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Derivatives and Market (Il)liquidity

Abstract

We study how derivatives (with nonlinear payoffs) affect the underlying asset’s liquidity. In a rational
expectations equilibrium, informed investors expect low conditional volatility and sell derivatives to
the others. These derivative trades affect different investors’ utility differently, possibly amplifying
liquidity risk. As investors delta hedge their derivative positions, price impact in the underlying
drops, suggesting improved liquidity, because informed trading is diluted. In contrast, effects on
price reversal are ambiguous, depending on investors’ relative delta hedging sensitivity, i.e., the
gamma of the derivatives. The model cautions of potential disconnections between illiquidity
measures and liquidity risk premium due to derivatives trading.

Keywords: derivatives, options, liquidity risk premium, liquidity measure, price impact, price
reversal



I Introduction

Investors often receive liquidity shocks, such as hedging needs and/or (time-sensitive) information.

They then rush to trade to fulfill liquidity needs, leaving traces in the market: They generate

(temporary) price pressure when hedging (Grossman and Miller (1988)) and (permanent) price

impacts when speculating on private signals (Kyle (1985)). Anticipating such liquidity shocks,

ex ante, investors require a certain premium when pricing assets. The literature has extensively

studied the association between various illiquidity measures and such liquidity risk premium. See,

e.g., reviews by Amihud, Mendelson, and Pedersen (2005) and Vayanos and Wang (2013) and the

recent issue of Critical Finance Review (2019).

This paper examines market (il)liquidity and the associated risk premium from a novel angle:

derivatives. Derivatives markets are huge. The Bank for International Settlements (BIS) reports

that by the second quarter of 2021, the open interest of all exchange-traded options alone exceeded

US$50 trillion. The outstanding notional amount of over-the-counter derivatives was close to

US$600 trillion by 2020. It is natural to ask whether such significant derivatives activity affects its

liquidity and risk premium; and, if so, how.

To this end, we develop a two-period rational expectations equilibrium (REE) model: There

is one risky asset in an economy populated by ex ante homogeneous investors. Then a liquidity

shock strikes a fraction of randomly selected investors, with two effects. First, a shocked investor

will receive a future endowment correlated with the risky asset. Second, she also observes a

private signal about the risky asset payoff. To hedge the endowment shock and to (timely) exploit

the private information, the shocked investors demand liquidity to trade with the other unshocked

investors, who serve as liquidity suppliers. The ex-ante (pre-shock) equilibrium asset price therefore

commands two risk premia, one for the asset’s fundamental risk and the other for such a liquidity

(shock) risk. We then introduce volatility derivatives (e.g., variance swaps) and study both the

post-shock market liquidity and the pre-shock liquidity risk premium.
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Our first finding is that the liquidity demanders always write (or sell) the derivative to the

liquidity suppliers. This is because the derivative is valued according to an investor’s conditional

expectation of the nonlinear payoff component. (The linear part of the payoff, always replicable by

the underlying, is redundant.) In such a conditional expectation, the leading term is (approximately)

the conditional volatility of the underlying. Since the demanders are more informed, thanks to their

private signal, they always face lower conditional volatility—and hence value the derivative to be

cheaper—than do the suppliers. As an extreme example, if a demander has a perfect signal, she

knows exactly the underlying’ payoff and expects zero volatility.

This result seems to defy the conventional wisdom that more informed investors tend to buy

volatility derivatives. For example, knowing that a firm will engage in a lawsuit, an informed

investor can profit from future price swings—whether the firm wins or loses—by buying a straddle.

Smith (2019) captures this conventional intuition by letting some agents be informed of, and only

of, the variance of the underlying payoff; that is, whether there is a lawsuit or not (but not the

outcome of the lawsuit). Instead, in our framework, the informed demanders receive a noisy signal

of the exact payoff: no lawsuit, winning, or losing. As such, our informed demanders always have

a more precise posterior belief and sell volatility.

Our model shows that with information asymmetry, derivatives can serve as a channel for

investors to “bet” on the underlying volatility, with the demanders always selling—like writing

insurance—to the suppliers. Empirical evidence seems to support our prediction. For example,

Gârleanu, Pedersen, and Poteshman (2009) document that non-market-makers (public customers

and firm proprietary traders) mostly write equity options, which can be constructed as spreads and

straddles for volatility bets, to market makers. To the extent that these market makers are relatively

less informed, this evidence is consistent with our model prediction that more informed liquidity

demanders sell volatility to suppliers. Additionally, Mixon and Onur (2014) use regulatory data

and find that hedge funds—often considered as more informed—overall sell volatility as their net

position is short in VIX futures.
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Our second result is about how the derivative-induced volatility bets affect the underlying’s

trading. Specifically, we show analytically that investors adjust their underlying positions precisely

to delta hedge their derivative holdings. This is because a derivative’s payoff can always be thought

of as a bundle of linear and nonlinear functions of the underlying payoff. An investor trades the

derivative only to bet on the underlying’s volatility (the nonlinear part) but in doing so, she also

gains the exposure to the linear part, which appears as an inventory shock of the underlying. She

then delta hedges such a shock by trading oppositely in the underlying’s market.

