 +𝑚𝑙𝑛 +𝑚ℎ𝑛 +𝑚𝑙𝑜 = 1; and(3)

total dealer mass: 𝑚𝑑𝑜 +𝑚𝑑𝑛 =𝑚𝑑 .(4)

In a stationary equilibrium, the total measure of ℎigh type customers must be time-invariant; i.e., the

net flow during any instance d𝑡 must be zero:

net flow of high type customers: (𝑚𝑙𝑜 +𝑚𝑙𝑛)𝜆𝑢 − (𝑚ℎ𝑜 +𝑚ℎ𝑛)𝜆𝑑 = 0,(5)

which also ensures that the net flow of low type customers is zero.
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Two more equations, from agents’ trading, help pin down the six demographic variables. In

equilibrium, only two types of customers want to trade with dealers: The 𝑙𝑜-type wants to sell to

𝑑𝑛-buyer, and the ℎ𝑛-type wants to buy from 𝑑𝑜-seller. The other two types, ℎ𝑜 and 𝑙𝑛, stand by and

do not trade (which is a conjecture for now, and we will later verify it after Proposition 1).

Consider the inflows to and the outflows from the the 𝑙𝑜-sellers. In a short period of d𝑡 , a “fringe”

of𝑚𝑙𝑜𝜌d𝑡 of sellers will be searching, each having probability

𝜈𝑙𝑜 = 𝜈 (𝜋𝑑𝑛) := 1 − (1 − 𝜋𝑑𝑛)𝑛

to find at least one 𝑑𝑛-buyer (out of 𝑛) to trade with.5 Hence, there is an outflow of 𝜌𝑚𝑙𝑜𝜈𝑙𝑜d𝑡 due to

the searching 𝑙𝑜-sellers. In addition, due to preference shocks, there is an inflow of 𝜆𝑑𝑚ℎ𝑜d𝑡 and an

outflow of 𝜆𝑢𝑚𝑙𝑜d𝑡 . In a stationary equilibrium, the sum of the in/outflows above must be zero:

net flow of 𝑙𝑜-sellers: −𝜌𝑚𝑙𝑜𝜈𝑙𝑜 − 𝜆𝑢𝑚𝑙𝑜 + 𝜆𝑑𝑚ℎ𝑜 = 0.(6)

Analogously, define 𝜈ℎ𝑛 = 𝜈 (𝜋𝑑𝑜) as the probability for a searching ℎ𝑛-buyer to find at least one

𝑑𝑜-seller. Then the zero net flow condition for ℎ𝑛-buyers becomes

net flow of ℎ𝑛-buyers: −𝜌𝑚ℎ𝑛𝜈ℎ𝑛 − 𝜆𝑑𝑚ℎ𝑛 + 𝜆𝑢𝑚𝑙𝑛 = 0,(7)

which is the last equation needed to pin down the stationary demographics:

Lemma 1 (Stationary demographics). The demographics Equations (2)-(7) uniquely pin down

the population sizes {𝑚ℎ𝑜 ,𝑚𝑙𝑛,𝑚ℎ𝑛,𝑚𝑙𝑜} ∈ (0, 1)4 and {𝑚𝑑𝑜 ,𝑚𝑑𝑛} ∈ (0,𝑚𝑑)2.

There are other stationarity conditions. For example, the ℎ𝑛-buyer-initiated trading volume

amounts to 𝜌𝑚ℎ𝑛𝜈ℎ𝑛, while the 𝑙𝑜-seller-initiated volume is 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 . They are also, respectively,

the asset flow out of and into the dealer sector. Therefore, the trading volume intensity 𝑡 must satisfy

𝑡 := 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 = 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 ,(8)

5 The exact law of large numbers in Duffie, Qiao, and Sun (2019) is applied so that the fractions of the populations of
each type are their expected values. See also Sun (2006) and Duffie and Sun (2007, 2012).
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for otherwise the dealer-owner mass, 𝑚𝑑𝑜 , will not be stable. Indeed, Equation (8) is guaranteed by

(6) − (7) + (5). Supplementary Appendix S1.1 shows that Equations (2)-(7) are indeed sufficient for

the stationarity of all other types of agents. Note also that the exit shock intensities do not enter the

above conditions, because the exited are immediately replaced by newborns.

3.2 Value functions

Denote by 𝑉𝜎 a type-𝜎 agent’s value function. Then the reservation values for the asset are

𝑅𝑙 := 𝑉𝑙𝑜 −𝑉𝑙𝑛, 𝑅ℎ := 𝑉ℎ𝑜 −𝑉ℎ𝑛, and 𝑅𝑑 := 𝑉𝑑𝑜 −𝑉𝑑𝑛

for the low-type customers, the high-type customers, and the dealers, respectively. For an 𝑙𝑜-seller and

a 𝑑𝑛-dealer to trade, the price 𝑝 must fall between 𝑅𝑙 ≤ 𝑝 ≤ 𝑅𝑑 ; and likewise, for an ℎ𝑛-buyer and a

𝑑𝑜-dealer to trade, the price must fall between 𝑅𝑑 ≤ 𝑝 ≤ 𝑅ℎ . Such prices split the trading gains, which

are written as, respectively,

Δ𝑑𝑙 := 𝑅𝑑 − 𝑅𝑙 and Δℎ𝑑 := 𝑅ℎ − 𝑅𝑑(9)

for the two kinds of trades. For now, we make the conjecture that there are positive trading gains:

𝑅𝑙 ≤ 𝑅𝑑 ≤ 𝑅ℎ, which will be guaranteed by a condition on 𝑦𝑑 (see Proposition 1 below).

3.2.1 The split of the trading gain

The split of the trading gain between an ℎ𝑛-buyer and a 𝑑𝑜-dealer can always be written as 𝛾ℎ𝑛Δℎ𝑑 and

(1 − 𝛾ℎ𝑛)Δℎ𝑑 , where 𝛾ℎ𝑛 ∈ [0, 1] represents the ℎ𝑛-buyer’s “expected trading gain share.” Likewise,

the split of trading gain between a 𝑑𝑛-dealer and an 𝑙𝑜-seller can be written as (1 − 𝛾𝑙𝑜)Δ𝑑𝑙 and 𝛾𝑙𝑜Δ𝑑𝑙

for some 𝑙𝑜-seller’s expected trading gain share 𝛾𝑙𝑜 ∈ [0, 1].

The shares {𝛾ℎ𝑛, 𝛾𝑙𝑜} reflect how in expectation prices are set between trading pairs. For now

we allow general {𝛾ℎ𝑛, 𝛾𝑙𝑜} ∈ [0, 1]2, so that our results up to Section 3.4 hold for arbitrary price-

setting mechanisms, up to two minimal assumptions: (i) a trade occurs whenever at least one of the 𝑛
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contacts is a match; and (ii) the shares {𝛾ℎ𝑛, 𝛾𝑙𝑜} do not depend on the value functions {𝑉𝜎 } (but they

can depend on any other endogenous variables).6 We complete the equilibrium characterization by

deriving {𝛾ℎ𝑛, 𝛾𝑙𝑜} endogenously in Section 3.4, verifying also the two minimal assumptions.

3.2.2 Hamilton-Jacobi-Bellman equations

Consider first an ℎ𝑜-bystander. Over a short period d𝑡 , the ℎ𝑜-bystander gets utility 𝑦ℎd𝑡 from holding

the asset; plus, with intensity 𝜆𝑑d𝑡 , she switches to 𝑙𝑜-type and her value changes by 𝑉𝑙𝑜 −𝑉ℎ𝑜 ; minus

(𝑟 + 𝑓𝑐)𝑉ℎ𝑜d𝑡 due to discounting and exit shocks. Hence, her HJB equation is

0 = 𝑦ℎ + 𝜆𝑑 · (𝑉𝑙𝑜 −𝑉ℎ𝑜) − (𝑟 + 𝑓𝑐)𝑉ℎ𝑜 .(10)

Similarly, an 𝑙𝑛-bystander has HJB equation

0 = 𝜆𝑢 · (𝑉ℎ𝑛 −𝑉𝑙𝑛) − (𝑟 + 𝑓𝑐)𝑉𝑙𝑛 .(11)

Consider next an 𝑙𝑜-seller. Over d𝑡 , her value increases by 𝑦𝑙d𝑡 due to the asset holding. It may

also change by 𝑉ℎ𝑜 − 𝑉𝑙𝑜 with intensity 𝜆𝑢d𝑡 due to a preference shock. The value also reduces by

𝑟𝑉𝑙𝑜d𝑡 due to discounting. Finally, from trading she expects an instantaneous gain of 𝜌𝜈𝑙𝑜𝛾𝑙𝑜Δ𝑑𝑙d𝑡—she

searches for dealers at intensity 𝜌 , finds at least one match out of the 𝑛 contacts with probability 𝜈𝑙𝑜 ,

and expects a trading gain share of 𝛾𝑙𝑜 . For notation simplicity, we write 𝜁𝑙𝑜 := 𝜌𝜈𝑙𝑜𝛾𝑙𝑜 as an 𝑙𝑜-seller’s

“expected trading gain intensity.” Therefore, the 𝑙𝑜-seller’s HJB equation is

0 = 𝑦𝑙 + 𝜆𝑢 · (𝑉ℎ𝑜 −𝑉𝑙𝑜) − (𝑟 + 𝑓𝑐)𝑉𝑙𝑜 + 𝜁𝑙𝑜Δ𝑑𝑙 .(12)

Similarly, an ℎ𝑛-buyer’s HJB equation is

0 = 𝜆𝑑 · (𝑉𝑙𝑛 −𝑉ℎ𝑛) − (𝑟 + 𝑓𝑐)𝑉ℎ𝑛 + 𝜁ℎ𝑛Δℎ𝑑 ,(13)

where the expected trading gain intensity is 𝜁ℎ𝑛 := 𝜌𝜈ℎ𝑛𝛾ℎ𝑛 .

6 If {𝛾ℎ𝑛, 𝛾𝑙𝑜 } depend on the value functions {𝑉𝜎 }, they will also enter the Bellman equation system below in
Section 3.2.2, thus nonlinearly affecting the equilibrium value functions and, hence, also welfare. We show later in
Section 3.4, however, that this is not a concern in our setup.
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Finally, consider the dealers. A 𝑑𝑜-seller’s HJB equation has the similar structure as before

0 = 𝑦𝑑 − (𝑟 + 𝑓𝑑)𝑉𝑑𝑜 + 𝜁𝑑𝑜Δℎ𝑑 ,(14)

just without the type-switching term. To find a 𝑑𝑜-seller’s expected trading gain intensity 𝜁𝑑𝑜 , note that

the total trading gain from all ℎ𝑛-buyer initiated trades amounts to 𝑚ℎ𝑛𝜌𝜈ℎ𝑛Δℎ𝑑 . Since each ℎ𝑛-buyer

expects 𝜁ℎ𝑛Δℎ𝑑 , a 𝑑𝑜-seller gets the per capita remainder; that is,

𝜁𝑑𝑜 :=
𝑚ℎ𝑛𝜌𝜈ℎ𝑛 −𝑚ℎ𝑛𝜁ℎ𝑛

𝑚𝑑𝑜
=
𝑚ℎ𝑛𝜌𝜈ℎ𝑛
𝑚𝑑𝑜

(1 − 𝛾ℎ𝑛).

Similarly, a 𝑑𝑛-buyer has

0 = −(𝑟 + 𝑓𝑑)𝑉𝑑𝑛 + 𝜁𝑑𝑛Δ𝑑𝑙(15)

with expected trading gain intensity

𝜁𝑑𝑛 :=
𝑚𝑙𝑜𝜌𝜈𝑙𝑜 −𝑚𝑙𝑜𝜁𝑙𝑜

𝑚𝑑𝑛
=
𝑚𝑙𝑜𝜌𝜈𝑙𝑜
𝑚𝑑𝑛

(1 − 𝛾𝑙𝑜).

Recall from Equation (9) that both trading gains Δℎ𝑑 and Δ𝑑𝑙 are linear combinations of the value

functions {𝑉𝜎 }. Thus, Equations (10)-(15) constitute a linear system with six equations and six

unknowns, solved by the proposition below.

Proposition 1 (Equilibrium value functions). Let 𝜉 := 𝑟+𝑓𝑑
𝑟+𝑓𝑐 and define 𝑦𝑑 and 𝑦

𝑑
as

𝑦𝑑 := 𝑦ℎ𝜉 −
(𝑦ℎ − 𝑦𝑙 )𝜆𝑑𝜉

𝜆𝑑 + 𝜆𝑢 + 𝑟 + 𝑓𝑐
and 𝑦

𝑑
:= 𝑦𝑙𝜉 +

(𝑦ℎ − 𝑦𝑙 )𝜆𝑢𝜉
𝜆𝑑 + 𝜆𝑢 + 𝑟 + 𝑓𝑐

.

When 𝑦
𝑑
≤ 𝑦𝑑 ≤ 𝑦𝑑 , the reservation values satisfy 0 < 𝑅𝑙 < 𝑅𝑑 < 𝑅ℎ and the value functions are

the solution to the linear equation systems (10)-(15). (Note that 𝑦𝑑 > 𝑦
𝑑

always holds.)

The parameter constraint of 𝑦𝑑 ∈ (𝑦𝑑 , 𝑦𝑑) ensures positive trading gains, i.e., Δℎ𝑑 = 𝑅ℎ − 𝑅𝑑 > 0

and Δ𝑑𝑙 = 𝑅𝑑 − 𝑅𝑙 > 0. When 𝑦𝑑 ∉ (𝑦𝑑 , 𝑦𝑑), intuitively, the dealers are no longer “intermediaries”

between buyers and sellers and the economy might enter a steady state without trading. For example,

suppose𝑦𝑑 ∉ (𝑦𝑑 , 𝑦𝑑) and 𝑅𝑑 > 𝑅ℎ. Then 𝑑𝑜-dealers andℎ𝑛-buyers do not trade, and by the stationarity

condition (8), there must be no trade between 𝑑𝑛-dealers and 𝑙𝑜-sellers, either. Therefore, through
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the rest of the paper, we focus on the more interesting and empirically relevant case with trades by

assuming that 𝑦𝑑 ∈ (𝑦𝑑 , 𝑦𝑑) always holds.

Finally, we can now verify the conjecture that ℎ𝑜- and 𝑙𝑛-customers do stand by: If one did switch

to trading, her expected trading price 𝑝 would fall between the reservation values. For example, if an

ℎ𝑜-customer sold, she would get a price between 𝑅𝑙 = 𝑉𝑙𝑜 − 𝑉𝑙𝑛 ≤ 𝑝 ≤ 𝑉𝑑𝑜 − 𝑉𝑑𝑛 = 𝑅𝑑 and continue

with 𝑉ℎ𝑛. Given the positive trading gains, we have 𝑅𝑑 < 𝑅ℎ = 𝑉ℎ𝑜 −𝑉ℎ𝑛, implying 𝑉ℎ𝑜 > 𝑉ℎ𝑛 + 𝑝, and

the ℎ𝑜-customer never wants to sell. The same holds for an 𝑙𝑜-customer. They are really bystanders.

3.3 Search technology and allocation efficiency

This subsection examines how allocation efficiency is affected by search technology. We are particu-

larly interested in the contrast of the two search parameters, the intensity 𝜌 and the capacity 𝑛—how

fast customers can find dealers versus how many dealers can be reached in one “click.”

We focus on the case in which the asset is in excess demand, formally defined below:

Lemma 2. The 𝑙𝑜-sellers are on the short side of the market, i.e.,𝑚𝑙𝑜 < 𝑚ℎ𝑛, if and only if

𝑠 < 𝜂 + 1
2
𝑚𝑑 , where 𝜂 :=

𝜆𝑢
𝜆𝑢 + 𝜆𝑑

.

Intuitively, the threshold 𝜂+ 1
2𝑚𝑑 represents the asset’s “intrinsic demand:” The fraction 𝜂 is the size of

the steady-state high-type customers, who are natural holders of the asset. In addition, since the dealers

are homogeneous, half of them are also natural asset holders. When such intrinsic demand exceeds

the supply 𝑠, the ℎ𝑛-buyers (𝑙𝑜-sellers) are on the short (long) side of the market. The calibration in

Appendix A finds that 𝑠 < 𝜂 + 1
2𝑚𝑑 , suggesting that the RFQ trading of corporate bonds is, on average,

in excess demand. Therefore, below we mainly focus on the case of excess demand. (The analysis of

the excess supply case is symmetric.) The only exception is Section 4.2, where we consider excess

supply due to the fire selling of corporate bonds.
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3.3.1 Trading volume and customer sizes

The contrasting effects between 𝜌 and 𝑛 can be seen most clearly from Figure 1(a) and 1(b), which are

based on parameters calibrated against the real-world RFQ trading of corporate bonds (Appendix A).

Specifically, while the intensity 𝜌 always reduces the customer sizes, the effect of the capacity 𝑛 is

more nuanced: It monotonically reduces 𝑚ℎ𝑛 (the long side) but might increase 𝑚𝑙𝑜 (the short side).

The proposition below sums up the patterns formally.

Proposition 2 (Search technology, customer sizes, and trading volume). The search intensity 𝜌

reduces both 𝑚ℎ𝑛 and 𝑚𝑙𝑜 . The search capacity 𝑛 reduces the long-side customer mass but has

ambiguous effect on the short-side customer mass. In particular, when 𝜌 is sufficiently small, the

short-side customer mass increases with 𝑛. The trading volume intensity 𝑡 increases in both 𝑛 and 𝜌 .

The proposition also states that both search technologies monotonically improve trading volume. This

is rather intuitive as the matching between customers and dealers become more efficient with either

higher 𝜌 or larger 𝑛. Such increased trading volume, however, does not always translate to allocation

efficiency. Notably, a larger search capacity 𝑛 might exacerbate inefficient allocation: more low-type

customers end up holding the asset. Indeed, the increase of 𝑚𝑙𝑜 with 𝑛 can be seen along every

horizontal cut in Figure 1(b), thought more saliently for lower than higher 𝜌s. This is “inefficient”

as such holdings could have been better appreciated by high-type customers (as the asset is in excess

demand). As explained below, such inefficiency has a novel dealer “bottleneck” effect to blame.

3.3.2 The bottleneck effect

Note that an increase in the search capacity 𝑛 does help matching: Both the probabilities 𝜈𝑙𝑜 and 𝜈ℎ𝑛

of finding at least one dealer counterparty increase with 𝑛, as can be seen from Figure 1(c) and (d)

(formally shown in Lemma S1.2 in the supplementary appendix). However, the magnitudes of the

increases are far from equal. The increment in 𝜈ℎ𝑛 is much more substantial than that in 𝜈𝑙𝑜 . This is

because the 𝑙𝑜-sellers are on the short side of the market and there are many more 𝑑𝑛-dealers to find
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(c) Matching rate for an ℎ𝑛-buyer, 𝜈ℎ𝑛
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(d) Matching rate for an 𝑙𝑜-seller, 𝜈𝑙𝑜
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Figure 1: Customer sizes and matching rates. This figure plots how the search intensity 𝜌 and the search
capacity 𝑛 affect the customer sizes in (a) and (b) and the matching rates in (c) and (d). Apart from 𝜌 and 𝑛,
the other parameters are set at 𝑠 = 0.12, 𝑚𝑑 = 0.10, 𝜆𝑢 = 0.04, and 𝜆𝑑 = 0.31, based on the calibration exercise
detailed in Appendix A. The other model parameters are irrelevant here as the equilibrium demographics do not
depend on them; see Equations (2)-(7) and Lemma 1.
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(than 𝑑𝑜-dealers for the long side ℎ𝑛-buyers). Correspondingly, 𝜈𝑙𝑜 is much closer to its upper bound

of 100% and cannot be increased by as much as 𝜈ℎ𝑛. Put differently, the increase in 𝑛 matches many

more ℎ𝑛-𝑑𝑜 pairs than 𝑙𝑜-𝑑𝑛 pairs.

The 𝑙𝑜-𝑑𝑛 trades let the asset flow into the dealer sector, while the ℎ𝑛-𝑑𝑜 trades let the asset flow

out of the dealers. The above asymmetric effects of 𝑛—the substantially smaller inflow compared

to the outflow—imply that the asset flow is clogged when passing through the dealer sector, hence

the “bottleneck.”7 As the dealers give out a lot of the asset to ℎ𝑛-buyers but only take in little from

𝑙𝑜-sellers, the 𝑙𝑜-seller size𝑚𝑙𝑜 increases and the ℎ𝑛-buyer size𝑚ℎ𝑛 reduces.

Summing up, there are two pairs of asymmetric effects: In terms of matching probability, 𝜈ℎ𝑛

increases much more than 𝜈𝑙𝑜 . In terms of population sizes,𝑚ℎ𝑛 shrinks, whereas𝑚𝑙𝑜 balloons. These

effects ensure the stationarity of dealers in equilibrium, with 𝜌𝜈𝑙𝑜𝑚𝑙𝑜 = 𝜌𝜈ℎ𝑛𝑚ℎ𝑛 (Equation 8). The

above discussion is for the case of excess demand. When the asset is in excess supply, the dealer

bottleneck also arises as 𝑛 increases: A substantially larger asset inflow than outflow from the dealers

raises both𝑚𝑑𝑜 and𝑚ℎ𝑛, as the matching probability 𝜈𝑙𝑜 increases much more than 𝜈ℎ𝑛.

It is worth emphasizing that the bottleneck arises only with the search capacity 𝑛 but not with the

intensity 𝜌 . This is because 𝜌 scales up both the inflow 𝜌𝜈𝑙𝑜𝑚𝑙𝑜 and the outflow 𝜌𝜈ℎ𝑛𝑚ℎ𝑛 and there

is no asymmetry. This is a novel finding, thanks to the flexibility of 𝑛.8 For example, the bottleneck

does not manifest in HLW, as their customers and dealers only meet bilaterally (𝑛 = 1).

Proposition 2 emphasizes that the dealer bottleneck arises only when the search intensity 𝜌 is

“low.” How “low” is low enough? To provide some perspective, Appendix A calibrates the model

parameters against the real-world RFQ trading of corporate bonds and finds robust presence of dealer

7 The terminology of “bottleneck” also emphasizes that the inefficiency hinges on the existence of a sector of dealers.
Absent of such intermediaries, for example, the matching between the high-type and low-type customers always results in
the maximum trading gains, hence no inefficiency.

8 Supplementary Appendix S4 studies an extension of the model, where customers are allowed to endogenously
choose their search intensity (subject to a flow cost). In equilibrium, 𝑙𝑜-sellers search with 𝜌𝑙𝑜 , while ℎ𝑛-buyers with a
possibly different 𝜌ℎ𝑛 . Numerically, such endogenously asymmetric 𝜌s still create no dealer bottleneck. Our analysis
suggests that this is because the search intensities still enter the stationarity condition proportionally on both sides:
𝜌𝑙𝑜𝑚𝑙𝑜𝜈𝑙𝑜 = 𝜌ℎ𝑛𝑚ℎ𝑛𝜈ℎ𝑛 . In contrast, the search capacity 𝑛 asymmetrically affects the matching rates 𝜈𝑙𝑜 and 𝜈ℎ𝑛 (by
exponentiating the intrinsically different matching probabilities 𝜋𝑑𝑛 and 𝜋𝑑𝑜 ).

20



bottlenecks, suggesting room for improving the efficiency of RFQ trading in practice.

3.3.3 Welfare

When does the dealer bottleneck translate to welfare losses? We examine next welfare as the present

value of all asset-owners’ utility flows: 𝑤 := 1
𝑟 (𝑦ℎ𝑚ℎ𝑜 + 𝑦𝑑𝑚𝑑𝑜 + 𝑦𝑙𝑚𝑙𝑜). Note that, unsurprisingly, wel-

fare is endogenously determined only by population sizes, because the pricing strategies (Section 3.4)

only affect the cut but not the size of the “pie.” Also, only the discount rate 𝑟 , but not the exit shock

intensities {𝑓𝑐, 𝑓𝑑}, enter the welfare expression, because an exited agent is immediately replaced by a

newborn, who inherits the same utility flow.

Let the customer owners’ average utility flow be 𝑦 := 𝑚ℎ𝑜𝑦ℎ+𝑚𝑙𝑜𝑦𝑙
𝑚ℎ𝑜+𝑚𝑙𝑜

. Welfare can then be rewritten as

𝑤 =
𝑦𝑑
𝑟
𝑚𝑑𝑜 +

𝑦

𝑟
(𝑚ℎ𝑜 +𝑚𝑙𝑜) =

𝑦𝑑
𝑟
𝑚𝑑𝑜 +

𝑦

𝑟
(𝑠 −𝑚𝑑𝑜),(16)

where the second equality follows the market clearing condition (2). That is, the𝑚𝑑𝑜 mass of dealers

get a flow utility 𝑦𝑑 , while the (𝑠 −𝑚𝑑𝑜) mass of customer-owners get an average flow utility 𝑦. When

the search intensity 𝜌 is low, 𝑦 becomes approximately exogenous:

𝑦 =
𝑚ℎ𝑜𝑦ℎ +𝑚𝑙𝑜𝑦𝑙
𝑚ℎ𝑜 +𝑚𝑙𝑜

≈ 𝜂𝑦ℎ + (1 − 𝜂)𝑦𝑙(17)

because the stationarity condition (6) implies that𝑚𝑙𝑜𝜆𝑢 ≈𝑚ℎ𝑜𝜆𝑑 and hence 𝑚ℎ𝑜
𝑚𝑙𝑜

≈ 𝜆𝑢
𝜆𝑑

= 𝜂
1−𝜂 .

Expression (16) highlights that for low 𝜌 , welfare simply depends on the split of the asset between

dealers (𝑚𝑑𝑜) and customers (𝑠 −𝑚𝑑𝑜). In particular, welfare increases (decreases) with 𝑚𝑑𝑜 when

𝑦𝑑 > 𝑦 (< 𝑦), as dealers are the better (worse) users than an average customer. When 𝑛 increases,

a “swelling” bottleneck of 𝑚𝑑𝑛 clogs the asset flow, reducing 𝑚𝑑𝑜 . Welfare losses then occur with

larger 𝑛, if 𝑦𝑑 > 𝑦, as seen in the low-𝜌 range of Figure 2.

Proposition 3 (Search technology and welfare). A higher search intensity 𝜌 always improves

welfare. A larger search capacity 𝑛 improves welfare when 𝜌 is sufficiently high. If 𝜌 is instead low

enough and if 𝑦𝑑 > (<) 𝑦, a larger 𝑛 reduces welfare, if the asset is in excess demand (supply).
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Figure 2: Search technology and welfare. This figure plots how the search intensity 𝜌 and the search
capacity 𝑛 affect welfare, 𝑤 = 1

𝑟 (𝑦ℎ𝑚ℎ𝑜 + 𝑦𝑑𝑚𝑑𝑜 + 𝑦𝑙𝑚𝑙𝑜 ) Apart from 𝜌 and 𝑛, the other four demographic
parameters are set at 𝑠 = 0.12,𝑚𝑑 = 0.10, 𝜆𝑢 = 0.04, and 𝜆𝑑 = 0.31, based on the calibration exercise detailed in
Appendix A. The uncalibrated valuation parameters are set at 𝑟 = 0.05, 𝑦ℎ = 1.0, 𝑦𝑑 = 0.9, and 𝑦𝑙 = 0.0. (The
exit intensities {𝑓𝑐 , 𝑓𝑑 } and the customers’ intrinsic bargaining power 𝑞 are irrelevant here.)

Consistent with this prediction, Appendix A shows that welfare losses due to the bottleneck can indeed

arise in the RFQ trading of corporate bonds, precisely when the dealer valuation for the bond is high.

It should be noted that Proposition 3 only compares welfare between the two steady states, before

and after a shock in the search technology 𝜌 or 𝑛. This neglects the transition dynamics induced by

the shock, or more precisely, the welfare flows enjoyed by the traders in between the two steady states.

In this sense, the proposition implicitly focuses on the long-run effects of search technology shocks.

Naturally, one might ask: if such transition welfare flows are accounted for, does the welfare

ranking stated in Proposition 3 still hold? Supplementary Appendix S5 analyzes this question and

finds an intuitive answer: When the discount rate 𝑟 is relatively small, Proposition 3 remains robust.

This is because with a lower 𝑟 , welfare—the present value of all future utility flows—puts a higher
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Figure 3: Effects of transparency, 𝜓 . This figure plots how transparency 𝜓 affects welfare in Panel (a) and
the matching rates in Panel (b). The illustration is for a low level of search intensity 𝜌 = 1.0. The other
demographic parameters are set following the calibration in Appendix A: 𝑛 = 27, 𝑠 = 0.12,𝑚𝑑 = 0.1, 𝜆𝑑 = 0.31,
and 𝜆𝑢 = 0.04, which are sufficient for Panel (b). For Panel (a), the additional valuation parameters are set to
𝑦ℎ = 1.0, 𝑦𝑑 = 0.9, and 𝑦𝑙 = 0.0. (The exit intensities {𝑓𝑐 , 𝑓𝑑 } and the customers’ intrinsic bargaining power 𝑞
are irrelevant here.)

weight on future flows.

3.3.4 Inventory transparency and allocation efficiency

Our analysis so far admits generic forms of 𝜋 (·), the probability for a searching customer’s contact

to be a match. Below we turn to the specific parameterization of “random matching with signals”

(p. 8), with 𝜋 (·) given by Equation (1). We interpret customers’ signal quality 𝜓 as dealer inventory

transparency and examine how it affects welfare.

Proposition 4 (Transparency and welfare). Better inventory transparency 𝜓 improves welfare

only when 𝜌 is sufficiently high. If 𝜌 is low enough and if 𝑦𝑑 > (<) 𝑦, a higher 𝜓 reduces welfare

when the asset is in excess demand (supply).
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Figure 3(a) shows an example where improved transparency hurts welfare. The key intuition is that

the change in transparency 𝜓 asymmetrically affects customers on the short and the long sides of

the market, similar to the asymmetric effects of 𝑛 in Section 3.3. A higher 𝜓 improves matching by

increasing both 𝜈ℎ𝑛 and 𝜈𝑙𝑜 , helping customers direct more accurately their searches to dealers with

the right inventory capacity. Yet, the short side matching rate (𝜈𝑙𝑜) increases much less than the long

side (𝜈ℎ𝑛), since it is already close to the upper bound of 100%, as illustrated in Figure 3(b). (In fact,

𝜈𝑙𝑜 is too close to 100% to begin with, making it almost flat in the illustration.) The bottleneck again

emerges and possibly hurts welfare, mirroring Proposition 3.

