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Abstract

Shades of Darkness: A Pecking Order of Trading Venues

We characterize the dynamic fragmentation of U.S. equity markets using a unique dataset that disag-
gregates dark transactions by venue types. The “pecking order” hypothesis of trading venues states
that investors “sort” various venue types, putting low-cost-low-immediacy venues on top and high-
cost-high-immediacy venues at the bottom. Hence, midpoint dark pools on top, non-midpoint dark
pools in the middle, and lit markets at the bottom. As predicted, following VIX shocks, macroe-
conomic news, and firms’ earnings surprises, changes in venue market shares become progressively
more positive (or less negative) down the pecking order. We further document heterogeneity across
dark venue types and stock size groups.

Keywords: dark pool, pecking order, fragmentation
JEL Classifications: G12, G14, G18, D47



1 Introduction

A salient trend in global equity markets over the last decade is the rapid expansion of off-exchange, or
“dark” trading venues. In the United States, dark venues now account for about 30% of equity trading
volume (see Fig. 1(a) for an illustration of Dow-Jones stocks). In Europe, about 40% of volume trades
off-exchange for leading equity indexes (see Fig. 1(b)).

Equally salient is the wide fragmentation of trading volume across dark venues. The United
States has more than 30 “dark pools” and more than 200 broker-dealers that execute trades away from
exchanges (see SEC, 2010). Dark pools, which are automated trading systems that do not display
orders to the public, have grown fast in market shares and now account for about 15% of equity
trading volume in the U.S., according to industry estimates.1 In Europe, dark venues also face a high
degree of fragmentation, with at least ten multilateral dark venues operating actively.2

The fragmentation of trading—between exchanges and dark venues, as well as across dark venues—
is a double-edged sword. It creates a conflict between the efficient interaction among investors and
investors’ demand for a diverse set of trading mechanisms. The SEC (2010, p. 11-12) highlights this
tradeoff in its Concept Release on Equity Market Structure:

Fragmentation can inhibit the interaction of investor orders and thereby impair certain
efficiencies and the best execution of investors’ orders. . . . On the other hand, mandating
the consolidation of order flow in a single venue would create a monopoly and thereby
lose the important benefits of competition among markets. The benefits of such compe-
tition include incentives for trading centers to create new products, provide high quality
trading services that meet the needs of investors, and keep trading fees low.

An important step toward a better understanding of this tradeoff is to empirically characterize the
degree of heterogeneity among trading venues. If venues appear homogeneous, the “liquidity-begets-
liquidity” insight from early theories (see, for example, Pagano, 1989 and Chowdhry and Nanda,
1991) would imply that fragmentation is generally harmful; and that the fragmentation of dark venues,
which provide little or no pre-trade transparency, causes a particular concern because investors cannot
observe the presence of counterparties ex ante and must engage in costly search in multiple dark
venues. In contrast, if venues do demonstrate heterogeneity, and if theory provides an economic
rationale for such behavior, then fragmentation could be viewed as a natural equilibrium outcome and
not necessarily a concern. For example, recent theories of dark pools show that precisely because of

1Industry estimates are provided by Tabb Group, a consultancy firm, and Rosenblatt Securities, a bro-
ker. On June 2, 2014, FINRA started publishing weekly statistics of transaction volumes in alternative trad-
ing systems (ATS), with a two-week lag. Many dark pools are registered as ATS. For more details, see
https://www.finra.org/Newsroom/NewsReleases/2014/P519139.

2See “European Dark Trading Analysis,” Fidessa, October 2013.
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Figure 1: Dark market share in United States and Europe. This figure shows the market shares of dark
trading in the U.S. and in Europe. Panel (a) plots the monthly average dark shares of the 30 stocks in the
Dow Jones Industrial Average from 2006 to October 2014. We use the stocks that are in the Dow index as of
November 2014. Volume data are obtained from Bloomberg and TAQ. Dark trades are defined by those reported
to FINRA (code “D” in TAQ definition). From May 2006 to February 2007 the estimates are missing because
TAQ data mix trades reported to FINRA with some NASDAQ trades. Panel (b) plots the averages of dark shares
of FTSE100, CAC40, and DAX30 index stocks. These estimates are directly obtained from Fidessa.

(a) U.S.: Dow 30 stocks
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their pre-trade opacity and the associated execution uncertainty, dark venues attract a different type of
investors from those on the exchanges (Hendershott and Mendelson, 2000; Degryse et al., 2009; Buti
et al., 2015, Ye, 2011; Zhu, 2014; Brolley, 2014). Under this “venue heterogeneity” or “separating
equilibrium” view, fragmentation is an equilibrium response to the heterogeneity of investors and
time-varying market conditions.

Pecking order hypothesis. In this paper we characterize the dynamic fragmentation of U.S. equity
markets. Through the lens of dynamic fragmentation we gain insights into the degree of heterogeneity
among trading venues and hence the important tradeoff highlighted in the SEC remark. In particular,
we propose and test a “pecking order hypothesis” (POH): when executing orders investors “sort”
dark and lit venues by the associated costs (bid-ask spread, price impact, information leakage) and
immediacy, in the form of a “pecking order.” The top of the pecking order consists of venues with
the lowest cost and lowest immediacy, and the bottom of the pecking order consists of venues with
the highest cost and highest immediacy. The pecking order hypothesis predicts that, as investors’
trading needs become more urgent, they move from low-cost, low-immediacy venues to high-cost,
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Figure 2: Pecking order hypothesis. This figure depicts the pecking order hypothesis. Panel (a) shows the
generic form. Panel (b) shows the specific form. Midpoint crossing dark pools (DarkMid) are on top. Non-
midpoint dark pools (DarkNMid) are in the middle. Lit markets (Lit) are at the bottom. Detailed descriptions
of various dark pool types are collated in Section 3.1.
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high-immediacy venues. This intuitive sorting is illustrated in Panel (a) of Fig. 2.
More concretely, recent theories of dark pools mentioned above predict that dark venues are at the

top of the pecking order, whereas lit venues are at the bottom, because dark venues provide potential
price improvement but lack execution certainty. In addition, we rank two important categories of dark
pools—midpoint dark pools (“DarkMid”) and non-midpoint dark pools (“DarkNMid”)—according
to the extent to which prices are constrained in these venues. Because midpoint dark pools restrict
transaction prices to the midpoint of the national best bid and offer (NBBO), which confines market
clearing, these dark pools offer the highest potential cost saving but the lowest immediacy. In con-
trast, non-midpoint dark pools are effectively non-displayed limit order books that allow transactions
anywhere within the NBBO. As we show in a simple model, the cost of trading in these venues is
between that on exchanges and that in midpoint dark pools; and so is the immediacy. This specific
ordering of the three venue types is illustrated in Panel (b) of Fig. 2. This pecking order captures both
“exchanges are liquidity of last resort” and “not all dark pools are created equal.”

We formally develop the specific-form pecking order hypothesis in a stylized model and thus pro-
vide some micro-foundation for it. The analysis shows that the pecking order obtains in a Bayesian-
Nash equilibrium where large, liquidity-driven investors minimize transaction cost when hit by exoge-
nous trading needs. It adds to existing models by focusing on the three-way fragmentation (DarkMid,
DarkNMid, and Lit) as opposed to the standard dark-lit split in previous studies.

3



We test the pecking order hypothesis in U.S. equity market by exploring a unique dataset on
dark trading. Our dataset disaggregates dark transactions into five categories by trading mechanism,
including the two types of dark pools shown in Panel (b) of Fig. 2. The other three categories of
dark transactions are retail investors’ trades internalized by broker-dealers, average-price trades, and
other (mostly institutional) trades. The detailed descriptions are provided in Section 3. To the best
of our knowledge, this dataset provides the most comprehensive and granular view of U.S. dark trad-
ing that is accessible by academics. Without a disaggregated dataset like this, testing the pecking
order hypothesis—or conducting any analysis of dark venue heterogeneity—would be very difficult
because all off-exchange trades in the U.S. are reported under a single consolidated category called
“trade reporting facilities” (TRFs). Data aggregation at TRFs masks the very heterogeneity in trading
mechanisms that we are interested in.

We estimate a panel vector-autoregressive model with exogenous variables to characterize the
dynamic interrelation among dark volumes, endogenous market conditions, and exogenous shocks
(see Section 4). Key to our empirical strategy are three exogenous variables: VIX, macroeconomic
data releases, and earnings surprise. We use these variables as proxies for shocks to investors’ demand
for immediacy. Applied to this setting, the pecking order hypothesis predicts that the proportional
changes in venue market shares after these shocks should become progressively more positive (or less
negative) the further down in the pecking order.

The data support the pecking order hypothesis. Following a 0.01% upward shock to VIX, dark
pools that cross orders at the midpoint lose 4.6% of their market share (from 2.4% to 2.29%), dark
pools that allow some price flexibility lose 3.3% of their market share (from 7.52% to 7.27%), and lit
venues gain 1.0% of their market share (from 76.2% to 77.0%).

The effect is much larger for macroeconomic data releases. In the minute right after the macroe-
conomic news, DarkMid and DarkNMid market shares are 38.5% and 22.7% lower than their steady
state levels, but Lit market share is 9.1% higher than its steady state level. The same qualitative
pattern is observed after surprise earnings, although there only the DarkMid change is statistically
significant. The shifts of market shares are not due to reduced trading volumes in dark venues after
urgency shocks; instead, trading volumes in all venues increase but the increase in lit venues signifi-
cantly outweighs that in dark venues.

The stylized model that delivers the pecking order hypothesis also predicts that the pecking order
should be more evident in low-volume or high-spread stocks, (i.e., illiquid stocks). We verify this
heterogeneity by running the same VARX model on large, medium, and small stocks separately. In
these subsamples, the pecking order hypothesis finds strong support in medium and small stocks, but
has no statistical significance for large stocks. This confirms the model’s prediction.

We believe the interpretation of our results warrant a couple of final remarks. First, while our

4



results suggest that the fragmentation among dark venue types can be an equilibrium response to
investor heterogeneity and time-varying market conditions, our analysis is silent on the fragmentation
within each dark venue type. The latter question requires more detailed data on venue identities, not
only venue types. Second, the pecking order hypothesis implicitly assumes that at least some investors
make rational venue choices based on correct information of how these venues operate. This point is
important in light of recent cases that certain dark pools are charged with misrepresenting or failing
to disclose information to investors.3

Related literature. The primary contribution of this paper to the literature is the characterization
of dynamic fragmentation of dark and lit venues through the pecking order hypothesis. Rather than
assessing the market composition from a static view, we study how market shares evolve dynamically
upon certain urgency shocks. Our approach of focusing on exogenous shocks (VIX, macroeconomic
news, and surprise earnings) differs from most existing empirical studies on dark venues, which typi-
cally relate dark trading to endogenous measures of market quality (e.g., spread, depth, and volatility).

Access to unique, comprehensive, and granular data on various types of dark trading enabled us
to study the pecking order hypothesis. Most existing studies of dark venues use either aggregate off-
exchange trades or trades in a few selected dark pools. Studies based on aggregate dark trades include
O’Hara and Ye (2011), Hatheway, Kwan, and Zheng (2013), and Degryse, de Jong, and van Kervel
(2015a). Studies based on trades in a few dark pools include Hendershott and Jones (2005) (Island
ECN), Ready (2014) (Liquidnet and POSIT), Buti, Rindi, and Werner (2011) (11 anonymous dark
pools), Boni, Brown, and Leach (2012) (Liquidnet), Nimalendran and Ray (2014) (one anonymous
dark pool), and Foley, Malinova, and Park (2013) (dark order types on Toronto Stock Exchange).

Equipped with more granular data, a few recent studies have devoted attention to dark venue
heterogeneity. The vast majority of them use non-U.S. data. In Australian equity market, Comerton-
Forde and Putniņš (2015) find that block dark trades and non-block dark trades on Australian Se-
curities Exchange have different implications for price discovery, as measured by autocorrelation,
variance ratio, or short-term return predictability. Three studies on the Canadian equities explore the
asymmetric effects of a new “trade-at” regulation on midpoint and non-midpoint executions.4 Foley

3For example, in October 2011, SEC finds that Pipeline, a dark-pool operator who claimed to only allow
buyside firms to participate, had filled the majority of customer orders through its own trading affiliate (see
http://www.sec.gov/news/press/2011/2011-220.htm). On June 25, 2014, Eric Schneiderman, Attorney General of the State
of New York, alleges that Barclays falsified marketing material and misrepresented information to clients about the pres-
ence of high-frequency traders in its dark pool. In August 2015, SEC charges ITG, a dark pool operator, with operating se-
cret trading desk and misusing dark pool subscriber trading information (see http://www.sec.gov/news/pressrelease/2015-
164.html).

4A trade-at rule stipulates that when a marketable order arrives, a venue that does not already offer the best quote
must provide sufficiently large price improvement, unless the order is sufficiently large. The minimum price improvement
mandated by the Canadian trade-at rule is one tick, unless the bid-ask spread is one tick, in which case the minimum price
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and Putniņš (2015) conclude that market quality deteriorates after the trade-at rule, but Comerton-
Forde, Malinova, and Park (2015) and Devani, Anderson, and Zhang (2015) counter that little dete-
rioration is detected in their own analyses. Comerton-Forde, Malinova, and Park (2015) in particular
argue that changes in the Canadian dark market share after trade-at rule can be attributed to a sin-
gle venue that takes retail orders. In Dutch equity markets, Degryse, Tombeur, and Wuyts (2015b)
find that hidden orders on exchanges and off-exchange dark trades are affected differently by market
conditions such as volume, spread, and depth. It should be emphasized that the market structures in
Australia, Canada, and the Netherlands differ significantly from that of the U.S. and conclusions from
these studies cannot literally be applied to U.S. equity markets.

The only other academic paper we are aware of that has a similar dataset for U.S. equities is Kwan,
Masulis, and McInish (2015). They examine how the minimum tick size affects competitiveness of
exchanges relative to dark venues, which is a research question very different from ours. Using a
regression discontinuity design around the $1.00 price threshold, they conclude that the tick size
constraint weakens the competitiveness of exchanges.

2 A pecking order hypothesis of trading venues

In this section, we further motivate the pecking order hypothesis in its specific form as in Panel (b)
of Fig. 2: Dark pools that cross orders at the midpoint of NBBO (labeled “DarkMid”) are on the top
of the pecking order, dark pools that allow some price flexibility (labeled “DarkNMid”) are in the
middle, and transparent venues (labeled “Lit”) are at the bottom. It is this specific-form hypothesis
that will be the main hypothesis discussed and tested throughout the remainder of the paper.

The ordering that midpoint dark venues sit on top of lit venues is predicted by existing theories
of dark pools. For example, Hendershott and Mendelson (2000), Degryse, Van Achter, and Wuyts
(2009), and Zhu (2014) all model the competition between an exchange (that has dedicated liquidity
providers) and a midpoint dark pool. They predict that because of execution uncertainty in dark pools,
investors are more likely to send orders to the lit venue if urgency goes up—driven by either a higher
delay cost for unfilled orders or a higher value of proprietary information. Buti, Rindi, and Werner
(2015) model the competition between a limit order book and a midpoint dark pool. They show
that dark pool market share is higher if the order book is more liquid (i.e., have longer queues). To
the extent that a more liquid book reduces the opportunity cost of unfilled orders, their prediction is
broadly consistent with the other papers.