The dissemination of post-trade information of corporate bonds via TRACE (Transaction Reporting

and Compliance Engine), starting in 2002, was perhaps the most significant transparency shock in

the corporate bonds market. A large volume of the literature has documented its impact on market

quality, applauding the improved liquidity and the reduced trading costs (e.g., Bessembinder, Maxwell,

and Venkataraman, 2006, Edwards, Harris, and Piwowar, 2007, and, Goldstein, Hotchkiss, and Sirri,

2007). The extant theory models also seem to agree that welfare always improves with inventory

transparency (e.g., Cujean and Praz, 2015, who study bilateral searches by customers, without going

through a dealer sector). To the extent that post-trade transparency from TRACE also improves

customers’ inference about dealer inventories, our model cautions that the resulting better matching—

the improved “liquidity”—not necessarily always translates to better welfare in terms of allocation

(Figure 3a vs. 3b). In particular, our model highlights the importance of empirically examining how

dealer inventories respond to such transparency shocks.

3.4 The endogenous split of trading gain

The analysis so far only requires the general form of expected trading gain shares, {𝛾ℎ𝑛, 𝛾𝑙𝑜}. Under

the assumed trading mechanism (“Price determination” on p. 9), such expected trading gain shares

can be endogenously determined:
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Proposition 5 (The split of trading gains). Define 𝛾 (𝜋, 𝑛) := 𝑞 + (1 − 𝑞)
(
1 − 𝑛𝜋 ·(1−𝜋)𝑛−1

1−(1−𝜋)𝑛
)

for

𝜋 ∈ (0, 1) and 𝑛 ∈ N. Then, 𝛾ℎ𝑛 = 𝛾 (𝜋𝑑𝑜 , 𝑛) and 𝛾𝑙𝑜 = 𝛾 (𝜋𝑑𝑛, 𝑛).

This proposition thus completes the equilibrium characterization. Several features are worth dis-

cussing. First, as long as 𝑛 ≥ 2, 𝛾 (·) is strictly increasing in 𝜋 , from 𝛾 (0, 𝑛) = 𝑞 to 𝛾 (1, 𝑛) = 1. Take,

for example, an ℎ𝑛-buyer searching for 𝑑𝑜-dealers. With a higher 𝜋𝑑𝑜 , each contacted 𝑑𝑜-dealer knows

that she is more likely competing with some other 𝑑𝑜-dealers among the other (𝑛 − 1) contacts. Such

fiercer competition gives more trading gains to theℎ𝑛-buyer. Indeed, when 𝜋𝑑𝑜 → 1, ℎ𝑛-buyers extract

full surplus with 𝛾ℎ𝑛 → 1 from the dealers’ perfect competition. On the other extreme, if 𝜋𝑑𝑜 → 0,

each 𝑑𝑜-dealer knows that she is likely the monopolist among all 𝑛 contacted and therefore quotes a

monopolistic price. Indeed, as 𝜋𝑑𝑜 → 0, 𝛾ℎ𝑛 → 𝑞, which is the baseline probability that the customer

can make TIOLIOs to the contacted dealers.

Second, when 𝑛 = 1, 𝛾ℎ𝑛 = 𝛾𝑙𝑜 = 𝑞, as if the searching customer engages in a Nash bargaining

with one matched dealer with respective bargaining power parameters 𝑞 and 1 − 𝑞. Our setup thus

nests such exogenous splits of trading gains, commonly assumed in the literature (see, e.g., DGP and

HLW). When 𝑛 ≥ 2, our model highlights that under SMS, the expected trading gain shares {𝛾ℎ𝑛, 𝛾𝑙𝑜}

are endogenous, in particular, of the dealer composition 𝑚𝑑𝑜 and 𝑚𝑑𝑛. Such an endogenous split of

trading gains is a distinguishing feature of our model.

Finally, whenever 𝑛 ≥ 2, the contacted dealers compete against an unknown number of others, as

some of the 𝑛 contacted dealers might not be of the matching type. That is, every contacted matching

dealer knows that there is a non-zero probability that she actually is the only match. As is known in the

literature (e.g., Burdett and Judd, 1983), in this case, dealers follow mixed strategies in setting their

prices. This suggests that dealers’ strategic behavior can be a source of price dispersion. Even though

dealers are homogeneous in our model, it still features price dispersion, a robust empirical feature

of OTC markets. For example, Hendershott and Madhavan (2015) document a significant dispersion

in dealers’ responding quotes in corporate bond market. Hau et al. (2017) find evidence for price
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dispersion in foreign exchange derivatives.

Corollary 5 only characterizes the split of trading gains. The implied 𝛾 (𝜋, 𝑛) also feed back to the

equilibrium price formation in terms of dealers’ quotes, the average price level in the economy, and

the price dispersion. Supplementary Appendix S3 detail these results regarding the price.

4 SMS versus BB: How to search

In real-world trading, investors can choose their trading technologies. For example, while bilateral

bargaining is still the dominant form of trading in corporate bonds, electronic platforms with RFQ

protocols have been on the rise (O’Hara and Zhou, 2021). We consider investors’ choice of “Click or

Call” (Hendershott and Madhavan, 2015) in this section.

Specifically, we introduce two technologies, BB and SMS. They differ in parameters {𝑛𝑘 , 𝜌𝑘 , 𝑞𝑘},

𝑘 ∈ {BB, SMS} (some realistic parameter restrictions are imposed below). Each customer can choose,

at any point in time, which technology to use to contact dealers, if she wants to trade. All dealers can

be reached either by BB or by SMS. The other model ingredients remain the same as in Section 2.

Section 4.1 analyzes how customers choose between the two technologies in a steady state equi-

librium. We then examine whether SMS-like electronic trading (e.g., RFQ) can completely replace

traditional bilateral bargaining. The answer is no, as Section 4.2 shows that in stress periods (e.g.,

after a fire sale), BB is used more often than SMS. Finally, Section 4.3 draws implications on welfare,

policy, and market design.

Parameter constraints. Motivated by “calls” (BB) and “clicks” (SMS), we assume

𝑛BB = 1, 𝑛SMS > 2, and 𝜌BB ≤ 𝜌SMS.(18)

In a bilateral call, a customer bargains with one dealer, hence 𝑛BB = 1. By clicking, a typical

real-world RFQ protocol connects the customer to multiple dealers, at least three in most of the
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applications (see Remark 3), hence 𝑛SMS > 2.9 Earlier research finds that electronic platforms can

“provide considerable time savings relative to ... bilateral negotiations” (Hendershott and Madhavan,

2015); and can “improve the speed of execution” (O’Hara and Zhou, 2021), motivating 𝜌BB ≤ 𝜌SMS.

The probabilities to set prices in respective technology, 𝑞BB and 𝑞SMS, also play an important role.

In most of the applications (e.g., MarketAxess), a customer using RFQ is always on the receiving end

of dealers’ TIOLIOs, suggesting that 𝑞SMS = 0. On the other hand, in bilateral calls, there is always

room for negotiation and it is natural to expect that 𝑞BB > 0. We impose no such constraints here and

proceed to examine how 𝑞SMS and 𝑞BB affect the customers’ technology choices.

4.1 Choosing between SMS and BB

As before, we only focus on steady states, characterized by three sets of equilibrium objects: (i)

customers’ optimal technology choices, (ii) demographics, and (iii) value functions. Compared to

Section 3, the novel part is the analysis of (i), detailed below. The analyses of (ii) and (iii) are analogous

to those in Section 3 and, hence, collated in Supplementary Appendix S1.2-S1.3.

Recall from Section 2 that there are four types of customers, 𝜎 ∈ {ℎ𝑜, 𝑙𝑛, ℎ𝑛, 𝑙𝑜}. Now the 𝜎-type

customers can be further split into subtypes 𝜎-BB and 𝜎-SMS, which we distinguish by superscripting

the relevant variables with the chosen technology 𝑘 ∈ {BB, SMS}. For example, their masses satisfy

𝑚BB
𝜎 +𝑚SMS

𝜎 =𝑚𝜎 and they have (possibly different) value functions 𝑉 BB
𝜎 and 𝑉 SMS

𝜎 .

The analysis can be simplified in two ways. First, note that in a stationary equilibrium, the value

functions are time-invariant. That is, if a type-𝜎 customer prefers one technology over the other at

some point of time, her technology choice will persist until her type changes (due either to a preference

shock or to trading). Hence, without loss of generality, we can focus on a type-𝜎 customer’s technology

choice at the moment she becomes type-𝜎 . Second, both ℎ𝑜 and 𝑙𝑛 customers will be bystanders in

equilibrium, just like in the case of one trading technology before. Therefore, there is no need to

9 Excluding the special case of 𝑛SMS = 2 reduces the cases to consider when characterizing the equilibrium, stream-
lining the exposition. The full characterization for 𝑛SMS ≥ 2 is provided in the proof of Proposition 6.
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distinguish 𝑙𝑛SMS versus 𝑙𝑛BB or ℎ𝑜SMS versus ℎ𝑜BB. Only the technology choices of the trading

customers, ℎ𝑛 and 𝑙𝑜 , need to be studied below.

Denote by 𝜃𝜎 ∈ [0, 1] the probability of a customer, who just received a preference shock and

becme type-𝜎 , to choose SMS (hence choosing BB with probability 1−𝜃𝜎 ), where 𝜎 ∈ {ℎ𝑛, 𝑙𝑜}. Then

𝜃𝜎


= 1{𝑉 SMS

𝜎 >𝑉 BB
𝜎 }, if 𝑉 SMS

𝜎 ≠ 𝑉 BB
𝜎 ;

∈ [0, 1], if 𝑉 SMS
𝜎 = 𝑉 BB

𝜎 .

(19)

We shall focus on symmetric equilibria, where all customers of type 𝜎 choose the same 𝜃𝜎 .

To sustain an equilibrium, the technology choices {𝜃ℎ𝑛, 𝜃𝑙𝑜} must agree with the value func-

tions {𝑉𝜎 } according to Equation (19). The value functions are, in turn, chained to {𝜃ℎ𝑛, 𝜃𝑙𝑜} via many

layers of endogenous variables (see Supplementary Appendix S1.3): the trading gain intensities {𝜁𝜎 },

the dealers’ pricing, and the many demographic variables {𝑚𝜎 }— a big fixed-point problem. It turns

out that the equilibrium {𝜃ℎ𝑛, 𝜃𝑙𝑜} ultimately boil down to comparing the probabilities of finding a

match, i.e., 𝜋𝑑𝑜 = 𝜋
(
𝑚𝑑𝑜
𝑚𝑑

)
and 𝜋𝑑𝑛 = 𝜋

(
𝑚𝑑𝑛
𝑚𝑑

)
, with some threshold 𝜋∗:

Lemma 3. If the technologies satisfy

𝜌SMS𝑞SMS𝑛SMS < 𝜌BB𝑞BB𝑛BB,(20)

then Equation (19) can be equivalently written as

𝜃ℎ𝑛


= 1{𝜋𝑑𝑜>𝜋∗}, if 𝜋𝑑𝑜 ≠ 𝜋∗

∈ [0, 1], if 𝜋𝑑𝑜 = 𝜋∗
and 𝜃𝑙𝑜


= 1{𝜋𝑑𝑛>𝜋∗}, if 𝜋𝑑𝑛 ≠ 𝜋∗

∈ [0, 1], if 𝜋𝑑𝑛 = 𝜋∗
,(21)

where 𝜋∗ uniquely solves 𝑧SMS(𝜋) = 𝑧BB(𝜋), with 𝑧𝑘 (·) defined in Equation (23) below for

𝑘 ∈ {SMS,BB}. If, instead, 𝜌SMS𝑞SMS𝑛SMS ≥ 𝜌BB𝑞BB𝑛BB, then 𝜃ℎ𝑛 = 𝜃𝑙𝑜 = 1.

Below we discuss the key steps behind this lemma. First, the value functions are pinned down

by the HJB equations (S11)-(S14) in Supplementary Appendix S1.3. The proof of Lemma 3 shows

that𝑉 𝑘
𝜎 is a monotone function in 𝜁 𝑘𝜎 , for 𝜎 ∈ {𝑙𝑜, ℎ𝑛}. This intuitive result says that when a searching

customer chooses between SMS vs. BB, she is essentially comparing the trading gain intensities 𝜁 SMS
𝜎
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vs. 𝜁BB
𝜎 . Hence, the technology choices (19) can be equivalently written as:

𝜃𝜎


= 1{𝜁 SMS

𝜎 >𝜁BB
𝜎 }, if 𝜁 SMS

𝜎 ≠ 𝜁BB
𝜎 ;

∈ [0, 1], if 𝜁 SMS
𝜎 = 𝜁BB

𝜎 .

(22)

Second, analogous to {𝜁𝑙𝑜 , 𝜁ℎ𝑛} in Section 3.2, we write 𝜁 𝑘
ℎ𝑛

= 𝑧𝑘 (𝜋𝑑𝑜) and 𝜁 𝑘
𝑙𝑜

= 𝑧𝑘 (𝜋𝑑𝑛), where

𝑧𝑘 (·) is defined for 𝜋 ∈ (0, 1) as

𝑧𝑘 (𝜋) := 𝜌𝑘𝜈𝑘 (𝜋)𝛾𝑘 (𝜋) = 𝜌𝑘 ·
(
1 − (1 − 𝜋)𝑛𝑘

) (
𝑞𝑘 + (1 − 𝑞𝑘)

(
1 − 𝑛𝑘𝜋 · (1 − 𝜋)𝑛𝑘−1

1 − (1 − 𝜋)𝑛𝑘

))
.(23)

The superscript 𝑘 is not exponent but indicates the technology 𝑘 ∈ {BB, SMS}. That is, customers

essentially choose {𝜃𝜎 } by examining whether and how 𝑧SMS(𝜋) and 𝑧BB(𝜋) cross each other.

Lemma 3 essentially characterizes such crossing. Under the condition (20), 𝑧SMS(𝜋) crosses

𝑧BB(𝜋) from below once at 𝜋∗ ∈
(
0, 1

2

)
. That is, a ℎ𝑛-buyer (𝑙𝑜-seller) prefers BB over SMS when

𝜋𝑑𝑜 < 𝜋∗ (𝜋𝑑𝑛 < 𝜋∗). This might come as a surprise, given that the condition (18) has guaranteed

that SMS not only helps reach dealers faster but also induces more competitive quotes. Why would a

customer still prefer BB?

To see the potential advantage of BB, consider for example an ℎ𝑛-buyer looking for 𝑑𝑜-sellers.

Suppose 𝑚𝑑𝑜 is very low and, hence, so is 𝜋𝑑𝑜 = 𝜋
(
𝑚𝑑𝑜
𝑚𝑑

)
. Then the ℎ𝑛-buyer customer finds one

counterparty dealer with probability approximately𝑛𝑘𝜋𝑑𝑜—one and only one success from𝑛𝑘 Bernoulli

draws at rate 𝜋𝑑𝑜 . (For small 𝜋𝑑𝑜 , finding multiple dealers is negligibly unlikely.) It follows that a

successfully contacted dealer in this case knows that she is almost surely a monopolist and will quote a

very expensive ask, leaving no trading gain to the ℎ𝑛-buyer. The customer only gets non-zero trading

gain if she can make a TIOLIO, i.e., with probability 𝑞𝑘 . Taken together, for small 𝜋 , the customers’

trading gain intensity is 𝑧𝑘 (𝜋) ≈ 𝜌𝑘 · (𝑛𝑘𝜋) · 𝑞𝑘 . Comparing BB with SMS in this case yields:

lim
𝜋↓0

𝑧BB(𝜋)
𝑧SMS(𝜋)

=
𝜌BB𝑛BB𝑞BB

𝜌SMS𝑛SMS𝑞SMS .

The condition (20), therefore, ensures that for sufficiently small 𝜋 , i.e., for relatively few counterparty

dealers, BB has an advantage over SMS. In real-world trading, the condition (20) seems to hold
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because customers using SMS, like RFQ protocols, do not have many opportunities, if at all, to further

bargain with dealers. We, therefore, argue that 𝑞SMS is close to zero in reality.10

We are now ready to state the equilibrium.

Proposition 6 (Steady state equilibrium with technology choices). A unique stationary equilib-

rium exists depending on the asset supply 𝑠: There exist thresholds 0 < 𝑠ℎ𝑛,0 < 𝑠ℎ𝑛,1 ≤ 𝑠𝑙𝑜,1 < 𝑠𝑙𝑜,0 <

1 +𝑚𝑑 so that (a) ℎ𝑛-buyers’ proba
-bility to use SMS, 𝜃ℎ𝑛

(b) 𝑙𝑜-sellers’ proba
-bility to use SMS, 𝜃𝑙𝑜

(c) asset holding
by dealers,𝑚𝑑𝑜

(1) 0 < 𝑠 ≤ 𝑠ℎ𝑛,0 0 1 𝑔(0, 1,𝑚𝑑𝑜) = 𝑠

(2) 𝑠ℎ𝑛,0 ≤ 𝑠 ≤ 𝑠ℎ𝑛,1 𝑔(𝜃ℎ𝑛, 1,𝑚∗
𝑑
) = 𝑠 1 𝑚∗

𝑑

(3) 𝑠ℎ𝑛,1 < 𝑠 < 𝑠𝑙𝑜,1 1 1 𝑔(1, 1,𝑚𝑑𝑜) = 𝑠

(4) 𝑠𝑙𝑜,1 ≤ 𝑠 ≤ 𝑠𝑙𝑜,0 1 𝑔(1, 𝜃𝑙𝑜 ,𝑚𝑑 −𝑚∗
𝑑
) = 𝑠 𝑚𝑑 −𝑚∗

𝑑

(5) 𝑠𝑙𝑜,0 < 𝑠 < 1 +𝑚𝑑 1 0 𝑔(1, 0,𝑚𝑑𝑜) = 𝑠

where 𝑔(𝑥1, 𝑥2, 𝑥3) = 𝑠 uniquely solves 𝜃ℎ𝑛, 𝜃𝑙𝑜 , and 𝑚𝑑𝑜 in columns (a), (b), and (c), respectively.

The constant 𝜋∗ is given in Lemma 3 and 𝑚∗
𝑑

:= 𝜋−1(𝜋∗)𝑚𝑑 . The function 𝑔(·) and the thresholds

{𝑠ℎ𝑛,0, 𝑠ℎ𝑛,1, 𝑠𝑙𝑜,1, 𝑠𝑙𝑜,0} are given in the proof. As a special case, when 𝜌SMS𝑞SMS𝑛SMS ≥ 𝜌BB𝑞BB𝑛BB,

the thresholds collapse to 𝑠ℎ𝑛,0 = 𝑠ℎ𝑛,1 = 0 and 𝑠𝑙𝑜,0 = 𝑠𝑙𝑜,1 = 1+𝑚𝑑 , and the equilibrium is described

by (3) of the above table, consistent with Lemma 3.

Figure 4 illustrates the equilibrium by plotting the technology choices 𝜃ℎ𝑛 (solid) and 𝜃𝑙𝑜 (dashed)

on the left axis and the dealer-owner population size 𝑚𝑑𝑜 (dot-dashed) on the right axis. The four

thresholds of {𝑠ℎ𝑛,0, 𝑠ℎ𝑛,1, 𝑠𝑙𝑜,1, 𝑠𝑙𝑜,0} cut the support of 𝑠 ∈ (0, 1+𝑚𝑑) into five regions on the horizontal

axis. Consider the solid line, i.e., 𝜃ℎ𝑛, for example. When the asset supply 𝑠 is extremely low, SMS

is very unattractive for the ℎ𝑛-buyers, because they know it is very difficult to find a counterparty

𝑑𝑜-dealer (the dot-dashed line), and even if they do, they are going to be charged with a monopoly
10 Complementing the condition (20), the condition (18) in turn ensures that SMS is preferred when there are sufficiently

many dealer counterparties.That is, lim𝜋↑1
(
𝑧BB (𝜋)/𝑧SMS (𝜋)

)
= 𝜌BB𝑞BB/𝜌SMS ≤ 1. It is interesting to note that only 𝑞BB

appears but not 𝑞SMS in the limit of 𝜋 ↑ 1. With 𝑛SMS > 1 and 𝜋 ↑ 1, the multiple counterparty dealers in SMS almost
always engage in Bertrand competition, and the customer always gets the full trading gain, regardless of 𝑞SMS. On the
contrary, with 𝑛BB = 1, a customer using BB meets only one counterparty dealer, who will always set the monopolist
price, leaving surplus to the customer only with probability 𝑞BB.

30



0 shn,0 shn,1 slo,1 slo,0 1+md

Asset supply, s

0

1

η +
md

2

Customers’ technology choices,
θhn (solid line) and θlo (dashed line)

0 shn,0 shn,1 slo,1 slo,0 1+md

0

md

Dealer-owner size,
mdo (dot-dashed line)

Figure 4: Equilibrium technology choice plotted against asset supply. This figure sketches customers’
technology choices against the asset supply 𝑠 in equilibrium. The ℎ𝑛-buyers’ choice 𝜃ℎ𝑛 is plotted in the solid
line, while the 𝑙𝑜-sellers’ choice 𝜃𝑙𝑜 is plotted in the dashed line (the left axis). The dot-dashed line plots the
population size of 𝑑𝑜-seller dealers (the right axis).

price using SMS. When 𝑠 is sufficiently high, there are sufficiently many 𝑑𝑜-dealers, whose price

competition makes SMS sufficiently attractive with high trading gain intensity 𝜁 SMS
ℎ𝑛

for ℎ𝑛-buyers. As

such, the solid line flattens at 𝜃ℎ𝑛 = 1 for 𝑠 > 𝑠ℎ𝑛,1. In between, we see 𝜃ℎ𝑛 monotonically increases for

𝑠ℎ𝑛,0 ≤ 𝑠 ≤ 𝑠ℎ𝑛,1. Such a mixed strategy is supported by the constant 𝑚𝑑𝑜 = 𝜋∗𝑚𝑑 in the region—the

ℎ𝑛-buyers are indifferent to BB and SMS. The pattern for the dashed line, i.e., 𝜃𝑙𝑜 , is exactly the

opposite, as 𝑙𝑜-sellers seek 𝑑𝑛-dealers, whose mass is𝑚𝑑𝑛 =𝑚𝑑 −𝑚𝑑𝑜 .

4.2 Stress periods

O’Hara and Zhou (2021) show that after downgrade, a corporate bond’s electronic (SMS) volume share

falls relative to voice trading (BB). The analysis developed above provides a theoretical framework to

study investors’ endogenous technology choice when under such stress. We emphasize that the results

below pertain only to steady states, e.g., before and after corporate bond downgrades, following the

steady state equilibrium characterized above.
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Figure 5: Usage of SMS in a stationary equilibrium after surges in supply. This figure plots the usage of
SMS (in a stationary equilibrium)—SMS volume relative to total volume—when the asset supply 𝑠 surges in
Panel (a) and when the customers’ low-valuation preference shock intensity 𝜆𝑑 increases in Panel (b).

One consequence of a corporate bond downgrade is that many previously buy-and-hold long-term

investors now no longer wish to hold such bonds. Ambrose, Cai, and Helwege (2008) and Ellul,

Jotikasthria, and Lundblad (2011) document such fire sales by insurance companies. In the context of

our model, we interpret such fire selling in two different ways, (i) an exogenous increase in the total

supply 𝑠 of the asset—a supply shock; and / or (ii) an exogenous increase in the customers’ intensity

of drawing low preference 𝜆𝑑—a demand shock. (A third alternative, reducing 𝜆𝑢 , is equivalent to

increasing 𝜆𝑑 and is omitted for brevity.) To fit the fire-selling interpretation, we also assume that the

asset is in excess supply, as defined in Lemma 2.

The SMS volume share is defined as the share of the total trading volume executed using SMS:

𝜌SMS𝑚SMS
𝑙𝑜

𝜈SMS
𝑙𝑜

+ 𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛(

𝜌SMS𝑚SMS
𝑙𝑜

𝜈SMS
𝑙𝑜

+ 𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

)
+

(
𝜌BB𝑚BB

𝑙𝑜
𝜈BB
𝑙𝑜

+ 𝜌BB𝑚BB
ℎ𝑛

𝜈BB
ℎ𝑛

) .(24)
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Figure 5(a) and (b) below illustrate how this SMS volume share responds to shocks in 𝑠 and 𝜆𝑑 ,

respectively. In Panel (a), the volume ratio is initially flat at 100% because both 𝑙𝑜-sellers and ℎ𝑛-

buyers always use SMS (𝜃ℎ𝑛 = 𝜃𝑙𝑜 = 1.0). As the supply 𝑠 rises higher (between 𝑠𝑙𝑜,1 and 𝑠𝑙𝑜,0), 𝑙𝑜-sellers

start to use less SMS, resulting in the decreasing segment. As 𝑠 increases further, there are no more

𝑙𝑜-sellers using SMS—all of them use BB, while all ℎ𝑛-buyers use SMS. That is, 𝑚SMS
𝑙𝑜

= 𝑚BB
ℎ𝑛

= 0.

In this case, the SMS volume ratio above reduces to

𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

+ 𝜌BB𝑚BB
𝑙𝑜

𝜈BB
𝑙𝑜

=
𝑡

2𝑡
= 50%,

where the equality follows because the trading volume in this case can be written as 𝑡 = 𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

=

𝜌BB𝑚BB
𝑙𝑜

𝜈BB
𝑙𝑜

. Overall, the SMS volume ratio drops with the decline of the SMS usage 𝜃𝑙𝑜 , as seen

before in Figure 4. The same pattern is observed from Panel (b), where we increase the customers’

negative preference shock intensity 𝜆𝑑 , effectively reducing the demand for the asset.

Proposition 7 (SMS usage under stress). The usage of SMS decreases with either the asset’s

excess supply or with its excess demand. That is, all else equal, for 𝑠 > 𝑠ℎ𝑛,1 (< 𝑠𝑙𝑜,0), the ratio

defined in (24) weakly decreases when 𝑠 increases (decreases) or when 𝜆𝑑 increases (decreases).

The proposition also gives the mirroring result: SMS usage also drops when the asset’s excess demand

exacerbates (𝑠 < 𝜂 + 𝑚𝑑
2 ).

The key intuition for the decrease of the SMS volume share can be understood from the worsening

pricing for the 𝑙𝑜-sellers. As the asset supply 𝑠 increases after the fire sell, there are more and more

𝑑𝑜-dealers, as shown in the dot-dashed line in Figure 4. This is also evidenced empirically by Anand,

Jotikasthira, and Venkataraman (2021), who show that the majority of dealers enter a positive inventory

cycle upon a corporate bond’s downgrade (e.g., their Figure 2C). The remaining 𝑑𝑛-dealers, facing

less competition, therefore, will charge worse and worse prices to the 𝑙𝑜-sellers in SMS. Expecting

such worsening prices from SMS, the 𝑙𝑜-sellers then avoid using SMS and switch to BB. In particular,

our model yields an additional prediction regarding prices in SMS and in BB under a fire sell:
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Proposition 8 (Prices in SMS versus in BB under fire sell). When there is excess supply, an

𝑙𝑜-seller’s expected trading price using SMS worsens relative to using BB.

Therefore, one way to empirically test our theory is to compare the trading prices in BB and in SMS

when the asset is under fire sell and examine if the price in SMS is worse than that in BB.

To compare, Hendershott and Madhavan (2015) also shed light on customers’ choice between “call”

and “click.” There the key disadvantage of SMS (click) is the leakage of one’s private information to

the multiple contacted dealers, as opposed to the only one in BB (call). Our mechanism complements

theirs by explaining the volume shift to BB after shocks not affecting information asymmetry, such as

corporate bond downgrades.

4.3 Efficiency and welfare

Are the market’s equilibrium technology choices socially optimal? Given the technologies {𝑛𝑘 , 𝜌𝑘 , 𝑞𝑘},

how would a social planner choose {𝜃𝑙𝑜 , 𝜃ℎ𝑛} for the customers? When, if at all, do the market’s

equilibrium choices {𝜃𝑙𝑜 , 𝜃ℎ𝑛} coincide with the planner’s {𝜃 ∗
𝑙𝑜
, 𝜃 ∗

ℎ𝑛
}?

The answers critically depend on the characteristics of the asset. Among others, how quickly

customers can find dealers, i.e., {𝜌BB, 𝜌SMS}, matters a lot. Recall from the technology assumption (18)

that 𝜌BB ≤ 𝜌SMS. Therefore, it suffices to consider the cases of high-𝜌BB and the low-𝜌SMS below.

4.3.1 The case of high search intensity

Proposition 9 (A social planner’s technology choices, I). When the search intensity 𝜌BB (≤ 𝜌SMS)

is sufficiently high, welfare 𝑤 is monotone increasing in SMS usages by both types of customers

and the social planner chooses 𝜃 ∗
𝑙𝑜
= 𝜃 ∗

ℎ𝑛
= 1.

The intuition largely follows Proposition 3. When the search intensity is high, Proposition 3 shows

that welfare is monotone increasing in 𝑛. As such, by assigning both 𝜃 ∗
𝑙𝑜
= 𝜃 ∗

ℎ𝑛
= 1, the planner chooses

𝑛SMS over 𝑛BB to maximize welfare.