DarkNMid is a “lighter shade of dark,” sitting between DarkMid and Lit. In practice, DarkNMid
often operates as nondisplayed limit order books, in which transactions can happen anywhere between

improvement is a half tick.
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the national best bid and national best offer. The execution price can respond to supply and demand;
meanwhile, the trade-through restriction implies that investors still get a price improvement relative to
Lit. In other words, the cost and benefit of using DarkMid, rather than Lit, should apply to DarkNMid
as well, albeit to a less degree. For example, the online appendix of Zhu (2014) provides a model of a
non-midpoint dark pool, which runs as a uniform-price divisible auction, but with rationing of orders
whenever the dark pool price hits the constraint imposed by a “trade-at” rule. He shows that price
flexibility in non-midpoint dark pools weakens its effectiveness in filtering out informed orders.

According to the pecking order hypothesis, upon urgency shocks, DarkMid and DarkNMid should
lose market share to Lit, and the drop in DarkMid market share should be particularly large. Sec-
tion 3.4 discusses our empirical proxies for urgency. Section 8 proposes a simple model to micro-
found our pecking order hypothesis.

Before describing the data and conducting empirical analysis, a few comments and clarifications
are in order. First, the pecking order hypothesis is a dynamic one. It says that after investors receive
urgency shocks in real-time, volume shares should become progressively larger down the pecking
order. This implies that many stable or slow-moving determinants of market shares, such as trading
fees and membership restrictions, are orthogonal considerations.

Second, the pecking order hypothesis applies to both aggressive (market order) and passive (limit
order) execution strategies of end investors. After all, each transaction needs a buyer and a seller.
As investors who use aggressive strategies move down the pecking order, ready to pay a higher cost,
investors using passive strategies would also move down the pecking order to meet such demand. If
broker-dealers and high-frequency trading firms can also participate in dark venues, their location of
liquidity provision should follow the flow of end investors as well.

Third, the specific form of pecking order hypothesis builds on the key features that dark-pool
prices are constrained by lit quotes and that dark execution is uncertain. Opacity (“darkness”) is es-
sential, for otherwise the very purpose of not publicly disclosing trading interest is defeated. Rationing
and price constraints are also essential, for otherwise execution risk is much smaller. One could think
of an alternative setting with two competing limit order books, one lit and the other dark, and the
prices in both can freely move. The pecking order hypothesis cannot be applied to such a setting, as
the trade-through restriction is not satisfied. In other words, if considered outside the market reality
of the U.S. equity market, opacity alone is not sufficient to generate the pecking order hypothesis.

Fourth, the pecking order hypothesis is about the coexistence of venues. It does not rank market
structures that have one dominant venue. For example, in an extension of Kyle (1989) with informed
liquidity provision, Boulatov and George (2013) compare a lit-only market with a dark-only market,
and finds that the opaque market offers better price discovery as it encourages more informed traders
to be liquidity providers. In an experimental setting, Bloomfield, O’Hara, and Saar (2015) show that
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although traders’ strategies are greatly affected by the degree of opacity, market outcomes are largely
invariant to opacity. Insights from these venues are complementary to ours.

Fifth, the cost-versus-immediacy tradeoff underlying the pecking order hypothesis is similar in
spirit to the tradeoff between market and limit orders in a centralized limit order book setting. Parlour
and Seppi (2008) survey the limit order book literature, both theory and empirics. Given today’s
fragmentation and heterogeneous trading mechanisms, we believe that venue choice is an important
dimension to study over and above the order type choice studied in the limit order book literature.

Sixth, we interpret the urgency shocks underlying the pecking order hypothesis as primarily due
to liquidity needs. Our empirical proxies for urgency discussed in Section 3.4 are, generally, public
information releases, and our suggestive model of Section 8 assumes symmetric information about
asset fundamentals. Although asymmetric information is not explicitly dealt with in this paper, the
pecking order hypothesis is also consistent with existing dark pool models with asymmetric informa-
tion. For instance, in a model that combines both asymmetric information and liquidity needs, Zhu
(2014) finds that the market share of the dark pool tends to decrease in the value of the proprietary
information.

Lastly, there is an alternative motivation for the pecking order hypothesis, based on an agency
conflict between investors and their brokers. Its starting point is that brokers decide where to route
investors’ orders, and investors monitor brokers insufficiently. If brokers earn more profits by routing
investors’ orders first to their own dark pools, then orders would first flow into broker-operated dark
pools and then to other dark and lit venues. Only when investors tell brokers to execute quickly will
they have no choice but to send it to lit venues. This alternative motivation is less rich as it does
not suggest a particular ranking of dark venue types. It simply states that dark venues take priority,
whatever type of dark venue the broker is running, except when investors demand quick execution.

3 Data and summary statistics

Our data sample covers 117 stocks in October 2010 (21 business days). It consists of large-cap,
medium-cap, and small-cap stocks in almost equal proportions.5 This section presents the various
data sources, introduced sequentially in the first four subsections. Each subsection also describes and
motivates the model variables that are based on them. The section concludes with presenting summary

5This sample of stocks is the same as that in the NASDAQ HFT dataset used by many studies of HFT. The original
sample compiled by NASDAQ contains 120 stocks, with 40 stocks in each size category. But only 117 of the 120 stocks
are present in our sample period. Brogaard, Hendershott, and Riordan (2014) state that “The top 40 stocks are composed
of 40 of the largest market capitalization stocks. . . The medium-size category consists of stocks around the 1000th largest
stocks in the Russell 3000. . . , and the small-size sample category contains stocks around the 2000th largest stock in the
Russell 3000.”
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statistics based on the final data sample.

3.1 Dark volumes

In the United States, off-exchange transactions in all dark venues are reported to trade-reporting fa-
cilities (TRFs). The exact venue in which the dark trade takes place is not reported in public data.
More recently, FINRA started to publish weekly transaction volumes in alternative trading systems,
but these volumes are not on a trade by trade basis.6 The TRF managed by NASDAQ is the largest
TRF, accounting for about 92% of all off-exchange volume in our sample. Our first dataset contains
all dark transactions reported to the NASDAQ TRF. These trades are executed with limited pre-trade
transparency.7 A salient and unique feature of our data is that the dark transactions are disaggregated
into five categories by trading mechanism. The exact method of such disaggregation is proprietary to
NASDAQ, but we know their generic features. The five categories include:

1. DarkMid. These trades are done in dark pools that use midpoint crossing as much as possible.
Midpoint crossing means that the buyer and the seller in the dark venue transact at the midpoint
of the National Best Bid and Offer (NBBO). “Agency-only” dark pools (i.e., those without
proprietary order flow from the dark pool operators) typically work this way.

2. DarkNMid. These trades are done in dark pools that allow flexibility in execution prices
(not necessarily midpoint). This feature leads us to believe that dark pools operated by major
investment banks belong to this category.

3. DarkRetail. These trades come from retail investors and are internalized by broker-dealers.
Retail brokers often route order flow submitted by retail investors to major broker-dealers, who
then fill these orders as principal or agent. These transactions would be classified as DarkRetail.

4. DarkPrintB. These trades are “average-price” trades. A typical example is that an institutional
investor agrees to buy 20,000 shares from a broker, at a volume-weighted average price plus a
spread. This trade of 20,000 shares between the investor and the broker would be classified as
a “print back” trade, abbreviated as “PrintB.”

6See https://www.finra.org/Newsroom/NewsReleases/2014/P519139.
7Our dark transaction data do not include trades on electronic communication networks (ECNs). ECNs are transparent

venues that register as alternative trading systems (ATS), but they are not exchanges for regulatory purposes. In our
sample, ECNs account for a very small fraction of total transaction volume. BATS and DirectEdge, two major exchanges
that recently merged, used to be ECNs, but they have converted to full exchange status in November 2008 and July 2010,
respectively.
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Table 1: Volume shares of dark venues and the aggregate lit venue. This table shows the average volume
shares of various venue types. Each venue share is computed as the percentage of the volume executed in that
venue over the total volume obtained from TAQ in our sample period.

full sample large medium small
DarkMid [percent] 2.48 2.47 2.59 2.62
DarkNMid [percent] 9.08 9.20 8.11 6.55
DarkRetail [percent] 12.86 13.19 7.76 11.29
DarkPrintB [percent] 0.99 1.02 0.47 0.65
DarkOther [percent] 6.81 6.79 6.29 9.17
Lit [percent] 67.79 67.32 74.78 69.72

5. DarkOther. These are dark trades not covered by the categories above. A typical example in
this category would be a negotiated trade between two institutions on the phone (i.e., not done
on any electronic platform).

We emphasize that each category is not a single trading venue, but a collection of venues that are
qualitatively similar in terms of their trading mechanism. In the interest of brevity, however, we will
use the terms “venue” and “type of venue” interchangeably. For concreteness, Appendix A presents
a snippet of the raw data we use.

Table 1 shows the market shares of the five types of dark venues as a fraction of total trading
volume in our sample. The total trading volume is obtained from TAQ by running the algorithm
developed by Holden and Jacobsen (2014). We label the complement of these five dark venues as
the “lit” venues. The “lit” label is an approximation.8 In the first column (full sample), we observe
that dark venues account for more than 30% of total transaction volume in the 117 stocks in October
2010. Ranked by market shares, the five dark categories are DarkRetail (12.9%), DarkNMid (9.1%),
DarkOther (6.8%), DarkMid (2.5%), and DarkPrintB (1.0%). Columns 2–4 show the breakdown
of venue market shares for large, medium, and small stocks, respectively. DarkMid market shares
are similar across the three size terciles, but DarkNMid market shares seem to decrease in market
capitalization. DarkRetail market share is visibly smaller for medium stocks than for large or small
ones.

It is informative to compare our five-way categorization of dark trading venues to that of the SEC.
SEC (2010) classifies opaque trading centers into dark pools and broker-dealer internalization. By
approximation, our DarkMid and DarkNMid types roughly fall into the SEC’s dark pool category,
and our DarkRetail, DarkPrintB, and DarkOther types roughly fall into the SEC’s broker-dealer inter-

8Since NASDAQ TRF accounts for 92% of all off-exchange trading volume in our sample, the “lit” category also
contains the remaining 8% of off-exchange volume, or about 2.4% of total volume.
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nalization category.
Using one week of FINRA audit trail data in 2012, Tuttle (2014) reports that about 12.0% of

trading volume in U.S. equities is executed in off-exchange alternative trading systems (ATSs), the
majority of which are dark pools. She further reports that about 18.8% of U.S. equity volume are
executed off-exchange without involving ATSs, which can be viewed as a proxy for trades interme-
diated by broker-dealers. The dark-pool volume and internalized volume implied by our dataset are
comparable to those reported by Tuttle (2014).

Variables used in the empirical analysis. For ease of reference, all variables that are used in the
empirical analysis are denoted in CamelCase italics and their descriptions are tabulated in Table 2.
The sample is constructed at the minute frequency. This is necessary as the sampling frequency is
constrained by NASDAQ order book snapshots, which, among all raw data used, is the one with the
lowest frequency. It comprises all minutes during the trading hours (9:30am to 4:00pm) except the
exact moment of market opening, 9:30am. The final dataset consists of stock-minute data with 117
stocks × 21 days × 390 minutes/day = 958,230 observations.

3.2 NASDAQ: trade and quote data with HFT label

Our second dataset contains detailed trade and quote data for the NASDAQ market (an electronic limit
order book that is part of the “Lit” market). The data include identification of the activity of high-
frequency trading firms in this market. These firms are known to engage in high-speed computerized
trading, but their identities and strategies are unknown to us. This dataset has two parts.

First, for each transaction on NASDAQ, we observe the stock ticker, the transaction price, the
number of shares traded, an indicator of whether the buyer or seller initiated the trade, and an indicator
that for each side of the trade, tells whether it was an HFT or not. We refer to a trade as an HFT trade
if at least one side of the trade is an HFT. All transactions are time-stamped to milliseconds. Second,
we observe the minute by minute snapshot of the NASDAQ limit order book. For each limit order, we
observe the ticker, the quantity, the price, the direction (buy or sell), and a flag on whether the order
is displayed or hidden, and a flag on whether or not the order is submitted by an HFT.

An important and well-recognized caveat of the NASDAQ HFT dataset is that it excludes trades
by HFTs that are routed through large, integrated brokers, nor does it distinguish various HFT strate-
gies, be it market making or “front-running.” Given this caveat, a prudent way to interpret the HFT
measures is that they are “control variables,” needed to capture market conditions. For additional
details about the NASDAQ HFT dataset, see Brogaard, Hendershott, and Riordan (2014).
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Table 2: Variable descriptions. This table lists and describes all variables used in this study. An underscore
indicates that the variable is used in our baseline econometric model (Section 4). The subscript j indexes
stocks and t indexes minutes. All volume is measured in number of shares. Type Y variables are “endogenous”
variables in the econometric model (VARX) whereas type Z variables are exogenous.

Type Variable Name Description

Panel A: Dark venue trading volumes

Y VDarkMidjt Dark volume in midpoint-cross dark pools
VDarkNMidjt Dark volume in non-midpoint dark pools
VDarkRetailjt Dark volume due to retail flow internalization
VDarkPrintBjt Dark volume due to average-price trades (“print back”)
VDarkOtherjt Other dark volume

VDarkjt Total dark volume as the sum of all dark volumes

VLitjt Total volume minus all dark volume

Panel B: NASDAQ lit market characterization

ImbVolumejt Volume imbalance defined as the absolute difference between buyer-initiated and seller-initiated volume
RelSpreadjt NASDAQ lit market bid-ask spread divided by the NBBO midpoint
InHiddDepthjt Sum of NASDAQ hidden bid depth and ask depth strictly within the displayed quotes
TopDispDepthjt Sum of NASDAQ visible best bid depth and best ask depth
AtHiddDepthjt Sum of NASDAQ hidden bid depth and best ask depth at the best quotes
HFTinTopDepthjt Percentage of depth provided by HFTs’ limit orders at or within the best quotes of the book, including hidden orders
HFTinVolumejt NASDAQ lit volume in which HFT participates divided by total NASDAQ lit volume

Panel C: Overall market conditions

TAQVolumejt Total trading volume reported in TAQ
RealVarjt Realized variance (sum of squared one-second NBBO midquote returns)
VarRat10Sjt Variance ratio: ratio of realized variance based on ten-second returns relative to realized variance based on one-second

returns
Z dVIX∗+t Positive innovation in VIXt, calculated as the residual of an AR(1) estimated for ∆VIXt

dVIX∗−t Negative innovation in VIXt, calculated as the residual of an AR(1) estimated for ∆VIXt

VIXt VIX index level
Pre/PostNewsXmint Dummy variables indicating whether an observation is within the x-minute window relative to a macro news announce-

ment
PostEA1,2,...,13jt Earnings per share (EPS) announcement surprise, calculated as the absolute difference in announced EPS and the EPS

forecast, scaled by share price. All announcements were done overnight. To capture the intraday response pattern the
announcement variable is multiplied by a time of day dummy corresponding to the 13 half hour intervals in a trading
day.

Variable used in the empirical analysis. We construct the following variables to characterize mar-
ket conditions in the NASDAQ lit market. We use the absolute value of NASDAQ signed volume as a
measure of volume imbalance, ImbVolume. Doing so with NASDAQ data has the advantage that the
NASDAQ data provide the exact trade direction indicator, buy or sell. By contrast, constructing vol-
ume imbalance from TAQ transaction data would require using an imprecise trade-signing heuristic,
such as the Lee and Ready (1991) algorithm. Ellis, Michaely, and O’Hara (2000) find that compared
to the actual buy/sell indicator in NASDAQ data, the Lee-Ready algorithm misclassifies about 19%
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of NASDAQ trades.
We further add two commonly used measures of liquidity: spread and depth. RelSpread is the

relative bid-ask spread of the NASDAQ lit market. Three depth measures are added: InHiddDepth,
TopDispDepth, and AtHiddDepth (ordered according to execution priority). First, InHiddDepth mea-
sures the hidden orders that are posted strictly within the bid-ask spread; these orders have the highest
execution priority. Second, TopDispDepth measures the depth provided by displayed limit orders
at the best bid and ask prices. Third, AtHiddDepth measures the hidden depth provided at the best
displayed prices.

Lastly, we use two measures of HFT activity: HFTinVolume and HFTinTopDepth. HFTinVolume is
NASDAQ volume where HFT was on at least one side of the transaction, divided by total NASDAQ
volume. HFTinTopDepth is the number of shares posted by HFT at or within the best quotes on
NASDAQ divided by the total number of shares posted at or within the best quotes on NASDAQ.

3.3 Overall market conditions

A third dataset is used to characterize overall market conditions (i.e., based on including all markets,
not only NASDAQ). The data used for this part are the standard TAQ data and millisecond-level
NBBO data provided by NASDAQ.

Variables used in the empirical analysis. For each stock and each minute, we calculate total
transaction volume TAQVolume, realized return variance within the minute RealVar, and the variance
ratio within the minute VarRat10S. The first variable is based on TAQ data, whereas the other two are
based on millisecond-level NBBO data.

3.4 Proxies for urgency shocks

We proxy urgency by market-wide volatility VIX, macroeconomic data releases, and firms’ earnings
surprises. The first and second variable pertain to the entire market, whereas the third is firm-specific.
We pick these variables for two reasons. First, VIX, macroeconomic data releases, and earnings
surprises are arguably exogenous to the trading process of a particular stock. This is important for our
purpose. Since VIX is derived from options prices and covers the entire equity market, it is unlikely
to be affected by trading in an individual stock. (An individual stock’s volatility, by contrast, is likely
endogenous to the trading process.) Macroeconomic data releases and earnings announcements are
scheduled in advance and are therefore not affected by trading activities on the announcement days.

Second, we argue that investors’ urgency to trade (i.e., the opportunity cost of failing to execute
orders), is higher following a surprise VIX increase, a macroeconomic data release, or an earnings
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number that is far from market expectations. The motivation for using VIX is as follows. If an
investor is in the market for a trade, he is exposed to risks in his current portfolio (either long or
short) before the order is filled. To the extent that a higher VIX implies a general volatility increase,
a risk-averse investor’s cost of staying on the undesired exposure increases his utility cost of not
trading. Moreover, a VIX shock, positive or negative, is by itself news that could trigger hedging
trades by which securities move between relatively risk-averse investors and relatively risk-loving
ones in equilibrium (see, e.g., Campbell et al., 1993). Combining the inventory-cost and volatility-
news effects of VIX, we see that a positive shock to VIX unambiguously leads to a higher urgency of
investors, since inventory cost and volatility news both point in this direction. But a negative shock
to VIX has ambiguous implications for urgency, since inventory cost suggests lower urgency and
volatility news suggests higher urgency. We therefore use positive, but not negative, VIX surprises as
our proxy for urgency.

The rationale for using macroeconomic data releases and earnings announcements is similar in
spirit. Following important news on the macro-economy or individual firms, investors naturally wish
to adjust their positions in the stock to take into account the new information. Although macroeco-
nomic and earnings news are made publicly, trading interests are still generated when investors close
pre-news positions or interpret the same news differently (Kim and Verrecchia, 1994). Sarkar and
Schwartz (2009) provide evidence that after macroeconomic and earnings news, the market generally
becomes more “two-sided,” that is, the correlation between buyer-initiated trades and seller-initiated
trades goes up. They conclude that this evidence supports heterogeneous opinions as a motive to
trade. Under this trading motive, trading urgency goes up precisely after public news.

Data sources. VIX is a forward-looking volatility measure, calculated from option prices. The
Chicago Board of Exchange (CBOE) disseminates VIX every 15 seconds. Minute by minute VIX
data are obtained from pitrading.com.

Following Brogaard et al. (2014), we collect all the intraday macroeconomic data releases dur-
ing October 2010 from Bloomberg.9 Each of these releases is accompanied by the exact scheduled
announcement time (accurate to the second) and a “relevance score.” It is quite common to have
multiple releases scheduled at the same time (most often at 10:00 am ET). With a selection threshold
of relevance higher than 70%, we obtain 14 unique release times on 10 different trading days (out
of 21) in our sample period.10 These macroeconomic data releases are used to construct the news

9Many macroeconomic data releases are scheduled before the market opens, say at 8:30am. As there might be surprise
events between such data releases and the market open time 9:30am, we cannot be sure that the stock trading behavior
at the market open time is due to the macroeconomic data release some time earlier. For this reason, we focus on
macroeconomic data releases made during trading hours.

10The included macroeconomic data releases are University of Michigan Consumer Sentiment, ISM Manufacturing,
ISM Prices Paid, Construction Spending, Factory Orders, Pending Home Sales, ISN Non-Manufacturing, Wholesale
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announcement dummies defined below.
Of the 117 firms in our sample, 68 announced earnings in October 2010. All these announcements

were made outside trading hours. For each of these earnings announcements, we download the an-
nouncement dates, time stamps, announced earnings per share, and expected earnings per share from
Bloomberg. We are able to collect the EPS forecast from Bloomberg for 67 of these firms, and hence
can construct the earnings surprises described below.

Variables used in the empirical analysis. From the raw data we calculate three types of exogenous
variables that will be included in the empirical analysis: (i) innovations in VIX, (ii) dummies indicat-
ing minutes before and after macroeconomic data releases, and (iii) earnings surprises for stocks with
earnings announcements.

As discussed above, only a positive VIX shock unambiguously leads to higher urgency. We define
the minute to minute change in VIX as dVIX(t) ≡ VIX(t) − VIX(t − 1). Then, we compute VIX
innovations as the residuals of an AR(1) model for dVIX(t) and decompose it by sign into a positive
part and a negative part:

dVIX(t) = αdVIX(t − 1) + innovation(t), (1)

dVIX∗+(t) = max
{
0, innovation(t)

}
, (2)

dVIX∗−(t) = −min
{
0, innovation(t)

}
. (3)

The choice of one lag for in the autoregressive model is based on applying the BIC model selection
criterion. In addition to the VIX innovation variables, we also include the level of VIX in our analysis,
since both VIX changes and VIX level may affect investors’ urgency to trade.11

For each of the 14 unique macroeconomic data release times, we construct six time dummy vari-
ables, PreNews1min, PostNews0min, PostNews1min, . . . , PostNews4min. For example, suppose there
is a news release scheduled at 10:00am on October 1, which we treat as the very first event in the time
interval of (10:00,10:01]. The dummy variable PreNews1min is set to 1 for all stocks for the minute
ending at 10:00am, i.e. the minute of (9:59,10:00], on October 1, and zero otherwise; the dummy
variable PostNews0min is set to 1 for all stocks for the minute of (10:00,10:01] on October 1, and zero
otherwise; the dummy variable PostNews1min is set to 1 for all stocks for the minute of (10:01,10:02]
on October 1, and zero otherwise; and so on.12

Inventories, Monthly Budget Statement, Philadelphia Fed Business Outlook, Leading Economic Index, Existing Home
Sales, Dallas Fed Manufacturing, Richmond Fed Manufacturing, Consumer Confidence, FHFA House Price, New Home
Sales, and Chicago Purchasing Managers.

11Since VIX is a stationary process (with slow decay when sampled at the minute frequency) and it appears so during
our sample period, including it in our regression model does not raise econometric concerns.

12Another way to construct the macroeconomic variables is to measure how far the announced numbers differ from
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Consistent with the accounting literature (e.g., Kinney et al., 2002), the earnings surprise is cal-
culated as the absolute difference between announced EPS and the pre-announcement expected EPS,
divided by the closing price on the business day immediately before the announcement. Since all of
our earnings announcements are made outside trading hours, it is not possible to study the immedi-
ate effect of earnings announcement on trading activity using minute-level dummies as we did with
macroeconomic data releases. As such, we construct 13 intraday variables for the immediate next
business day after an announcement. The dummies are PostEA1 jt, ...,PostEA13 jt, one for each of the
thirteen 30-minute windows in a trading day. If stock j announced its earnings on a particular day
with EPS surprise of x basis points, then all of {PostEA1 jt, ...,PostEA13 jt} are set to x for the corre-
sponding time window on the business day right after stock j’s earnings announcement. Otherwise,
these variables are set to zero.

3.5 Data preparation and summary statistics

We convert all variables into logs, except the urgency proxies (i.e., VIX level, VIX innovation,
macroeconomic news, and earnings announcements) because some of them are dummy variables.
A log-linear model has a couple of advantages over a linear model. First, a log-linear model comes
with a natural interpretation that estimated coefficients are elasticities. Second, all endogenous vari-
ables (e.g., volume, realized variance, and depth) are guaranteed to remain non-negative. In other
words, the error term does not need to be bounded from below, which would be the case for a linear
model.

To take the log, the data need to be winsorized to eliminate zeros. We use the following pro-
cedure. If a particular dark venue has zero transaction volume for stock j and minute t, its volume
for that stock-minute is reset to one share. If a particular stock j does not trade in period t on the
NASDAQ market, the HFTinVolume variable is undefined. In this case, to avoid losing observations,
HFTinVolume is forward filled from the start of the day. The motivation is that market participants
may learn HFT activity on NASDAQ by carefully parsing market conditions. If there is no update in a
particular time interval, they might rely on the last observed value. Zero entries for all other variables
are left-winsorized at the 0.01% level.

Table 3 contains summary statistics of the model variables, before taking the log. Columns 1
through 8 show the mean, standard deviation, minimum, and maximum of the raw and winsorized

market expectations. This method, however, runs into a problem if multiple macroeconomic data releases coincide at
the same clock time. For example, on October 1, 2010, three macroeconomic data releases happened at 10:00am: ISM
Manufacturing, ISM Prices Paid, and Construction Spending. For these situations there is no obviously optimal way to
synthesize multiple releases into one “surprise” measure. For this reason, we use time dummy variables. To the extent
that the surprise component is missing from these time dummies, using time dummies is conservative and goes against us
finding any significant result.
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data for the full sample. One important observation is that the data preparation procedure discussed
above leaves the data almost unchanged as the raw data are very close to the prepared data.

The summary statistics characterize trading in our sample. Total average trading volume per stock-
minute is 10,300 shares. The average bid-ask spread in the NASDAQ limit order book is 16.8 basis
points. The average displayed depth at the best quotes is 4,443 shares. HFT participation in the best
quotes, HFTinTopDepth, is 37%, whereas HFT participation in NASDAQ trades, HFTinVolume, is
40%. The averages of dVIX∗+ and dVIX∗− are 0.7 basis points per minute, and since one of these two
innovations is always zero each minute by construction, the average absolute innovation in the VIX is
the sum of the two averages, or about 1.4 basis point per minute. The last six columns show the mean
and standard deviation of all model variables for large, medium, and small stocks, respectively. As
expected, larger stocks have higher volumes in all venues, lower spreads, higher depths, and higher
HFT participation.

4 A VARX model of dark volumes

This section characterizes the dynamic interrelation of the various types of dark volume, the vari-
ous measures of market conditions, and the exogenous shocks to urgency, through a panel vector
autoregressive model with exogenous variables: a panel VARX.

4.1 Panel VARX model

For each stock j and each minute t, all the log-transformed endogenous variables, underscored and in
the Y section of Table 2, are arranged into a vector yjt. All exogenous variables, listed in the Z section
of Table 2, are arranged into a vector zjt. Then, the panel VARX model used for the main empirical
analysis has the following form:

yjt = α j + Φ1yj,t-1 + · · · + Φpyj,t-p + Ψzj,t + εjt. (4)

A stock fixed effect α j ensures that only time variation is captured, not cross-sectional variation,
as our focus is on dynamic interrelations among variables. We set the number of lags (in minutes)
equal to two based on the BIC criterion for model selection. Further estimation details are provided
in Appendix B.

4.2 Estimation results

Table 4 presents the VARX estimation results. The estimated coefficients {Φ1,Φ2,Ψ} can be inter-
preted as elasticities. The results lead to a few observations. First, VIX shocks, macroeconomic
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Table 3: Summary statistics. This table reports summary statistics of the variables used throughout the paper (before taking logarithm). Sample
mean, standard deviation, minimum, and maximum are calculated for the full sample before and after data preparation (the first 8 columns). For
each stock size tercile, subsample mean and standard deviation are then tabulated (in the other columns). The sample frequency is minute. The
units of each series is in the square brackets.