34



(a) Low 𝑞SMS
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Figure 6: Market’s technology choices versus a social planner’s under high search intensity. This figure
sketches the inefficiency due to the difference between the market’s equilibrium technology choices and a social
planner’s when the search intensity 𝜌 := min[𝜌BB, 𝜌SMS] is high. The solid (blue) line and the dashed (orange)
line are 𝜃ℎ𝑛 and 𝜃𝑙𝑜 , respectively, the ℎ𝑛-buyers’ and the 𝑙𝑜-sellers’ equilibrium probabilities of using SMS. The
“//”(blue) and “\\” (orange) shaded areas indicate, respectively, where 𝜃ℎ𝑛 ≠ 𝜃 ∗

ℎ𝑛
and 𝜃𝑙𝑜 ≠ 𝜃 ∗

𝑙𝑜
. Panel (a) shows

the patterns for low 𝑞SMS, while Panel (b) shows for a higher 𝑞SMS.

However, the market’s technology choices do not always coincide with the planner’s. This is

because a customer cares not only about the probability of finding a counterparty dealer but also about

the endogenous split of the trading gain. Figure 6 sketches such possible discrepancies. The solid line

and the dashed line plot, respectively, the market’s choices of 𝜃ℎ𝑛 and 𝜃𝑙𝑜 against the asset supply 𝑠.

(Note that the patterns are qualitatively the same as in Figure 4.) The shaded areas indicate that there

is inefficiency in the market’s technology choices. For example, when the excess supply 𝑠 is relatively

extreme, 𝑠 > 𝑠𝑙𝑜,1, as in fire sell (Section 4.2), the dealer sector becomes overloaded (𝑚𝑑𝑜 too large),

giving 𝑙𝑜-sellers a hard time finding 𝑑𝑛-dealers. Then 𝑙𝑜-sellers become less willing to use SMS (𝜃𝑙𝑜

decreases with 𝑠) because in SMS their trading gains are too low. The same holds when 𝑠 < 𝑠ℎ𝑛,1

(extreme excess demand).
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Since the planner wants to encourage SMS usage, a simple, welfare-improving market design

mandate readily follows: Let customers indicate their reservation values when searching dealers via

SMS. In the model, such a design translates to an increase in 𝑞SMS. By Lemma 3, when 𝑞SMS is

large enough, such that the inequality (20) flips, the customers endogenously choose SMS efficiently:

𝜃SMS
ℎ𝑛

= 1 = 𝜃 ∗
ℎ𝑛

and 𝜃SMS
𝑙𝑜

= 1 = 𝜃 ∗
𝑙𝑜

. The improvement can be seen by contrasting Figure 6(a) and (b):

The shaded area of the inefficient technology adoption is reduced from (a) to (b).

In practice, however, customers are almost always on the receiving end of TIOLIOs on electronic

platforms; i.e., 𝑞SMS = 0. We argue that one reason behind such an inefficient design is the dealers’

incentive to participate. For example, when 𝑞SMS becomes large, close to one, the dealers get a

vanishing share of trading gains. Therefore, to the extent that the dealers have certain influence on the

design of trading protocols on the electronic platforms, they would avoid a high 𝑞SMS, or perhaps none

at all, to let customers make TIOLIOs. Even if the dealers are independent of the trading protocol

design, the platform operator will have to set a low 𝑞SMS to incentivize dealers’ participation.

4.3.2 The case of low search intensity

The case of low search intensity is more nuanced. The planner’s choices in addition depend on the

comparison between dealers’ instantaneous utility 𝑦𝑑 and an average customer’s 𝑦:

Proposition 10 (A social planner’s technology choices, II). When the search intensity 𝜌SMS

(≥ 𝜌BB) is sufficiently low, the social planner chooses 𝜃 ∗
𝑙𝑜
= 1 − 𝜃 ∗

ℎ𝑛
= 1{𝑦𝑑>𝑦} to maximize welfare.

To see why, recall from Equation (16): 𝑤 = 𝑦
𝑟 (𝑠 −𝑚𝑑𝑜) + 𝑦𝑑

𝑟 𝑚𝑑𝑜 . Thus, the planner wants to maximize

(minimize) 𝑚𝑑𝑜 , i.e., to shift all asset holding to dealers (customers), if and only if 𝑦𝑑 > 𝑦 (𝑦𝑑 < 𝑦).

To do so, the planner will polarize {𝜃 ∗
𝑙𝑜
, 𝜃 ∗

ℎ𝑛
} because they affect 𝑚𝑑𝑜 in opposite directions: If more

𝑙𝑜-sellers use SMS, 𝑑𝑛-dealers get to buy more often, increasing𝑚𝑑𝑜 ; but if more ℎ𝑛-buyers use SMS,

more 𝑑𝑜-dealers get to sell their assets, decreasing𝑚𝑑𝑜 . (This is formally shown in Lemma S1.1 in the

supplementary appendix.) As a result, the planner sets 𝜃 ∗
𝑙𝑜
= 1{𝑦𝑑>𝑦} and 𝜃 ∗

ℎ𝑛
= 1 − 𝜃 ∗

𝑙𝑜
.
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Figure 7: Market’s technology choices versus a social planner’s under low search intensity. This figure
sketches the inefficiency due to the difference between the market’s equilibrium technology choices and a
social planner’s when the search intensity 𝜌 := min[𝜌BB, 𝜌SMS] is low. The solid (blue) line and the dashed
(orange) line are 𝜃ℎ𝑛 and 𝜃𝑙𝑜 , respectively, ℎ𝑛-buyers’ and 𝑙𝑜-sellers’ equilibrium probabilities of using SMS.
The “//”(blue) and “\\” (orange) shaded areas indicate, respectively, where 𝜃ℎ𝑛 ≠ 𝜃 ∗

ℎ𝑛
and 𝜃𝑙𝑜 ≠ 𝜃 ∗

𝑙𝑜
. Panel (a)

shows the pattern for the case of 𝑦𝑑 < 𝑦, in which case 𝜃 ∗
ℎ𝑛

= 1 and 𝜃 ∗
𝑙𝑜
= 0, and Panel (b) the opposite, in which

case 𝜃 ∗
ℎ𝑛

= 0 and 𝜃 ∗
𝑙𝑜
= 1.

Figure 7(a) sketches the proposition for the case of 𝑦𝑑 < 𝑦, in which the planner wants to allocate

the asset to the customers as much as possible, thus assigning 𝜃 ∗
ℎ𝑛

= 1 and 𝜃 ∗
𝑙𝑜

= 0. This is against

the 𝑙𝑜-sellers’ wish, as they want to sell the asset to the dealers. As a result, the market’s technology

choices are efficient (coinciding with the planner’s) only when the asset is in extreme supply, i.e., when

𝑠 > 𝑠𝑙𝑜,0. Panel (b), flipping Panel (a), sketches the case of 𝑦𝑑 > 𝑦.

The patterns shown in Figure 7 caveat that the intuition regarding welfare and market design

obtained from the high-𝜌 case does not carry through when the matching of the asset is intrinsically

slow. For example, compared to corporate bonds, whose matching on MarketAxess take only a few

minutes (Hendershott and Madhavan, 2015), collateralized loan obligations (CLOs) trade much more

slowly, taking days as the B/OWIC run through emails require considerably longer time to organize
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(Hendershott et al., 2020). For such slow-moving assets, the planner always wants some customers to

use BB to prevent the asset from being held inefficiently in the wrong hands.

5 Conclusion

This paper studies “simultaneous multilateral searching” (SMS), which has been popularized in

practice recently through trading protocols like “Request-for-Quote” (RFQ) in OTC markets. The

idea is that a searching customer can reach out to multiple dealers simultaneously, solicit quotes from

them, and then trade with the one offering the best quote. This search mechanism differs from the

conventional “bilateral bargaining” (BB), in which a searching customer meets a single dealer and

negotiates the terms of trade.

A steady state equilibrium is characterized in an extension of the standard search framework. The

key insight revealed is that the split of the trading gain between a searching and a quoting investor is

an endogenous equilibrium outcome, as opposed to the exogenous split (à la Nash) in the literature

assuming BB. In addition, two search parameters, the intensity and the capacity, are analyzed in terms

of their contrasting welfare implications. A novel bottleneck effect, arising from (and only from) the

search capacity, is shown to hinder the efficient asset allocation and might possibly hurt welfare. Such

a bottleneck might arise also from transparency of dealer inventories.

Allowing customers to endogenously choose between SMS and BB, the model finds an intrin-

sic hindrance in the adoption of SMS and further suggests potential inefficiency in terms of asset

allocation. The model underscores channels through which both regulation and market design can

affect customers’ search preferences and, ultimately, the allocation efficiency. Notably, the adoption

of SMS-like trading protocols, like RFQ platforms, might significantly improve if customers are given

more room to set their reservation prices. For example, RFQ platforms can provide channels for

customers to further bargain and negotiate with their selected dealers after the initial auction (see

Supplementary Appendix S6). Such increased usage of SMS protocols can improve welfare.
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Appendix

A A quantitative exercise

This appendix details the calibration of the model parameters (as in Section 2) against the RFQ
trading of corporate bonds. Our focus lies in the novel bottleneck effect (Section 3.3)—is it a relevant
concern in the real-world trading of corporate bonds? To provide a tentative answer, we match
the model-generated moments of an average corporate bond with real-world statistics, mainly drawn
from Hendershott and Madhavan (2015), whose data (from 2010 to April, 2011) are provided by
MarketAxess, the dominant RFQ platform of corporate bonds trading. In addition, we rely also on
statistics reported by MarketAxess; on O’Hara and Zhou (2021), which contain longer-horizon trends
of electronic trading of corporate bonds; on Bessembinder et al. (2018) for over-all market statistics
of corporate bonds trading; and on the survey of Bessembinder, Spatt, and Venkataraman (2020) for
the market structure details. The calibration methodology follows HLW.

A.1 Calibrating the demographic parameters

The endogenous masses of six agent types, {𝑚ℎ𝑜,𝑚ℎ𝑛,𝑚𝑙𝑜 ,𝑚𝑙𝑛,𝑚𝑑𝑜 ,𝑚𝑑𝑛}, are determined by the six
model parameters listed in Table 1. Note that in Section 2, the customers’ preference shocks are
characterized by {𝜆𝑢, 𝜆𝑑}, which are equivalent to {𝜆, 𝜂} here, with 𝜆 := 𝜆𝑑 + 𝜆𝑢 and 𝜂 := 𝜆𝑢/𝜆. Given
our focus on the dealer bottleneck, we follow Proposition 2 to examine a large, reasonable support of
𝜌 ∈ [1, 1000] for the search intensity.11 The other five parameters are calibrated against the data as
follows and the results are summarized in Table 1.

The dealer sector size, 𝑚𝑑 (relative to the customer size). MarketAxess in a press release reports
that there are “[o]ver 1,000 institutional investor and broker-dealer firms” who are “active users of the
MarketAxess trading platform,” and “over 90 global dealers are [...] providing liquidity [...].” This
translates to

𝑚𝑑 =
90

1000 − 90
≈ 0.1

11 Another reason to examine a large support of 𝜌 is that it seems to be the most “free” parameter in existing the
calibrations. For example, Duffie, Gârleanu, and Pedersen (2007) set a rather high search intensity of 625 per year; Lester,
Rocheteau, and Weill (2015) set it to be 85 per year; Pagnotta and Philippon (2018) find it to be around 1 and around 39
(daily frequency), respectively, for slow and fast duopoly market makers; HLW require an average trading time of about
five days, or a customer-dealer search intensity of 77. See a similar remark in Footnote 23 of HLW. We therefore examine
the range of 𝜌 ∈ [1, 1000].
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Parameter Calibrated value Source
𝜌 1 ∼ 1, 000 Free ranging on the whole support, not calibrated
𝑛 27 Average from Table VI of Hendershott and Madhavan (2015)
𝑚𝑑 0.10 MarketAxess press release*

𝜆 (= 𝜆𝑑 + 𝜆𝑢) 0.35 Jointly calibrated against turnover (excluding inter-dealer trades)§, per capita
trading volume†, and customer queries’ no-response rate‡, fixing 𝜌 = 100

𝜂 (= 𝜆𝑢/𝜆) 0.11
𝑠 0.12

Table 1: Calibration of demographic parameters. This table summarizes the demographic parameters used
in the quantitative exercise: the search intensity 𝜌 , the search capacity 𝑛, the dealer sector size 𝑚𝑑 (relative to
customer size), the customers’ type-switching shock intensity 𝜆 (= 𝜆𝑑 + 𝜆𝑢), and the probability 𝜂 of switching
to high type upon a shock. The table notes are explained below (see Section A.1 for details):
∗ See “MarketAxess Expands Liquidity in European Credit With Addition of 4 Dealers” from MarketAxess

website; retrieved on August 25, 2021.
§ Estimated from Table I and II of Bessembinder et al. (2018).
† Estimated based on Table I of Hendershott and Madhavan (2015).
‡ Reported in Table VI of Hendershott and Madhavan (2015).

dealers per customer. See “MarketAxess Expands Liquidity in European Credit With Addition of 4
Dealers” from MarketAxess website; retrieved on August 25, 2021. We do note that the press release
was made in 2015. Therefore, by applying the same ratio of 𝑚𝑑 ≈ 0.1 to the 2010-2011 statistics
reported by Hendershott and Madhavan (2015), we effectively assume that the composition had not
changed dramatically. We also acknowledge the concern that real-world agents are not bound to hold
one unit of the asset as assumed in the model. As such, a more realistic calibration of 𝑚𝑑 would be
to compute the asset holding ratio, as is done by HLW. Constrained by data availability, we instead
resort to the above approximation.

The search capacity 𝑛. Hendershott and Madhavan (2015) report in their Table VI that across “all
bonds,” the number of dealers queried in their sample (2010 to April 2011) is between 25.1 to 27.7,
depending on the trade size. A similar number is reported by O’Hara and Zhou (2021) (“[t]he number
of dealers contacted this way [...] is typically around 30,” p. 370), whose data cover a much longer
horizon from 2010 to 2017. To be precise, we take

𝑛 = 27,

closest to the 27.2 reported for “odd” size trades by Hendershott and Madhavan (2015), because
Figure 2 of O’Hara and Zhou (2021) shows that this size category constitutes the lion’s share of all
electronic trading volume.

The asset supply 𝑠, the type-switching shock intensity 𝜆, and the probability of becoming high
type 𝜂. These three parameters are jointly solved from a three-equation system described below.
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First, Table II of Bessembinder et al. (2018) reports a turnover ratio (trading volume relative to amount
outstanding) of 0.78 for all corporate bonds in 2010. Depending on the definition of dealers, about
71%-76% of the total trading volume is customer-based (as opposed to inter-dealer trading), according
to their Table I. We take that roughly three quarters of the turnover ratio above is contributed by
customer trading. We assume that these ratios apply to RFQ trading, equating the model implied
turnover ratio with the above numbers:

2𝑡
𝑠

=
1
𝑠
(𝜌𝑚ℎ𝑛𝜈ℎ𝑛 + 𝜌𝑚𝑙𝑜𝜈𝑙𝑜) = 0.78 × 3

4
= 58.5%.(A.1)

Recall from Equation (8) that 𝑡 = 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 = 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 is the trading volume from customer-buyers and
sellers, respectively.

Second, Table I of Hendershott and Madhavan (2015) reports that there were in total 467,614
electronic trades across 5,528 bonds in their sample of 11

3 years (2010 to April 2011). Per our earlier
estimate (see the calibration of 𝑚𝑑 above), there were about 900 (= 1000 × (1 − 10%)) customer
institutions. Therefore, the trading intensity (per customer, per year) for an average bond is

2𝑡
𝑚𝑐

=
2𝑡
1

=
467, 614/4

3
5, 528 × 900

≈ 0.0705.(A.2)

Third, Table VI of Hendershott and Madhavan (2015) reports the “no response” rate of the
customers’ queries. In particular, across all bonds, 8.6% of the queries of “odd size” trades had no
responses. (We focus on “odd size” trades, again, because most of the electronic trades are in this
size category, as shown in Figure 2 of O’Hara and Zhou, 2021.) In the model, a searching customer’s
query sees no reply only if all 𝑛 contacts are unfortunately directed to the “wrong” type of dealers. For
example, anℎ𝑛-buyer will find no response from the dealers with probability 1−𝜈ℎ𝑛 = (1 − 𝜋𝑑𝑜)𝑛 = 𝜋𝑛

𝑑𝑛
,

where we adopt the most parsimonious form of the matching rate 𝜋 (·) and obtain 𝜋𝑑𝑛 = 𝑚𝑑𝑛/𝑚𝑑 .12

Since every instance there are 𝜌𝑚ℎ𝑛 queries from ℎ𝑛-buyers and 𝜌𝑚𝑙𝑜 from 𝑙𝑜-sellers, the model
implies a weighted average no-response rate of

𝑚ℎ𝑛

𝑚ℎ𝑛 +𝑚ℎ𝑜

(
𝑚𝑑𝑛

𝑚𝑑

)𝑛
+ 𝑚𝑙𝑜

𝑚ℎ𝑛 +𝑚𝑙𝑜

(
𝑚𝑑𝑜

𝑚𝑑

)𝑛
= 8.6%.(A.3)

The three-equation system, (A.1)-(A.3), jointly solves the last three demographic parameters,
{𝑠, 𝜆, 𝜂}. In particular, note that 𝑠 = 0.1205 is uniquely pinned down by the ratio of (A.2) over (A.1).
For the other two parameters, 𝜆 and 𝜂, the nonlinear equation system always delivers stable and unique
numerical solutions, based on the extensive trials.

The calibration of 𝜆 and 𝜂 does depend on the exact choice of 𝜌 , which varies from 𝜌 = 1

12 More elaborate parametrization for 𝜋 (·), e.g., like Equation (1), will require calibration of additional parameters,
like the inventory transparency𝜓 .
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to 1, 000. Fortunately, the results are not very sensitive: When varying 𝜌 in the relevant support with
0.1 units increments, we find that the 0.5% and the 99.5% percentiles for the calibrated 𝜂 are 0.1139
and 0.1150, respectively; and those for the calibrated 𝜆 are 0.3493 and 0.3713, respectively. That is,
varying 𝜌 ∈ [1, 1000], 99% of the calibrated values of 𝜂 and 𝜆 concentrate in the above very narrow
bands. For concreteness, Table 1 reports the calibrated values of 𝜆 and 𝜂 based on 𝜌 = 100.

A.2 The demographic bottleneck

The calibrated parameter values in Table 1 produce the demographic graphs in Figure 1. In particular,
the bottleneck effect can be seen from horizontal cuts in Figure 1(b), where the size of low-type
customer-owners,𝑚𝑙𝑜 , increases with the search capacity 𝑛. Here, Figure 8 below reproduces such an
effect by zooming in on the change of𝑚𝑙𝑜 due to an increase from 𝑛 = 27 to 𝑛 = 28, roughly a vertical
strip at around 𝑛 = 27 in Figure 1(b).13

It can be seen that regardless of the value of 𝜌 , letting customers contact one more dealer—raising𝑛
from the empirical average of 27 to 28—always increases the size of 𝑚𝑙𝑜 . That is, we find that such
a bottleneck, which hinders the efficient passing of corporate bonds through the dealer sector, is in
place in the real-world RFQ trading of corporate bonds.

Figure 8 shows that the demographic bottleneck is likely in place in the RFQ trading of corporate
bonds. Whether such a bottleneck translates to welfare losses depends on the exact values of the agents’
flow utility {𝑦ℎ, 𝑦𝑑 , 𝑦𝑙 } (c.f. Proposition 2 and 3). The next subsection attempts such calibrations.

A.3 When does the bottleneck translate to welfare losses?

Recall that welfare is defined as 𝑤 = 1
𝑟 (𝑚ℎ𝑜𝑦ℎ +𝑚𝑑𝑜𝑦𝑑 +𝑚𝑙𝑜𝑦𝑙 ). Since the demographics have been

successfully calibrated (up to 𝜌), so are the agent sizes {𝑚ℎ𝑜,𝑚𝑑𝑜 ,𝑚𝑙𝑜}. Still, the other four valuation
parameters {𝑟,𝑦ℎ, 𝑦𝑑 , 𝑦𝑙 } are needed to pin down an exact number for welfare. Finding four more
statistics from real-world RFQ trading to determine these parameters, however, is difficult (we detail
the challenges at the end of this subsection). Instead, we ask a simpler question: When the bottleneck
translate to welfare losses? That is, if the search capacity 𝑛 increases, e.g., from 27 to 28, we want to
know when the implied change in welfare is negative, i.e., Δ𝑤 = 𝑤 (𝑛 = 28) −𝑤 (𝑛 = 27) < 0.

13 A subtle difference is that in Figure 1(b) only 𝜌 varies, all other demographic parameters fixed according to Table 1,
while in Figure 8, as 𝜌 changes, all other demographic parameters—in particular 𝜆 and𝜂—are re-calibrated. The magnitude
of the difference is negligibly small, as the variation in 𝜆 and 𝜂 with 𝜌 are tiny.
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Figure 8: The bottleneck effect under the calibrated parameter values. This figure illustrates the bottleneck
effect of an increase in the search capacity𝑛 (from 27 to 28) in terms of the increase in the low-type customer sizes,
i.e., 𝑚𝑙𝑜 . Other than 𝑛, the relevant model parameters, {𝑚𝑑 , 𝑠, 𝜂, 𝜆}, are calibrated according to Appendix A.1,
as functions of the exogenously varying search intensity 𝜌 .
Figure 9: Welfare change due to an increase in the search capacity 𝑛. This figure illustrates the effect
of an increase in the search capacity 𝑛 (from 27 to 28) on welfare 𝑤 . Both the search intensity 𝜌 and the
dealers’ (relative) flow utility 𝑦𝑑 are varied exogenously. The demographics {𝑚ℎ𝑜 ,𝑚𝑑𝑜 ,𝑚𝑙𝑜 } are solved based
on the calibrated demographic parameters as in Appendix A.1, with 𝑛 = 27 and 𝜌 varying. The other valuation
parameters are normalized at 𝑦ℎ = 1.0 and 𝑦𝑙 = 0.0 (thus the varying 𝑦𝑑 is relative to the normalization of 𝑦ℎ
and 𝑦𝑙 ). The dashed line indicates the isoquant where the welfare change is exactly zero. The white and the blue
areas indicate, respectively, positive and negative welfare changes.

To do so, use the market clearing condition𝑚𝑙𝑜 = 𝑠 −𝑚𝑑𝑜 −𝑚ℎ𝑜 to rewrite welfare as:

𝑤 =
1
𝑟
(𝑠𝑦𝑙 +𝑚𝑑𝑜 (𝑦𝑑 − 𝑦𝑙 ) +𝑚ℎ𝑜 (𝑦ℎ − 𝑦𝑙 )) =

𝑦ℎ − 𝑦𝑙
𝑟

(
𝑦𝑙𝑠

𝑦ℎ − 𝑦𝑙
+𝑚ℎ𝑜 +

𝑦𝑑 − 𝑦𝑙
𝑦ℎ − 𝑦𝑙

𝑚𝑑𝑜

)
.

It then follows that the sign of the welfare change is determined by

sign[Δ𝑤] = sign
[
Δ𝑚ℎ𝑜 +

𝑦𝑑 − 𝑦𝑙
𝑦ℎ − 𝑦𝑙

Δ𝑚𝑑𝑜

]
= sign[Δ𝑚ℎ𝑜 + 𝑦𝑑Δ𝑚𝑑𝑜]

where the difference notation Δ is understood as the difference between 𝑛 = 28 and 𝑛 = 27, under the
demographic parameters calibrated in Section A.1. That is, instead of calibrating all four valuation
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parameters, it suffices to know the relative dealer valuation 𝑦𝑑 := 𝑦𝑑−𝑦𝑙
𝑦ℎ−𝑦𝑙 .

That is, we now have two “free” parameters, the search intensity 𝜌 and the dealer relative flow
utility 𝑦𝑑 . Figure 9 shows the result. It can be seen that the relative welfare change is negative
whenever 𝑦𝑑 is sufficiently high, for all levels of 𝜌 . In particular, 𝑦𝑑 ≈ 1 or, equivalently, 𝑦𝑑 ≈ 𝑦ℎ

suffices for the bottleneck to translate to welfare losses.14

To conclude, this quantitative exercise has carried the theoretical bottleneck prediction to the real-
world RFQ trading of corporate bonds, finding two results. First, for a wide, realistic range of search
intensity 𝜌 , the bottleneck always exists (Figure 8). Second, the bottleneck indeed translates to welfare
losses, when dealers and customers value the bonds’ coupons similarly (i.e., 𝑦𝑑 ≈ 𝑦ℎ; Figure 9). Taken
together, we find that restricting the search capacity 𝑛 may have positive welfare impacts.

Difficulty in identifying the valuation parameters

Under additional assumptions, a number of studies have calibrated the exact welfare values, like
HLW, Pagnotta and Philippon (2018), Lester, Rocheteau, and Weill (2015). Doing so requires the
identification of four other model parameters, {𝑟,𝑦ℎ, 𝑦𝑑 , 𝑦𝑙 }, and below we detail the challenges of
doing so in our setting. To begin with, the literature typically normalizes 𝑟 and one of the flow
utility 𝑦s. For example, HLW set 𝑟 = 𝑦ℎ = 0.05. This leaves 𝑦𝑙 and 𝑦𝑑 to be pinned down by matching
with statistics about the asset price, like trading costs and yield spreads.

While welfare per se only depends on the above four parameters {𝑟,𝑦ℎ, 𝑦𝑑 , 𝑦𝑙 }, calibrating the
model to real-world price statistics, however, also requires knowledge about additional parameters in
our model, in particular, the exit rates {𝑓𝑐, 𝑓𝑑} and the trading gain splits 𝛾𝑙𝑜 and 𝛾ℎ𝑛, which all enter the
agents’ value functions and, hence, also the prices (Section 3.2 and 3.4). 15 Thus, after normalizing 𝑟

and 𝑦ℎ (as in HLW), we are still left with six valuation parameters, {𝑦𝑙 , 𝑦𝑑 , 𝑓𝑐, 𝑓𝑑 , 𝛾𝑙𝑜 , 𝛾ℎ𝑛}, to calibrate.
To the best of our knowledge, however, only two statistics about asset prices, applicable to our model,
have been used in the literature for such calibration: the trading cost (bid-ask spread or dealer markups)
and the yield (or yield / dividend spread, as in, e.g., Pagnotta and Philippon, 2018 and HLW).

The literature reduces the number of the unidentified valuation parameters by making reasonable
approximations. For example, most of the papers have 𝑓𝑐 = 𝑓𝑑 = 0, which would be reasonable in our
model if the exits of both customers and dealers are sufficiently rare. Further, in the context of BB, DGP

14 Absent of an exact calibration, we note that a relatively high 𝑦𝑑 is economically plausible. For example, one can
interpret the consumption good produced by the asset as the coupons paid out by the bond. Absent any shocks, naturally,
both customers and dealers should value such dollar payments exactly the same, suggesting 𝑦𝑑 = 𝑦ℎ = “common value”.
When negative shocks, e.g., liquidity needs, strike, the valuation for such coupon flows will drop, resulting in𝑦𝑙 < 𝑦𝑑 = 𝑦ℎ .

15 Note that the customers’ bargaining power 𝑞 (above and beyond the dealers’ competition) enters the trading gain
splits {𝛾ℎ𝑛, 𝛾𝑙𝑜 } through the specific form of price determination assumed in Section 2. Calibrating 𝛾𝑙𝑜 and 𝛾ℎ𝑛 is therefore
more general and flexible, as no particular assumption on price formation is imposed.
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and in HLW, assume symmetry between customer buys and sells and argue for 𝛾𝑙𝑜 = 𝛾ℎ𝑛 = 𝛾 (the same
Nash bargaining across all customer-dealer meetings). Assuming so in the context of SMS, however,
is less realistic, as customers on the short and long side of the market face different competition among
the dealers and so should expect to extract different fractions of trading gains. Thus, we have at least
4 parameters {𝑦𝑙 , 𝑦𝑑 , 𝛾𝑙𝑜 , 𝛾ℎ𝑛}, facing only two price statistics.

In summary, we lack the moment conditions needed to pin down the valuation parameters and to
quantify welfare implications of the bottleneck. Instead, we let the relative utility flow 𝑦𝑑 to be “free”
parameter. This allows this subsection to comprehensively examine when the bottleneck found in
Section A.1 translates to welfare losses, as opposed to relying on a single point estimation of welfare.

B Collection of proofs

The proofs of all the lemmas are deferred to Supplementary Appendix S1, where we also provide
additional useful results to facilitate equilibrium characterization.

Proposition 1

Proof. Note that the trading gain is Δ = 𝑅ℎ𝑛 − 𝑅𝑙𝑜 = (𝑉ℎ𝑜 −𝑉ℎ𝑛) − (𝑉𝑙𝑜 −𝑉𝑙𝑛), a linear combination of
the four unknown value functions. The four equations (10)-(13), therefore, is a linear equation system
that uniquely pins down the four unknowns.