Mean (full) StDev (full) Min (full) Max (full) Mean StDev

Raw Prep/d Raw Prep/d Raw Prep/d Raw Prep/d Large Medium Small Large Medium Small

VDarkMid [1k shares] 0.256 0.257 2.379 2.379 0.000 0.001 1297.200 1297.200 0.709 0.045 0.017 4.005 0.730 0.315

VDarkNMid [1k shares] 0.938 0.939 5.411 5.411 0.000 0.001 1040.352 1040.352 2.638 0.138 0.040 9.069 1.047 0.379

VDarkRetail [1k shares] 1.328 1.329 6.181 6.181 0.000 0.001 1641.229 1641.229 3.783 0.133 0.070 10.219 0.894 0.574

VDarkPrintB [1k shares] 0.102 0.103 8.001 8.001 0.000 0.001 3524.920 3524.920 0.294 0.009 0.005 13.827 0.397 0.791

VDarkOther [1k shares] 0.703 0.704 10.627 10.627 0.000 0.001 3018.263 3018.263 1.948 0.108 0.057 18.136 1.926 1.942

VDark [1k shares] 3.437 3.438 41.120 41.120 0.000 0.001 23616.586 23616.586 9.692 0.431 0.189 70.714 2.674 2.510

VLit [1k shares] 7.001 7.002 31.413 31.413 0.000 0.001 9238.898 9238.898 19.306 1.272 0.427 52.102 3.781 1.972

TAQVolume [1k shares] 10.325 10.329 42.534 42.533 0.000 0.006 9329.493 9329.494 28.666 1.705 0.616 69.887 5.180 3.334

ImbVolume [1k shares] 1.282 1.282 5.943 5.943 0.000 0.001 249.800 249.800 3.476 0.274 0.096 9.883 0.936 0.417

RelSpread [bps] 16.776 16.776 28.466 28.466 0.162 0.334 6681.449 6681.449 4.100 12.136 34.075 2.860 12.062 42.368

InHiddDepth [1k shares] 0.178 0.178 1.010 1.010 0.000 0.001 249.800 249.800 0.238 0.134 0.163 1.418 0.778 0.663

TopDispDepth [1k shares] 4.443 4.443 13.909 13.909 0.001 0.004 502.515 502.515 11.431 1.327 0.572 22.231 3.398 1.034

AtHiddDepth [1k shares] 1.170 1.170 6.605 6.605 0.000 0.001 903.559 903.559 2.099 0.968 0.443 9.061 6.592 1.967

HFTinTopDepth [percent] 36.744 36.748 27.959 27.953 0.000 0.029 100.000 100.000 46.778 37.478 25.987 24.021 28.761 26.892

HFTinVlm[percent] 39.985 37.157 23.939 26.038 0.000 0.125 100.000 100.000 45.627 38.063 27.708 19.697 26.978 27.539

RealVar [bps] 6.139 6.188 9.112 9.079 0.000 0.172 1367.197 1367.197 5.134 5.541 8.000 4.639 7.348 12.871

VarRat10S [percent] 99.772 99.778 44.438 44.426 0.000 0.317 853.407 853.407 101.613 100.834 96.905 47.554 45.698 39.431

dVIX*+ [percent] 0.007 0.007 0.018 0.018 0.000 0.000 0.427 0.427 0.007 0.007 0.007 0.018 0.018 0.018

dVIX*- [percent] 0.007 0.007 0.016 0.016 0.000 0.000 0.342 0.342 0.007 0.007 0.007 0.016 0.016 0.016

VIX [percent] 20.626 20.626 1.369 1.369 17.940 17.940 24.330 24.330 20.626 20.626 20.626 1.369 1.369 1.369

PreNews1min [1/0] 0.002 0.002 0.041 0.041 0 0 1 1 0.002 0.002 0.002 0.041 0.041 0.041

PostNews0min, ..., PosteNews4min [1/0] 0.002 0.002 0.041 0.041 0 0 1 1 0.002 0.002 0.002 0.041 0.041 0.041

PostEA1, ..., PosteEA13 [percent] 0.001 0.001 0.042 0.042 0 0 4.190 4.190 0.000 0.001 0.001 0.014 0.061 0.037
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data releases, and earnings surprises all forecast higher volumes in dark venues and higher total TAQ
volume, but the elasticity of TAQ volume is higher than that of all types of dark volume which, in
turn, show large variation. This suggests that the market shares of various venue types respond rather
differently to shocks in the urgency proxies. Moreover, right after those exogenous shocks, liquidity
conditions in the market tend to worsen, as indicated by a wider spread and a lower (visible) depth.
Second, the various types of dark volume seem to respond very differently to changes in market con-
dition variables such as spread, depth, and return variance, sometimes with opposite signs (as judged
from the first five rows). We will return to these points later.

An informative, intuitive, and standard way to summarize the rich information in the dynamic
system is to calculate and plot impulse-response functions (IRFs). In particular, IRFs reveal not only
how shocks transmit across variables, but also shows how long they last. Thus, we will mostly rely
on IRFs for exposition in the remainder of the paper. As the IRF is a non-linear function of parameter
estimates, we establish the 95% confidence bounds of the IRF through simulations. In each iteration
a value for the parameter vector is drawn from a multivariate normal with a mean equal to the point
estimate and a covariance matrix equal to the estimated parameter covariance matrix. This simulation
method is described in more detail in Appendix B. In the next section, we use the IRFs based on a
shock to the exogenous urgency proxies to test the pecking order hypothesis. In Section 7, we present
IRFs based on shocks to endogenous variables to explore heterogeneity across dark venues and across
stocks.

5 Results: pecking order

In this section we test the pecking order hypothesis laid out in Section 2. We focus on testing the spe-
cific form of the pecking order hypothesis (Fig. 2(b)) because it makes stronger (i.e., more specific)
predictions. Our empirical strategy is to start from the steady-state estimate of the VARX model and
then study how the market shares of DarkMid, DarkNMid, and Lit respond to VIX shocks, macroe-
conomic data releases, and earnings surprises. In all analysis we will also discuss the behavior of
large-cap, mid-cap and small-cap stocks separately.

5.1 A VIX shock

Starting with our estimated VARX model, we shock dVIX∗+ by +0.01% to examine how the volume
shares of DarkMid, DarkNMid, and Lit change relative to their steady state levels.13 This steady state

13We are careful to also shock the VIX level by the amount implied by the shock to its innovation. This ensures the
resulting IRF is internally consistent.
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Table 4: VARX Estimation. This table presents VARX estimation results. All variables are sampled at a one minute frequency. They are log-
transformed except for the exogenous variables: VIX innovation and level, earnings announcement surprises (PostEA) and the macroeconomic
data release dummies. The (unadjusted) R2 values are reported for each endogenous variable. Statistical inference is based on two-way clustering
of the residuals, by stock and by time.

VDarkMid VDarkNMid VDarkRetail VDarkPrintB VDarkOther TAQVolume ImbVolume RelSpread InHiddDepth TopDispDepth AtHiddDepth HFTinTopDepth HFTinVlm RealVar VarRat10S

Endogenous variables: 1-minute lag

VDarkMid (-1) 0.210** 0.032** 0.026** 0.005** 0.038** 0.011** 0.010** -0.000 0.001 0.001* 0.003 -0.000 0.001 0.002 -0.001*

VDarkNMid (-1) 0.028** 0.190** 0.048** 0.004** 0.045** 0.034** 0.019** -0.000 0.004* 0.004** 0.002 0.001 0.001 0.002 -0.002**

VDarkRetail (-1) 0.019** 0.034** 0.110** 0.003** 0.038** 0.017** 0.021** -0.000 -0.003* -0.000 0.001 -0.001 0.003** 0.005** 0.001**

VDarkPrintB (-1) 0.010** 0.008** 0.011** 0.054** 0.019** 0.006* 0.008* 0.001 -0.002 0.001 -0.002 0.002 0.001 0.007** 0.000

VDarkOther (-1) 0.021** 0.036** 0.036** 0.002** 0.143** 0.017** 0.018** -0.001* 0.001 -0.001 0.006** -0.001 -0.002* 0.004** -0.001

TAQVolume (-1) -0.004* 0.022** 0.020** 0.001 0.007* 0.169** 0.072** -0.002** 0.004 0.002** 0.007* -0.008** -0.014** 0.002 0.003*

ImbVolume (-1) -0.001 -0.002 0.009** 0.001* 0.008** 0.010** 0.079** 0.000 -0.003 -0.002** 0.000 -0.003* 0.004** 0.007** -0.001*

RelSpread (-1) -0.077** -0.120** -0.080** -0.003 -0.130** -0.429** -0.876** 0.388** 0.051* -0.043** -0.219** -0.113** -0.143** 0.189** -0.046**

InHiddDepth (-1) 0.007** 0.018** 0.006** 0.001 0.018** 0.023** 0.032** -0.002** 0.318** 0.001** 0.046** 0.004 -0.009** -0.011** 0.000

TopDispDepth (-1) 0.077** 0.136** 0.071** 0.004 0.080** 0.130** 0.208** -0.025** -0.038** 0.372** 0.090** -0.021 0.002 -0.108** 0.016**

AtHiddDepth (-1) 0.011** 0.013** 0.008** 0.001 0.015** 0.008** 0.019** -0.002** 0.023** 0.003** 0.329** -0.001 -0.002* -0.011** -0.001**

HFTinTopDepth (-1) -0.003** -0.004** -0.002* 0.000 -0.007** -0.001 -0.012** -0.002** 0.001 -0.000 -0.002 0.369** 0.046** 0.004** 0.003**

HFTinVlm (-1) -0.003* -0.005** -0.001 -0.000 -0.007** -0.004** -0.007** 0.000 -0.004* -0.000 -0.000 0.004* 0.544** -0.000 0.000

RealVar (-1) -0.025** -0.044** -0.020** -0.000 -0.038** -0.045** 0.005 0.006** -0.010** -0.012** -0.042** 0.011** 0.005* 0.219** -0.023**

VarRat10S (-1) 0.002 -0.002 0.014** 0.002 0.001 0.006* 0.007* 0.003** -0.000 -0.002* -0.006 0.006* 0.005* 0.016** 0.047**

Endogenous variables: 2-minute lag

VDarkMid (-2) 0.175** 0.019** 0.014** 0.003** 0.027** 0.004** 0.004 0.000 -0.000 0.002** 0.006** -0.000 -0.002* 0.001 -0.000

VDarkNMid (-2) 0.016** 0.136** 0.031** 0.002* 0.029** 0.017** 0.008** 0.001** 0.007** 0.004** 0.010** -0.000 -0.002* -0.002 -0.000

VDarkRetail (-2) 0.014** 0.022** 0.088** 0.002 0.027** 0.013** 0.015** 0.000 -0.003** 0.000 -0.000 -0.000 0.001 0.006** 0.002**

VDarkPrintB (-2) 0.010** 0.006 0.011** 0.030** 0.007 0.001 0.003 0.000 0.004 0.001 0.007 0.001 -0.001 0.000 -0.000

VDarkOther (-2) 0.010** 0.021** 0.028** 0.000 0.111** 0.008** 0.010** -0.001* 0.004** -0.000 0.006** -0.003* -0.001 0.001 -0.000

TAQVolume (-2) -0.012** 0.015** 0.015** 0.003** -0.004 0.118** 0.039** -0.004** 0.007** 0.004** 0.009** -0.006* -0.006** -0.010** 0.001

ImbVolume (-2) 0.001 -0.002 0.008** 0.000 0.002 0.004* 0.052** -0.004** -0.008** 0.002** 0.009** -0.008** 0.005** -0.002 0.001*

RelSpread (-2) 0.010 0.034** 0.024** 0.002 0.027** 0.040** 0.059** 0.200** 0.005 -0.014** -0.126** -0.116** -0.009 0.041** 0.009**

InHiddDepth (-2) -0.000 0.002 -0.001 -0.001 0.002 0.001 -0.001 -0.001** 0.176** 0.001 0.030** 0.005** -0.001 -0.005** 0.000

TopDispDepth (-2) -0.003 0.025** -0.005 0.003 -0.032** -0.019** -0.025** -0.003 -0.009 0.217** 0.071** -0.001 -0.009* -0.068** 0.006**

AtHiddDepth (-2) 0.002 0.003* 0.001 0.000 0.002* 0.001 0.001 -0.001** 0.017** 0.002** 0.186** 0.003* 0.000 -0.009** -0.001

HFTinTopDepth (-2) 0.000 -0.000 -0.001 0.000 -0.002 -0.004** -0.008** -0.003** 0.001 0.001 0.006* 0.192** 0.010** -0.001 0.000

HFTinVlm (-2) 0.001 0.001 -0.001 -0.000 0.002 -0.000 0.004* -0.001** -0.003* 0.000 0.001 0.017** 0.115** 0.005** 0.001

RealVar (-2) -0.010** -0.023** -0.010** -0.002 -0.012** -0.017** 0.024** 0.007** -0.006** -0.009** -0.030** 0.005* -0.001 0.128** -0.012**

VarRat10S (-2) -0.003 -0.008** 0.002 0.000 -0.005* -0.009** -0.008** 0.002** -0.001 0.001 -0.006 0.002 0.003 -0.005* 0.029**

*, ** Significant, respectively, at 5%, and 1%. All tests are two sided.
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Table 4 continued. . .

VDarkMid VDarkNMid VDarkRetail VDarkPrintB VDarkOther TAQVolume ImbVolume RelSpread InHiddDepth TopDispDepth AtHiddDepth HFTinTopDepth HFTinVlm RealVar VarRat10S

Exogenous variables

dVIX*+ 2.337** 3.510** 3.306** 0.154 3.845** 6.874** 8.056** 0.489** -0.108 -0.198** -0.272 0.594** 2.129** 6.387** 0.687**

dVIX*- 2.704** 3.540** 2.855** -0.172 3.777** 7.169** 9.058** 0.498** 0.075 -0.183** -0.543 0.365 2.459** 6.956** 0.550**

VIX -0.002 0.020** -0.014* 0.007* 0.022** 0.048** 0.053** 0.002* -0.012 0.001 0.008 -0.008 0.010** 0.045** 0.000

PreNews1min -0.135* -0.214** -0.197** 0.118** -0.174** -0.282* -0.371 0.099** -0.024 -0.058** -0.074 -0.485** -0.064 -0.216 -0.032

PostNews0min 0.304** 0.534** 0.391** 0.021 0.532** 0.802** 0.777** 0.178** 0.251** -0.107** -0.071* 0.251** 0.269** 0.890** -0.016

PostNews1min -0.225** -0.137** -0.116* -0.015 -0.155 -0.037 -0.010 0.035 0.100** -0.025** -0.070 -0.064 -0.020 -0.044 0.128**

PostNews2min -0.089** -0.031 -0.109 -0.049 -0.013 0.016 0.004 -0.063** -0.127* -0.009 -0.017 0.183* 0.048 -0.005 0.140**

PostNews3min 0.035 0.021 -0.061 0.007 0.046 0.015 0.010 -0.031** -0.072** -0.008 0.207** -0.148* -0.033* 0.098 0.085**

PostNews4min -0.014 0.025 -0.021 -0.062** 0.070 -0.057 -0.054 0.025 0.027 -0.031 -0.142 0.055 -0.006 0.056 0.004

PostEA1 0.280* 0.315* 0.574** 0.066 0.251 0.640** 0.668** 0.008 -0.000 0.006 0.219** -0.049 0.074 0.245* -0.003

PostEA2 0.135 0.394** 0.571** 0.021 0.158* 0.551** 0.430** 0.011 0.059 -0.013 -0.022 0.104* 0.131** 0.166** -0.045*

PostEA3 0.164 0.421** 0.280** 0.105 0.171* 0.479** 0.389** 0.011 0.227* 0.019 0.031 0.072 0.029* 0.171** -0.009

PostEA4 0.217* 0.251* 0.238** 0.084 0.189 0.506** 0.421** 0.005 0.055 0.013 -0.029 0.092 0.090 0.236** 0.025

PostEA5 0.099** 0.179* 0.184** 0.080* 0.098 0.281** 0.301** -0.018 -0.002 -0.015 0.147 0.063 0.001 0.140** 0.013

PostEA6 0.052 0.138* 0.169** 0.102 0.078 0.270** 0.175 -0.023 -0.059 0.000 0.070 -0.026 -0.003 0.062 0.017

PostEA7 0.048 0.129* 0.244** 0.077* 0.131* 0.273** 0.214* 0.018 0.246** 0.009 -0.034 0.184** 0.016 0.053 0.015

PostEA8 0.105** 0.242* 0.252** 0.088* 0.160* 0.252* 0.254* 0.019 0.163** 0.015 -0.105 0.115 0.048 0.192** 0.003

PostEA9 0.066* 0.154** 0.133 0.100* 0.199** 0.244** 0.235* 0.001 -0.077* 0.001 -0.104 -0.068 -0.027 0.052 -0.002

PostEA10 0.068* 0.176* 0.217* 0.102* 0.159* 0.213* 0.188 0.008 0.036 0.000 0.001 0.055 0.113* 0.080 0.024

PostEA11 0.062 0.202* 0.121 0.111* 0.017 0.295** 0.195 0.007 0.017 -0.011 0.030 0.025 0.095** 0.061 -0.003

PostEA12 0.032 0.128 0.136 0.100 0.079 0.291** 0.166* 0.018 0.057 0.010 0.045 0.021 0.026 0.084 0.003

PostEA13 0.067 0.213 0.232* 0.076* 0.154 0.296** 0.192* 0.009 0.017 0.008 0.155 0.012 0.033 0.061 0.060

R2 0.114 0.111 0.055 0.005 0.077 0.107 0.071 0.277 0.184 0.286 0.215 0.236 0.398 0.122 0.008

# obs. 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563 943563

*, ** Significant, respectively, at 5%, and 1%. All tests are two sided.
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level is equal to the overall average volume share. While the VARX model is specified in terms of
volume, the calculation of market shares is straightforward from the estimated coefficients.14 A shock
size of +0.01% is approximately equal to a one standard deviation of dVIX∗+. The volume shares are
denoted by SDarkMid, SDarkNMid, and SLit, respectively. The pecking order hypothesis stated in
Section 2 predicts that, after VIX shocks, the proportional changes of Lit, DarkNMid, and DarkMid
market shares are positive, mildly negative, and most negative, respectively. The model developed in
Section 8 develops this prediction formally.

The left-most column in Fig. 3 depicts our the findings for the overall sample. The ordering of the
three venue types conforms to the pecking order hypothesis. In the contemporaneous minute of the
VIX shock, SDarkMid shows the most negative reaction, falling from a steady state level of 2.40% to
2.29%, a 4.6% reduction. SDarkNMid also falls from a steady state level of 7.52% to 7.27%, but the
fractional loss is smaller: 3.3%. By contrast, SLit increases from 76.2% to 77.0%, a gain of 1.0%. The
reduction in market shares of DarkMid and DarkNMid remains significant over the two/three-minute
horizon, but the response of Lit is significant only in the minute of the VIX shock. For all three venue
types, the effects on market shares dies out completely within five minutes.15

To examine which stocks “drive the result” we estimate the VARX model separately for large,
medium, and small stocks, and for each size tercile we repeat the analysis of shocking VIX by
+0.01%. The three right-most columns in Fig. 3 depict our findings. We see that for medium and
small stocks the pecking order hypothesis is generally supported: DarkMid and DarkNMid lose mar-
ket share and Lit gains market share, and the magnitudes of market share changes relative to the steady
state are comparable to or larger than their full-sample counterparts. By contrast, for large stocks the
market shares of the three venues do not respond to VIX shocks in a statistically significant manner.
As we see will shortly, this lack of significance for large stocks also applies to macroeconomic data
releases and earnings announcements. Possible explanations are discussed at the end of this section.

The sorting of the three venue types shown in Fig. 3 is supported by formal econometric tests of
the following two null hypotheses:

Null 1: The proportional changes of SDarkMid and SDarkNMid to VIX shocks are the same;

Null 2: The proportional changes of SDarkNMid and SLit to VIX shocks are the same.

We perform the tests by constructing the 95% confidence bounds on the differences between the
14Specifically, we use the estimated VARX coefficients and their covariance matrix to simulate 10,000 processes. In

each simulation, we calculate the contemporaneous and subsequent volume changes following a VIX shock at the steady
state. These volume changes then translate into shocked market share series in each simulation. We then compute, and
plot in Fig. 3 below, the mean and the confidence bounds of the across the 10,000 simulations.

15As discussed in Section 2, the pecking order hypothesis does not make unambiguous predictions for a negative VIX
shock. In unreported results, we find that a negative VIX shock leads to a smaller dark market share and a larger lit market
share, although the statistical significance is borderline and the economic magnitude is smaller.
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proportional changes in market shares. These confidence bounds are plotted in Fig. 4. In the full
sample, after a +0.01% shock in dVIX∗, the percentage change of SDarkMid is significantly more
negative than that of SDarkNMid in the contemporaneous minute and in the first two minutes, thus
rejecting Null 1. The percentage change of SDarkNMid is significantly more negative than that of
SLit contemporaneously and only marginally significant in the first minute, thus rejecting Null 2. For
large stocks, Null 1 is rejected also for minute 1 to 3 (marginally so at minute 2), but Null 2 is not.
For medium and small stocks, the rejection of Null 1 is slightly weaker (after the contemporaneous
minute), while for Null 2 the rejection is very strong. Overall, the evidence from VIX shocks supports
the pecking order hypothesis, except the DarkNMid-Lit step for large stocks.
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Figure 3: Pecking order following a shock in VIX. This figure plots the impulse response functions of the market shares of DarkMid, DarkNMid,
and Lit following a +0.01% shock to dVIX∗. The 95% confidence bounds are constructed by simulation. Panel (a) shows the result for all stocks
and panels (b) through (d) show the results by stock size category. Minute 0 after the shock corresponds to the contemporaneous minute.
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Figure 4: Testing the pecking order hypothesis: VIX shock. This figure plots the difference between the
percentage market share changes of DarkMid and DarkNMid following a +0.01% VIX shock in the left column
and the difference between DarkNMid and Lit in the right column. In each panel, the point estimate of the
difference (solid line) and the 95% confidence bounds (shaded area) are shown for all stocks and separately
for all stock size categories. The confidence bounds are constructed by simulation. Minute 0 after the shock
corresponds to the contemporaneous minute.
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5.2 Macroeconomic data releases

Recall that the effects of macroeconomic data releases on dark market shares are captured by the
six time dummy variables in the VARX. The left most column in Fig. 5 plots the market shares
of DarkMid, DarkNMid and Lit in the six time windows, estimated using the full sample. In the
contemporaneous minute of macroeconomic data releases, DarkMid and DarkNMid market shares
see distinctive drops of 38.5% and 22.7% relative to their steady state levels, whereas the Lit market
share increases by 9.1%. In all three venues, the 95% bounds show that the first minute response is
statistically significant for all market shares. The response lasts for about two to three minutes before
becoming indistinguishable from the steady state.

We repeat the analysis for the three stock size terciles, and the results are shown in the three right
most columns of Fig. 5. Just like the VIX result, medium and small stocks show strong support for
the pecking order hypothesis, whereas market share changes are insignificant for large stocks. For
medium stocks and in the minute after macroeconomic news, DarkMid and DarkNMid market shares
are at 40% and 66% of their steady state levels, respectively. For small stocks and in the minute after
macroeconomic news, DarkMid and DarkNMid market shares are 44% and 58% of their steady state
levels.

As in the VIX analysis, we also formally test the two null hypotheses: after macroeconomic data
releases, (i) the proportional changes of SDarkMid and SDarkNMid are equal, and (ii) the proportional
changes of SDarkNMid and SLit are equal. The simulated confidence bounds on the differences in
proportional market share changes are plotted in Fig. 6. The two nulls are rejected in the full sample
and for medium stocks. Null 2 is also rejected for small stocks, albeit only in the first minute after
the news release. Summarizing, the evidence from macroeconomic data releases also supports the
pecking order hypothesis, except for large stocks.
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Figure 5: Pecking order around macroeconomic data releases. This figure plots the venue market shares from one minutes before to four
minutes after macroeconomic data releases. The 95% confidence bounds are constructed by simulation. Panel (a) shows the results all stocks and
panels (b) through (d) show them by stock size category. Minute 0 after the shock corresponds to the contemporaneous minute.
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Figure 6: Testing pecking order hypothesis: Macro news releases. This figure plots the difference between
the percentage market share changes of DarkMid and DarkNMid around macro data releases in the left column
and the difference between DarkNMid and Lit in the right column. In each column, the point estimate of the
difference (solid line) and the simulated 95% confidence bounds (shaded area) are shown separately for the full
sample and the three stock size size categories. The horizontal axis labels indicate the minute relative to the
announcement time. Minute 0 after the shock corresponds to the contemporaneous minute.
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5.3 Earnings announcements

The third shock we explore is the earnings surprises of individual firms. Starting with the estimated
VARX model, we shock the earnings surprise by 1% (similar in size to the EPS surprise standard
deviation: 0.89%) and calculate the new steady state market shares of DarkMid, DarkNMid, and Lit.
Since 13 intraday effect variables are included in the VARX model, we are able to identify an intraday
pattern of how the firm-specific urgency proxy affects market share.

The left most column of Fig. 7 plots the results for the full sample. A 1% higher earnings surprise
significantly reduces SDarkMid by about 20%, on average, throughout the day. A similar pattern but
of smaller magnitude is seen for SDarkNMid, while SLit shows overall increases. For both SDarkMid

and SDarkNMid, the effects are stronger in the earlier trading hours. While most intraday effects are
not statistically significant (except for some SDarkMid estimates), the point estimates echo what we
found for VIX shocks (Fig. 3) and macro data releases (Fig. 5). The limited statistical significance
here is due to low power of the test as we only have 67 such stock-day observations (out of 117× 21).
The hypothesis tests similar to Fig. 4 and 6 do not show any statistical significance and are therefore
not included.

The right most columns of Fig. 7 plot the results for the large, medium, and small stocks, respec-
tively. Consistent with the patterns around VIX shocks and macroeconomic data releases, DarkMid
shows a significant drop in its market share after surprise earnings announcement for medium and
small stocks, but not for large stocks. Since the number of firms that have earnings announcements
is significantly reduced by partitioning the full sample into size terciles, these results are more telling
about how strong the statistical significance is for medium and small stocks rather than how weak it
is for large stocks.

5.4 A discussion of large stocks

A consistent empirical pattern observed in the three tests above is that the pecking order hypothesis is
supported by medium and small stocks, but venue shares of large stocks are statistically irresponsive
to these exogenous shocks. In this section we propose two candidate explanations.

The first candidate explanation is that because large stocks on average have lower betas than
medium and small stocks, large stocks should respond less to market-wide urgency shocks like a
higher VIX or macroeconomic data releases. Indeed, the average betas of the subsamples are de-
creasing in stock sizes: 1.37 for large, 1.12 for medium, and 1.01 for small stocks.16 We find further
evidence in support of this conjecture by repeating the same analysis for the beta-sorted terciles. Af-

16The betas are calculated from a one-factor CAPM model, using the daily stock returns in the one-year period before
our sample month (October 2010). Since we only have 117 stocks, the average beta of these stocks need not be 1.
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Figure 7: Pecking order following a shock in earnings surprises. This figure plots the steady-state values of venue market shares for days with
no earnings announcements (EA) and the corresponding venue market shares, for all 13 half-hour trading intervals, after a 1% EPS surprise. The
95% confidence bounds (2.5% and 97.5%) are constructed by simulation. Panel (a) shows the result for the full sample, while separates results
for small, medium, and large stocks are shown in panels (b), (c), and (d).
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ter an upward VIX shock, DarkMid loses market share while Lit gains market shares in all three
beta-sorted terciles; both effects are statistically significant. While the point estimates for DarkNMid
suggest that it also loses market share after the VIX shock, only in the high-beta tercile is the effect
statistically significant. This set of results is suppressed to conserve space but are available upon re-
quest. Given this evidence, it appears that the lack of responsiveness of large stocks to urgency shocks
can be partly, but not entirely, attributed to their low systematic risk (low beta).

The second candidate explanation is that large stocks are so liquid and traded so fast that effective
delay cost in dark venues caused by execution risk is very small. Some formal support for this con-
jecture is derived in Section 8, which analyzes a simple model to derive the pecking order hypothesis
in equilibrium. The analysis shows that the pecking order pattern is weaker if the spread is lower or
volume is higher. To examine this conjectured weaker result for liquid stocks, we sort the 117 stocks
by trading volume (measured in September 2010), and the three volume terciles are very close to the
corresponding size terciles. As expected, the results for the volume terciles are the same as those for
size terciles: evidence from medium-volume and low-volume stocks supports the pecking order hy-
pothesis, but venue shares for high-volume stocks show no significant response. We repeat the same
exercise using relative-spread sorted terciles and absolute-spread sorted terciles, and the results are
the same: urgency shocks affect the venue shares of the high- and medium-spread terciles, but not the
low-spread tercile. The volume sorted and spread sorted results are not reported to conserve space but
are available upon request. This evidence suggests that the superior liquidity of large stocks could be
an explanation why their venue shares are less sensitive to urgency shocks.

6 A brief discussion of DarkRetail

So far in the paper we have focused on DarkMid and DarkNMid. They are the key ingredients of the
pecking order hypothesis and the focus of recent theories of dark pools. In this section, we briefly
discuss how DarkRetail responds to the same three shocks. DarkRetail is the largest single category
of dark venues, and the behavior of retail internalization is of key interest to regulators.

Fig. 8 shows how the DarkRetail market share responds to a 0.01% VIX shock (row 1), to a
macroeconomic data release (row 2), and to a 1% earnings surprise (row 3). The four columns corre-
spond to the full sample, large stocks, medium stocks, and small stocks, respectively. Three features
stand out. First, the market share of DarkRetail drops after VIX shocks and macroeconomic data
releases. Second, these results are largely driven by medium and small stocks; large stocks are irre-
sponsive. These two patterns are very similar to those observed for DarkMid and DarkNMid. The
third feature of DarkRetail is that there is no statistically significant reduction in DarkRetail market
share in any of the size terciles following a surprise in earnings announcement, although the point
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Figure 8: Impulse response of DarkRetail venue share. This figure depicts the impulse response function for DarkRetail market share following
shocks to the three exogenous variables: a 0.01% VIX shock, a macro data release, and a 1% earnings announcement surprise (corresponding to
rows 1, 2, and 3, respectively). The four columns correspond to the full sample, large, medium, and small stocks, respectively. Minute 0 after the
shock corresponds to the contemporaneous minute.
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estimates suggest that both medium and small stocks see sizable market share drops throughout of the
trading day. The statistical insignificance here may be a consequence of a small sample of firm-days
with earnings announcements. Statistical significance aside, it may also suggest that retail investors
tend to trade more after firm-specific news than after VIX shocks or macroeconomic news, relative to
institutional investors.

7 Dark market shares and market conditions

We have shown that DarkMid, DarkNMid, and DarkRetail have reduced market shares after exoge-
nous urgency shocks. The pecking order hypothesis of DarkMid, DarkNMid and Lit is supported in
the data. These results are primarily driven by medium and small stocks.

In this section we turn to the relation between dark venue shares and endogenous market con-
ditions, such as spread, depth, volume, and volatility. We study how shocks to market conditions
predict dark pool market shares in subsequent minutes. Because market conditions and dark pool
activities are endogenous, we will not draw any causal conclusions. That said, documenting the dy-
namic relation is still a valid and interesting exercise. As before, we focus on DarkMid, DarkNMid,
and DarkRetail. All impulse-response functions are calculated by starting the VARX at the steady
state and shocking one variable at a time. This analysis is run for the full sample of stocks and for
three size terciles separately.

Fig. 9 shows market shares of DarkMid, DarkNMid, and DarkRetail respond to an upward shock
in relative spread on NASDAQ, displayed depth at the best quote on NASDAQ, total TAQ volume,
and realized return variance. The shock sizes are set to the mean level of the respective variables.
Since these variables are in their logarithms in the VARX model, the shock size is ln 2. Such shock
sizes are not particularly large given the standard deviations of these variables (see Table 3). Each
panel corresponds to a shock in one of the market conditions variables. In each panel, the three rows
correspond to the three dark venue types, and the four columns correspond to the four possible sample
selections.