It only remains to prove that the trading gains are strictly positive when 𝑦
𝑑
≤ 𝑦𝑑 ≤ 𝑦𝑑 . Difference

Equation (10) and (13) to get 0 = 𝑦ℎ − (𝑟 + 𝑓𝑐)𝑅ℎ − 𝜁ℎ𝑛Δℎ𝑑 − 𝜆𝑑 · (𝑅ℎ − 𝑅𝑙 ). Similarly, difference
Equation (12) and (11) to get 0 = 𝑦𝑙 − (𝑟 + 𝑓𝑐)𝑅𝑙 + 𝜁𝑙𝑜Δ𝑑𝑙 + 𝜆𝑢 · (𝑅ℎ − 𝑅𝑙 ). Finally, difference the two
dealers’ HJB equations, (14) and (15), to get𝑦𝑑−(𝑟+𝑓𝑑)𝑅𝑑+𝜁𝑑𝑜Δℎ𝑑−𝜁𝑑𝑛Δ𝑑𝑙 . Note thatΔℎ𝑑 = 𝑅ℎ−𝑅𝑑 and
Δ𝑑𝑙 = 𝑅𝑑 −𝑅𝑙 . Therefore, taking the 𝜁 s as given, the above form a 3-equation-3-unknown linear system,
from which the reservation values {𝑅ℎ, 𝑅𝑑 , 𝑅𝑙 } can be uniquely solved. The resulting expressions are
complicated and omitted here, but it is straightforward to verify that 𝑅ℎ−𝑅𝑑 (resp., 𝑅𝑑−𝑅𝑙 ) is monotone
decreasing (resp., increasing) in 𝑦𝑑 . (Note that the trading gain intensities 𝜁 s are independent of 𝑦𝑑).
Therefore, one can find the upper and the lower thresholds by solving 𝑦

′

𝑑 explicitly from 𝑅ℎ = 𝑅𝑑 and
𝑦

′

𝑑
from 𝑅𝑑 = 𝑅𝑙 :

𝑦
′

𝑑 :=
𝜉𝑦ℎ (𝜁𝑙𝑜 + 𝜆𝑢 + 𝑟 + 𝑓𝑐) + 𝜉𝜆𝑑𝑦𝑙 + 𝜁𝑑𝑛 (𝑦ℎ − 𝑦𝑙 )

𝜁𝑙𝑜 + 𝜆𝑑 + 𝜆𝑢 + 𝑟𝑐
, and

𝑦
′

𝑑
:=

𝜉𝑦𝑙 (𝜁ℎ𝑛 + 𝜆𝑑 + 𝑟 + 𝑓𝑐) + 𝜉𝜆𝑢𝑦ℎ + 𝜁𝑑𝑜 (𝑦𝑙 − 𝑦ℎ)
𝜁ℎ𝑛 + 𝜆𝑑 + 𝜆𝑢 + 𝑟 + 𝑓𝑐

,
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where 𝜉 is defined in the proposition. The above thresholds are still endogenous of the 𝜁 s. To obtain
the thresholds composed of exogenous parameters, note that

𝑦
′

𝑑 ≥ 𝑦ℎ𝜉 −
(𝑦ℎ − 𝑦𝑙 )𝜉𝜆𝑑

𝜆𝑑 + 𝜆𝑢 + 𝑟 + 𝑓𝑐
=: 𝑦𝑑 and 𝑦

′

𝑑
≤ 𝑦𝑙𝜉 +

(𝑦ℎ − 𝑦𝑙 )𝜉𝜆𝑢
𝜆𝑑 + 𝜆𝑢 + 𝑟 + 𝑓𝑐

=: 𝑦
𝑑
.

Clearly, 𝑦𝑑 > 𝑦
𝑑
. As such, 𝑦

𝑑
≤ 𝑦𝑑 ≤ 𝑦𝑑 is sufficient to ensure 𝑅𝑙 < 𝑅𝑑 < 𝑅ℎ. □

Proposition 2

Proof. The effects of 𝜌 and 𝑛 are proved separately below. For concreteness, assume that the asset is
in excess supply. (The case of excess demand is symmetric and omitted.)

A higher search intensity 𝜌: The trading volume can be written as 𝑡 = 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 (Equation 8).
Equation (S3) gives another link between 𝑡 and𝑚ℎ𝑛. Combining the two gives

𝑡 =
(1 +𝑚𝑑𝑜 − 𝑠)𝜆𝑢𝜌
(𝜆𝑑 + 𝜆𝑢)𝜈−1

ℎ𝑛
+ 𝜌

,(B.1)

which is increasing in 𝜌 and in 𝑚𝑑𝑜 (note that 𝜈ℎ𝑛 is also increasing in 𝑚𝑑𝑜). Lemma S1.2 has shown
that a higher 𝜌 increases 𝑚𝑑𝑜 (given excess supply). Therefore, the volume increases with 𝜌 . It is
then also clear from (S2) that 𝑚𝑙𝑜 decreases. Finally, 𝑚ℎ𝑛 = 𝜈𝑙𝑜

𝜈ℎ𝑛
𝑚𝑙𝑜 by (8). The ratio 𝜈𝑙𝑜

𝜈ℎ𝑛
=

1−𝜋𝑛
𝑑𝑜

1−(1−𝜋𝑑𝑜 )𝑛 .
Simply computing the derivative with respect to 𝜋𝑑𝑜 can show that the ratio decreases with 𝜋𝑑𝑜 . That
is, a higher 𝜌 , increasing𝑚𝑑𝑜 and 𝜋𝑑𝑜 , results in a lower𝑚ℎ𝑛 as well.

A larger search capacity 𝑛: Lemma S1.2 has shown that a larger 𝑛 also increases𝑚𝑑𝑜 (given excess
supply). Note that since 𝜈ℎ𝑛 = 1−(1−𝜋 (𝑚𝑑𝑜/𝑚𝑑))𝑛, 𝜕𝜈ℎ𝑛

𝜕𝑚𝑑𝑜
> 0 and 𝜕𝜈ℎ𝑛

𝜕𝑛 > 0. From the same expression
of 𝑡 above, therefore, 𝑛 also increases trading volume. Again, from Equation (S2), it is clear that𝑚𝑙𝑜 ,
the long-side, then decreases with 𝑛.

The effect on 𝑚ℎ𝑛 = 𝜈𝑙𝑜
𝜈ℎ𝑛

𝑚𝑙𝑜 , the short-side, is more complicated, because now 𝑛 also affects the
ratio 𝜈𝑙𝑜

𝜈ℎ𝑛
. To prove the statement, instead, it is easier to turn to the following equivalent expression:

𝑚ℎ𝑛 (𝑚𝑑𝑜 , 𝑛) :=
𝑡

𝜌𝜈ℎ𝑛
=

(1 +𝑚𝑑𝑜 − 𝑠)𝜆𝑢
𝜆𝑑 + 𝜆𝑢 + 𝜌 (1 − (1 − 𝜋 (𝑚𝑑𝑜/𝑚𝑑))𝑛)

,(B.2)

where the second equality follows Equation (S3). It is straightforward to find that lim𝜌→0
𝜕𝑚ℎ𝑛
𝜕𝑛 = 0;

and lim𝜌→0
𝜕𝑚ℎ𝑛
𝜕𝑚𝑑𝑜

= 𝜆𝑢
𝜆𝑑+𝜆𝑢 > 0. Directly computation using (S23) implies lim𝜌→0

d𝑚𝑑𝑜
d𝑛 > 0. Therefore,

lim𝑛→∞
d𝑚ℎ𝑛

d𝑛 = lim𝑛→∞
(
𝜕𝑚ℎ𝑛
𝜕𝑛 + 𝜕𝑚ℎ𝑛

𝜕𝑚𝑑𝑜

d𝑚𝑑𝑜
d𝑛

)
> 0. □
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Proposition 3

Proof. The proof considers the changes in 𝜌 and in 𝑛 separately. Only the case of excess supply, i.e.,
𝑠 > 𝜂 +𝑚𝑑/2, is analyzed (and the case of excess demand is analogous and is omitted).

When 𝜌 increases: Recall welfare is 𝑤 = (𝑦ℎ𝑚ℎ𝑜 + 𝑦𝑑𝑚𝑑𝑜 + 𝑦𝑙𝑚𝑙𝑜)/𝑟 . By market clearing (2),
substitute𝑚𝑙𝑜 = 𝑠 −𝑚ℎ𝑜 −𝑚𝑑𝑜 in the above welfare expression to get 𝑤 = (𝑦𝑙𝑠 + (𝑦ℎ − 𝑦𝑙 )𝑚ℎ𝑜 + (𝑦𝑑 −
𝑦𝑙 )𝑚𝑑𝑜)/𝑟 . By Lemma S1.2, 𝑚𝑑𝑜 increases with 𝜌 . By Proposition 2, 𝑚ℎ𝑛 and 𝑚𝑙𝑜 decrease with 𝜌 .
That is,𝑚ℎ𝑜 = 𝜂 −𝑚ℎ𝑛 increases with 𝜌 . Note that 𝑦𝑑 ∈ [𝑦

𝑑
, 𝑦𝑑] is assumed to ensure positive trading

gains (Proposition 1) and we also have that 𝑦𝑙 < 𝑦
𝑑
< 𝑦𝑑 < 𝑦ℎ. It then follows that 𝑦𝑑 ∈ (𝑦𝑙 , 𝑦ℎ).

Therefore, welfare is increasing with 𝜌 .

When 𝑛 increases: Welfare can be written as𝑤 = (𝑦𝑙𝑠 + (𝑦𝑑 − 𝑦𝑙 )𝑚𝑑𝑜 + (𝑦ℎ − 𝑦𝑙 ) (𝜂 −𝑚ℎ𝑛))/𝑟 . The
effect of 𝑛 goes through 𝑚𝑑𝑜 and 𝑚ℎ𝑛, which are linked through the trading volume definition of
𝑡 = 𝜌𝑚ℎ𝑛𝜈ℎ𝑛. In the proof of Proposition 2, it has been shown that𝑚ℎ𝑛 can be written as a function of
𝑚𝑑𝑜 and 𝑛; see Equation (B.2). Applying the chain rule yields

d𝑚ℎ𝑛

d𝑛
=
𝜕𝑚ℎ𝑛

𝜕𝑛
+ 𝜕𝑚ℎ𝑛

𝜕𝑚𝑑𝑜

d𝑚𝑑𝑜

d𝑛
.(B.3)

Combining the above, one can see that

d𝑤
d𝑛

=
1
𝑟

(
(𝑦𝑑 − 𝑦𝑙 )

d𝑚𝑑𝑜

d𝑛
− (𝑦ℎ − 𝑦𝑙 )

d𝑚ℎ𝑛

d𝑛

)
=

1
𝑟

((
(𝑦𝑑 − 𝑦𝑙 ) − (𝑦ℎ − 𝑦𝑙 )

𝜕𝑚ℎ𝑛

𝜕𝑚𝑑𝑜

)
d𝑚𝑑𝑜

d𝑛
− (𝑦ℎ − 𝑦𝑙 )

𝜕𝑚ℎ𝑛

𝜕𝑛

)
.

Therefore, three derivatives of 𝜕𝑚ℎ𝑛
𝜕𝑛 , 𝜕𝑚ℎ𝑛

𝜕𝑚𝑑𝑜
, and d𝑚𝑑𝑜

d𝑛 need to be evaluated under 𝜌 → 0 and under 𝜌 → ∞.
Consider first the case of 𝜌 → 0. Directly computing the first partial derivative yields

𝜕𝑚ℎ𝑛

𝜕𝑛
=
𝜆𝑢 (1 +𝑚𝑑𝑜 − 𝑠)

(
1 − 𝑚𝑑𝑜

𝑚𝑑

)𝑛
𝜌 log

(
1 − 𝑚𝑑𝑜

𝑚𝑑

)
(
𝜆𝑑 + 𝜆𝑢 + 𝜌

(
1 −

(
1 − 𝑚𝑑𝑜

𝑚𝑑

)𝑛))2 ,(B.4)

from which it follows that lim𝜌→0
𝜕𝑚ℎ𝑛
𝜕𝑛 = 0. Also, lim𝜌→0

𝜕𝑚ℎ𝑛
𝜕𝑚𝑑𝑜

= 𝜆𝑢
𝜆𝑑+𝜆𝑢 = 𝜂. Hence, lim𝜌→0

d𝑚ℎ𝑛
d𝑛 =

𝜂 lim𝜌→0
d𝑚𝑑𝑜
d𝑛 . Therefore, lim𝜌→0

d𝑤
d𝑛 = 1

𝑟

(
(𝑦𝑑 − 𝑦𝑙 ) lim𝜌→0

d𝑚𝑑𝑜
d𝑛 − (𝑦ℎ − 𝑦𝑙 )𝜂 lim𝜌→0

d𝑚𝑑𝑜
d𝑛

)
= 1

𝑟 (𝑦𝑑 −
𝑦) lim𝜌→0

d𝑚𝑑𝑜
d𝑛 /𝑟 , where 𝑦 := 𝜂𝑦ℎ + (1 − 𝜂)𝑦𝑙 . Note that lim𝜌→0

d𝑚𝑑𝑜
d𝑛 > 0 because (i) from (S18),

lim𝜌→0𝑚𝑑𝑜 ∈ (0,𝑚𝑑); and (ii) given the excess supply, 𝑚𝑑𝑜 increases in 𝑛 (Lemma S1.2). Therefore,
sign

[
lim𝜌→0

d𝑤
d𝑛

]
= sign[𝑦𝑑 − 𝑦], proving the statement.

Next, consider the case of 𝜌 → ∞. Note that d𝑚𝑑𝑜
d𝑛 > 0 (Lemma S1.2). Then signing d𝑤

d𝑛 in this
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case is equivalent to

sign
[

lim
𝜌→∞

d𝑤
d𝑛

]
= sign

[
𝑦𝑑 − 𝑦𝑙
𝑦ℎ − 𝑦𝑙

− lim
𝜌→∞

(
𝑑𝑚ℎ𝑛
𝑑𝑛

𝑑𝑚𝑑𝑜
𝑑𝑛

)]
.

Next, we use (B.4) to calculate 𝜕𝑚ℎ𝑛
𝜕𝑛 ≤ 0. Equation (B.4) then implies that lim𝜌→∞

𝑑𝑚ℎ𝑛
𝑑𝑛

𝑑𝑚𝑑𝑜
𝑑𝑛

≤

lim𝜌→∞
𝜕𝑚ℎ𝑛
𝜕𝑚𝑑𝑜

= 0. This implies that lim𝜌→∞
d𝑤
d𝑛 > 0. □

Proposition 4

Proof. Similar to the proof of Proposition 3 one can see that

d𝑤
d𝜓

=
1
𝑟

(
(𝑦𝑑 − 𝑦𝑙 )

d𝑚𝑑𝑜

d𝜓
− (𝑦ℎ − 𝑦𝑙 )

d𝑚ℎ𝑛

d𝜓

)
=

1
𝑟

((
(𝑦𝑑 − 𝑦𝑙 ) − (𝑦ℎ − 𝑦𝑙 )

𝜕𝑚ℎ𝑛

𝜕𝑚𝑑𝑜

)
d𝑚𝑑𝑜

d𝜓
− (𝑦ℎ − 𝑦𝑙 )

𝜕𝑚ℎ𝑛

𝜕𝜓

)
.

Therefore, three derivatives of 𝜕𝑚ℎ𝑛
𝜕𝜓 , 𝜕𝑚ℎ𝑛

𝜕𝑚𝑑𝑜
, and d𝑚𝑑𝑜

d𝜓 need to be evaluated under 𝜌 → 0 and under 𝜌 → ∞.
Consider first the case of 𝜌 → 0. Directly computing the first partial derivative yields we get that

lim𝜌→0
𝜕𝑚ℎ𝑛
𝜕𝜓 = 0. Also, lim𝜌→0

𝜕𝑚ℎ𝑛
𝜕𝑚𝑑𝑜

= 𝜆𝑢
𝜆𝑑+𝜆𝑢 = 𝜂. Hence, lim𝜌→0

d𝑚ℎ𝑛
d𝜓 = 𝜂 lim𝜌→0

d𝑚𝑑𝑜
d𝜓 . Therefore,

lim𝜌→0
d𝑤
d𝜓 = 1

𝑟

(
(𝑦𝑑 − 𝑦𝑙 ) lim𝜌→0

d𝑚𝑑𝑜
d𝜓 − (𝑦ℎ − 𝑦𝑙 )𝜂 lim𝜌→0

d𝑚𝑑𝑜
d𝜓

)
= 1

𝑟 (𝑦𝑑 − 𝑦) lim𝜌→0
d𝑚𝑑𝑜
d𝜓 /𝑟 , where

𝑦 := 𝜂𝑦ℎ + (1 − 𝜂)𝑦𝑙 . Note that lim𝜌→0
d𝑚𝑑𝑜
d𝜓 > 0. Therefore, sign

[
lim𝜌→0

d𝑤
d𝜓

]
= sign[𝑦𝑑 − 𝑦], proving

the statement.
Next, consider the case of 𝜌 → ∞. ] Note that d𝑚𝑑𝑜

d𝜓 > 0 (Lemma S1.3). Then signing d𝑤
d𝜓 in this

case is equivalent to

sign
[

lim
𝜌→∞

d𝑤
d𝜓

]
= sign


𝑦𝑑 − 𝑦𝑙
𝑦ℎ − 𝑦𝑙

− lim
𝜌→∞

©«
d𝑚ℎ𝑛
d𝜓

d𝑚𝑑𝑜
d𝜓

ª®¬
 .

Next, it follows from from (B.2) that 𝜕𝑚ℎ𝑛
𝜕𝑛 ≤ 0. Implicit function theorem applied to (B.2) then implies

that lim𝜌→∞
(
𝑑𝑚ℎ𝑛
𝑑𝜓 /𝑑𝑚𝑑𝑜

𝑑𝜓

)
≤ lim𝜌→∞

𝜕𝑚ℎ𝑛
𝜕𝑚𝑑𝑜

= 0. This implies that lim𝜌→∞
d𝑤
d𝜓 > 0. □

Proposition 5

Proof. Proposition S4 shows how the trading gains are split between one searching customer and 𝑛

potential counterparty dealers. Recall that with probability 𝑞, the customer is able to capture the full
trading gain. Therefore, conditional on finding at least one dealer of her matching type, an ℎ𝑛-buyer
expects a profit of 𝑞Δℎ𝑑 + (1 − 𝑞)(𝑅ℎ − (𝑅𝑑 + �̄�Δℎ𝑑)) = (𝑞 + (1 − 𝑞)(1 − �̄�))Δℎ𝑑 , while an 𝑙𝑜-seller
expects 𝑞Δ𝑑𝑙 + (1−𝑞) ((𝑅𝑑 − �̄�Δℎ𝑑) −𝑅𝑑) = (𝑞 + (1−𝑞) (1− �̄�))Δ𝑑𝑙 . Substituting in �̄� and �̄� gives the
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stated 𝛾 (·) expression. □

Proposition 6

Proposition 6 only characterizes the equilibrium for the case of 𝑛 = 𝑛SMS > 2, which guarantees that
𝜋∗ ≤ 1

2 by Lemma S1.4. Before proceeding to the proof, we first add the case of 𝑛 = 2:

Proposition (Equilibrium technology choices when 𝑛 = 2). If 𝜋∗ ≤ 1
2 , Proposition 6 holds. If

𝜋∗ > 1/2, a unique stationary equilibrium exists depending on the asset supply 𝑠: There exist
thresholds 0 < 𝑠ℎ𝑛,0 < 𝑠ℎ𝑛,1 ≤ 𝑠𝑙𝑜,1 < 𝑠𝑙𝑜,0 < 1 +𝑚𝑑 so that

(a) ℎ𝑛-buyers’ proba
-bility to use SMS, 𝜃ℎ𝑛

(b) 𝑙𝑜-sellers’ proba
-bility to use SMS, 𝜃𝑙𝑜

(c) asset holding
by dealers,𝑚𝑑𝑜

(1) 0 < 𝑠 ≤ 𝑠ℎ𝑛,0 0 1 𝑔(0, 1,𝑚𝑑𝑜) = 𝑠

(2) 𝑠ℎ𝑛,0 ≤ 𝑠 ≤ 𝑠ℎ𝑛,1 0 𝑔(1, 𝜃𝑙𝑜 ,𝑚𝑑 −𝑚∗
𝑑
) = 𝑠 𝑚𝑑 −𝑚∗

𝑑

(3) 𝑠ℎ𝑛,1 < 𝑠 < 𝑠𝑙𝑜,1 0 0 𝑔(0, 0,𝑚𝑑𝑜) = 𝑠

(4) 𝑠𝑙𝑜,1 ≤ 𝑠 ≤ 𝑠𝑙𝑜,0 𝑔(𝜃ℎ𝑛, 1,𝑚∗
𝑑
) = 𝑠 0 𝑚∗

𝑑

(5) 𝑠𝑙𝑜,0 < 𝑠 < 1 +𝑚𝑑 1 0 𝑔(1, 0,𝑚𝑑𝑜) = 𝑠

where 𝑔(𝑥1, 𝑥2, 𝑥3) = 𝑠 uniquely solves 𝜃ℎ𝑛, 𝜃𝑙𝑜 , and 𝑚𝑑𝑜 in columns (a), (b), and (c), respectively.
The constant 𝜋∗ is given in Lemma 3 and𝑚∗

𝑑
:= 𝜋−1(𝜋∗)𝑚𝑑 . The function𝑔(·) and the the thresholds

{𝑠ℎ𝑛,0, 𝑠ℎ𝑛,1, 𝑠𝑙𝑜,1, 𝑠𝑙𝑜,0} are given in the proof.

Proof. To begin with, note that both 𝜈𝑙𝑜 and 𝜈ℎ𝑛 are only functions of 𝜃𝑘
𝑙𝑜

and 𝜃𝑘
ℎ𝑛

, respectively; see,
e.g., Equation (S20). Following Lemma S1.1, Equation (S18) can be written as 𝑔(𝜃𝑙𝑜 , 𝜃ℎ𝑛,𝑚𝑑𝑜 ; 𝑠) =
0. For the case of 𝜋∗ ≤ 1

2 , define the four thresholds {𝑠ℎ𝑛,0, 𝑠ℎ𝑛,1, 𝑠𝑙𝑜,1, 𝑠𝑙𝑜,0} to be the respective
unique solution to 𝑔(·; 𝑠) = 0 for {𝜃𝑙𝑜 , 𝜃ℎ𝑛,𝑚𝑑𝑜} ∈ {{1, 0, 𝜋−1(𝜋∗)𝑚𝑑}, {1, 1, 𝜋−1(𝜋∗)𝑚𝑑}, {1, 1, (1 −
𝜋−1(𝜋∗))𝑚𝑑}, {0, 1, (1 − 𝜋−1(𝜋∗))𝑚𝑑}}. For the case of 𝜋∗ > 1

2 , likewise, the four thresholds
{𝑠ℎ𝑛,0, 𝑠ℎ𝑛,1, 𝑠𝑙𝑜,1, 𝑠𝑙𝑜,0} are defined as the respective unique solution to 𝑔(·; 𝑠) = 0 for {𝜃𝑙𝑜 , 𝜃ℎ𝑛,𝑚𝑑𝑜} ∈
{{1, 0, (1 − 𝜋−1(𝜋∗))𝑚𝑑}, {0, 0, (1 − 𝜋−1(𝜋∗))𝑚𝑑}, {0, 0, 𝜋−1(𝜋∗)𝑚𝑑}, {0, 1, 𝜋−1(𝜋∗)𝑚𝑑}}. In either
case, it is easy to see that the four thresholds indeed exist according to the respective definition. In
particular, the monotonicity shown in Lemma S1.1 guarantees the sorting of these thresholds. To
complete the proof, for each region of 𝑠, the stated values of {𝜃𝑙𝑜 , 𝜃ℎ𝑛,𝑚𝑑𝑜} are first verified to indeed
sustain an equilibrium and then shown to be unique in that region. Only the case of 𝜋∗ ≤ 1

2 is discussed
below for brevity.

Region 1: 0 < 𝑠 < 𝑠ℎ𝑛,0. With {𝜃𝑙𝑜 , 𝜃ℎ𝑛} = {1, 0}, 𝑚𝑑𝑜 is uniquely pinned down by Equation (S18).
Since 𝑠 < 𝑠ℎ𝑛,0, Lemma S1.1 implies that 𝜋𝑑𝑜 < 𝜋∗. Hence, by Lemma 3, 𝜁 SMS

ℎ𝑛
< 𝜁BB

ℎ𝑛
but 𝜁 SMS

𝑙𝑜
> 𝜁BB

𝑙𝑜
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and, indeed, {𝜃𝑙𝑜 , 𝜃ℎ𝑛} = {1, 0} sustains an equilibrium.
There are three possible deviations. First, suppose instead that :w {𝜃𝑙𝑜 , 𝜃ℎ𝑛} ∈ (0, 1) × (0, 1). This

would require both ℎ𝑛-buyers and 𝑙𝑜-sellers be indifferent between the two technologies. That is,
𝜋𝑑𝑜 = 𝜋𝑑𝑛 = 𝜋∗ must hold, but this cannot be true because 𝜋𝑑𝑜 < 𝜋∗ in this region. Second, suppose
𝜃𝑙𝑜 = 𝜃ℎ𝑛 = 0. But by Lemma S1.1, this reduction in 𝜃𝑙𝑜 would only reduce 𝑚𝑑𝑜 (for a fixed 𝑠) and
increase 𝑚𝑑𝑛, making 𝑙𝑜-sellers prefer SMS more, hence inconsistent with 𝜁 SMS

𝑙𝑜
< 𝜁BB

𝑙𝑜
as implied by

𝜃𝑙𝑜 = 0. Third, suppose 𝜃𝑙𝑜 = 𝜃ℎ𝑛 = 1. Likewise, this increase in 𝜃ℎ𝑛 would decrease𝑚𝑑𝑜 , inconsistent
with ℎ𝑛-buyers’ switch from BB to SMS as a lower 𝑚𝑑𝑜 would only strengthen 𝜁 SMS

ℎ𝑛
< 𝜁BB

ℎ𝑛
. Since

none of these alternative values of 𝜃𝑙𝑜 and 𝜃ℎ𝑛 can sustain the equilibrium, in this range of 𝑠, the only
possible equilibrium is {𝜃𝑙𝑜 , 𝜃ℎ𝑛} = {1, 0}.

Region 2: 𝑠ℎ𝑛,0 ≤ 𝑠 ≤ 𝑠ℎ𝑛,1. With {𝜃𝑙𝑜 ,𝑚𝑑𝑜} = {1, 𝜋−1(𝜋∗)𝑚𝑑} in this region, 𝑔(·; 𝑠) = 0 uniquely
solves 𝜃ℎ𝑛 ∈ [0, 1]. This is indeed an equilibrium because at 𝜋𝑑𝑜 = 𝜋∗, ℎ𝑛-buyers are indifferent
between SMS and BB and, hence, any 𝜃ℎ𝑛 ∈ [0, 1] is admissible. On the other hand, 𝜋𝑑𝑜 = 𝜋∗ < 1

2
implies that 𝑚𝑑𝑜 < 𝑚𝑑/2 (recall that 𝜋 (𝑥) ≥ 𝑥 by assumption) and so 𝑚𝑑𝑛 > 𝑚𝑑/2. It then follows
that 𝜋𝑑𝑛 > 𝑚𝑑𝑛/𝑚𝑑 > 1

2 > 𝜋∗ (because 𝜋∗ < 1/2). Therefore, 𝜁 SMS
𝑙𝑜

> 𝜁BB
𝑙𝑜

by Lemma 3 and 𝜃𝑙𝑜 = 1 is
sustained.

To rule out other equilibria, consider alternative values. Suppose 𝜋𝑑𝑜 > 𝜋∗, implying 𝜃ℎ𝑛 = 1.
Recall that 𝑠 = 𝑠ℎ𝑛,1 is the unique solution to 𝑔(·; 𝑠) = 0 when 𝜃𝑙𝑜 = 𝜃ℎ𝑛 = 1 and 𝑚𝑑𝑜 = 𝜋−1(𝜋∗)𝑚𝑑 .
The monotonicity in Lemma S1.1 would then require 𝑠 > 𝑠ℎ𝑛,1, out of this region. Suppose instead
𝜋𝑑𝑜 < 𝜋∗, implying 𝜃ℎ𝑛 = 0. Then, similarly, the monotonicity in Lemma S1.1 would require 𝑠 < 𝑠ℎ𝑛,0,
again out of this region. Finally, suppose 𝜋𝑑𝑜 = 𝜋∗ but 𝜃𝑙𝑜 < 1. Then 𝜋𝑑𝑜 = 𝜋∗ < 1

2 implies that
𝑚𝑑𝑜 < 𝑚𝑑/2 and so 𝑚𝑑𝑛 > 𝑚𝑑/2. It then follows that 𝜋𝑑𝑛 > 𝑚𝑑𝑛/𝑚𝑑 > 1

2 > 𝜋∗, implying 𝜃𝑙𝑜 = 1, a
contradiction.

Region 3: 𝑠ℎ𝑛,1 < 𝑠 < 𝑠𝑙𝑜,1. When 𝜃𝑙𝑜 = 𝜃ℎ𝑛 = 1, 𝑠ℎ𝑛,1 < 𝑠 < 𝑠𝑙𝑜,1 ensures that 𝑚𝑑𝑜 as solved from
𝑔(·; 𝑠) = 0 satisfies 𝜋−1(𝜋∗)𝑚𝑑 < 𝑚𝑑𝑜 < 𝜋−1(1 − 𝜋∗)𝑚𝑑 ; and, hence, 𝜋𝑑𝑛 > 𝜋∗. That is, 𝜁 SMS > 𝜁BB

for both ℎ𝑛 and 𝑙𝑜 , which indeed guarantee that 𝜃𝑙𝑜 = 𝜃ℎ𝑛 = 1 as an equilibrium.
Again, consider other values for {𝜃𝑙𝑜 , 𝜃ℎ𝑛}. First, {𝜃𝑙𝑜 , 𝜃ℎ𝑛} ∈ (0, 1)2 cannot be an equilibrium for

the same reason as explained in Region 1. Second, suppose {𝜃𝑙𝑜 , 𝜃ℎ𝑛} = {1, 0}. By Lemma S1.1, this
reduction in 𝜃ℎ𝑛 would result in an increase in𝑚𝑑𝑜 , but such an increase would only make SMS more
attractive for ℎ𝑛-buyers, contradicting the reduction of 𝜃ℎ𝑛. Third, suppose {𝜃𝑙𝑜 , 𝜃ℎ𝑛} = {0, 1}. Then
similarly by Lemma S1.1, this reduction in 𝜃𝑙𝑜 would result in a decrease in𝑚𝑑𝑜 or an increase in𝑚𝑑𝑛,
but such an increase would only make SMS more attractive for 𝑙𝑜-sellers, contradicting the reduction
of 𝜃𝑙𝑜 .
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Region 4: 𝑠𝑙𝑜,1 ≤ 𝑠 ≤ 𝑠𝑙𝑜,0. This region mirrors Region 2 and the proof is omitted for brevity.