An inspection of the 48 (12×4) subplots reveals the following patterns. First, there is heterogeneity
across stock size regarding how dark market shares respond to shocks in market conditions. Second,
within the three dark venues, the responses of DarkMid and DarkNMid seem mostly consistent with
each other but from time to time differ from that of DarkRetail. We discuss these observations in
detail below and provide tentative explanations that are motivated from the existing literature.

Observation 1: Heterogeneity across large, medium, and small stocks.

• For medium and small stocks, DarkMid and DarkNMid generally gain market share following
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low liquidity conditions, such as a high Lit spread, low Lit depth, low total volume, and high re-
turn variance. The only exceptions are medium stocks in DarkNMid after shocks in TAQVolume

and RealVar.

• For large stocks, DarkMid and DarkNMid generally gain market share following high liquidity
conditions, such as low Lit spread, high Lit volume, high total volume, and low return variance.

Clearly, large stocks behave very differently from medium and small stocks. We have seen het-
erogeneity across the size terciles in their response to exogenous shocks in Section 5. To explain
this heterogeneity in economic terms, we like to highlight one feature from recent dark pool theories
which is the degree to which investors seeking liquidity post limit orders in lit venues. In the models
of Hendershott and Mendelson (2000), Degryse, Van Achter, and Wuyts (2009), and Zhu (2014), the
lit venue is operated by market makers who provide quotes, and investors either send market orders
or use the (midpoint) dark pool. In these models, a wider spread encourages (uninformed) investors
to use the dark pool more frequently.17 The evidence from medium and small stocks supports these
models. By contrast, investors in the model of Buti, Rindi, and Werner (2015) can post limit orders in
the lit venue, in addition to sending market orders and using the dark pool. This implies that when the
order book has a wide spread or a low depth, incoming investors prefer posting limit orders to earn
the spread, which lowers dark pool usage. The evidence from large stocks supports their model.

Viewed this way, the heterogeneity across size terciles has an intuitive interpretation. For investors
who are not financial intermediaries, posting limit orders is a more attractive execution strategy for
large stocks because they trade highly frequently, so the model of Buti, Rindi, and Werner (2015) is
more applicable. But using limit orders for relatively inactive medium and small stocks may involve
a long waiting time, so the investors are better off as “liquidity takers.” For those stocks the models
of Hendershott and Mendelson (2000), Degryse, Van Achter, and Wuyts (2009), and Zhu (2014) are
more applicable. This interpretation parsimoniously rationalizes the first two rows of each panel of
Fig. 9.

As a side point, our time-series results on dark pool market shares should be distinguished from
the cross-section evidence in the prior literature, such as Buti, Rindi, and Werner (2011) and Ready
(2014). Using voluntarily reported data in 11 U.S. dark pools, Buti, Rindi, and Werner (2011) find
that dark pool market shares are higher for stocks with lower spreads, higher depths, higher trading
volume, and lower volatilities. Ready (2014) finds that Liquidnet and POSIT are used more for
stocks with less adverse selection (a component of stock volatility driven by order flows) and lower
percentage spread. Together, the cross-section evidence suggests that dark pools tend to have higher

17The informed strategies are a little involved. Zhu (2014) shows that if adverse selection is severe, a smaller fraction
of informed investors use the dark pool because their one-sided orders imply a low execution probability.
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market shares for liquid stocks. Therefore, the liquidity-dark pool market share relation in the cross
section and in the time series agree on large stocks but disagree on medium and small stocks.

Observation 2: DarkRetail.

• DarkRetail gains market share following low liquidity conditions, such as high Lit spread, low
Lit depth, and high return variance. The exception is that retail activity also goes up following
high volume and high depth in large stocks.

The DarkRetail results in Fig. 9 are intuitive. DarkRetail reactions to spread, depth, and variance
are similar to dark pool reactions to the same variables. For example, a high spread is followed
by a higher DarkRetail market share. Intuitively, since retail orders are uninformed on average and
dealers handling these orders only give retail investors a small price improvement, a wider spread
increases the profit of absorbing retail order flows. A similar interpretation holds for the DarkRetail
reaction to shallower depth. Interestingly, retail investors seem to become more active following high
individual stock volatility for medium and small stocks or high trading volume or depth for large
stocks. These patterns are consistent with Barber and Odean (2007)’s finding that individual investors
are particularly active in attention-grabbing stocks, such as stocks in the news, stocks experiencing
high abnormal trading volume, and stocks with extreme one-day returns.
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Figure 9: Response of venue shares to market condition shocks. This figure shows the impulse response functions of three venue shares,
DarkMid, DarkNMid, and DarkRetail, to four types of shocks: RelSpread in panel (a), TopDispDepth in panel (b), TAQVolume in panel (c), and
RealVar in panel (d). In each panel, twelve figures are shown in a three by four matrix, where each column indicates a different sample and each
row indicates the three venues: DarkMid, DarkNMid, and DarkRetail. The shock sizes are set to the sample mean of these variables (see Table 3).

(a) Shocking RelSpread
Full sample Large stocks Medium stocks Small stocks

D
ar

kM
id

sh
ar

es

Minutes after shock
1 2 3 4 5 6 7 8 9 10

1.80

2.00

2.20

2.40

2.60

2.80

3.00

s
te

a
d
y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

2.00

2.50

3.00

3.50

s
te

a
d
y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

s
te

a
d
y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

2.00

2.20

2.40

2.60

2.80

3.00

3.20

s
te

a
d
y
 s

ta
te

D
ar

kN
M

id
sh

ar
es

Minutes after shock
1 2 3 4 5 6 7 8 9 10

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

s
te

a
d

y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

s
te

a
d

y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

s
te

a
d
y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

5.00

5.50

6.00

6.50

7.00

7.50

8.00

s
te

a
d
y
 s

ta
te

D
ar

kR
et

ai
ls

ha
re

s

Minutes after shock
1 2 3 4 5 6 7 8 9 10

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

12.50

13.00

s
te

a
d

y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

s
te

a
d

y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

s
te

a
d
y
 s

ta
te

Minutes after shock
1 2 3 4 5 6 7 8 9 10

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

s
te

a
d

y
 s

ta
te

36



Figure 9 continued ...

(b) Shocking TopDispDepth
Full sample Large stocks Medium stocks Small stocks
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Figure 9 continued ...

(c) Shocking TAQVolume
Full sample Large stocks Medium stocks Small stocks
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Figure 9 continued ...

(d) Shocking RealVar
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8 Pecking order as an equilibrium outcome

This section shows that the pecking order hypothesis obtains in equilibrium in a simple stylized model.
Section 8.1 introduces the model and develops the result. Section 8.2 analyzes the benchmark case in
which all venues are consolidated into a single one. Section 8.3 then compares the fragmented market
structure and the consolidated one in terms of investor transaction cost and discusses the difference.

8.1 A simple stylized model of fragmented market trading

This section proposes a simple model that characterizes investors’ choices among three venue types:
DarkMid, DarkNMid, and Lit. Relative to existing theories of dark pools, our simple model distin-
guishes different types of dark venues. The model and its analysis formalize the intuition that led to
the pecking order hypothesis.

8.1.1 Model setup

Asset. There is one traded asset. Its fundamental (common) value is normalized to zero. All players
in this model have symmetric information about the asset and value it at zero. To formalize a pecking
order hypothesis based on the urgency of trades, a symmetric-information setting suffices.

Investors and timing. There are potentially two investors, a buyer who has an inventory shock
−Q < 0 units of the asset, and a seller who has an inventory shock Q > 0 units. While the liquidity-
driven trading demand Q is common knowledge, the presence of the buyer or seller is uncertain.
Specifically, a buyer is present with probability ϕ ∈ (0, 1), and likewise for the seller. The presence of
the buyer is independent of the presence of the seller. Thus, conditional on the presence of one, the
probability of the presence of the other is also ϕ.

There is one trading round. Before trading, Nature determines whether the buyer is present and
whether the seller is present. If present, an investor then chooses the optimal trading strategies in
the three venues explained below. Venues execute trades simultaneously according to their specific
trading protocols explained below.

If an investor (buyer or seller) is left with a non-zero inventory q after the trading round, he incurs
a quadratic cost of (γ/2)q2, with γ > 0. Here, γ could be an inventory cost, a proxy for risk-aversion,
or the cost of a missed opportunity to trade on a short-lived private signal. The parameter γ is the key
parameter of the model. We interpret it broadly as investors’ urgency to trade: The higher is γ, the
larger is the cost of holding a non-zero net position, and hence investors are more eager to trade.18

18For example, the interpretation of risk aversion is consistent with Campbell et al. (1993), who argue that the market’s
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Venues and trading protocols. There are three trading venues: Lit, DarkMid, and DarkNMid.

• Lit is populated by infinitely many competitive and infinitesimal liquidity providers who have
the same marginal cost β (> 0) for taking on one unit of the asset per capita, either long or short.
The cost can be an operation cost or a margin cost. Together, these liquidity providers supply
infinite depth at prices β and −β. This construct is similar to the “trading crowd” assumption in,
for example, Seppi (1997) and Parlour (1998).

If present, the buyer’s (seller’s) strategy in Lit is represented by the size of the market buy order
x+L (size of the market sell order x−L).

• DarkMid crosses buy and sell orders at the midpoint price, i.e., at 0. If unbalanced, only the
matched part of the order flow gets executed. For example, if there are buy orders for 100 units
in total and sell orders for 40 units then only 40 units are matched and executed.

If present, the buyer’s (seller’s) strategy in DarkMid is represented by the size of the buy order
x+M (size of the sell order x−M).

• DarkNMid is run by a single competitive liquidity provider who starts with inventory zero, but
incurs an inventory cost of −ηy2/2 for taking a net (long or short) position of y, where η > 0.
The liquidity provider quotes price pb and quantity qb for the buyer, and price ps and quantity
qs for the seller.19

If present, the buyer’s (seller’s) strategy in DarkNMid is represented by the size of his buy order
x+N at price pb (size of his sell order x−N at price ps).

A brief remark on model assumptions. This stylized model omits asymmetric information of the
asset value. This restrictive assumption is made for tractability. Zhu (2014) models the coexistence
of a midpoint dark pool and an exchange, allowing information asymmetry. He finds that as long
as informed traders use the dark pool, the dark pool market share tends to decrease in the value of
proprietary information. Solving a model that combines asymmetric information with the three types
of venues is hard and beyond the empirical focus of this paper.

8.1.2 Equilibrium

Without loss of generality, we fix the seller’s strategy x−i and consider the buyer’s choice of x+i when
the buyer is present. Note that from the buyer’s perspective, the seller’s order sizes x−i are Bernoulli

aggregate risk aversion—which is correlated with VIX, for example—reflects the change of (a subset of) individual
investors’ risk aversion.

19Our main results on the pecking order hypothesis are robust to various ways of modeling DarkNMid. For instance,
the DarkNMid provider can also post two price schedules.
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random variables: The seller is present only with probability ϕ. Let V+M := min{x+M, x−M} be the trading
volume in DarkMid. Then, the buyer’s expected profit is

π+ =

Price to pay
in DarkMid︷      ︸︸      ︷
−E

[
0 ·V+M

] Price to pay
in DarkNMid︷ ︸︸ ︷
−p+N x+N

Price to pay
in Lit︷︸︸︷
−β ·x+L (5)

+E
[
0 ·

(
Q − V+M − x+N − x+L

)]
︸                              ︷︷                              ︸
Liquidation value of remaining position

−γ
2
E

(
Q − V+M − x+N − x+L

)2︸                            ︷︷                            ︸
Quadratic cost for failing to trade

, (6)

which can be simplified to

π+ = −γ
2
E

(
Q − V+M − x+N − x+L

)2
− p+N x+N − βx+L . (7)

The buyer thus chooses three parameters, x+M, x+N , and x+L , to maximize his expected profit (7).
We will focus on a symmetric-strategy equilibrium, i.e., the buyer or the seller, if present, chooses

the same order sizes (but different signs): x+i = x−i for all venues i ∈ {M,N, L}. And the DarkNMid
provider chooses prices pb = pN > 0 and ps = −pN , and quantities qb = qs. In the equilibrium we
characterize, the DarkNMid provider’s offered quantities are greater than or equal to the investors’
DarkNMid order size, i.e., qb = qs ≥ xN .

Because we look for a symmetric equilibrium, from this point on we suppress the superscript “+”
or “−” unless we need to explicitly distinguish a buyer from a seller.

Proposition 1 (Equilibrium order flows). If

Q < ∆ :=
β

1 − ϕ

(
1
γ
+

1
γ + η

)
(8)

then there exists an equilibrium with the following strategies:

xM =
γ + η

2γ + η
Q, xN =

γ

2γ + η
Q, xL = 0, pN = (1 − ϕ)γQ γ + η

2γ + η
, (9)

and qb and qs are arbitrary quantities not smaller than xN .

If Q ≥ ∆, then there exists an equilibrium with the following strategies:

xM =
β

(1 − ϕ)γ, xN =
β

(1 − ϕ)(γ + η) , xL = Q − xM − xN , pN = β, (10)

and qb and qs are arbitrary quantitites not smaller than xN .

Let us now briefly discuss the intuition of the equilibrium. If an investor is present, for example a
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buyer, he faces various tradeoffs when minimizing his expected trading cost for the liquidity shock Q.
The following heuristic argument illustrates how he balances various costs across the venues.

The buyer’s expected marginal cost of sending in an order to DarkMid is (1 − ϕ)γxM: With prob-
ability ϕ, his order can be matched with the seller; and with probability (1 − ϕ), there is no match and
he suffers inventory cost from the remaining inventory. The marginal cost of sending in an order to
DarkNMid is pN . In equilibrium, we should have (1 − ϕ)γxM = pN . The marginal cost of sending in
an order to Lit is β.

For relatively small Q, we show in the proof that (1 − ϕ)γxM = pN < β, which implies that the
buyer will not use Lit and, therefore, xN = Q− xM. Given this demand, the DarkNMid provider solves
the optimal pN and qN to maximize profit. This case corresponds to Q < ∆ in Proposition 1.

When Q is large enough, we have a corner solution of (1− ϕ)γxM = pN = β. The buyer then finds
the optimal xN at pN = β, knowing that he could trade the rest of his position Q− xM − xN at the same
price β in Lit.

Note that in both cases, the order sizes sent to the three venues add up to Q, and there is no reason
to send more than Q.20

Finally, we note that the equilibrium of Proposition 1 is not unique. For example, there exists
another, less interesting equilibrium in which neither the buyer nor the seller uses DarkMid, which
has the counterfactual implication that DarkMid has zero market share.

8.1.3 Urgency elasticity of venue market shares

To establish the pecking order hypothesis, we are interested in how the market share of each of the
three venues responds to a change in investor urgency. We first compute the expected market shares
in equilibrium and then rank the venues according to their market share elasticities with respect to the
urgency parameter, γ.

The focus on market shares as opposed to raw volume is consistent with existing empirical studies
of dark pools and fragmentation (see, for example, O’Hara and Ye, 2011; Buti et al., 2011; and Ready,
2014) as well as the empirical tests conducted in Section 5.