Region 5: 𝑠𝑙𝑜,0 < 𝑠 < 1 +𝑚𝑑 . This region mirrors Region 1 and the proof is omitted for brevity. □

Proposition 7

Proof. We consider the case of 𝑠 > 𝑠ℎ𝑛,1 and prove that the ratio defined in (24) weakly decreases in 𝑠.
The volume share ratio, 𝑉𝑆 , in this region can be written as

𝜌SMS𝑚SMS
𝑙𝑜

𝜈SMS
𝑙𝑜

+ 𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛(

𝜌SMS𝑚SMS
𝑙𝑜

𝜈SMS
𝑙𝑜

+ 𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

)
+

(
𝜌BB𝑚BB

𝑙𝑜
𝜈BB
𝑙𝑜

+ 𝜌BB𝑚BB
ℎ𝑛

𝜈BB
ℎ𝑛

) =
1
2
+ 1

2
𝑚SMS

𝑙𝑜
𝜈SMS
𝑙𝑜

𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

.

This is because in the considered region, 𝜃ℎ𝑛 = 1. Then the dealer stationarity (S8) reduces to

𝜌SMS𝑚SMS
𝑙𝑜 𝜈SMS

𝑙𝑜 + 𝜌BB𝑚BB
𝑙𝑜 𝜈BB

𝑙𝑜 = 𝜌SMS𝑚SMS
ℎ𝑛 𝜈SMS

ℎ𝑛 .(B.5)

We consider three cases next:
• 𝑠 < 𝑠𝑙𝑜,1. In this case, 𝜃𝑙𝑜 = 1, which means that the dealer stationarity condition (S8) writes as
𝜌SMS𝑚SMS

𝑙𝑜
𝜈SMS
𝑙𝑜

= 𝜌SMS𝑚SMS
ℎ𝑛

𝜈SMS
ℎ𝑛

implying 𝑉𝑆 = 1.
• 𝑠 > 𝑠𝑙𝑜,0. In this case, 𝜃𝑙𝑜 = 0, implying 𝑉𝑆 = 1/2.
• 𝑠𝑙𝑜,1 ≤ 𝑠 ≤ 𝑠𝑙𝑜,0. In this case, 𝑚𝑑𝑜 is a constant, invariant of 𝑠, and so both 𝜈𝐵𝐵

𝑙𝑜
and 𝜈SMS

𝑙𝑜
are

constants as well. Then signd𝑉𝑆
d𝑠 = sign d

d𝑠

(
𝑚SMS

𝑙𝑜
/𝑚SMS

ℎ𝑛

)
. Using again (B.5),

𝑚SMS
𝑙𝑜

𝑚SMS
ℎ𝑛

=
𝜌SMS𝑚SMS

𝑙𝑜
𝜈SMS
ℎ𝑛

𝜌SMS𝑚SMS
𝑙𝑜

𝜈SMS
𝑙𝑜

+ 𝜌BB𝑚BB
𝑙𝑜

𝜈BB
𝑙𝑜

=
𝜌SMS𝜈SMS

ℎ𝑛

𝜌SMS𝜈SMS
𝑙𝑜

+ 𝜌BB𝜈BB
𝑙𝑜

(
𝑚BB

𝑙𝑜

𝑚SMS
𝑙𝑜

)
Using the stationarity conditions (S4) and (S5),

𝑚SMS
𝑙𝑜

𝑚BB
𝑙𝑜

=
𝜆𝑢 + 𝜌BB𝜈BB

𝑙𝑜

𝜆𝑢 + 𝜌SMS𝜈SMS
𝑙𝑜

𝜃𝑙𝑜
1 − 𝜃𝑙𝑜

,

increasing in 𝜃𝑙𝑜 , which is the only variable endogenous of 𝑠. Proposition 6 has shown that in
this range, 𝜃𝑙𝑜 decreases with 𝑠. Therefore, by chain rule, signd𝑉

d𝑠 < 0.
Combining the three cases completes the proof for the claims regarding 𝑠. To prove the claims
regarding 𝜆𝑑 , note that from Equation (S18), cateris paribus, the left-hand side is monotone increasing
in 𝜆𝑑 (the excess supply implies 𝜈ℎ𝑛 > 𝜈𝑙𝑜 ; see Equation (S22)) but decreasing in 𝑠. Therefore, increases
in 𝑠 are equivalent to those in 𝜆𝑑 . Hence, all results about 𝑠 above also hold for 𝜆𝑑 . □
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Proposition 8

Proof. Since 𝑛BB = 1 < 𝑛SMS, below the notation 𝑛, without the superscript, indicates 𝑛SMS. Propo-
sition S4 gives the expression of �̄�𝑘 for 𝑘 ∈ {BB, SMS}. In particular, �̄�BB = 1, and for SMS,
�̄�SMS =

𝑛·(1−𝜋𝑑𝑜 )𝜋𝑛−1
𝑑𝑜

1−(1−𝜋𝑑𝑜 )𝑘
. Then �̄�SMS/�̄�BB = �̄�SMS. By Lemma S1.1, 𝑚𝑑𝑜 is weakly increasing with 𝑠

and hence so does 𝜋𝑑𝑜 , thus proving the claim. To prove the claims regarding 𝜆𝑑 , note that from
Equation (S18), cateris paribus, the left-hand side is monotone increasing in 𝜆𝑑 (the excess supply
implies 𝜈ℎ𝑛 > 𝜈𝑙𝑜 ; see Equation S22) but decreasing in 𝑠. Hence, all results about 𝑠 hold for 𝜆𝑑 . □

Proposition 9 and 10

Proof. Welfare can be written as 𝑤 = 1
𝑟 (𝑦𝑙𝑠 + (𝑦𝑑 − 𝑦𝑙 )𝑚𝑑𝑜 + (𝑦ℎ − 𝑦𝑙 ) (𝜂 −𝑚ℎ𝑛)). Consider a small

change in either 𝜃 ∈ {𝜃ℎ𝑛, 𝜃𝑙𝑜}. We then have

sign
[
d𝑤
d𝜃

]
= sign

[
(𝑦𝑑 − 𝑦𝑙 )

d𝑚𝑑𝑜

d𝜃
− (𝑦ℎ − 𝑦𝑙 )

d𝑚ℎ𝑛

d𝜃

]
.

Moreover, following𝑚ℎ𝑜 +𝑚ℎ𝑛 = 𝜂 and using the expressions (S2) and (S3), we have

d𝑚ℎ𝑛

d𝜃
= −d𝑚ℎ𝑛

d𝜃
= 𝜂

d𝑚𝑑𝑜

d𝜃
− 1
𝜆𝑢 + 𝜆𝑑

d𝑡
d𝜃

.(B.6)

Combining the above two, we get

sign
[
d𝑤
d𝜃

]
= sign

[
(𝑦𝑑 − 𝑦)d𝑚𝑑𝑜

d𝜃
+ 𝑦ℎ − 𝑦𝑙
𝜆𝑢 + 𝜆𝑑

d𝑡
d𝜃

]
,(B.7)

where𝑦 := 𝜂𝑦ℎ + (1−𝜂)𝑦𝑙 . The derivative of d𝑚𝑑𝑜
d𝜃 can be signed by the implicit function theorem using

the results from Lemma S1.1: d𝑚𝑑𝑜
d𝜃𝑙𝑜 > 0 and d𝑚𝑑𝑜

d𝜃ℎ𝑛 < 0. To see how volume 𝑡 changes with respect to 𝜃 ,
recall from Equations (S2) and (S3) and use 𝑡 = 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 = 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 to get

𝑡 =
𝜆𝑑 (𝑠 −𝑚𝑑𝑜)
𝜆𝑑+𝜆𝑢
𝜌𝜈𝑙𝑜

+ 1
and 𝑡 =

𝜆𝑢 (1 +𝑚𝑑𝑜 − 𝑠)
𝜆𝑑+𝜆𝑢
𝜌𝜈ℎ𝑛

+ 1
.(B.8)

Note that 𝜃ℎ𝑛 in the first expression only affects 𝑡 through 𝑚𝑑𝑜 . Therefore, 𝑡 is increasing in 𝜃𝑙𝑜 .
Likewise, 𝜃𝑙𝑜 affects 𝑡 in the second expression only through 𝑚𝑑𝑜 . Hence, 𝑡 is also increasing in 𝜃ℎ𝑛.
That is, d𝑡

d𝜃 > 0 for either 𝜃 ∈ {𝜃𝑙𝑜 , 𝜃ℎ𝑛}.

The case of sufficiently high 𝜌 , i.e., 𝜌 := min[𝜌BB, 𝜌SMS] → ∞: Since d𝑡
d𝜃 > 0,

sign
[

lim
𝜌→∞

d𝑤
d𝜃

]
= sign

[
(𝑦𝑑 − 𝑦) lim

𝜌→∞

(
d𝑚𝑑𝑜

d𝜃
/ d𝑡

d𝜃

)
+ 𝑦ℎ − 𝑦𝑙
𝜆𝑢 + 𝜆𝑑

]
.

Hence, one needs to find lim𝜌→∞
(

d𝑚𝑑𝑜
d𝜃 / d𝑡

d𝜃

)
.
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Consider first 𝜃 = 𝜃𝑙𝑜 . Then differentiate the second expression of 𝑡 in (B.8) with respect
to 𝜃 = 𝜃𝑙𝑜 , to get

(
𝜆𝑑+𝜆𝑢
𝜈ℎ𝑛

+ 𝜌
)

d𝑡
d𝜃 = 𝜌𝜆𝑢

d𝑚𝑑𝑜
d𝜃 . Hence, lim𝜌→∞

(
d𝑚𝑑𝑜

d𝜃 / d𝑡
d𝜃

)
= 1

𝜆𝑢
. (Note that 𝜈𝑘

ℎ𝑛
=

1 − (1 −𝑚𝑑𝑜/𝑚𝑑)𝑛
𝑘 is always nonzero, because 𝑚𝑑𝑜 > 𝑚𝑑/2 in the case of excess supply.) Then

sign
[
lim𝜌→∞

d𝑤
d𝜃

]
= sign

[
𝑦𝑑−𝑦
𝜆𝑢

+ 𝑦ℎ−𝑦𝑙
𝜆𝑢+𝜆𝑑

]
= sign[𝑦𝑑 − 𝑦 − (𝑦ℎ − 𝑦𝑙 )𝜂] = sign[𝑦𝑑 − 𝑦𝑙 ] > 0. (Recall that

𝑦𝑑 ∈ (𝑦 ′

𝑑 , 𝑦
′

𝑑) ⊂ (𝑦𝑙 , 𝑦ℎ) by Corollary ??).
Consider 𝜃 = 𝜃ℎ𝑛. Then differentiate the first expression of 𝑡 in (B.8) with respect to 𝜃 =

𝜃ℎ𝑛. As 𝜌 → ∞, the limit of 𝑚𝑑𝑜 may be binding at 𝑚𝑑 , resulting in 𝜈𝑙𝑜 → 0. If it is not
binding, i.e., if lim𝜌→∞𝑚𝑑𝑜 < 𝑚𝑑 , then 𝜈𝑘

𝑙𝑜
> 0 and lim𝜌→∞

(
d𝑚𝑑𝑜
d𝜃 / d𝑡

d𝜃

)
= − 1

𝜆𝑑
. If it is binding,

i.e., 𝑚𝑑𝑜 → 𝑚𝑑 and 𝜈𝑙𝑜 → 0, however 𝜌𝜈𝑙𝑜 has a strictly positive limit as folows from (S18). Then,
one can again derive lim𝜌→∞

(
d𝑚𝑑𝑜

d𝜃 / d𝑡
d𝜃

)
> − 1

𝜆𝑑
. Therefore, sign

[
lim𝜌→∞

d𝑤
d𝜃

]
> sign

[
−𝑦𝑑−𝑦

𝜆𝑑
+ 𝑦ℎ−𝑦𝑙

𝜆𝑢+𝜆𝑑

]
=

sign[−𝑦𝑑 + 𝑦 − (𝑦ℎ − 𝑦𝑙 ) (1 − 𝜂)] = sign[𝑦ℎ − 𝑦𝑑] > 0.

The case of sufficiently low 𝜌 , i.e., 𝜌 := max{𝜌BB, 𝜌SMS} → 0: For either 𝜃 ∈ {𝜃𝑙𝑜 , 𝜃ℎ𝑛}, directly
calculating d𝑡

d𝜃 from (B.8) and taking the limit yield lim𝜌→0
d𝑡
d𝜃 = 0. Yet, lim𝜌→0

d𝑚𝑑𝑜
d𝜃 ≠ 0, which follows

by taking the limit in the calculations of Lemma S1.1. Hence, lim𝜌→0
d𝑚𝑑𝑜
d𝜃𝑙𝑜 > 0 and lim𝜌→0

d𝑚𝑑𝑜
d𝜃ℎ𝑛 < 0

remain. Therefore, lim𝜌→0 sign
[ d𝑤

d𝜃
]
= sign

[
(𝑦𝑑 − 𝑦) lim𝜌→0

d𝑚𝑑𝑜
d𝜃

]
, proving the statement made in the

proposition. □
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S1 Additional results and proofs of lemmas

S1.1 Demographics with one search technology

While the system (2)-(7) has only two zero-flow conditions (Equations 6 and 7), the stationarity of
all other types of agents is also implied. Apart from the dealer stationarity (8), −(5) − (6) gives
𝜈𝑙𝑜𝑚𝑙𝑜𝜌 −𝑚𝑙𝑛𝜆𝑢 +𝑚ℎ𝑛𝜆𝑑 = 0, ensuring that the net flow in and out of 𝑙𝑛-bystanders is zero. Likewise,
(5) − (7) gives 𝜈ℎ𝑛𝑚ℎ𝑛𝜌 −𝑚ℎ𝑜𝜆𝑑 +𝑚𝑙𝑜𝜆𝑢 = 0, ensuring that the net flow of ℎ𝑜-bystanders is zero.

We also derive some useful expressions for the customer masses. Equations (2), (3), and (5)
together imply the stable fractions of the high-type and the low-type customers:

𝑚ℎ𝑜 +𝑚ℎ𝑛 =
𝜆𝑢

𝜆𝑑 + 𝜆𝑢
=: 𝜂 and 𝑚𝑙𝑜 +𝑚𝑙𝑛 =

𝜆𝑢
𝜆𝑑 + 𝜆𝑢

= 1 − 𝜂.(S1)

Then combining the market clearing condition (2) and the 𝑙𝑜-seller net flow (6), we obtain

𝑚𝑙𝑜 = (1 − 𝜂) (𝑠 −𝑚𝑑𝑜) −
𝑡

𝜆𝑢 + 𝜆𝑑
,(S2)

which intuitively says that the stationary mass of 𝑙𝑜-sellers is a fraction (1 − 𝜂) of the residual asset
supply (𝑠−𝑚𝑑𝑜) available to customers, less a term 𝑡/(𝜆𝑢+𝜆𝑑) due to their active trading. Combining (2)
and (6) gives

𝑚ℎ𝑛 = 𝜂 · (1 +𝑚𝑑𝑜 − 𝑠) − 𝑡

𝜆𝑢 + 𝜆𝑑
.(S3)

Note that 1 +𝑚𝑑𝑜 − 𝑠, which is the total mass of non-owner customers in this economy. That is, the
stationary mass of ℎ𝑛-buyers is the high-type fraction 𝜂 of all non-owner customers, less the same
term due to trading. The above expressions are in fact generic in the search literature. For example,
if, as in DGP, customers find each other at intensity 𝜌 without dealers, then Equations (S2) and (S3)
still hold with𝑚𝑑𝑜 = 0 and 𝑡 = 2𝜌𝑚ℎ𝑛𝑚𝑙𝑜 .

S1.2 Demographics with two search technologies

There are six customer population sizes: {𝑚ℎ𝑜 ,𝑚𝑙𝑛,𝑚
SMS
ℎ𝑛

,𝑚BB
ℎ𝑛

,𝑚SMS
𝑙𝑜

,𝑚BB
𝑙𝑜

}; in addition, there are two
types of dealers, {𝑚𝑑𝑜 ,𝑚𝑑𝑛}. For notation simplicity, write

𝑚ℎ𝑛 =𝑚SMS
ℎ𝑛 +𝑚BB

ℎ𝑛 ; and 𝑚𝑙𝑜 =𝑚SMS
𝑙𝑜 +𝑚BB

𝑙𝑜 .
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Then the four (aggregate) customer masses, {𝑚ℎ𝑜,𝑚𝑙𝑛,𝑚ℎ𝑛,𝑚𝑙𝑜}, must satisfy the conditions (2)-(5) in
Section 3.1. The other four conditions are analogous to the stationarity conditions (6) and (7):

net flow of 𝑙𝑜-sellers using SMS: − 𝜈SMS
𝑙𝑜 𝑚SMS

𝑙𝑜 𝜌SMS − 𝜆𝑢𝑚
SMS
𝑙𝑜 + 𝜃𝑙𝑜𝜆𝑑𝑚ℎ𝑜 = 0(S4)

net flow of 𝑙𝑜-sellers using BB: − 𝜈BB
𝑙𝑜 𝑚BB

𝑙𝑜 𝜌BB − 𝜆𝑢𝑚
BB
𝑙𝑜 + (1 − 𝜃𝑙𝑜)𝜆𝑑𝑚ℎ𝑜 = 0(S5)

net flow of ℎ𝑛-buyers using SMS: − 𝜈SMS
ℎ𝑛 𝑚SMS

ℎ𝑛 𝜌SMS − 𝜆𝑑𝑚
SMS
ℎ𝑛 + 𝜃ℎ𝑛𝜆𝑢𝑚𝑙𝑛 = 0(S6)

net flow of ℎ𝑛-buyers using BB: − 𝜈BB
ℎ𝑛 𝑚

BB
ℎ𝑛 𝜌

BB − 𝜆𝑑𝑚
BB
ℎ𝑛 + (1 − 𝜃ℎ𝑛)𝜆𝑢𝑚𝑙𝑛 = 0(S7)

where 𝜈𝑘
𝑙𝑜

= 1 −
(
1 − 𝑚𝑑𝑛

𝑚𝑑

)𝑛𝑘
and 𝜈𝑘

ℎ𝑛
= 1 −

(
1 − 𝑚𝑑𝑜

𝑚𝑑

)𝑛𝑘
are the probabilities for a customer to find

at least one counterparty dealer using technology 𝑘 ∈ {BB, SMS}. Compared to Equations (6)
and (7) in Section 3.1, the key differences are (i) that every variable here is technology-dependent and
superscripted with 𝑘 ∈ {BB, SMS}; and (ii) that only a fraction of 𝜃𝜎 of the newly shocked 𝜎-customer
use SMS, while the rest (1 − 𝜃𝜎 ) use BB, where 𝜎 ∈ {ℎ𝑛, 𝑙𝑜}.

The conditions (2)-(5) and (S4)-(S7) exactly pin down the eight demographic variables:

Lemma S1 (Stationary demographics with technology choice). Given the customers’ technology
choices {𝜃𝑙𝑜 , 𝜃ℎ𝑛} ∈ [0, 1]2, Equations (2)-(5) and (S4)-(S7) uniquely pin down the demographics
{𝑚ℎ𝑜 ,𝑚𝑙𝑛,𝑚

SMS
ℎ𝑛

,𝑚BB
ℎ𝑛

,𝑚SMS
𝑙𝑜

,𝑚BB
𝑙𝑜

} ∈ [0, 1]6 and {𝑚𝑑𝑜 ,𝑚𝑑𝑛} ∈ (0,𝑚𝑑)2.

The resulting expressions are similar to those implied by Lemma 1. In particular, (S4) + (S5)− (S6)−
(S7) + (5) gives the trading volume expression

𝑡 :=
∑
𝑘

𝜈𝑘𝑙𝑜𝑚
𝑘
𝑙𝑜𝜌

𝑘 =
∑
𝑘

𝜈𝑘ℎ𝑛𝑚
𝑘
ℎ𝑛𝜌

𝑘 ,(S8)

ensuring the stationarity of both dealer types. The ℎ- and 𝑙-type customer stationarity (S1) also
holds the same, and so do the expressions for the total size of trading customers 𝑚𝑙𝑜 =

∑
𝑘𝑚

𝑘
𝑙𝑜

and 𝑚ℎ𝑛 =
∑

𝑘𝑚
𝑘
ℎ𝑛

. The stationarity of all other types of agents are also ensured: For example,
−(5) − (S4) − (S5) gives −𝜆𝑢𝑚𝑙𝑛 +

∑
𝑘

(
𝜈𝑘
𝑙𝑜
𝑚𝑘

𝑙𝑜
𝜌𝑘 + 𝜆𝑑𝑚

𝑘
ℎ𝑛

)
= 0, which ensures the stationarity of 𝑙𝑛-

bystanders. Likewise, (5)− (S6)− (S7) gives −𝜆𝑑𝑚ℎ𝑜 +
∑

𝑘

(
𝜈𝑘
ℎ𝑛
𝑚𝑘

ℎ𝑛
𝜌𝑘 + 𝜆𝑢𝑚

𝑘
𝑙𝑛

)
= 0, which ensures the

stationarity of ℎ𝑜-bystanders.

S1.3 Value functions with two search technologies

Given the technology choices {𝜃𝜎 }, hence also the demographics (Lemma S1), the value functions for
all six agent types can be derived analogously to those in Equations (10)-(15). For example, the value

3



functions of an ℎ𝑜-bystander and an 𝑙𝑛-bystander must satisfy the HJB equations

𝑦ℎ + 𝜆𝑑 ·
(
max

[
𝑉 SMS
𝑙𝑜 ,𝑉 BB

𝑙𝑜

]
−𝑉ℎ𝑜

)
− (𝑟 + 𝑓𝑐)𝑉ℎ𝑜 = 0;(S9)

𝜆𝑢 ·
(
max

[
𝑉 SMS
ℎ𝑜 ,𝑉 BB

ℎ𝑜

]
−𝑉𝑙𝑛

)
− (𝑟 + 𝑓𝑐)𝑉𝑙𝑛 = 0.(S10)

Compared with Equations (10) and (11), the only difference is that upon a preference shock, a newly
shocked trading customer can choose which technology to use, hence the term of max

[
𝑉 SMS
𝜎 ,𝑉 BB

𝜎

]
in

the above HJBs (𝜎 ∈ {𝑙𝑜, ℎ𝑛}).
The HJB equations for the trading agents are also similar to before:

HJB of 𝑙𝑜-sellers using technology 𝑘: 𝑦𝑙 + 𝜆𝑢 · (𝑉ℎ𝑜 −𝑉 𝑘
𝑙𝑜) − (𝑟 + 𝑓𝑐)𝑉 𝑘

𝑙𝑜 + 𝜁 𝑘𝑙𝑜Δ
𝑘
𝑑𝑙 = 0;(S11)

HJB of ℎ𝑛-buyers using technology 𝑘: 𝜆𝑑 · (𝑉𝑙𝑛 −𝑉 𝑘
ℎ𝑛) − (𝑟 + 𝑓𝑐)𝑉 𝑘

ℎ𝑛 + 𝜁 𝑘ℎ𝑛Δ
𝑘
ℎ𝑑 = 0;(S12)

HJB of 𝑑𝑜-dealers: 𝑦𝑑 − (𝑟 + 𝑓𝑑)𝑉𝑑𝑜 +
∑
𝑘

𝜁 𝑘𝑑𝑜Δ
𝑘
ℎ𝑑 = 0;(S13)

HJB of 𝑑𝑛-dealers: − (𝑟 + 𝑓𝑑)𝑉𝑑𝑛 +
∑
𝑘

𝜁 𝑘𝑑𝑛Δ
𝑘
𝑑𝑙 = 0.(S14)

Compared to Equations (12)-(15), the only difference is that the trading gains {Δℎ𝑑 ,Δ𝑑𝑙 } and the
trading gain intensities {𝜁𝑙𝑜 , 𝜁ℎ𝑛, 𝜁𝑑𝑜 , 𝜁𝑑𝑛} are technology specific, superscripted with 𝑘 ∈ {BB, SMS}.
For completeness, we derive these expressions below.

Using technology 𝑘 , an 𝑙𝑜-seller’s reservation value is 𝑅𝑘
𝑙

:= 𝑉 𝑘
𝑙𝑜
−𝑉𝑙𝑛, and that for an ℎ𝑛-buyer is

𝑅𝑘
ℎ

:= 𝑉ℎ𝑜 −𝑉 𝑘
ℎ𝑛

. A dealer’s reservation value is the same 𝑅𝑑 := 𝑉𝑑𝑜 −𝑉𝑑𝑛 as before. Then, depending the
customer’s technology 𝑘 , the trading gain between an ℎ𝑛-buyer and a 𝑑𝑜-seller is Δ𝑘

ℎ𝑑
:= 𝑅𝑘

ℎ
− 𝑅𝑑 and

that between a 𝑑𝑛-buyer and an 𝑙𝑜-seller is Δ𝑘
𝑑𝑙

:= 𝑅𝑑 − 𝑅𝑘
𝑙
. By Proposition S4, the dealers’ respective

average ask and bid are:

�̄�𝑘 =
𝑛𝑘 𝑚𝑑𝑜

𝑚𝑑

(
1 − 𝑚𝑑𝑜

𝑚𝑑

)𝑛𝑘−1

1 −
(
1 − 𝑚𝑑𝑜

𝑚𝑑

)𝑛𝑘 and �̄�𝑘 =
𝑛𝑘 𝑚𝑑𝑛

𝑚𝑑

(
1 − 𝑚𝑑𝑛

𝑚𝑑

)𝑛𝑘−1

1 −
(
1 − 𝑚𝑑𝑛

𝑚𝑑

)𝑛𝑘 .

Thus, an ℎ𝑛-buyer expects 𝜁 𝑘
ℎ𝑛
Δ𝑘
ℎ𝑑

, while a 𝑑𝑜-dealer expects 𝜁 𝑘
𝑑𝑜
Δ𝑘
ℎ𝑑

, where the respective trading gain
intensities are

𝜁 𝑘ℎ𝑛 = 𝜌𝑘𝜈𝑘ℎ𝑛 ·
(
𝑞𝑘 + (1 − 𝑞𝑘)(1 − �̄�𝑘)

)
and 𝜁 𝑘𝑑𝑜 =

𝑚𝑘
ℎ𝑛
𝜌𝑘𝜈𝑘

ℎ𝑛

𝑚𝑑𝑜
(1 − 𝑞𝑘)�̄�𝑘 .

Analogously, an 𝑙𝑜-seller expects 𝜁 𝑘
𝑙𝑜
Δ𝑘
𝑑𝑙

, while a 𝑑𝑛-dealer expects 𝜁𝑑𝑛Δ𝑘
𝑑𝑙

, with intensities

𝜁 𝑘𝑙𝑜 = 𝜌𝑘𝜈𝑘𝑙𝑜 ·
(
𝑞𝑘 + (1 − 𝑞𝑘) (1 − �̄�𝑘)

)
and 𝜁 𝑘𝑑𝑛 =

𝑚𝑘
ℎ𝑛
𝜌𝑘𝜈𝑘

𝑙𝑜

𝑚𝑑𝑛
(1 − 𝑞𝑘)�̄�𝑘 .
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Finally, with the above expressions of the value functions and trading gain intensities, we can
show that the trading gain remains positive under the same condition of 𝑦𝑑 ≥ 𝑦𝑑 ≥ 𝑦

𝑑
as defined in

Proposition 1. To see why, note that in equilibrium, the trading customers either have a strict preference
for one of the technology or are indifferent. Consider 𝑙𝑜-sellers, for example. If the preference is strict,
then only one of the two HJBs in (S11) is relevant; and if indifference, then the two HJBs reduce to
the same one. The same holds for ℎ𝑛-buyers in their two HJBs (S12). Likewise, the max[·] operator
in Equations (S11) and (S12) can be dropped in equilibrium. Hence, defining 𝑉𝑙𝑜 = max𝑘 [{𝑉 𝑘

𝑙𝑜
}]

and 𝑉ℎ𝑛 = max𝑘 [{𝑉 𝑘
ℎ𝑛
}], the HJB equations (S9)-(S14) can be reduced to the exactly the same set of

(10)-(15) as if there is only one technology. Therefore, solving the same equation system, the same
result from Proposition 1 holds. Following the same argument in the paragraph after Proposition 1,
the positive trading gains also ensures that both the ℎ𝑜− and 𝑙𝑛-customers do stay out of trading—they
are indeed bystanders.

S1.4 Additional lemmas

Lemma S1.1. Write the left-hand side of Equation (S18) as a function of 𝑔(𝜃𝑙𝑜 , 𝜃ℎ𝑛,𝑚𝑑𝑜 , 𝑠). Then
(1) 𝜕𝑔

𝜕𝑚𝑑𝑜
> 0, (2) 𝜕𝑔

𝜕𝜃𝑙𝑜
< 0, (3) 𝜕𝑔

𝜕𝜃ℎ𝑛
> 0, and (4) 𝜕𝑔

𝜕𝑠 < 0. In particular, (5) 𝑚𝑑𝑜 ↓ 0 when 𝑠 ↓ 0 and
𝑚𝑑𝑜 ↑ 1 +𝑚𝑑 when 𝑠 ↑ 1 +𝑚𝑑 regardless of 𝜃𝑙𝑜 and 𝜃ℎ𝑛. Finally, (6) 𝜕𝑚𝑑𝑜

𝜕𝜃𝑙𝑜
> 0 > 𝜕𝑚𝑑𝑜

𝜕𝜃ℎ𝑛
.

Lemma S1.2. When there is excess supply, both the search intensity 𝜌 and the capacity 𝑛 increase
𝑚𝑑𝑜 and reduce 𝑚𝑑𝑛, but their effects on customers’ matching rates are different: A higher 𝜌

increases 𝜈ℎ𝑛 but decreases 𝜈𝑙𝑜 , while a larger 𝑛 increases both 𝜈ℎ𝑛 and 𝜈𝑙𝑜 .

Lemma S1.3. When there is excess supply, the transparency𝜓 increase𝑚𝑑𝑜 and reduce𝑚𝑑𝑛.

Lemma S1.4. The functions 𝑧SMS(𝜋) and 𝑧BB(𝜋) in Lemma 3 cross at 𝜋∗ > 1
2 if and only if

𝑛SMS = 2 and 2𝑞SMS𝜌SMS−𝑞BB𝜌BB

(2𝑞SMS−1)𝜌SMS > 1
2 .