A positive γ shock is naturally thought of as the model equivalent of VIX shocks, macroeconomic

20This is because an excess order sent to DarkMid is unfilled for sure, and an excess order sent to DarkMid and
DarkNMid incurs positive costs. Although an investor either executes the entire desired quantity Q or strictly less, he
does balances the risk of trading “too much” and trading “too little.” Conditional on both investors being present, both
apparently send “too little” to DarkMid—“too little” because, ex post, they could send their entire position Q to DarkMid
and execute it at zero cost. Therefore, even though they have executed the exact quantity Q, they have done so at a cost
that is too high ex post. Conversely, conditional on only one investor being present, say the buyer, the buyer sends “too
much” to DarkMid—“too much” because his DarkMid order is not executed at all. Put differently, if it turns out both
investors are present, then they wish they had sent more to DarkMid; if it turns out only one investor is present, then the
present investor wishes he had sent less to DarkMid.
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news, or surprise earnings in the empirical sections. It raises investors’ opportunity cost of not trading.
One could argue that the elevated volatility following those shocks also raises inventory cost for
intermediaries in DarkNMid and Lit, and therefore their opportunity cost of not trading is raised as
well. The additional volume that follows these shocks, however, leads us to believe that at least part of
the shock is attributable to a disproportionately large shock to investors as compared to intermediaries.

In calculating volume and market shares, we will focus on the Q ≥ ∆ case of Proposition 1, since
in the data Lit venue has positive market share.

The expected volume in the three venues and the total volume are given by

v̄M = ϕ
2(2xM) + (1 − ϕ)2(2 × 0) + 2ϕ(1 − ϕ)(2 × 0) =

2ϕ2β

(1 − ϕ)γ, (11)

v̄N = ϕ
2(2xN) + (1 − ϕ)2(2 × 0) + 2ϕ(1 − ϕ)(xN + 0) =

2ϕβ
(1 − ϕ)(γ + η) , (12)

v̄L = ϕ
2(2xL) + 2ϕ(1 − ϕ)xL = 2ϕ

(
Q − β

(1 − ϕ)γ −
β

(1 − ϕ)(γ + η)

)
, (13)

v̄ = v̄M + v̄N + v̄L = 2ϕQ − 2ϕβ
γ
. (14)

Note that in the above calculation we double-count volume in DarkMid. In practice, operators of
DarkMid typically act as buyer to the seller and seller to the buyer, so one match shows up as two
trades. Our pecking order results are not affected if DarkMid volume is single-counted.

The volume shares of different venues are defined as,

si :=
v̄i

v̄
, for i ∈ {M,N, L}. (15)

Signing partial derivatives of volume shares with respect to γ yields the model’s main proposition. It
formalizes this paper’s pecking order hypothesis, depicted in Panel (b) of Fig. 2.

Proposition 2 (Venue share and urgency). As investor urgency increases, lit volume share in-

creases and dark volume share decreases. Furthermore, DarkMid is more sensitive to urgency

than DarkNMid:

∂sM/sM

∂γ/γ
<
∂sN/sN

∂γ/γ
< 0 <

∂sL/sL

∂γ/γ
. (16)

This pecking order hypothesis is empirically supported by evidence shown in Section 5.
To understand what market conditions might affect the elasticities of venue market shares to ur-

gency, we evaluate second-order partial derivatives of the venue shares si with respect to β and Q.
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This exercise generates predictions on how strongly the pecking order hypothesis would show up in
the cross-section of stocks. The result is stated in the following proposition.

Proposition 3 (Cross-section of venue share elasticities). As the half-spread β in the lit exchange

widens or as the trading interest Q decreases, the two dark venues’ share elasticities (with respect

to urgency γ) become more negative, while the lit elasticity becomes more positive. Mathematically,

∂

∂β

(
∂sM

∂γ

γ

sM

)
< 0,

∂

∂β

(
∂sN

∂γ

γ

sN

)
< 0, and

∂

∂β

(
∂sL

∂γ

γ

sL

)
> 0; (17)

∂

∂Q

(
∂sM

∂γ

γ

sM

)
> 0,

∂

∂Q

(
∂sN

∂γ

γ

sN

)
> 0, and

∂

∂Q

(
∂sL

∂γ

γ

sL

)
< 0. (18)

Proposition 3 implies that the pecking order hypothesis should find stronger support in the data if
spread is wider or if trading volume is smaller, which are characteristics of relatively illiquid stocks.
This result can partly explain the lack of statistical significance for large stocks, as shown in Section 5.

8.2 A consolidated market benchmark

We have solved a model with a three-way volume fragmentation among Lit, DarkMid, and DarkNMid.
The pecking order hypothesis follows from the model naturally. In this subsection we consider an
alternative market structure with a single consolidated venue.

There are more than one way to model a consolidated market. Perhaps a trivial way is to consoli-
date DarkMid, DarkNMid and Lit into a single order book, in the following manner:

• Lit providers post unlimited depth at ±β;

• The DarkNMid provider posts limit sell order at pN and limit buy order at −pN , as well as the
associated quantities;

• The order book allows midpoint orders that can only be executed at the midpoint price, 0;

• The buyer chooses the size xM of midpoint order, the size xN of order that executes against the
DarkNMid provider’s limit orders, and the size xL of market order to be executed at β.

Clearly, this consolidated market is equivalent to the fragmented market in the previous subsection.
A more interesting way to set up a consolidated market is to enforce a single trading mechanism.

In particular, it would be interesting to let investors submit limit orders and make markets for each
other. Toward this end, for the remainder of this subsection we will consider a consolidated market
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that allows investors to post demand schedules, equivalent to a set of limit orders. This mechanism is
similar to an open auction or a close auction on stock exchanges.

The asset and market participants are the same as in Section 8.1. The investors and the DarkNMid
provider trade in a single Walrasian auction. If an investor is present, the investor submits a demand
schedule x(p). The demand schedule says that at the price p, the investor is willing to buy x(p) units. A
negative x(p) is a sale. If an investor is not present, he of course cannot submit this demand schedule.
The DarkNMid provider is always present and submits a demand schedule y(p). At price ±β, Lit
liquidity providers are willing to accommodate any supply/demand imbalance, so the equilibrium
price never goes outside of [−β, β]. Once the market-clearing price p∗ is determined, the investors,
the DarkNMid provider, and those Lit providers who execute some orders trade at the same price p∗.
We refer to this consolidated market structure as “Lit++” (the double plus indicates the addition of
both DarkMid and DarkNMid to Lit).

We assume that both investors and the DarkNMid provider take prices as given and maximize
profit. Price-taking is a standard assumption in many models, such as rational expectations equilib-
rium (REE) models following Grossman and Stiglitz (1980).

We first solve the DarkNMid provider’s competitive price schedule. His problem is

max
y
−py − η

2
y2, (19)

whose solution is

y(p) = − p
η
, p ∈ [−β, β]. (20)

If the buyer is present, the buyer’s problem is

max
x
−px − γ

2
(Q − x)2, (21)

which implies

xB(p) = Q − p
γ
, p ∈ [−β, β]. (22)

By the same argument, the seller’s demand schedule is xS (p) = −Q − p/γ, p ∈ [−β, β].
If both investors are present, the market clearing condition is xB(p) + xS (p) + y(p) = 0, which

implies that the equilibrium price is 0 and both investors execute the full quantity Q.
If only one investor is present, the equilibrium price can be either interior (within the range (−β, β))

or corner (equal to β or −β), depending on Q. Without loss of generality, suppose that only the buyer
is present. An interior p solves 0 = xB(p) + y(p), or
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p =
Q

1/γ + 1/η
. (23)

The condition of an interior price (−β) < p < β gives

Q < β
(
1
γ
+

1
η

)
. (24)

Conversely, a corner price of p = β applies if

Q ≥ β
(
1
γ
+

1
η

)
. (25)

At such a corner, xB = Q− β/γ, the β/η of which is bought by the DarkNMid provider and the rest by
the Lit providers. This completes the characterization of the equilibrium.

8.3 Comparing Lit++ to three-way fragmentation

In this subsection, we compare allocative efficiency of the two market structures. Since in reality
all three venues have positive market shares, we will focus on sufficiently large Q so that the Lit
providers execute some orders in both market structures. That is, we are working under the parameter
assumption

Q ≥ β

1 − ϕ

(
1
γ
+

1
γ + η

)
and Q ≥

(
1
γ
+

1
η

)
β. (26)

To measure allocative inefficiency, we need to compute the first-best allocation, which is achieved
if every unit of the asset is distributed to whoever has the lowest marginal cost for holding it. There
are two cases. When both investors are present, clearly, the first-best allocation is to let the buyer and
the seller exchange their inventory entirely so that all three types of agents hold zero inventory. The
aggregate inventory cost in this case is zero. When only one investor is present, for example the buyer,
the first-best allocation under a large Q satisfying Eq. (26) is such that the marginal inventory costs
of the buyer and the DarkNMid provider are equal to β. Thus, the buyer will hold β/γ units of the
asset; the DarkNMid provider will hold β/η units; and the Lit providers hold the rest. The aggregate
inventory cost in this case is

γ

2
(β/γ)2 +

η

2
(β/η)2 + (Q − β/γ − β/η)β = βQ − β

2

2

(
1
γ
+

1
η

)
. (27)

Summing up the two cases, under Eq. (26), the expected aggregate inventory cost under the first-best
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allocation is

k0 = ϕ
2 · 0 + 2(1 − ϕ)ϕ ·

βQ − β2

2

(
1
γ
+

1
η

) = 2(1 − ϕ)ϕ ·
βQ − β2

2

(
1
γ
+

1
η

) . (28)

In fact, we observe that the first-best allocation is achieved under the consolidated market struc-
ture. This is not surprising because the investors and the DarkNMid provider are price takers in the
consolidated market; they adjust their holdings such that the market-clearing price is equal to the
marginal inventory cost, guaranteeing full efficiency.

Under fragmentation, the total expected cost incurred by all the agents is

kMNL = ϕ
22xLβ + 2(1 − ϕ)ϕ

(
xLβ +

η

2
x2

N +
γ

2
x2

M

)
= 2ϕβQ − ϕ

1 − ϕβ
2
(
1
γ
+

2γ + η
(γ + η)2

)
. (29)

The allocative inefficiency of the fragmented market structure is then

kMNL − k0 = 2ϕ2βQ − ϕ

1 − ϕβ
2
(
1
γ
+

2γ + η
(γ + η)2

)
+ (1 − ϕ)ϕβ2

(
1
γ
+

1
η

)
, (30)

which we can verify is positive under Eq. (26).
There is a simple intuition why allocations are less efficient under fragmentation. Since Lit

providers have the highest inventory holding cost, it is desirable to use them only when necessary.
The consolidated market has exactly this feature: Lit providers execute orders if and only if one in-
vestor is present, but not both. In contrast, under fragmentation, because an investor sends Lit orders
without knowing if the other side is present, the Lit providers are used more often than necessary.
Thus, the more efficient use of Lit providers favors consolidation for a sufficiently large Q. Likewise,
the consolidated market structure uses the DarkNMid provider more efficiently (i.e., he executes or-
ders if and only if one investor is present but not the other). This result captures the folk intuition that
concentrating liquidity to a single venue enhances welfare.

We emphasize that the consolidated market achieves the first best because the investors and the
DarkNMid providers take price as given, i.e., they do not strategically take into account their impact on
the price. Dropping this price-taking assumption is likely to complicate the analysis substantially and
lead to ambiguous welfare ranking. For example, Duffie and Zhu (2016) model the effect of adding a
single “size discovery” mechanism, which matches buy and sell orders at a fixed price, to a sequential
double auction market with strategic investors. Because strategic investors mitigate their own price
impact by trading less aggressively than competitive investors, their consolidated market (sequential
double auctions) does not achieve the first best. However, adding a size discovery mechanism, which
freezes the price, improves allocative efficiency because investors trade more aggressively without
concern of price impact. If we were to repeat their analysis in our context, we would expect the same
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benefit of fragmentation due to DarkMid, hence an ambiguous welfare ranking between consolidation
and fragmentation.

9 Conclusion

We propose and test a pecking order hypothesis for the dynamic fragmentation of U.S. equity markets.
The hypothesis posits that investors disperse their orders across various venue types according to a
pecking order. The position of venue types on the pecking order depends on the tradeoff between
trading cost (price impact) and immediacy (execution certainty). On top of the pecking order are
the low-cost, low-immediacy venues such as midpoint dark pools (DarkMid), whereas at the bottom
are high-cost, high-immediacy venues such as lit exchanges (Lit); in the middle of the pecking order
are non-midpoint dark pools (DarkNMid). A positive shock to investors’ urgency to trade tilts their
order flow from the top of the pecking to the bottom; therefore, the elasticities of venue market shares
to urgency shocks are progressively less negative and more positive further down the pecking order.
We micro-found the pecking order hypothesis with a stylized model of strategic venue choice among
DarkMid, DarkNMid, and Lit.

We test the pecking order hypothesis using a unique U.S. equity dataset that, for each trade,
identifies in what type of venue it transpired. The dataset distinguishes five venue types: two types of
dark pools, namely DarkMid and DarkNMid, and three types of broker-dealer internalization, namely
retail trades, average-price trades, and other trades. We use three exogenous variables as proxies for
investors’ urgency to trade: VIX, macroeconomic data releases, and earnings announcements. These
three variables are used in a panel VARX model that characterizes the dynamic interrelation between
dark trading volumes and (endogenous) measures of market conditions such as spread, depth, and
volatility.

As predicted by the pecking order hypothesis, a positive shock to VIX substantially reduces the
market share of DarkMid, moderately reduces the market share of DarkNMid, but increases the market
share of Lit. Macroeconomic data releases show a similar but stronger pattern. After surprise earnings
announcements, the share of midpoint pools also declines significantly. After disaggregating across
by size, we find strong support for the pecking order hypothesis for small and medium stocks, but
no significant pattern for large stocks. This weak result for large stocks is predicted by our stylized
model.
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Appendix

A Snippet of disaggregated dark transaction data
The following table provides a snippet of the raw transaction data of Alcoa, disaggregated to five
types of dark venues. The bolded field has the five categories explained in the text: DarkMid (MP),
DarkNMid (DP), DarkRetail (RT), DarkPrintB (PB), and DarkOther (OT).

date time symbol type contra buysell price shares cond1 cond2 cond3 cond4

1-Oct-10 9301833 AA DP BD B 12.2875 100 @
1-Oct-10 9301834 AA DP BD B 12.2875 100 @
1-Oct-10 9301941 AA OT BD S 12.28 100 @
1-Oct-10 9301989 AA DP BD B 12.285 200 @
1-Oct-10 9302005 AA MP BD X 12.285 100 @
1-Oct-10 9302148 AA RT BD S 12.29 9000 @
1-Oct-10 9302204 AA RT BD B 12.2701 300 @
1-Oct-10 9302224 AA RT BD B 12.27 100 @
1-Oct-10 9302249 AA DP BD B 12.28 100 @
1-Oct-10 9302343 AA DP BD B 12.28 100 @
1-Oct-10 9302540 AA DP BD B 12.2805 100 @
1-Oct-10 9302546 AA RT BD S 12.29 160 @

... ... ... ... ... ... ... ... ... ... ... ...
1-Oct-10 10100150 AA PB S 12.285 179379 @ 4 B

B Details on the implementation of the panel VARX model
In this appendix we discuss the details of the panel VARX model. The estimation is implemented via
OLS by stacking the observations associated with different stocks into a single vector. The stock fixed
effect is accounted for by adding dummy variables to the set of regressors. Lags of the variables are
only constructed intraday. Time-of-day dummies (13 in total, one for each half-hour trading interval)
are also included for each stock.