S1.5 Proof of Lemma 1 and Lemma S1

Proof. The proof considers the general case of Lemma S1 with arbitrary 𝜃ℎ𝑛 and 𝜃𝑙𝑜 . Lemma 1 is then
just a special case of 𝜃ℎ𝑛 = 𝜃𝑙𝑜 = 1. Where convenient, we will occasionally write 𝜃SMS

𝜎 = 1−𝜃BB
𝜎 = 𝜃𝜎 .

The idea is to first express all other unknowns as monotone functions of 𝑚𝑑𝑜 . The existence and the
uniqueness then follow as long as the solution to 𝑚𝑑𝑜 exists and is unique. To begin with, add (S4)
and (S5) to get

all 𝑙𝑜-seller stationarity: − 𝜆𝑢𝑚𝑙𝑜 + 𝜆𝑑𝑚ℎ𝑜 − 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 = 0,(S15)
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where 𝑚𝑙𝑜 :=
∑

𝑘𝑚
𝑘
𝑙𝑜

is the total 𝑙𝑜-seller mass, 𝜌 := max
[
𝜌SMS, 𝜌BB]

, 𝜈𝑙𝑜 := 1
𝜌𝑚𝑙𝑜

∑
𝑘 𝜌

𝑘𝑚𝑘
𝑙𝑜
𝜈𝑘
𝑙𝑜

is the
(weighted) average matching rate for an 𝑙𝑜-seller, and 𝑚ℎ𝑜 :=

∑
𝑘𝑚

𝑘
ℎ𝑜

is the total ℎ𝑜-bystander mass.
Similarly, adding (S6) and (S7) yields

all ℎ𝑛-buyer stationarity: − 𝜆𝑑𝑚ℎ𝑛 + 𝜆𝑢𝑚𝑙𝑛 − 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 = 0,(S16)

where 𝑚ℎ𝑛 :=
∑

𝑘𝑚
𝑘
ℎ𝑛

, 𝜈ℎ𝑛 := 1
𝜌𝑚ℎ𝑛

∑
𝑘 𝜌

𝑘𝑚𝑘
ℎ𝑛
𝜈𝑘
ℎ𝑛

, and 𝑚𝑙𝑛 :=
∑

𝑘𝑚
𝑘
𝑙𝑛

. Taking {𝜈𝑙𝑜 , 𝜈ℎ𝑛} as given,
Equations (S1), (S15), and (S16) form a linear system of the four masses {𝑚ℎ𝑜,𝑚𝑙𝑛,𝑚ℎ𝑛,𝑚𝑙𝑜}, which
have the unique solution of

𝑚ℎ𝑜 = 𝜂
𝜆𝑢𝜈ℎ𝑛 + 𝜌𝜈𝑙𝑜𝜈ℎ𝑛

𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜
; 𝑚𝑙𝑛 = (1 − 𝜂) 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈𝑙𝑜𝜈ℎ𝑛

𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜
;

𝑚ℎ𝑛 = (1 − 𝜂) 𝜆𝑢𝜈𝑙𝑜
𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜

; 𝑚𝑙𝑜 = 𝜂
𝜆𝑑𝜈ℎ𝑛

𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜
.(S17)

Plug in the expressions of𝑚ℎ𝑜 and𝑚𝑙𝑜 =
∑

𝑘𝑚
𝑘
𝑙𝑜

into the market clearing condition (2) to get

𝜂
(𝜆𝑢 + 𝜆𝑑)𝜈ℎ𝑛 + 𝜌𝜈𝑙𝑜𝜈ℎ𝑛
𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈𝑙𝑜𝜈ℎ𝑛

+𝑚𝑑𝑜 − 𝑠 = 0.(S18)

This is an equation with unknowns {𝑚𝑑𝑜 , 𝜈ℎ𝑛, 𝜈𝑙𝑜}. It remains to express 𝜈ℎ𝑛 and 𝜈𝑙𝑜 as (monotone)
functions of𝑚𝑑𝑜 .

Consider 𝜈𝑙𝑜 for example. Note that (S4) and (S5) imply that

𝑚𝑘
𝑙𝑜 =

𝜆𝑑𝑚ℎ𝑜𝜃
𝑘
𝑙𝑜

𝜆𝑢 + 𝜌𝑘𝜈𝑘
𝑙𝑜

(S19)

where 𝜃BB
𝑙𝑜

:= 1 − 𝜃𝑙𝑜 and 𝜃SMS
𝑙𝑜

:= 𝜃𝑙𝑜 . Hence, from the earlier definition,

𝜈𝑙𝑜 =

∑
𝑘 𝜌

𝑘𝑚𝑘
𝑙𝑜
𝜈𝑘
𝑙𝑜

𝜌𝑚𝑙𝑜
=

∑
𝑘 𝜌

𝑘𝑚𝑘
𝑙𝑜
𝜈𝑘
𝑙𝑜

𝜌
∑

𝑘𝑚
𝑘
𝑙𝑜

=

∑
𝑘

𝜌𝑘𝜃𝑘
𝑙𝑜
𝜈𝑘
𝑙𝑜

𝜆𝑢+𝜌𝑘𝜈𝑘𝑙𝑜

𝜌
∑

𝑘
𝜃𝑘
𝑙𝑜

𝜆𝑢+𝜌𝑘𝜈𝑘𝑙𝑜

,(S20)

which is monotone increasing in both 𝜈𝑘
𝑙𝑜

for 𝑘 ∈ {𝐵𝐵, 𝑆𝑀𝑆}. Recall from the definition 𝜈𝑘
𝑙𝑜

:=
1 − (1 − 𝜋𝑑𝑛)𝑛

𝑘
that both 𝜈𝑘

𝑙𝑜
are monotone decreasing in 𝑚𝑑𝑜 . Therefore, so is 𝜈𝑙𝑜 . In the same way,

both 𝜈𝑘
ℎ𝑛

are monotone increasing in𝑚𝑑𝑜 and so is 𝜈ℎ𝑛.
Now return to Equation (S18). Since both 𝜈𝑙𝑜 and 𝜈ℎ𝑛 can be expressed as a unique function in

𝑚𝑑𝑜 , (S18) is an equation of a single unknown 𝑚𝑑𝑜 . To prove the existence of the solution, consider
the limits of the support of 𝑚𝑑𝑜 ∈ [0,𝑚𝑑]. As 𝑚𝑑𝑜 ↓ 0, both 𝜈𝑘

𝑙𝑜
↑ 1 while both 𝜈𝑘

ℎ𝑛
↓ 0, and as a

result, 𝜈𝑙𝑜 ↑ 1 and 𝜈ℎ𝑛 ↓ 0. The left-hand side of (S18), therefore, reaches −𝑠 < 0. Reversely, as
𝑚𝑑𝑜 ↑𝑚𝑑 , 𝜈𝑙𝑜 ↓ 0 and 𝜈ℎ𝑛 ↑ 1, the left-hand side of (S18) reaches 1 +𝑚𝑑 − 𝑠 > 0 (as it is assumed that
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0 < 𝑠 < 1 +𝑚𝑑). Therefore, by continuity, the solution to𝑚𝑑𝑜 always exists.
To prove uniqueness, examine the derivative of the left-hand side of (S18) with respect to𝑚𝑑𝑜 :

−𝜂𝜆𝑑
(𝜆𝑢 + 𝜆𝑑 + 𝜌𝜈ℎ𝑛)𝜈ℎ𝑛

(𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜)2
𝜕𝜈𝑙𝑜
𝜕𝑚𝑑𝑜

+ 𝜂𝜆𝑑
(𝜆𝑢 + 𝜆𝑑 + 𝜌𝜈𝑙𝑜)𝜈𝑙𝑜

(𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜)2
𝜕𝜈ℎ𝑛
𝜕𝑚𝑑𝑜

+ 1 > 0,(S21)

where the inequality holds because 𝜈𝑙𝑜 decreases, while 𝜈ℎ𝑛 increases, in 𝑚𝑑𝑜 . That is, the left-hand
side of (S18) is strictly monotone increasing in 𝑚𝑑𝑜 . Hence, there exists one and only one 𝑚𝑑𝑜 that
solves (S18). Therefore, the demographics equation system always has a unique solution. □

S1.6 Proof of Lemma 2

Proof. Calculate the difference between𝑚ℎ𝑛 and𝑚𝑙𝑜 using the expressions (S3) and (S2) to get

𝑚ℎ𝑛 −𝑚𝑙𝑜 = 𝜂 +𝑚𝑑𝑜 − 𝑠 = 𝜂𝜆𝑑 ·
𝜈𝑙𝑜 − 𝜈ℎ𝑛

𝜆𝑢𝜈ℎ𝑛 + 𝜆𝑑𝜈𝑙𝑜 + 𝜌𝜈ℎ𝑛𝜈𝑙𝑜
,(S22)

where the last equality follows Equation (S18). Therefore, sign[𝑚ℎ𝑛 −𝑚𝑙𝑜] = sign[𝜈𝑙𝑜 − 𝜈ℎ𝑛]. Recall
that 𝜈𝑙𝑜 = 1 − (1 − 𝜋𝑑𝑛)𝑛 and 𝜈ℎ𝑛 = 1 − (1 − 𝜋𝑑𝑜)𝑛, from which it follows that 𝜈𝑙𝑜 > 𝜈ℎ𝑛 if and only if
𝑚𝑑𝑛 > 𝑚𝑑𝑜 . Given that 𝑚𝑑𝑛 +𝑚𝑑𝑜 = 𝑚𝑑 , therefore, 𝑚ℎ𝑛 > 𝑚𝑙𝑜 if and only if 𝑚𝑑𝑜 < 𝑚𝑑/2. Use again
𝑚ℎ𝑛 −𝑚𝑙𝑜 = 𝜂 +𝑚𝑑𝑜 − 𝑠, which is negative if and only if 𝑠 > 𝜂 +𝑚𝑑𝑜 > 𝜂 +𝑚𝑑/2. □

S1.7 Proof of Lemma 3

Proof. Consider first the case of 𝜌SMS𝑞SMS𝑛SMS < 𝜌BB𝑞BB𝑛BB. The proof first establishes the
single-crossing of 𝑧SMS(𝜋) and 𝑧BB(𝜋) at some 𝜋∗ ∈ (0, 1). The general idea is to characterize the
shapes of 𝑧BB(𝜋) and 𝑧SMS(𝜋). In particular, it will be shown that 𝑧BB is linearly increasing in 𝜋 ,
while 𝑧SMS is sigmoid-shaped in 𝜋 , starting below 𝑧BB for sufficiently small 𝜋 ; and the two satisfy
𝑧BB(0) = 𝑧SMS(0) = 0 and 𝑧BB(1) < 𝑧SMS(1). Therefore, there is always one and only one intersection
point 𝜋∗ ∈ (0, 1).

Consider 𝑧BB first. With 𝑛BB = 1, 𝑧BB = 𝑞BB𝜌BB𝜋 , which is linearly increasing from 0 at
𝜋 = 0 to 𝑞BB𝜌BB at 𝜋 = 1. Next, consider 𝑧SMS. For notation simplicity, the superscripts
SMS on 𝑛, 𝜌 , and 𝑞 are omitted when there is no confusion. With 𝑛 = 𝑛SMS > 1 , 𝑧SMS =(
1 − (1 − 𝜋)𝑛−1(1 − 𝜋 + (1 − 𝑞)𝑛𝜋)

)
𝜌 , whose first-order derivative with respect to 𝜋 is 𝜕𝑧SMS

𝜕𝜋 =

−𝑛𝜌 (1 − 𝜋)𝑛−2(𝜋 (1 − 𝑛) + 𝑞(𝜋𝑛 − 1)), which is positive. To see why, note that the bracketed term,
𝜋 (1−𝑛) +𝑞(𝜋𝑛−1) is linear in 𝜋 and is negative for both 𝜋 = 0 and 𝜋 = 1 and so it is negative for all 𝜋 .
Thus, 𝑧SMS(𝜋) is strictly monotone increasing on 𝜋 ∈ (0, 1). Its second-order derivative with respect
to 𝜋 is 𝜕2𝑧SMS

𝜕𝜋2 = (𝑛−1)𝑛𝜌 (1−𝜋)𝑛−3(𝜋 −𝑛𝜋 + (𝜋𝑛−2)𝑞+1), which is positive if and only if 𝜋 <
1−2𝑞

𝑛−1−𝑛𝑞 .
Note that 1−2𝑞

𝑛−1−𝑛𝑞 > 0, because 𝜌SMS𝑞SMS𝑛SMS < 𝜌BB𝑞BB𝑛BB implies 𝑞 = 𝑞SMS < 1/𝑛SMS ≤ 1/2.
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Summarizing the above, 𝑧SMS(·) is sigmoid-shaped for 𝜋 > 0: it is monotone increasing, initially
convex, but eventually concave.

Now note that in the lower end, 𝑧SMS |𝜋↓0 = 𝑧BB |𝜋↓0 = 0. Further, the slope of 𝑧 (·) satisfies
lim𝜋↓0

d𝑧
d𝜋 = 𝑛𝜌𝑞. Therefore, the assumption 𝜌SMS𝑞SMS𝑛SMS < 𝜌BB𝑞BB𝑛BB ensures that for 𝜋 suffi-

ciently small, 𝑧SMS < 𝑧BB. On the upper end of 𝜋 ↑ 1, 𝑧SMS → 𝜌SMS ≥ 𝜌BB ≥ 𝑞BB𝜌BB, where the
first inequality follows (18) and the second follows 𝑞BB ∈ [0, 1]. That is, 𝑧SMS exceeds 𝑧BB eventually.
Therefore, there exists a unique 𝜋∗ ∈ (0, 1) at which 𝑧SMS(𝜋∗) = 𝑧BB(𝜋∗).

Next, it is clear that 𝑉 𝑘
𝜎 is monotone increasing in 𝜁 𝑘𝜎 , where 𝑘 ∈ {BB, SMS} and 𝜎 ∈ {𝑙𝑜, ℎ𝑛}.

Hence, comparing the value functions is equivalent to comparing the trading gain intensities {𝜁 𝑘𝜎 };
i.e., the technology choice (19) is equivalent to (22). With the single-crossing property established
above, it then follows that the comparison of the {𝜁 𝑘𝜎 } is equivalent to (21).

Finally, consider the case of 𝜌SMS𝑞SMS𝑛SMS ≥ 𝜌BB𝑞BB𝑛BB. The only change is that the slope of
𝑧𝑘 (𝜋) at the lower end now is higher for SMS than for BB. Thus, the only intersection possible is at
𝜋 = 0, i.e., 𝑧SMS > 𝑧BB for all 𝜋 ∈ (0, 1), i.e., SMS is always preferred and, hence, 𝜃ℎ𝑛 = 𝜃𝑙𝑜 = 1. □

S1.8 Proof of Lemma S1.1

Proof. (1) 𝜕𝑔
𝜕𝑚𝑑𝑜

has been evaluated in (S21) in the proof of Lemma S1. (2) Note that 𝜃𝑙𝑜 affects
𝑔(·) only through 𝜈𝑙𝑜 , which is given by (S20). Carefully simplifying, it can be found that 𝜕𝜈𝑙𝑜

𝜕𝜃𝑙𝑜
=

(𝜈SMS
𝑙𝑜

−𝜈BB
𝑙𝑜

)(𝜆𝑢+𝜈SMS
𝑙𝑜

)(𝜆𝑢+𝜈BB
𝑙𝑜

)
(𝜆𝑢+(1−𝜃𝑙𝑜 )𝜈SMS

𝑙𝑜
+𝜃𝑙𝑜𝜈BB

𝑙𝑜
)2 > 0 where the inequality holds because 𝜈SMS

𝑙𝑜
> 𝜈BB

𝑙𝑜
always holds (with

𝜌SMS ≥ 𝜌BB and 𝑛SMS > 𝑛BB = 1). The partial derivative of 𝑔(·) with respect to 𝜈𝑙𝑜 is 𝜕𝑔
𝜕𝜈𝑙𝑜

=

− (𝜆𝑑+𝜆𝑢+𝜈ℎ𝑛)𝜆𝑑𝜈ℎ𝑛
(𝜆𝑢𝜈ℎ𝑛+(𝜆𝑑+𝜈ℎ𝑛)𝜈𝑙𝑜 )2

< 0. Therefore, by chain rule, 𝜕𝑔
𝜕𝜃𝑙𝑜

< 0. (3) can be proved similarly by showing that
𝜕𝜈ℎ𝑛
𝜕𝜃ℎ𝑛

> 0 and that 𝜕𝑔
𝜕𝜈ℎ𝑛

> 0. The details are omitted for brevity. (4) is straightforward as 𝜕𝑔
𝜕𝑠 = −1. (5)

By implicit function theorem, 𝑔(·) = 0 implies that 𝑚𝑑𝑜 strictly increases in 𝑠; see (1) and (4) above.
The limit values as 𝑠 ↓ 0 or 𝑠 ↑ 1 can then be easily verified, regardless of 𝜃𝑙𝑜 and 𝜃ℎ𝑛. (6) directly
follows the implicit function theorem by (1)-(3). □

S1.9 Proof of Lemma S1.2

Proof. The key equation is (S18) in the proof of Lemma 1. Define the left-hand side as 𝑓 (𝑚𝑑𝑜 , 𝜌, 𝑛).
Recall that Equation (S21) has shown that 𝜕𝑓

𝜕𝑚𝑑𝑜
> 0. In addition, simple calculus gives sign

[
𝜕𝑓
𝜕𝜌

]
=

sign[𝜈𝑙𝑜−𝜈ℎ𝑛]. Since excess supply is assumed, i.e.,𝑚ℎ𝑛 < 𝑚𝑙𝑜 , Equation (S22) gives𝜈𝑙𝑜 < 𝜈ℎ𝑛. Hence,
d𝑚𝑑𝑜
d𝜌 = − 𝜕𝑓

𝜕𝜌 /
𝜕𝑓

𝜕𝑚𝑑𝑜
> 0, i.e., a higher 𝜌 increases 𝑚𝑑𝑜 and, because 𝑚𝑑𝑛 = 𝑚𝑑 −𝑚𝑑𝑜 , decreases 𝑚𝑑𝑛. It

then also follows that a higher 𝜌 increases 𝜈ℎ𝑛 = 1 − (1 − 𝜋𝑑𝑜)𝑛 but decreases 𝜈𝑙𝑜 = 1 − (1 − 𝜋𝑑𝑛)𝑛.
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Consider the effect of a larger 𝑛 next. In that case it is more convenient to work with an equivalent
version of (S18):

𝜂 (1 +𝑚𝑑𝑜 − 𝑠)
(
𝜆𝑑 + 𝜆𝑢
𝜈𝑙𝑜

+ 𝜌

)
− (1 − 𝜂) (𝑠 −𝑚𝑑𝑜)

(
𝜆𝑑 + 𝜆𝑢
𝜈ℎ𝑛

+ 𝜌

)
= 0.(S23)

Define the left-hand side of (S23) as𝑔(𝑚𝑑𝑜 , 𝜌, 𝑛). Since 𝜕𝑔
𝜕𝑚𝑑𝑜

> 0 we have sign
[

d𝑚𝑑𝑜
d𝑛

]
= −sign

[
𝜕𝑔
𝜕𝑛

]
and

it remains to sign 𝜕𝑔
𝜕𝑛 . Taking 𝜋𝑑𝑜 and 𝜋𝑑𝑛 as given, then sign

[
𝜕𝑔
𝜕𝑛

]
= sign[ℎℎ(1 − 𝜋𝑑𝑛) − ℎℎ(1 − 𝜋𝑑𝑜)],

where

ℎℎ(𝑥) := (𝜌 (1 − 𝑥𝑛) + 𝜆𝑑 + 𝜆𝑢)−1 log𝑥
𝑥−𝑛 − 1

.

Further, one can show thatℎℎ(𝑥) is decreasing in𝑥 . Then, because𝜋𝑑𝑜 > 𝜋𝑑𝑛,ℎℎ(1−𝜋𝑑𝑛) < ℎℎ(1−𝜋𝑑𝑜).
It follows that d𝑚𝑑𝑜

d𝑛 > 0, i.e., a higher 𝑛 increases𝑚𝑑𝑜 and, hence, decreases𝑚𝑑𝑛.
Since higher 𝑛 increases 𝑚𝑑𝑜 it follows immediately that higher 𝑛 increases 𝜈ℎ𝑛 = 1 − (1 − 𝜋𝑑𝑜)𝑛.

To see the effect of 𝑛 on 𝜈𝑙𝑜 we first prove that trading volume is increasing in 𝑛. The trading volume
can be written as 𝑡 = 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 (Equation 8). Equation (S3) gives another link between 𝑡 and 𝑚ℎ𝑛.
Combining the two gives

𝑡 =
(1 +𝑚𝑑𝑜 − 𝑠)𝜆𝑢𝜌
(𝜆𝑑 + 𝜆𝑢)𝜈−1

ℎ𝑛
+ 𝜌

,

which is increasing in 𝑛 both directly and through the dependence of𝑚𝑑𝑜 on 𝑛. Thus, trading volume
increases in 𝑛. Now, writing 𝑡 = 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 and using (S2) we obtain 𝜈𝑙𝑜 = 𝜆𝑑+𝜆𝑢

𝜆𝑑 𝜌 (𝑠−𝑚𝑑𝑜 )
𝑡 −𝜌

from which it

follows that 𝜈𝑙𝑜 increases in 𝑛. □

S1.10 Proof of Lemma S1.3

Proof. Consider (S23). Define the left-hand side of (S23) as 𝑔(𝑚𝑑𝑜 ,𝜓 ). It is straightforward to show
that sign(𝜕𝑔/𝜕𝜓 ) = sign

[
𝜕
𝜕𝜓 log

(
𝜆𝑑+𝜆𝑢
𝜈𝑙𝑜

+ 𝜌
)
− 𝜕

𝜕𝜓 log
(
𝜆𝑑+𝜆𝑢
𝜈ℎ𝑛

+ 𝜌
)]

. Denoting 𝑥 :=𝑚𝑑𝑜/𝑚𝑑 , and 𝜈 (𝜋) :=
1− (1−𝜋)𝑛 we can express 𝜈ℎ𝑛 = 𝜈 (𝜋 (𝑥 ;𝜓 )) and 𝜈𝑙𝑜 = 𝜈 (𝜋 (1−𝑥 ;𝜓 )). For 𝑥 > 1/2 (which holds in the
excess supply case) one can show that 𝜕𝜋 (𝑥,𝜓 )

𝜕𝜓 <
𝜕𝜋 (1−𝑥,𝜓 )

𝜕𝜓 . Additionaly, 𝜋 (𝑥 ;𝜓 ) > 𝜋 (1−𝑥 ;𝜓 ). Then, an

explicit calculation of 𝜕
𝜕𝜓 log

(
𝜆𝑑+𝜆𝑢

𝜈 (𝜋 (𝑥 ;𝜓 )) + 𝜌
)

implies that 𝜕
𝜕𝜓 log

(
𝜆𝑑+𝜆𝑢

𝜈 (𝜋 (𝑥 ;𝜓 )) + 𝜌
)
> 𝜕

𝜕𝜓 log
(

𝜆𝑑+𝜆𝑢
𝜈 (𝜋 (1−𝑥 ;𝜓 )) + 𝜌

)
.

It then follows that 𝜕𝑔
𝜕𝜓 < 0 and by implicit function theorem d𝑔

d𝜓 > 0. □

S1.11 Proof of Lemma S1.4

Proof. Consider first the case 𝑛SMS > 2. To establish that 𝜋∗ ≤ 1
2 , note that 𝑧SMS(𝜋) is monotone

increasing in 𝑛SMS and in 𝑞SMS. Therefore, fixing 𝑧BB(𝜋) = 𝑞BB𝜌BB𝜋 , the intersection 𝜋∗ must be
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higher as 𝑛SMS and 𝑞SMS reduce. Likewise, fixing 𝑧SMS(𝜋), 𝜋∗ must be higher when the product of
𝑞BB𝜌BB increases. Since 𝑞BB ∈ [0, 1] and 𝜌BB ≤ 𝜌SMS, the maximum of this product is 𝑞BB𝜌BB ≤
𝜌SMS. Therefore, the maximum 𝜋∗ is the solution to 𝑧SMS(𝜋 ;𝑛SMS = 3, 𝑞SMS = 0) − 𝜌SMS𝜋 = 0.
Solving this equation gives the unique interior solution of 𝜋∗ = 1

2 . For the case 𝑛SMS = 2, we plug
𝑛SMS = 2 into 𝑧SMS(𝜋) and solve for 𝜋∗ in (a linear equation) 𝑧BB(𝜋) = 𝑞BB𝜌BB𝜋 . Doing so yields
𝜋∗ = 2𝑞SMS𝜌SMS−𝑞𝐵𝐵𝜌𝐵𝐵

(2𝑞SMS−1)𝜌SMS . □

S2 Comparison with directed search

This appendix analyzes a model of OTC trading with “directed search” (DS), where dealers contin-
uously post quotes and, after observing them, each customer directs her search to one chosen dealer.
This is a realistic feature of corporate bonds trading, as dealers sometimes broadcast their indica-
tive bids and asks to customers on electronic platforms (Section III.B of Bessembinder, Spatt, and
Venkataraman, 2020). The similarity of this paper and the DS literature is that both allow endogenous
trading gain shares accruing to customers and dealers. See, e.g., Guerrieri, Shimer, and Wright (2010),
Lester, Rocheteau, and Weill (2015), Chang (2018) and, for a review, Wright et al. (2020). The purpose
is to compare the findings of DS model in this appendix with those of SMS from Section 3. The key
result is that the steady state equilibrium under DS can be proxied by the SMS equilibrium either (i)
when the dealers inventory transparency 𝜓 is sufficiently higher; or (ii) when the search capacity 𝑛 is
sufficiently large.

S2.1 A model of directed search

The model setup follows Section 2, except for the parts of “search” and “price determination,” which
are modified as follows: All dealer owners (type 𝑑𝑜) constantly post ask quotes, while all dealer
non-owners (type 𝑑𝑛) post bid quotes. Customers observe these quotes and direct their searches to
chosen dealers at independent Poisson processes with the same intensity 𝜌 . Customers and their
chosen dealers meet pairwise and once met, the pair exchanges the asset at the dealer quoted price.

Denote by 𝜈ℎ𝑛 the probability for a ℎ𝑛-𝑑𝑜 match and by 𝜈𝑙𝑜 for a 𝑙𝑜-𝑑𝑛 match. Assume that

𝜈ℎ𝑛 = 1 if𝑚𝑑𝑜 > 0 and 𝜈𝑙𝑜 = 1 if𝑚𝑑𝑛 > 0.(S24)

This is because at any instant, there is only an infinitesimal amount of customers searching (𝜌𝑚ℎ𝑛d𝑡
buyers and 𝜌𝑚𝑙𝑜d𝑡 sellers), which is negligible compared to the vast mass of quoting dealers (𝑚𝑑𝑜

and 𝑚𝑑𝑛, if positive). Effectively, the assumption (S24) lets the d𝑡-measure customers find dealers
with certainty as long as the measures of counterparties are strictly positive. In the case when some
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dealer masses become zero, i.e., 𝑚𝑑𝑜 → 0 or 𝑚𝑑𝑛 → 0, the matching probabilities will be solved
endogenously.

We shall look for a steady-state, symmetric dealer pricing equilibrium, characterized by the fol-
lowing time-invariant variables: (i) the demographics {𝑚ℎ𝑜 ,𝑚ℎ𝑛,𝑚𝑙𝑜 ,𝑚𝑙𝑛,𝑚𝑑𝑜 ,𝑚𝑑𝑛}; (ii) the matching
probabilities {𝜈ℎ𝑛, 𝜈𝑙𝑜} in case the corresponding dealer mass is zero; and (iii) the symmetric ask and
bid, 𝑝𝑎 and 𝑝𝑏 , by the 𝑑𝑜- and 𝑑𝑛-dealers, respectively. Note that since the quotes are symmetric, the
customers randomly direct their searches to all counterparty dealers.

S2.1.1 Demographics and matching probabilities

The six demographic variables {𝑚ℎ𝑜,𝑚ℎ𝑛,𝑚𝑙𝑜 ,𝑚𝑙𝑛,𝑚𝑑𝑜 ,𝑚𝑑𝑛} and the two matching probabilities
{𝜈ℎ𝑛, 𝜈𝑙𝑜} can be pinned down by the six equations (2)-(7), which hold as before, plus the two
conditions given in (S24):

Proposition S1 (Demographics under DS). In a steady-state, the matching probabilities satisfy

𝜈ℎ𝑛 = min
[
1,
𝑚𝑙𝑜

𝑚ℎ𝑛

]
and 𝜈𝑙𝑜 = min

[
1,
𝑚ℎ𝑛

𝑚𝑙𝑜

]
,(S25)

where the ratios 𝑚𝑙𝑜
𝑚ℎ𝑛

and 𝑚ℎ𝑛
𝑚𝑙𝑜

depend on the asset supply 𝑠:

sign
[
𝑚𝑙𝑜

𝑚ℎ𝑛
− 1

]
= −1{0<𝑠<𝜂} + 1{𝜂+𝑚𝑑<𝑠<1+𝑚𝑑 } .(S26)

Given the {𝜈ℎ𝑛, 𝜈𝑙𝑜} above, the steady-state demographics exist and are the unique solution to the
linear equation system (2)-(7).

The key insight from (S25) is that the matching probabilities {𝜈ℎ𝑛, 𝜈𝑙𝑜} only depend on the relative
sizes of ℎ𝑛-buyers and 𝑙𝑜-sellers in the market. Perhaps surprisingly, the dealer sizes𝑚𝑑𝑜 and𝑚𝑑𝑛 do
not show up, as if the customers are directly searching for counterparties, skipping the dealers. To
see why, recall that (2)-(7) also imply the dealer stationarity condition (8): 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 = 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 , which
balances the asset inflow to and the outflow from the dealers (otherwise the dealer sizes will change
overtime). Note that it can be equivalently interpreted as the ℎ𝑛-buyers are directly matched with the
𝑙𝑜-sellers. That is, the dealers are merely passing the asset from the sellers to the buyers, not affecting
the matching probabilities {𝜈ℎ𝑛, 𝜈𝑙𝑜}.

One might wonder why 𝜈ℎ𝑛 and 𝜈𝑙𝑜 can be less than one: Since there is always only a d𝑡 amount—
zero measure—of customers searching for dealers, by assumption (S24), should not the matching
probabilities always be one? It turns out that 𝜈ℎ𝑛 < 1 and 𝜈𝑙𝑜 < 1 precisely when the measure of the
corresponding dealers is also zero. Consider, for example, the case of 𝑚𝑑𝑜 = 0, which implies that
𝑚𝑑𝑛 =𝑚𝑑 −𝑚𝑑𝑜 > 0. Then, by assumption (S24), 𝜈𝑙𝑜 = 1 and there is always an amount of 𝜌𝑚𝑙𝑜𝜈𝑙𝑜d𝑡
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trades occurring between 𝑑𝑛-buyers and 𝑙𝑜-sellers. These trades then create a “transient” fringe of
𝑑𝑜-sellers (of the same magnitude of d𝑡) who then quote asks to the searching ℎ𝑛-buyers. The dealer
stationarity condition (8) above then requires:

𝜌𝑚ℎ𝑛𝜈ℎ𝑛 = 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 =⇒ 𝜈ℎ𝑛 =
𝑚𝑙𝑜𝜈𝑙𝑜
𝑚ℎ𝑛

=
𝑚𝑙𝑜

𝑚ℎ𝑛
.

Note that it must be 𝜈ℎ𝑛 < 1 in this case (as verified in the proof of Proposition S1); that is, all such
transient 𝑑𝑜-sellers are sought after by ℎ𝑛-buyers. Otherwise, some of the 𝑑𝑜-sellers will accumulate
overtime, making the dealer masses nonstationary.

S2.1.2 Value functions and prices

The value functions can be found using the same set of HJB equations (10)-(15) as in Section 3.2.
Hence, Proposition 1 continues to hold for directed search. In particular, the condition for positive
trading gains remains the same. The only differences are in the trading gain intensities, {𝜁𝜎 }.

We first consider the interior equilibrium where 𝑚𝑑𝑜 ∈ (0,𝑚𝑑). In this case, there is perfect
competition among dealers and so 𝜁𝑑𝑛 = 𝜁𝑑𝑜 = 0. To see why, consider, for example, the 𝑑𝑜-sellers’
quote 𝑝𝑎 to the ℎ𝑛-buyers. Since the amount of searching ℎ𝑛-buyers is vanishingly small (𝜌𝑚ℎ𝑛d𝑡), the
standard Bertrand price competition applies to the 𝑑𝑜-sellers, giving 𝑝𝑎 = 𝑅𝑑 as the only symmetric
price in equilibrium. Similar argument implies that in this case the𝑑𝑛-buyers quote 𝑝𝑏 = 𝑅𝑑 . Summing
up, the dealers quotes are given by 𝑝𝑎 = 𝑝𝑏 = 𝑅𝑑 , and the trading gain intensities are given by 𝜁𝑙𝑜 = 𝜌𝜈𝑙𝑜 ,
𝜁ℎ𝑛 = 𝜌𝜈ℎ𝑛, and 𝜁𝑑𝑜 = 𝜁𝑑𝑛 = 0.

Next, in the corner equilibrium of 𝑚𝑑𝑜 = 0, any 𝑑𝑜-dealer exists only transiently: Whenever a
𝑑𝑛-dealer has bought the asset (from an 𝑙𝑜-seller), he immediately trades again with an ℎ𝑛-buyer,
becoming 𝑑𝑛-dealer again. Therefore, Δℎ𝑑 = 0 in this case. This follows from Equation (14) if one
divides it by 𝜁𝑑𝑜 and sets 𝜁𝑑𝑜 = ∞ (because a 𝑑𝑜-dealer trades immediately without waiting). Then
𝑝𝑎 = 𝑅ℎ = 𝑅𝑑 . The Bertrand competition argument for 𝑚𝑑 > 0 amount of 𝑑𝑛-buyers still implies that
𝑝𝑏 = 𝑅𝑑 . Likewise, in the corner equilibrium of𝑚𝑑𝑛 = 0, we have Δ𝑑𝑙 = 0 and 𝑝𝑎 = 𝑝𝑏 = 𝑅𝑑 .

S2.2 Comparing DS with SMS

In DS, a customer can first observe all dealers’ quotes and then direct her search to a chosen dealer. In
SMS, a customer can reach only 𝑛 dealers (where 𝑛 is set by the platform like RFQ), not knowing the
types of the dealers, only with noisy signals of quality𝜓 . This appendix concludes with the following
convergence result:
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Proposition S2 (Convergence of SMS to DS). The equilibrium demographics, value functions,
and prices in the SMS model converge to those in DS either (i) when 𝜓 → 1 under the “random
matching with signal” specification with 𝑛 ≥ 2; or (ii) when 𝑛 → ∞ under the general specification.

Intuitively, one should expect as the search capacity 𝑛 → ∞, the customer can almost surely find at
least one counterparty dealer. Likewise, if the signal quality (dealer inventory transparency) 𝜓 → 1,
the customer can always direct her quote to the correct dealers. Therefore, in both limits of SMS, the
customers’ searches converge to those in DS.

S3 Price dispersion with homogenous dealers

This appendix studies the dealers pricing strategies under SMS. Despite the homogeneity of dealers,
in equilibrium, there still is price dispersion in their quotes. Consider a customer just contacted 𝑛

dealers via SMS. First, there is probability 𝑞 that she can make a TIOLIO to the dealers. In this case,
it is optimal for her to set the price of the TIOLIO at the dealers’ reservation value, i.e., 𝑝 = 𝑅𝑑 .

Second, there is probability 1 − 𝑞 that the 𝑛 dealers independently quote to the customer. For
concreteness, suppose the customer is an ℎ𝑛-buyer. In this case, a quoting dealer must be a 𝑑𝑜-seller
and he would like to capture the full surplus by setting 𝑝 ↑ 𝑅ℎ. However, he faces potential competition
from the other (𝑛 − 1) dealers, as their asking quotes might be lower than his. Yet not all of the
other (𝑛 − 1) dealers are necessarily also 𝑑𝑜-sellers. The quoting 𝑑𝑜-seller therefore engages in a price
competition with unknown number of competitors.

Such price competition differs from the standard Bertrand price competition, in which every 𝑑𝑜-
seller quotes his reservation price of 𝑅𝑑 and the ℎ𝑛-buyer gets the full surplus Δℎ𝑑 . Instead, every
𝑑𝑜-seller has an incentive to charge a higher price, 𝑅𝑑 + 𝛼Δℎ𝑑 for some 𝛼 ∈ [0, 1]. (When 𝛼 = 1,
𝑅𝑑 + 𝛼Δℎ𝑑 = 𝑅ℎ, which is the ℎ𝑛-buyer’s reservation value.) This is because he might actually be the
only 𝑑𝑜-seller among the 𝑛 contacted dealers, in which case his quote is the only price available to
the searching ℎ𝑛-buyer. As long as 𝛼 ≤ 1, the buyer will accept it4 and the dealer can pocket the
difference 𝛼Δℎ𝑑 as his profit. In a Nash equilibrium, however, the fraction 𝛼 cannot be deterministic,
as the undercutting argument of Bertrand competition will lead to 𝛼 ↓ 0. Yet, it would be strictly better
off to quote some 𝛼 > 0 if all the potential competitors were to quote 𝛼 ↓ 0. The heuristic discussion
above is formalized in the proof of the following proposition.

4 To see this, note that by accepting an offer 𝑝 = 𝑅𝑑 + 𝛼Δℎ𝑑 , the customer-buyer becomes ℎ𝑜-bystander and gets a
continuation value of𝑉ℎ𝑜 − 𝑝. If instead he rejects the offer, his value remains as𝑉ℎ𝑛 . This customer-buyer will accept the
offer as long as 𝑉ℎ𝑜 − 𝑝 ≥ 𝑉ℎ𝑛 , a condition equivalent to 𝛼 ≤ 1.
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Proposition S3 (Dealers’ equilibrium quoting). Suppose a customer contacts 𝑛 (≥ 1) dealer(s).
With probability 1 − 𝑞, each dealer independently makes a TIOLIO to the customer. Within
symmetric strategies, there is a unique mixed-strategy equilibrium for the dealers. Define
𝐹 (𝑥 ;𝜋, 𝑛) := 1

𝜋 −
(

1
𝜋 − 1

)
𝑥−

1
𝑛−1 for (1 − 𝜋)𝑛−1 ≤ 𝑥 ≤ 1, 𝜋 ∈ (0, 1), and 𝑛 ∈ N. Then,

• a 𝑑𝑜-seller asks 𝑅𝑙 + 𝛼Δℎ𝑑 , where 𝛼 is random with c.d.f. 𝐹 (𝛼 ;𝜋𝑑𝑜 , 𝑛); and
• a 𝑑𝑛-buyer bids 𝑅ℎ − 𝛽Δ𝑑𝑙 , where 𝛽 is random with c.d.f. 𝐹 (𝛽;𝜋𝑑𝑛, 𝑛).

Note that when 𝑛 = 1, the c.d.f. 𝐹 (·) becomes degenerate with 𝐹 (𝑥) = 1{𝑥≥1}.

The proposition above implies that a quoting 𝑑𝑜-seller expects a trading price of 𝑅𝑙 + 𝛼Δℎ𝑑 and a
quoting 𝑑𝑛-buyer expects 𝑅ℎ − 𝛽Δ𝑑𝑙 , where

𝛼 := E[𝛼] = (1 − 𝜋𝑑𝑜)𝑛−1 and 𝛽 := E[𝛽] = (1 − 𝜋𝑑𝑛)𝑛−1.(S27)

To see this, consider a quoting 𝑑𝑜-seller and note that under the mixed-strategy equilibrium, he must
be indifferent across all possible 𝛼 ∈ [0, 1]. In particular, the only situation for quoting 𝛼 = 1 to
“win” is that there are no other competing 𝑑𝑜-sellers; that is, with probability (1− 𝜋𝑑𝑜)𝑛−1. Therefore,
when contacted, a quoting 𝑑𝑜-seller expects a profit of 𝛼Δ, where 𝛼 can be interpreted as his expected
trading gain share. Likewise, a quoting 𝑑𝑛-buyer expects 𝛽Δ.

Proposition S3 characterizes a contacted dealer’s quoting strategy. From a searching customer’s
perspective, however, the expected trading price has a different distribution, because she can pick the
best quote and because there might be no quote if none of the contacted dealers is of the matching type.
Consider an ℎ𝑛-buyer for example. He contacts 𝑛 dealers knowing that the number of counterparties
he will actually find, 𝑁𝑑𝑜 , is random and follows a binomial distribution of 𝑛 draws and success
rate 𝜋𝑑𝑜 . Each of these 𝑁𝑑𝑜 dealers then quotes a random price according to 𝐹 (𝛼 ;𝜋𝑑𝑜 , 𝑛), following
Proposition S3. (The ℎ𝑛-buyer can safely ignore the other 𝑛 − 𝑁𝑑𝑜 dealers’ quotes, as they also want
to buy.) The ℎ𝑛-buyer then picks the lowest ask among the 𝑁𝑑𝑜 available quotes. Conditional on
that 𝑁𝑑𝑜 ≥ 1, the c.d.f. of this minimum ask is 1 − (1 − 𝐹 (𝛼 ; ·))𝑁𝑑𝑜−1. (When 𝑁𝑑𝑜 = 0, the ℎ𝑛-buyer
finds no ask quote and there is no trade.) Averaging across all possible 𝑁𝑑𝑜 ∈ {1, ..., 𝑛}, the corollary
below gives the expectation of this minimum ask quote.

Proposition S4 (Trading prices). Define 𝐺 (𝑥 ;𝜋, 𝑛) := 1−(1−𝜋)𝑛𝑥−
𝑛

𝑛−1

1−(1−𝜋)𝑛 with support (1 − 𝜋)𝑛−1 ≤
𝑥 ≤ 1, for some 𝜋 ∈ (0, 1) and 𝑛 ∈ N. Then

• a searching ℎ𝑛-buyer expects to trade with probability (1 − (1 − 𝜋𝑑𝑜)𝑛) at price 𝐴 := 𝑄𝑅𝑑 +
(1 −𝑄)(𝑅𝑑 + 𝑎Δℎ𝑑), and

• a searching 𝑙𝑜-seller expects to trade with probability (1 − (1 − 𝜋𝑑𝑛)𝑛) at price 𝐵 := 𝑄𝑅𝑑 +
(1 −𝑄)(𝑅𝑑 − 𝑏Δ𝑑𝑙 ),

14



where 𝑄 is a Bernoulli draw with success rate 𝑞, and 𝑎 and 𝑏 are random variables with respective
c.d.f. 𝐺 (𝑥 ;𝜋𝑑𝑜 , 𝑛) and 𝐺 (𝑥 ;𝜋𝑑𝑛, 𝑛). Note that when 𝑛 = 1, 𝑎 = 𝑏 = 1 almost surely.

Proposition S4 implies that trades have price dispersion in equilibrium. Formally, the price
dispersion of each customer type’s trades can be evaluated as the variances of their trading prices,
i.e., var[𝐴] for customer-buying trades and var[𝐵] for customer-selling. Such dispersions arise due
to the unknown number of competitors, an intrinsic feature of SMS: The contacted dealers’ types are
unknown to each other. In the current stylized model, such types boil down to the dealers’ inventory
holdings (𝑑𝑜 vs. 𝑑𝑛). In real-world trading, agents’ other characteristics (like risk-aversion, patience,
wealth, and relationship with customers, etc.) can enrich their possible types. As long as such a friction
remains, price dispersion will be a robust feature in equilibrium. The models by Duffie, Dworczak,
and Zhu (2017) and Lester et al. (2018) also feature similar price setting mechanisms. The key novelty
here is that such price dispersion is endogenously parametrized by the equilibrium demographics of
counterparties, through 𝜋𝑑𝑜 = 𝜋

(
𝑚𝑑𝑜
𝑚𝑑

)
and 𝜋𝑑𝑛 = 𝜋

(
𝑚𝑑𝑜
𝑚𝑑

)
.

The flexible specification of the matching rate 𝜋 (·;𝜓 ), as in Equation (1), allows to study how
dealers’ inventory transparency 𝜓 ∈ ( 1

2 , 1] affects the equilibrium prices. Under (1), the matching
rate 𝜋 monotonically increases in 𝜓 . Intuitively, knowing dealers’ inventories better, customers can
find matching counterparties more easily. This leads to the following comparative statics:

Proposition S5 (Inventory transparency and price dispersion). In SMS, when dealers’ inventory
transparency𝜓 is sufficiently high, the price dispersions var[𝐴] and var[𝐵] monotonically decreases
with the dealers’ inventory transparency𝜓 .

Intuitively, when the transparency is higher, customers can direct their searches to matching dealers
more precisely. Knowing this, the contacted 𝑛 dealers will quote the prices more competitively, i.e.,
closer to their reservation values 𝑅𝑑 . This competition effect of SMS (𝑛 ≥ 2), therefore, reduces the
magnitude of price dispersion.

This result contrasts with the finding from Cujean and Praz (2015), who show that the opposite
happens in a setting where higher inventory transparency exposes agents to wider, more extreme
“predatory quotes,” thus adding to the price dispersion. Since agents only meet in pairs in their
framework, the quoting side is effectively a monopolist (subject to risk aversion and information
asymmetry) and there is no price competition from others quoters. In other words, transparency does
not prompt price competition in their framework. Instead, in the SMS setup of this paper, a searching
customer reaches out to multiple dealers and transparency, therefore, has the direct effect on price
competition.
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S4 Endogenous search intensity

This appendix studies customers’ costly searching by allowing them to choose the search intensity 𝜌

endogenously, subject to certain cost function. Specifically, instead of an exogenous common 𝜌 , a
customer of type-𝜎 can choose to search with intensity 𝜌𝜎 by incurring a quadratic flow cost of 1

2𝜅 𝜌
2
𝜎

per unit of time. The exogenous parameter 𝜅 (> 0) represents how advanced the technology is. (The
higher 𝜅 is, the less costly is searching.) The objective is to study when 𝜅 increases, whether such
a more advanced technology creates a similar “dealer bottleneck” to the one created by the search
capacity 𝑛 (Section 3.3). For this objective, the analyses below only concern the case of SMS only
(not how customers might choose between SMS and BB).

S4.1 Demographics and value functions

In this subsection, we assume that there is a symmetric-strategy steady state equilibrium, where all
customers of the same type 𝜎 ∈ {ℎ𝑛, 𝑙𝑜} choose the same search intensity 𝜌𝜎 . (The next subsection pins
them down endogenously through customers’ optimization.) As in Section 3.1, the six endogenous
demographic parameters, {𝑚ℎ𝑛,𝑚ℎ𝑜 ,𝑚𝑙𝑛,𝑚𝑙𝑜 ,𝑚𝑑𝑜 ,𝑚𝑑𝑛}, are pinned down exactly by the following six
conditions:

market clearing: 𝑚ℎ𝑜 +𝑚𝑙𝑜 +𝑚𝑑𝑜 = 𝑠

total customer mass: 𝑚ℎ𝑜 +𝑚𝑙𝑛 +𝑚ℎ𝑛 +𝑚𝑙𝑜 = 1

total dealer mass: 𝑚𝑑𝑜 +𝑚𝑑𝑛 =𝑚𝑑

high/low type stability: (𝑚𝑙𝑜 +𝑚𝑙𝑛)𝜆𝑢d𝑡 = (𝑚ℎ𝑜 +𝑚ℎ𝑛)𝜆𝑑d𝑡

net flow of 𝑙𝑜-sellers: − 𝜌𝑙𝑜𝑚𝑙𝑜𝜈𝑙𝑜 − 𝜆𝑢𝑚𝑙𝑜 + 𝜆𝑑𝑚ℎ𝑜 = 0

net flow of ℎ𝑛-buyers: − 𝜌ℎ𝑛𝑚ℎ𝑛𝜈ℎ𝑛 − 𝜆𝑑𝑚ℎ𝑛 + 𝜆𝑢𝑚𝑙𝑛 = 0

which correspond to Equations (2)-(7). The only difference is that the search intensities 𝜌s in the last
two equations are now type-specific.

Likewise, the six value functions, {𝑉ℎ𝑛,𝑉ℎ𝑜 ,𝑉𝑙𝑛,𝑉𝑙𝑜 ,𝑉𝑑𝑜 ,𝑉𝑑𝑛}, follow the HJB equation system
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below:

0 = 𝑦ℎ + 𝜆𝑑 · (𝑉𝑙𝑜 −𝑉ℎ𝑜) − (𝑟 + 𝑓𝑐)𝑉ℎ𝑜
0 = 𝜆𝑢 · (𝑉ℎ𝑛 −𝑉𝑙𝑛) − (𝑟 + 𝑓𝑐)𝑉𝑙𝑛

0 = 𝑦𝑙 + 𝜆𝑢 · (𝑉ℎ𝑜 −𝑉𝑙𝑜) − (𝑟 + 𝑓𝑐)𝑉𝑙𝑜 + 𝜁𝑙𝑜Δ𝑑𝑙 −
𝜌2
𝑙𝑜

2𝜅

0 = 𝜆𝑑 · (𝑉𝑙𝑛 −𝑉ℎ𝑛) − (𝑟 + 𝑓𝑐)𝑉ℎ𝑛 + 𝜁ℎ𝑛Δℎ𝑑 −
𝜌2
ℎ𝑛

2𝜅
0 = 𝑦𝑑 − (𝑟 + 𝑓𝑑)𝑉𝑑𝑜 + 𝜁𝑑𝑜Δℎ𝑑

0 = −(𝑟 + 𝑓𝑑)𝑉𝑑𝑛 + 𝜁𝑑𝑛Δ𝑑𝑙

which correspond to Equations (10)-(15), except that the two trading types of customers, 𝜎 ∈ {𝑙𝑜, ℎ𝑛},
now also incur quadratic flow costs, 𝜌2

𝜎
2𝜅 , as shown in the third and the fourth equations above. The

trading gains still have the same expressions as before:

Δ𝑑𝑙 = 𝑅𝑑 − 𝑅𝑙 = (𝑉𝑑𝑜 −𝑉𝑑𝑛) − (𝑉𝑙𝑜 −𝑉𝑙𝑛) and Δℎ𝑑 = 𝑅ℎ − 𝑅𝑑 = (𝑉ℎ𝑜 −𝑉ℎ𝑛) − (𝑉𝑑𝑜 −𝑉𝑑𝑛);

and so do the trading gain intensities, except that they are also scaled by the type-specific 𝜌s:

𝜁𝑙𝑜 = 𝜌𝑙𝑜𝜈𝑙𝑜𝛾𝑙𝑜 , 𝜁𝑑𝑛 =
𝑚𝑙𝑜

𝑚𝑑𝑛
𝜌𝑙𝑜𝜈𝑙𝑜 (1 − 𝛾𝑙𝑜); and 𝜁ℎ𝑛 = 𝜌ℎ𝑛𝜈ℎ𝑛𝛾ℎ𝑛, 𝜁𝑑𝑜 =

𝑚ℎ𝑛

𝑚𝑑𝑜
𝜌ℎ𝑛𝜈ℎ𝑛 (1 − 𝛾ℎ𝑛) .

S4.2 Customers’ optimal choices of search intensity

Consider an 𝑙𝑜-seller for example. She chooses her own 𝜌𝑙𝑜 to maximizes her own value function 𝑉𝑙𝑜 .
Using the first and the third equations from the HJB system above, one obtains a quadratic equation
of her 𝜌𝑙𝑜 and her 𝑉𝑙𝑜 :

0 = 𝑦𝑙 +
𝜆𝑢

𝜆𝑑 + 𝑟
𝑦ℎ −

(
1 + 𝜆𝑢

𝜆𝑑 + 𝑟

)
𝑟𝑉𝑙𝑜 + 𝜁𝑙𝑜Δ𝑑𝑙 −

𝜌2
𝑙𝑜

2𝜅
,

noting that 𝜁𝑙𝑜 is proportional to 𝜌𝑙𝑜 and Δ𝑑𝑙 is linear in 𝑉𝑙𝑜 . By implicit function theorem, therefore,
the 𝑙𝑜-seller’s first-order condition can be found as

d𝑉𝑙𝑜
d𝜌𝑙𝑜

=
𝑟 + 𝜆𝑑

(𝑟 + 𝜆𝑑 + 𝜆𝑢)𝑟 + (𝑟 + 𝜆𝑑)𝜁𝑙𝑜

(
𝜈𝑙𝑜𝛾𝑙𝑜Δ𝑑𝑙 −

𝜌𝑙𝑜
𝜅

)
= 0 =⇒ 𝜌𝑙𝑜 = 𝜅𝜈𝑙𝑜𝛾𝑙𝑜Δ𝑑𝑙 .(S28)

A few comments are in order for the above. First, due to the continuum of agents, the 𝑙𝑜-seller’s
choice of 𝜌𝑙𝑜 has no impact on the aggregate demographics or the valuation of anyone else. That is
why the only endogenous variables, from this 𝑙𝑜-seller’s point, are her own 𝑉𝑙𝑜 and her own 𝜌𝑙𝑜 in the
above equation. Second, (S28) is a nonlinear equation that pins down the solution to the optimal 𝜌𝑙𝑜 ,
because Δ𝑑𝑙 = 𝑅𝑑 − (𝑉𝑙𝑜 −𝑉𝑙𝑛) is still endogenous of 𝑉𝑙𝑜 and, hence, also 𝜌𝑙𝑜 . Third, the second-order

17



condition can easily be shown to hold, by envelope theorem, as d2𝑉𝑙𝑜
d𝜌2

𝑙𝑜

< 0, thus ensuring that the
solution to (S28) indeed maximizes 𝑉𝑙𝑜 . Similarly, an ℎ𝑛-buyer’s first order condition to solve for her
search intensity 𝜌ℎ𝑛 is pinned down by

𝜌ℎ𝑛 = 𝜅𝜈ℎ𝑛𝛾ℎ𝑛Δℎ𝑑 ,(S29)

which again is a nonlinear equation of 𝜌ℎ𝑛, because Δℎ𝑑 = (𝑉ℎ𝑜 −𝑉ℎ𝑛) − 𝑅𝑑 is endogenous of 𝑉ℎ𝑛 and
hence also 𝜌ℎ𝑛.

Due to the nonlinearity, the first-order conditions (S28) and (S28) are solved numerically and the
solution seems to always exist and is stable. Taken together, therefore, the six-equation demographic
system, the six-equation value function system, and the two first-order conditions jointly determine the
14 variables of the steady state equilibrium: the six demographic variables, the six value functions,
and the two search intensities.

S4.3 Does a better search technology create “bottleneck”?

In the baseline model studied in Section 3.3, the dealer bottle neck arises only when the search
capacity 𝑛 increases but not with the search intensity 𝜌 . This is because the common 𝜌 in the
baseline symmetrically increases both the asset inflow to and the outflow from the dealers, unlike the
asymmetric effects from 𝑛.5 It is natural to ask, given the endogenous choices of 𝜌ℎ𝑛 and 𝜌𝑙𝑜 in this
extension (and that they are unlikely to be exactly the same), whether the search technology 𝜅 can
create similar bottlenecks.

Given the nonlinear first-order conditions (S28) and (S29), the effects are first examined numer-
ically. It is found that the impact of a higher technology 𝜅 on the trading customers’ sizes, 𝑚ℎ𝑛

and 𝑚𝑙𝑜 , turn out to be very robust and consistent across various parametrizations attempted: they
always monotonically reduce with 𝜅. In other words, no bottleneck is found and the asset allocation
is unanimously improved towards the Walrasian allocation. Figure S1(a) illustrates the effects under
a specific set of parameter values.

To understand why the search technology 𝜅 does not create the bottleneck, consider the customers’

5 As a recap, the intuition for the dealer bottleneck is as follows: When the search capacity 𝑛 increases, it improves
matching by asymmetrically raising both matching rates 𝜈𝑙𝑜 and 𝜈ℎ𝑛 . (The short side’s 𝜈 increases much less than the long
side’s.) In the steady state, the asset inflow to and outflow from the dealers must equalize, i.e., 𝜌𝑚𝑙𝑜𝜈𝑙𝑜 = 𝜌𝑚ℎ𝑛𝜈ℎ𝑛 . Since
the 𝜈s increase asymmetrically with 𝑛, to sustain the equality between the inflow and the outflow, the customer sizes 𝑚𝑙𝑜

and𝑚ℎ𝑛 must change asymmetrically as well. In particular, the short-side customer size must increase, while the long-side
decrease. Unlike 𝑛, 𝜌 symmetrically scale both the inflow and the outflow and therefore does not create the bottleneck.
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(a) Effects on customer sizes
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Figure S1: The effects of improving the search intensity technology 𝜅. This figure illustrates how the search
intensity technology 𝜅 affects the customer sizes in Panel (a) and their choices of the search intensity 𝜌s in (b).
The solid (blue) lines and the dashed (orange) lines indicate for 𝑙𝑜 and ℎ𝑛 customers, respectively. In particular,
Panel (b) plots the log of the 𝜌s against the log of 𝜅, by normalizing as such that both log 𝜌𝑙𝑜 = log 𝜌ℎ𝑛 = 0 at
the minimum 𝜅 selected here. The dotted line in Panel (b) is the 45-degree line. Apart from 𝜅, the primitive
parameters are set at 𝑛 = 3, 𝜆𝑢 = 𝜆𝑑 = 1.0, 𝑚𝑑 = 0.1, and 𝑠 = 0.45. (The other parameters do not affect the
objectives plotted here.)

optimal choices of 𝜌s. Apply a small shock of d𝜅 to their first-order conditions (S28) and (S29) to get

d𝜌𝑙𝑜
𝜌𝑙𝑜

=
d𝜅
𝜅

+ d(𝜈𝑙𝑜𝛾𝑙𝑜Δ𝑑𝑙 )
𝜈𝑙𝑜𝛾𝑙𝑜Δ𝑑𝑙

and
d𝜌ℎ𝑛
𝜌ℎ𝑛

=
d𝜅
𝜅

+ d(𝜈ℎ𝑛𝛾ℎ𝑛Δℎ𝑑)
𝜈ℎ𝑛𝛾ℎ𝑛Δℎ𝑑

.

That is, the effects of 𝜅 on 𝜌s can be decomposed into a direct scaling effect, d𝜅/𝜅, and an indirect
effect (the other term). The direct scaling effect is exactly the same for the ℎ𝑛-buyers and the 𝑙𝑜-sellers
and, therefore, does not create the asymmetry needed for the bottleneck. Only when the indirect effect
is significant enough might the increase in𝜅 create asymmetry on the two sides of the market, resulting
in the bottleneck. However, from the various numerical parametrization attempted, this indirect effect
seems to be always small. Indeed, from Figure S1(b), it can be seen that both log 𝜌𝑙𝑜 and log 𝜌ℎ𝑛
are monotonically increasing with log𝜅 along the 45-degree line, suggesting the elasticity being very
close to unity. The negligibly small curvature concurs with the dominance of the direct scaling effect
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over the residual indirect effects. In other words, when the technology 𝜅 improves, it is as if directly
scaling both 𝜌s.

As such, it is unsurprising to see that 𝜅 creates no bottleneck: The stationarity condition requires
that the asset inflow into and out of dealers equate each other, i.e.,

𝜌𝑙𝑜𝑚𝑙𝑜𝜈𝑙𝑜 = 𝜌ℎ𝑛𝑚ℎ𝑛𝜈ℎ𝑛,(S30)

which follows the last three equations of the demographics system. As𝜅 increases, as illustrated above,
the dominant effect is that it directly scales both 𝜌ℎ𝑛 and 𝜌𝑙𝑜 , by the same proportion: d𝜌𝑙𝑜

𝜌𝑙𝑜
≈ d𝜅

𝜅 ≈ d𝜌ℎ𝑛
𝜌ℎ𝑛

.
Therefore, just like in the baseline (where 𝜌ℎ𝑛 = 𝜌𝑙𝑜 = 𝜌), the same scaling effect symmetrically affects
both the inflow and the outflow, offsetting each other.