The optimal number of lags p is chosen according to Bayesian Information Criterion (BIC).
Specifically, for each of the 117 stocks, the VARX model is estimated for all p ∈ {1, 2, ..., 10}. Then
the best (according to BIC) lag is chosen for stock j. That is, we confine the search of the optimal
lags within 10 lags for the endogenous variables. The above procedure generates 117 optimal lags of
{p j}117

j=1. There are 16 p j that are found to be 1, 93 to be 2, and the other 8 to be 3. We hence choose
p = 2 for parsimony.

The standard errors for panel data estimators should account for potential correlation through time
and across stocks. One standard way to account for these issues is to do “double-clustering” (Petersen,
2009). The laborious (but most flexible) way of implementing such clustering is by calculating

cov(β̂i, β̂ j) =
(
X′X

)−1 V
(
X′X

)−1 with vij =
∑
kt,ls

xiktε̂iktε̂jlsxjls × 1A(ktls), (31)

50



where i, j ∈ {1, . . . ,N} where N is the number of regressors, k, l ∈ {1, . . . , J} where J is the number of
stocks, and s, t ∈ {1, . . . , T } where T is the number of time periods. 1A(ktls) is the indicator function
where the subset A of the index value space identifies which auto- or cross-correlations a researcher
worries about. If error terms are independent and identically distributed, then the indicator function
equals one if k = l and t = s. The subset A for an indicator function in a standard double-clustering is
such that:

1A(ktls) =

1 if k = l or s = t,
0 otherwise.

(32)

A researcher can easily be more conservative and also account for non-zero cross-autocorrelations by
also including changing the s = t condition by, say, |s − t| ≤ 5.

The cumulative impulse response function is most easily calculated by stacking the estimated Φ
matrices, as any VAR can always be written as a first-order VAR. Consider, for example, a VAR with
two lags. This VAR can be written as[

yt

yt-1

]
=

[
Φ1 Φ2

I 0

]t [ yt-1

yt-2

]
+

[
εt

0

]
. (33)

The t-period cumulative impulse response of the jth variable to a unit impulse in the ith variable is the
jth element of the vector [

Φ1 Φ2

I 0

]t

ek, (34)

where I is the identity matrix and ek is the unit vector where the kth element is one and all other
elements are zeros. When a exogenous variable is shocked, one can simply scale the shock size by
the contemporaneous responses of endogenous variables to the exogenous shock by resorting to the
estimates Ψ.

Confidence intervals on the impulse response function (IRF) are obtained through simulation. The
IRF is a non-linear transformations of the VARX coefficient estimates denoted by θ̂. Each simulation
involves a draw from the multivariate normal distribution N

(
θ̂,Σθ̂

)
, where Σθ̂ is the estimated double-

clustered covariance matrix of the coefficients. Note that this distribution is asymptotically true given
the assumption that the VARX model is correctly specified with normal residual terms. We perform
10,000 independent draws of the coefficients θ̂ and for each draw compute the IRFs at all lags. Thus,
we obtain, for each IRF, an i.i.d. sample of size 10,000. The confidence bounds are then chosen at the
2.5 and the 97.5 (or 0.5 and 99.5) percentiles of the simulated IRFs. The significance levels shown in
Table 4 are based on whether the estimates exceed the confidence bounds found above.

C Transformation between logarithms and levels of market share
variables

In the VARX model implementation, the variables are log-transformed (except EpsSurprise). Log-
transformation has several advantages. For example, the strictly positive variables (e.g. volume,
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spread, depth, etc.) are converted to a possibly negative support; the concavity in logarithm dis-
courages the abnormal effects of outliers; the estimation coefficients can be readily interpreted as
elasticity. The key variables of our focus are the (logged) trading volumes in the five dark venues and
the lit venue, denoted by log v1, ..., log v5, and log v6, where the first five are for the five dark venues
and the last v6 is for the trading volume in the lit. (Each of these variables has stock-day-minute
granularity.) For the pecking order hypothesis, it is however useful to think in terms of market shares,
defined as

s j =
v j∑
j v j

for j ∈ {1, ..., 6}.
The purpose of this appendix is to derive the closed-form, exact transformation formula from a

shock in trading volume in one venue to the response of all market shares. Specifically, given a shock
of ∆ log vi, we want to know the immediate response ∆s j, for all j ∈ {1, ..., 6}. Reverse directions from
∆si to ∆ log v j will also be dealt with. These formulas are used in generating the impulse responses in
testing the pecking order hypothesis.

In the derivation below, we shall use the following additional notations. Let v be the total volume:
v =

∑
j v j. We shall use a superscript of “+” to denote the variables after a shock; for example,

log v+j = log v j + ∆ log v j. Similarly, while s j denotes the market share of venue j, s+j denotes the
market share after the shock. In the IRF exercise, the pre-shock values will be chosen as the stock-
day-minute average across all raw sample observations. Consider the following cases.

From ∆ log vi to ∆s j. By construction, log v+i = log vi + ∆ log vi. Taking the exponential on both
sides gives the level of the post-shock trading volume: v+i = vi exp∆ log vi. The post-shock market
share by construction is

s+i =
v+i
v+
=

v+i
v + (v+i − vi)

.

Substituting with the expression of v+i and then subtracting si = vi/v yields

∆si = s+i − si = ... = si ·
(
e∆ log vi−∆ log v − 1

)
(35)

where ∆ log v = log v+ − log v = log(
∑

j,i v j + v+i ) − log v. The above formula actually applies to both
the venue i whose volume is shocked and any other venue j , i whose volume is not shocked. The
only difference is, as can be seen after substituting the index i with a different j, that ∆ log v j = 0 for
j , i. Finally, we can immediately derive the dark volume share change as the complement of the
change in the lit share:

∑
j≤5 ∆s j = −∆s6, simply because the identity of s6 = 1 −∑

j≤5 s j.

From ∆ log v to ∆si, assuming proportionally scaling across all venues. Now we shock the total
volume such that log v+ = log v + ∆ log v and make the assumption that the increase in volume is
proportionally scaled across all venues. That is, for each venue i, v+i − vi = si · (v+ − v), or

v+i = vi + si∆v = siv + si∆v = si ·
(
v + ∆v

)
= siv+.
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Taking logarithm on both sides gives log v+i = log si+log v+. Substitute log si with log si = log(vi/v) =
log vi − log v and then

log v+i = log vi − log v + log v+ =⇒ ∆ log vi = ∆ log v. (36)

Applying Eq. (36) to Eq. (35) immediately gives ∆si = 0. Clearly, this holds for all i ∈ {1, ..., 6}.

From ∆si to ∆ log v j by shocking log vi and proportionally offsetting in other venues, without
changing total volume v. Finally we do the reverse. Suppose we shock si by ∆si. Such a change
in market share must be driven by some change(s) in trading volume(s). Here a particular change is
considered: Let vi change in the same direction as si but all other v j,i move in the other direction so
that the total volume does not change, i.e. v = v+. We want to know, given the size of ∆si, what are
the sizes of ∆ log v j for all j ∈ {1, ..., 6}.

First, consider j = i. By construction, ∆si = v+i /v
+ − si. Because the total volume is assumed to

be unchanged, we have v+i = (si + ∆si)v. This enables the second equality below:

∆ log vi = log v+i − log vi

= log(si + ∆si) + log v − log vi = log(si + ∆si) + log
v
vi
= log(si + ∆si) − log si = log

(
1 +
∆si

si

)
.

(37)

Consider next j , i. To offset ∆vi, summing over all j , i gives
∑

j,i ∆v j = −∆vi. Because the changes
are proportional according to s j, we have

v+j = v j −
s j∑

h,i sh
∆vi = s j ·

(
v − ∆vi∑

h,i sh

)
.

Take logarithm on both sides and expand log s j = log v j − log v to get

log v+j − log v j = ∆ log v j = − log v + log
(
v − ∆vi∑

h,i sh

)
= log

(
1 − ∆vi/v∑

h,i sh

)
= log

(
1 − ∆si∑

h,i sh

)
,

(38)

where the last equality follows because the total volume is assumed to be unchanged: ∆vi/v = v+i /v −
vi/v = v+i /v

+ − vi/v = s+i − si = ∆si.

D Proofs

D.1 Proof of Proposition 1
By symmetry, we only focus on the buyer’s strategy.

Interior solution. To begin with, suppose the equilibrium DarkNMid price is interior, i.e. pN ∈
[0, β). This means that the buyer prefers not to trade in Lit, where the marginal cost of trading is β.
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Splitting Q across DarkMid and DarkNMid means that in equilibrium, the marginal costs equate each
other:

(1 − ϕ)γxM = pN . (39)

Using Q = xM + xN , we have

xN = Q − pN

(1 − ϕ)γ. (40)

We conjecture, and later verify, that the DarkNMid provider is willing to execute the entire quan-
tity xN . We then solve the equilibrium pN set by the DarkNMid provider. Recall that the DarkNMid
liquidity provider maximizes profit, which is

Π = 2ϕpN xN − 2ϕ(1 − ϕ)1
2
ηx2

N = 2ϕpN

(
Q − pN

(1 − ϕ)γ

)
− ϕ(1 − ϕ)η

(
Q − pN

(1 − ϕ)γ

)2

. (41)

Taking the first-order condition with respect to pN , we can solve

pN =
γ(γ + η)
2γ + η

(1 − ϕ)Q. (42)

An interior solution requires pN < β, or

Q < ∆ :=
β

1 − ϕ

(
1
γ
+

1
γ + η

)
. (43)

Under the above interior pN , we immediately have

xM =
γ + η

2γ + η
Q, xN =

γ

2γ + η
Q, xL = 0. (44)

We now verify that, at pN , the DarkNMid provider does not wish to execute less than xN . Fixing
the quotes to the seller, consider a deviation of the quote to the buyer to (pN , q), with q ≤ xN . The
DarkNMid provider’s profit made from the buyer is then

ϕpNq − ϕ(1 − ϕ)1
2
ηq2, (45)

which implies that the marginal profit of increasing q is ϕ(pN − (1 − ϕ)ηq). Substitute in the solution
pN and q = xN , we see that the marginal profit of increasing quantity is ϕ times:

γ(γ + η)
2γ + η

(1 − ϕ)Q − (1 − ϕ)η γ

2γ + η
Q > 0. (46)

That is, the DarkNMid provider actually wishes to execute more than xN at pN . This completes the
characterization of the interior solution of the equilibrium.

Corner solution. At the corner solution, pN = β. Equating the marginal cost in DarkMid, (1 −
ϕ)γxM, to β gives xM = β/((1 − ϕ)γ).
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To solve xL and xN , consider the decision of the buyer to split between DarkMid and DarkNMid
after sending xL to Lit. Using the same argument as above, the optimal xN chosen by the buyer at the
price pN ≤ β is

xN = Q − xL −
pN

(1 − ϕ)γ. (47)

Again, conjecture (and later verify) that the DarkNMid provider is willing to execute the full quantity
xN . Substituting the above xN into profit Π and taking the first-order condition, we have

pN =
γ(γ + η)
2γ + η

(1 − ϕ)(Q − xL). (48)

Since pN = β is the optimal solution, we have

Q − xL =
β

1 − ϕ
2γ + η
γ(γ + η)

= xM + xN =
β

(1 − ϕ)γ + xN , (49)

from which we get

xN =
β

(1 − ϕ)(γ + η) (50)

Obviously, xL ≥ 0 implies Q ≥ ∆. Moreover, as in the interior solution, we verify that, at pN = β, the
marginal profit of increasing quantity is ϕ times:

β − (1 − ϕ)η · β

(1 − ϕ)(γ + η) > 0. (51)

So the DarkNMid provider executes the full quantity xN at β.

D.2 Proof of Proposition 2
Direct calculation shows:

sM =
ϕβ

(γQ − β)(1 − ϕ) , (52)

sN =
βγ

(γQ − β)(γ + η)(1 − ϕ) , (53)

∂sM

∂γ
= − ϕβQ

(γQ − β)2(1 − ϕ) < 0, (54)

∂sN

∂γ
= − β(γ2Q + βη)

(γQ − β)2(γ + η)2(1 − ϕ) < 0, (55)

∂sL

∂γ
= 1 − ∂sM

∂γ
− ∂sN

∂γ
> 0, (56)

where the last line follows from sM + sN + sL = 1.
It remains to rank the volume share sensitivity to urgency of the two dark venues. Direct calcula-

tion shows:
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∂sM

∂γ

γ

sM
− ∂sN

∂γ

γ

sN
= − η

γ + η
< 0. (57)

Hence, the sensitivities of volume shares to urgency can be ranked as stated in Proposition 2.

D.3 Proof of Proposition 3
It is easy to compute the venue share elasticities for the two dark venues:

∂sM

∂γ

γ

sM
= − γQ
γQ − β < 0 (58)

∂sN

∂γ

γ

sN
= − β

γQ − β −
γ

γ + η
< 0. (59)

Hence, these two elasticities are increasing in Q and decreasing in β.
The venue share elasticity for the lit venue has the following expression:

∂sL

∂γ

γ

sL
=

β(βη + Q(γ2 + (γ + η)2ϕ))
(γQ − β)(γ + η)2(1 − ϕ)(Q − ∆)

. (60)

The cross-derivatives are:

∂

∂β

(
∂sL

∂γ

γ

sL

)
= γQ

2Qβγ2η(1 − ϕ) + Q2γ2(1 − ϕ)(γ2 + (γ + η)2ϕ) − β2(η2ϕ + 2γ2(1 + ϕ) + 2γη(1 + ϕ))
(γQ − β)2(Qγ(γ + η)(1 − ϕ) − β(2γ + η))2 ,

(61)
∂

∂Q

(
∂sL

∂γ

γ

sL

)
= −βγ2Qβγ2η(1 − ϕ) + Q2γ2(1 − ϕ)(γ2 + (γ + η)2ϕ) − β2(η2ϕ + 2γ2(1 + ϕ) + 2γη(1 + ϕ))

(γQ − β)2(Qγ(γ + η)(1 − ϕ) − β(2γ + η))2 .

(62)

So it only remains to sign the common numerator of these two cross derivatives. Note that this
numerator is quadratic increasing in Q. Its minimum is achieved if Q = ∆. Substituting ∆ into this
numerator yields a minimum of

β2(2γ2 + 2γη + η2)(γ + (γ + η)ϕ)2

(γ + η)2(1 − ϕ) > 0, (63)

implying that the numerator is strictly positive on the support of Q ≥ ∆. Therefore,

∂

∂β

(
∂sL

∂γ

γ

sL

)
> 0 and

∂

∂Q

(
∂sL

∂γ

γ

sL

)
< 0. (64)

This completes the proof.
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