To conclude, the above analysis suggests that indeed the bottleneck effect is a rather unique feature
of the search capacity 𝑛 (as it enters asymmetrically on the two sides of the market through the
equilibrium demographics). The bottleneck does not arise with the search intensity 𝜌 (or 𝜅) because
of the way it proportionally enters the inflow and outflow equality condition (S30). It is worth noting
that our analysis is largely numerical, due to the nonlinear first-order conditions. We therefore do
not fully rule out the possibility that bottleneck might arise with 𝜌s under certain parametrizations,
where the indirect effects of 𝜅 in 𝜌s might dominate, thus overturning the symmetry and creating the
bottleneck. However, we have not yet found such examples. (We have also experimented some other
convex functional forms of 𝑐 (𝜌) for the flow cost.)

S5 Transition dynamics

This appendix characterizes the non-stationary equilibria of the model. Doing so allows us to examine
the transition of the endogenous model elements, like the demographics and the welfare, in between
shocks and the eventual steady states. In particular, Section S5.3 shows that when the discount rate
is low, comparing welfare only in steady states (as we do in Section 3.3.3 and 4.3) is equivalent to
comparing also welfare during transition dynamics.

S5.1 Demographics

First, consider the dynamics of high-type customers, 𝜂 ≡ 𝑚ℎ𝑜 +𝑚ℎ𝑛. The change of 𝜂 over time, ¤𝜂
is given by inflows (1 − 𝜂)𝜆𝑢 minus the outflows 𝜂𝜆𝑑 . Thus, we can write the flow as an ordinary
differential equation (ODE):

¤𝜂 = (1 − 𝜂 (𝑡))𝜆𝑢 − 𝜂 (𝑡)𝜆𝑑 .
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Solving it with initial condition 𝜂 (0) = 𝜂0 yields the solution

(S31) 𝜂 (𝑡) = 𝜂∗ + (𝜂0 − 𝜂∗) exp(−(𝜆𝑢 + 𝜆𝑑)𝑡),

where 𝜂∗ = 𝜆𝑢
𝜆𝑢+𝜆𝑑 .

Second, one can express all customer masses in terms of𝑚𝑑𝑜 ,𝜂 and𝑚𝑙𝑜 . From the non-time-varying
conditions𝑚ℎ𝑜 +𝑚ℎ𝑛 = 𝜂,𝑚ℎ𝑛 +𝑚𝑙𝑛 = 1 − 𝜂, and𝑚ℎ𝑜 +𝑚𝑙𝑜 = 𝑠 −𝑚𝑑𝑜 , we obtain

𝑚ℎ𝑜 (𝑡) = 𝑠 −𝑚𝑑𝑜 (𝑡) −𝑚𝑙𝑜 (𝑡),(S32)

𝑚ℎ𝑛 (𝑡) =𝑚𝑙𝑜 (𝑡) + 𝜂 (𝑡) − 𝑠 +𝑚𝑑𝑜 (𝑡),(S33)

𝑚𝑙𝑛 (𝑡) = 1 −𝑚𝑙𝑜 (𝑡) − 𝜂 (𝑡).(S34)

It remains to characterise the dynamics of𝑚𝑙𝑜 and𝑚𝑑𝑜 . The equations are similar to the stationary
case, but we equalise the difference between inflows and outflows to time derivative of these masses
(which are zero in steady states):

¤𝑚𝑙𝑜 =𝑚ℎ𝑜 (𝑡)𝜆𝑑 −𝑚𝑙𝑜 (𝑡)𝜆𝑢 − 𝜌𝑚𝑙𝑜 (𝑡)𝜈𝑙𝑜 (𝑡),(S35)

¤𝑚𝑑𝑜 = 𝜌𝑚𝑙𝑜 (𝑡)𝜈𝑙𝑜 (𝑡) − 𝜌𝑚ℎ𝑛 (𝑡)𝜈ℎ𝑛 (𝑡).(S36)

The probabilities 𝜈𝑙𝑜 (𝑡) and 𝜈ℎ𝑛 (𝑡) can be expressed through 𝑚𝑑𝑜 (𝑡) exactly as in the stationary case.
We now summarise the above discussion.

Lemma S2. Consider the system of ODEs (S35) and (S36), given the initial conditions 𝑚𝑙𝑜 (0) =
𝑚𝑙𝑜,0 and 𝑚𝑑𝑜 (0) = 𝑚𝑑𝑜,0. The solution to this system, combined with (S31)−(S34) fully charac-
terises the demographics in a nonstationary equilibrium, where gains from trade between customers
and dealers exist at all times.

The proof follows the preceding analysis.
Solving the demographics reduces to solving the system of two non-linear first-order ODEs (S35)

and (S36), which can be done numerically, using standard methods. We verify that the gains from
trade are positive numerically, as we explain in the next subsection.

S5.2 Value functions

Our derivations are very similar to the stationary case. Consider an ℎ𝑜-bystander. His value function
at time 𝑡 consists of utility flows over a short time interval 𝑑𝑡 plus the discounted future value function,
given that there is no exit shock

𝑉ℎ𝑜 (𝑡) = 𝑦ℎ𝑑𝑡 + 𝜆𝑑 (𝑉𝑙𝑜 (𝑡) −𝑉ℎ𝑜 (𝑡)) + 𝑒−(𝑟+𝑓𝑐 )𝑑𝑡︸    ︷︷    ︸
1−(𝑟+𝑓 )𝑑𝑡

𝑉ℎ𝑜 (𝑡 + 𝑑𝑡)
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Taking the limit as 𝑑𝑡 → 0 we obtain the HJB

(S37) 0 = ¤𝑉ℎ𝑜 + 𝑦ℎ + 𝜆𝑑 · (𝑉𝑙𝑜 (𝑡) −𝑉ℎ𝑜 (𝑡)) − (𝑟 + 𝑓𝑐)𝑉ℎ𝑜 (𝑡).

The HJB is similar to the stationary case. The only difference is that now we have to add ¤𝑉ℎ𝑜 at the
right-hand side.

Proceeding similarly we obtain the remaining HJBs

0 = ¤𝑉𝑙𝑛 + 𝜆𝑢 · (𝑉ℎ𝑛 (𝑡) −𝑉𝑙𝑛 (𝑡)) − (𝑟 + 𝑓𝑐)𝑉𝑙𝑛 (𝑡),(S38)

0 = ¤𝑉𝑙𝑜 + 𝑦𝑙 + 𝜆𝑢 · (𝑉ℎ𝑜 (𝑡) −𝑉𝑙𝑜 (𝑡)) − 𝑟𝑉𝑙𝑜 (𝑡) + 𝜁𝑙𝑜 (𝑡)Δ𝑑𝑙 (𝑡),(S39)

0 = ¤𝑉ℎ𝑛 + 𝜆𝑑 · (𝑉𝑙𝑛 (𝑡) −𝑉ℎ𝑛 (𝑡)) − (𝑟 + 𝑓𝑐)𝑉ℎ𝑛 (𝑡) + 𝜁ℎ𝑛 (𝑡)Δℎ𝑑 (𝑡),(S40)

0 = ¤𝑉𝑑𝑜 + 𝑦𝑑 − (𝑟 + 𝑓𝑑)𝑉𝑑𝑜 (𝑡) + 𝜁𝑑𝑜 (𝑡)Δℎ𝑑 (𝑡),(S41)

0 = ¤𝑉𝑑𝑛 − (𝑟 + 𝑓𝑑)𝑉𝑑𝑛 (𝑡) + 𝜁𝑑𝑛 (𝑡)Δ𝑑𝑙 (𝑡).(S42)

Here the trading gains Δℎ𝑑 and Δ𝑑𝑙 as well as trading gains rates 𝜁𝜏 , 𝜏 ∈ {𝑙𝑜, ℎ𝑛, 𝑑𝑜, 𝑑𝑛} are defined
exactly as in the stationary case. The above analysis leads to the following lemma:

Lemma S3. Suppose that the reservation values satisfy 0 < 𝑅𝑙 (𝑡) < 𝑅𝑑 (𝑡) < 𝑅ℎ (𝑡). Then the value
functions are the solution to the system of linear ODEs (S37)-(S42).

To check that there are gains from trade one solves for reservation values, which follow the
following linear ODE system.

0 = ¤𝑅ℎ + 𝑦ℎ − 𝑟𝑅ℎ (𝑡) − 𝜁ℎ𝑛 (𝑡) (𝑅ℎ (𝑡) − 𝑅𝑑 (𝑡)) − 𝜆𝑑 (𝑅ℎ (𝑡) − 𝑅𝑙 (𝑡)),(S43)

0 = ¤𝑅𝑙 + 𝑦𝑙 + 𝜆𝑢 (𝑅ℎ (𝑡) − 𝑅𝑙 (𝑡)) − 𝑟𝑅𝑙 (𝑡) + 𝜁𝑙𝑜 (𝑡) (𝑅𝑑 (𝑡) − 𝑅𝑙 (𝑡)),(S44)

0 = ¤𝑅𝑑 + 𝑦𝑑 − 𝑟𝑅𝑑 (𝑡) + 𝜁𝑑𝑜 (𝑡) (𝑅ℎ (𝑡) − 𝑅𝑑 (𝑡)) − 𝜁𝑑𝑛 (𝑡) (𝑅𝑑 (𝑡) − 𝑅𝑙 (𝑡)).(S45)

We summarise our approach to numerically solving for the non-stationary equilibria. First, we
solve for demographics using the results of Lemma S2. Second, we solve for value functions using
Lemma S3. Third, we verify that gains from trade are positive everywhere along the equilibrium path,
by solving (S43)-(S45).

S5.3 Welfare

The dynamics of welfare is given by

0 = ¤𝑤 + 𝑦𝑙𝑚𝑙𝑜 + 𝑦𝑑𝑚𝑑𝑜 + 𝑦ℎ𝑚ℎ𝑜 − 𝑟𝑤
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Solving the above, together with transversality condition lim𝑡→∞ exp(−𝛽𝑡)𝑤 (𝑡) = 0 yields a solution

𝑤 (𝑡) =
∫ ∞

𝑡
exp(−𝑟 (𝜏 − 𝑡))(𝑦𝑙𝑚𝑙𝑜 (𝜏) + 𝑦𝑑𝑚𝑑𝑜 (𝜏) + 𝑦ℎ𝑚ℎ𝑜 (𝜏))𝑑𝜏 .

We present the central result of this section below.

Proposition S6 (Welfare comparison with and without the transition dynamics). Consider two
equilibrium paths. Suppose both of these paths reach steady states. Then, for small enough
discount rate 𝑟 the comparison of welfare for these two paths is equivalent to comparing welfare in
the corresponding steady states.

Note that throughout we assume that the trading gains remain positive, under the condition outlined
in Proposition 1 (by, e.g., varying the exist rates 𝑓𝑐 and 𝑓𝑑).

S5.4 The bottleneck and the transition dynamics

In this section we do the following numerical exercise. We increase the search capacity 𝑛, holding
other parameters of the model fixed. We trace the transition dynamics as the economy reaches a
new steady state. (The economy could be not in the steady state initially.) While we demonstrates
our findings for a particular set of parameters in the figures below, these figures are typical, and our
insights appear to be general.

Consider Figure S2 below. There, we compare the welfare flows, defined as

𝑦 (𝑡) := 𝑦𝑙𝑚𝑙𝑜 (𝑡) + 𝑦𝑑𝑚𝑑𝑜 (𝑡) + 𝑦ℎ𝑚ℎ𝑜 (𝑡)

of the two equilibrium paths that are only different in terms of the search capacity 𝑛 (𝑛 vs. 𝑛 + 1). The
welfare flow reflects the total flow utility obtained by all traders in the economy at time 𝑡 . Note that
the social welfare at time 𝑡 is the present value of welfare flows, discounted to time 𝑡 , i.e.,

𝑤 (𝑡) =
∫ ∞

𝑡
exp(−𝑟 (𝜏 − 𝑡))𝑦 (𝜏)d𝜏 .

The figure plots the difference 𝑦 (𝑡 ;𝑛 + 1) − 𝑦 (𝑡 ;𝑛), in a situation when there is a bottleneck. Note
that this difference is positive initially. This is because higher 𝑛 improves the matching and allows
gains from trade to realise more often. Note also that the difference becomes negative as the economy
approaches the steady state and the bottleneck builds up. Thus, traders in the economy enjoy the
transition dynamics initially, but end up in a less efficient steady state.

TO illustrate the build up of the bottleneck we also look at the transition dynamics of an incremental
change in 𝑚𝑑𝑜 , 𝑚𝑑𝑜 (𝑡 ;𝑛 + 1) −𝑚𝑑𝑜 (𝑡 ;𝑛) in Figure S3 Panel (a). One can see that the increase in 𝑛

leads to a steady incremental increase in 𝑚𝑑𝑜 , manifesting the buildup of the bottleneck. Panel (b)
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Difference in welfare flows, 𝑦 (𝑡 ;𝑛 + 1) − 𝑦 (𝑡, 𝑛)
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-0.004

-0.002
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time t

Figure S2: Welfare flows in non-stationary equilibria. This figure plots the dynamics of the difference of
welfare flows 𝑦 (𝑡 ;𝑛 + 1) − 𝑦 (𝑡, 𝑛). We set 𝑛 = 3. The other parameters are set at 𝑠 = 0.6, 𝑚𝑑 = 𝜆𝑑 = 𝜆𝑢 = 𝜆𝑑 =
𝑟 = 0.1, and 𝜌 = 0.01. The initial conditions are given by 𝜂 (0) = 0.5, 𝑚𝑑𝑜 (0) = 0.06 and 𝑚𝑙𝑜 (0) = 0.26. This
figure is typical: for the model parameters where we have bottleneck, the plot starts at zero, is positive initially,
and then crosses zero to reach a negative horizontal asymptote.

shows the change in the mass of the “most efficient” asset holders𝑚ℎ𝑜 , i.e.,𝑚ℎ𝑜 (𝑡 ;𝑛 + 1) −𝑚ℎ𝑜 (𝑡 ;𝑛).
One can see that it is positive, initially. This is because higher 𝑛 means that buyers can meet matching
dealers more often, implying better asset flow from dealers to buyers. This echoes the intuition above
that better matching should improve efficiency. But note that such improvement in efficiency only
lasts for a very short period, during which the masses of traders are roughly unchanged. Over time,
however, the equilibrium allocation effect kicks in and the masses adjust towards the steady state. The
bottleneck then builds up, leading to incremental decrease in𝑚ℎ𝑜 .

S6 An alternative price-setting mechanism

This appendix considers an alternative price-setting mechanism, where a customer can negotiate the
price with the dealer after the RFQ auction. Specifically, when a customer is in contact with 𝑛 dealers,
the game proceeds in two steps:

• First, the customer runs a first-price auction among the 𝑛 dealers.
• Second, the customer bargains with the dealer who has just won the auction, keeping the option

to trade at the dealer’s quote from the auction. The bargaining protocol is as follows: with
probability 𝑞 (resp., 1 − 𝑞) the customer (resp. the dealer) make TIOLIOs to the counterparty.
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(a) Difference in𝑚𝑑𝑜 : 𝑚𝑑𝑜 (𝑡, 𝑛 + 1) −𝑚𝑑𝑜 (𝑡, 𝑛)
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(b) Difference in𝑚ℎ𝑜 : 𝑚ℎ𝑜 (𝑡, 𝑛 + 1) −𝑚ℎ𝑜 (𝑡, 𝑛)

0 50 100 150 200

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

time t

Figure S3. The parameters are set at 𝑛 = 3, 𝑠 = 0.6, 𝑚𝑑 = 𝜆𝑑 = 𝜆𝑢 = 𝜆𝑑 = 𝑟 = 0.1, and 𝜌 = 0.01. The initial
conditions are given by 𝜂 (0) = 0.5,𝑚𝑑𝑜 (0) = 0.06 and𝑚𝑙𝑜 (0) = 0.26.

(If there is a tie from the auction, the customer chooses one dealer at random.)
In fact, the above price-setting mechanism is equivalent to the one described in the main model (“Price
determination” on p. 9):

Proposition S7 (Same dealer quoting). Dealers’ equilibrium quoting and the split of trading gains
is as described in the Proposition S3 and 5, respectively.

S7 Collection of proofs

Proposition S1

Proof. The expressions in (S25) follow the dealer stationarity condition (8). Note that the assump-
tion (S24) can be equivalently written as(𝜈ℎ𝑛 − 1)𝑚𝑑𝑜 = 0 and (𝜈𝑙𝑜 − 1)𝑚𝑑𝑛 = 0, which, together
with (2)-(7), give three sets of solutions to the six demographic variables and the two matching
probabilities. The three solutions one-to-one map into the three regions of the asset supply 𝑠:
0 < 𝜂 < 𝜂 +𝑚𝑑 < 1 +𝑚𝑑 . The equations (S25) and (S26) can be easily verified using the three
regions of the solution. □

Proposition S2

Proof. Consider first demographics. Recall that 𝜈ℎ𝑛 = 𝜈 (𝜋𝑑𝑜 ;𝑛) = 1− (1− 𝜋𝑑𝑜)𝑛. Whenever𝑚ℎ𝑛 > 0,
𝜋𝑑𝑜 ∈ (0, 1) and in the limit of 𝑛 → ∞, 𝜈ℎ𝑛 → 1. When 𝑚ℎ𝑛 = 0, then 𝜋𝑑𝑜 = 0 and 𝜈ℎ𝑛 = 0. The
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same holds for the limit of 𝜓 → 1 (with 𝑛 ≥ 2), under the specific functional form of 𝜋 (·;𝜓 ). The
limits for 𝜈𝑙𝑜 follow analogously. Therefore, Equation (S24) holds in both limits, which then proves
the convergence of all demographic variables together with the demographic conditions (2)-(7).

For value functions and prices, in both limit as 𝑛 → ∞ and 𝜓 → 1 (with 𝑛 ≥ 2), we have perfect
competition among dealers, whenever 𝑚𝑑𝑜 ∈ (0,𝑚𝑑). Thus, 𝑝𝑎 = 𝑝𝑏 = 𝑅𝑑 and the value function
system is the same as in DS. In the case of 𝑚𝑑𝑜 = 0 (𝑚𝑑𝑜 =𝑚𝑑) we have Δℎ𝑑 = 0 (Δ𝑑𝑙 = 0) in the two
limits (𝑛 → ∞ and𝜓 → 1) and so, again, prices and values are as in DS. □

Proposition S3

Proof. The proof only focuses on a contacted 𝑑𝑜-seller’s symmetric quoting strategy. The same
analysis applies to 𝑑𝑛-buyers and is omitted. Consider first the trivial case of 𝑛 = 1. A contacted
𝑑𝑜-seller then knows that he is the only one quoting. It is then trivial that with probability (1 − 𝑞), he
will quote the highest possible ask price, i.e., the ℎ𝑛-buyer’s reservation value 𝑅ℎ = 𝑅𝑑 +Δℎ𝑑 . This can
be viewed as a degenerate mixed strategy with c.d.f. 𝐹 (𝛼) converging to a unity probability mass at
𝛼 = 1 as stated in the proposition.

Next consider 𝑛 ≥ 2. Given the reservation values, it suffices to restrict the ask quote within
[𝑅𝑑 , 𝑅ℎ]. Without loss of generality, a 𝑑𝑜-seller’s strategy can be written as 𝑅𝑑 + 𝛼Δℎ𝑑 by choosing
𝛼 ∈ [0, 1]. Suppose 𝛼 has a c.d.f. 𝐹 (𝛼) with possible realizations [0, 1] (some of which might have
zero probability mass). The following four steps pin down the specific form of 𝐹 (·) so that it sustains
a symmetric equilibrium.
Step 1: There are no probability masses in the support of 𝐹 (·). If at 𝛼∗ ∈ (0, 1] there is some non-zero
probability mass, any 𝑑𝑜-seller has an incentive to deviate to quoting with the same probability mass
but at a level infinitesimally smaller than 𝛼∗. This way, he converts the strictly positive probability
of tying with others at 𝛼∗ to winning over others. (The undercut costs no expected revenue as it
is infinitesimally small.) If at 𝛼∗ = 0 there is non-zero probability mass, again, any 𝑑𝑜-seller will
deviate, this time to an 𝛼 just slightly above zero. This is because allocating probability mass at
zero brings zero expected profit. Deviating to a slightly positive 𝛼 , therefore, brings strictly positive
expected profit. Taken together, there cannot be any probability mass in 𝛼 ∈ [0, 1]. Note that any pure
symmetric-strategy equilibria are ruled out.
Step 2: The support of 𝐹 (·) is connected. The support is not connected if there is (𝛼1, 𝛼2) ⊂ [0, 1]
on which there is zero probability assigned and there is probability density on 𝛼1. If this is the case,
then any 𝑑𝑜-seller will deviate by moving the probability density on 𝛼1 to any 𝛼 ∈ (𝛼1, 𝛼2). Such a
deviation is strictly more profitable because doing so does not affect the probability of winning (if one
wins at bidding 𝛼1, he also wins at any 𝛼 > 𝛼1) and because 𝛼 > 𝛼1 is selling at a higher price.
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Step 3: The upper bound of the support of 𝐹 (·) is 1. The logic follows Step 2. Suppose the upper
bound is 𝛼∗ < 1. Then, allocating the probability density at 𝛼∗ to 1 is a profitable deviation: It does
not affect the probability of winning and upon winning sells at a higher price.
Step 4: Deriving the c.d.f. 𝐹 (·). Suppose all other 𝑑𝑜-sellers, when contacted, quote according to some
same distribution 𝐹 (·). Consider a specific seller called 𝑖. Quoting 𝑅𝑑 + 𝛼Δℎ𝑑 , 𝑖 gets to trade with the
searching buyer if, and only if, such a quote is the best that the buyer receives. The buyer examines all
quotes received. For each of the 𝑛−1 contacts, with probability 1−𝜋𝑑𝑜 the dealer is not a 𝑑𝑜-seller and
in this case 𝑖’s quote beats the no-quote. With probability 𝜋𝑑𝑜 , the contacted investor is indeed another
𝑙𝑜-seller, who quotes at 𝛼′. Then, only with probability P(𝛼 < 𝛼′) = 1−𝐹 (𝛼) will 𝑖’s quote win. Taken
together, for each of the 𝑛 − 1 potential competitor, 𝑖 wins with probability (1 − 𝜋𝑑𝑜) + 𝜋𝑑𝑜 (1 − 𝐹 (𝛼)),
and he needs to win all these 𝑛 − 1 times to capture the trading gain of 𝛼Δℎ𝑑 . That is, 𝑖 expects a
profit of (1 − 𝜋𝑑𝑜𝐹 (𝛼))𝑛−1𝛼Δℎ𝑑 . In particular, at the highest possible 𝛼 = 1, the above expected profit
simplifies to (1 − 𝜋𝑑𝑜)𝑛−1Δℎ𝑑 , because 𝐹 (1) = 1. In a mixed-strategy equilibrium, 𝑖 must be indifferent
of quoting any values of 𝛼 in the support. Equating the two expressions above and solving for 𝐹 (·),
one obtains the c.d.f. stated in the proposition. It can then be easily solved that the lower bound of the
support must be at (1 − 𝜋𝑑𝑜)𝑛−1, where 𝐹 (·) reaches zero. This completes the proof. □

Proposition S4

Proof. Consider a searching ℎ𝑛-buyer, for example. He contacts 𝑛 dealers but knows that the number
of counterparties he will actually find, 𝑁 , is a random variable that follows a binomial distribution with
𝑛 draws and success rate 𝜋𝑑𝑜 . Each of these 𝑁 counterparties then quotes a random price according
to 𝐹 (𝛼 ;𝜋𝑑𝑜 , 𝑛), as stated in Proposition S3. The searching buyer chooses the lowest ask across the 𝑁

available quotes. The c.d.f. of this minimum 𝛼 is 1− (1− 𝐹 (𝛼 ; ·))𝑁−1 for 𝑁 ≥ 1. Since the probability
of 𝑁 ≥ 1 is (1 − (1 − 𝜋𝑑𝑜)𝑛), one obtains the conditional c.d.f. as stated in the proposition. The same
applies to a searching 𝑙𝑜-seller. □

Proposition S5

Proof. Consider the limit of 𝜓 → 1 (with 𝑛 ≥ 2). For any 𝑚𝑑𝑜 > 0 and 𝑚𝑑𝑛 > 0, 𝜋𝑑𝑜 = 𝜋
(
𝑚𝑑𝑜
𝑚𝑑

)
→ 1

and 𝜋𝑑𝑛 = 𝜋
(
𝑚𝑑𝑛
𝑚𝑑

)
→ 1. Therefore, the 𝐺 (·) function in Proposition S4 converges to 𝐺 (𝑥) = 1

throughout the support of 𝑥 ∈ (0, 1]. The equilibrium trading prices, therefore, become 𝐴 → 𝑅𝑑 and
𝐵 → 𝑅𝑑 almost surely, and var[𝐴] → 0 and var[𝐵] → 0 accordingly. That is, in the limit of 𝜓 → 0,
there is no price dispersion. Since the variances are nonnegative, by continuity, therefore, both var[𝐴]
and var[𝐵] must decrease with𝜓 for sufficiently large𝜓 . □
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Proposition S6

Proof. Consider one path and calculate the welfare:

𝑟𝑤 (𝑡) = 𝑟

∫ ∞

𝑡
exp(−𝑟 (𝜏 − 𝑡)) (𝑦𝑙𝑚𝑙𝑜 (𝜏) + 𝑦𝑑𝑚𝑑𝑜 (𝜏) + 𝑦ℎ𝑚ℎ𝑜 (𝜏))𝑑𝜏 // letting 𝑦 := 𝑟𝜏

=
∫ ∞

𝑟𝑡
exp(−𝑦 + 𝑟𝑡) (𝑦𝑙𝑚𝑙𝑜 (𝑦/𝑟 ) + 𝑦𝑑𝑚𝑑𝑜 (𝑦/𝑟 ) + 𝑦ℎ𝑚ℎ𝑜 (𝑦/𝑟 ))𝑑𝑦

𝑟→0−−−→
∫ ∞

0
exp(−𝑦) (𝑦𝑙𝑚𝑙𝑜 (∞) + 𝑦𝑑𝑚𝑑𝑜 (∞) + 𝑦ℎ𝑚ℎ𝑜 (∞))𝑑𝑦

= 𝑦𝑙𝑚𝑙𝑜 (∞) + 𝑦𝑑𝑚𝑑𝑜 (∞) + 𝑦ℎ𝑚ℎ𝑜 (∞)

The last line gives the welfare (in flow terms) in the steady state. The proposition follows. □

Proposition S7

Proof. We start with dealers’ quoting. The proof only focuses on a contacted 𝑑𝑜-seller’s symmetric
quoting strategy. Without loss of generality, a 𝑑𝑜-seller’s strategy can be written as 𝑅𝑑 + 𝛼Δℎ𝑑 by
choosing 𝛼 ∈ [0, 1]. Suppose 𝛼 has a c.d.f. 𝐹 (𝛼) with possible realizations [0, 1] (some of which
might have zero probability mass). The proof, identical to the one for the Proposition S3 can show
that: (i) dealers will quote buyers’ reservation value when 𝑛 = 1, (ii) for 𝑛 > 2 dealers would follow
mixed-strategies with no point masses and continuous supports, (iii) the upper bound of support of
𝐹 (·) is one. The only non-trivial step is the following:
Step 4: Deriving the c.d.f. 𝐹 (·). Suppose all other 𝑑𝑜-sellers, when contacted, quote according to
some same distribution 𝐹 (·). Consider a specific seller called 𝑖. Quoting 𝑅𝑑 + 𝛼Δℎ𝑑 , 𝑖 gets to trade
with the searching buyer if, and only if, such a quote is the best that the buyer receives. The buyer
examines all quotes received. For each of the 𝑛 − 1 contacts, with probability 1 − 𝜋𝑑𝑜 the dealer is not
a 𝑑𝑜-seller and in this case 𝑖’s quote beats the no-quote. With probability 𝜋𝑑𝑜 , the contacted investor
is indeed another 𝑙𝑜-seller, who quotes at 𝛼′. Then, only with probability P(𝛼 < 𝛼′) = 1 − 𝐹 (𝛼)
will 𝑖’s quote win. Taken together, for each of the 𝑛 − 1 potential competitor, 𝑖 wins with probability
(1 − 𝜋𝑑𝑜) + 𝜋𝑑𝑜 (1 − 𝐹 (𝛼)) = 1 − 𝜋𝑑𝑜𝐹 (𝛼), and he needs to win all these 𝑛 − 1 times to capture the
trading gain of 𝛼Δℎ𝑑 . When the dealer wins, he trades at a markup 𝛼 , with probability 1 − 𝑞. Indeed,
with probability 𝑞 the customer will extract the full trading gain from her at the bargaining stage. That
is, 𝑖 expects a profit of

(1 − 𝜋𝑑𝑜𝐹 (𝛼))𝑛−1𝛼Δℎ𝑑 (1 − 𝑞).
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In particular, at the highest possible 𝛼 = 1, the above expected profit simplifies to

(1 − 𝜋𝑑𝑜)𝑛−1Δℎ𝑑 (1 − 𝑞),

because 𝐹 (1) = 1. In a mixed-strategy equilibrium, 𝑖 must be indifferent of quoting any values of 𝛼 in
the support. Equating the two expressions above and solving for 𝐹 (·), one obtains the c.d.f. stated in the
proposition. It can then be easily solved that the lower bound of the support must be at (1 − 𝜋𝑑𝑜)𝑛−1,
where 𝐹 (·) reaches zero.

Having established that dealers’ quoting is unchanged under the new trade protocol, the split of
the trading gains follows immediately. This completes the proof. □
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