Importantly, such a “delta hedging channel” can distort frequently used empirical measures

of illiquidity, such as price impact and price reversal.1 Price impact is defined as the regression

coefficient of price returns on (informed investors’) trading volume, à la Kyle (1985) and Amihud

(2002). Because delta hedging trades are not information driven, the overall informative portion of

the trading volume is smaller with than without derivatives. In other words, delta hedging trades

reduce the information-to-noise ratio in the underlying’s order flow. Therefore, such price impact-

based measures would decrease with derivative trading, suggesting improved market liquidity.

Price reversal is defined as the negative return autocovariance, à la Roll (1984). The idea is

that short-run price returns are negatively autocorrelated because the price mean-reverts to the

long-run fundamental (Grossman and Miller (1988)). For example, an initial price concession due

to strong selling pressure will eventually see a positive reversal, as the selling pressure dissipates

over time. The larger this temporary deviation, the more negative is the autocovariance and the

less liquid is the market. With derivatives, the suppliers’ and the demanders’ delta hedging trades

always differ in sign (because the suppliers are always long and the demanders always short on the

derivative). Thus, one group’s delta hedging always contributes to such price reversal, while the

other group dampens it. We show that they neutralize one another only in special cases, suggesting

1 Empirical studies using “price impact” to measure illiquidity include, e.g., Brennan and Subrahmanyam (1996),
Acharya and Pedersen (2005), Sadka (2006), and Collin-Dufresne and Fos (2015). Empirical studies using “price
reversal” to measure illiquidity include, e.g., Campbell, Grossman, and Wang (1993), Llorente, Michaely, Saar, and
Wange (2002), Pástor and Stambaugh (2003), and Hasbrouck (2009).

3



that derivatives can either exacerbate or attenuate price reversal.

Our third result is that derivatives can either exacerbate or alleviate the liquidity risk of the

underlying asset. We show that while overall derivatives improve the post-shock trading gains (by

allowing the volatility bets), the investors split the enlarged “pie” differently. A key parameter is the

pervasiveness of the liquidity shock—how much of the population demand liquidity and how much

supply it. For example, if there are very few suppliers, their per capita trading gain is huge, while

the demanders split a negligibly small piece of the pie. From a pre-shock point of view, becoming a

demander (receiving a liquidity shock), is a very serious risk because a demander will be relatively

much worse off than a supplier. Anticipating such a utility wedge in the future, investors require a

large ex-ante risk premium for the liquidity shock. That is, derivatives amplify liquidity risk and

thus increase liquidity risk premium in this case. If the shock only affects a small population, the

reasoning runs in the opposite direction, and the ex-ante liquidity risk premium declines.

With this result, our model helps reconcile the mixed empirical findings. Consider options,

arguably the most common derivatives (with nonlinear payoffs), for example. Earlier works, like

Branch and Finnerty (1981), Conrad (1989), and Detemple and Jorion (1990), document underlying

price increases after option listings, while negative effects are shown in later works using more

recent data, like Mayhew and Mihov (2000) and Danielsen and Sorescu (2001). Our model provides

a novel insight to this time-series trend from the angle of the changing investor demographics.

In summary, our analysis highlights that derivatives can lead to conflicting interpretations of

various illiquidity measures and attenuate their association with the liquidity risk premium. We

prove the above findings analytically with a specific “variance swap” derivative and also study

options to provide additional robustness to the results. The analyses of options also yield additional

testable predictions. For example, we show that a key determinant of the illiquidity measures—price

impact and price reversal—is the moneyness of the options: If an out-of-the-money call option is

introduced, both liquidity demanders and suppliers know that the call is unlikely to be exercised,

but the more informed demanders are surer of the low moneyness. As a result, the demanders’
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buy delta hedging turns less aggressive than the suppliers’ sell delta hedging, and the two net to

a selling pressure in the underlying. If the call option is in-the-money, the above effects reverse,

creating a positive pressure.

Such moneyness induced price pressures further affect market liquidity measures. For example,

we find that the price impact in the underlying asset is U-shaped in the option moneyness. This is

because, as moneyness increases, the demanders’ increased delta hedging buys have two effects.

First, as they are not information driven, these buys reduce the information-to-noise ratio and lower

price impact. Second, they generate buying pressure that adds to the price impact. The latter effect

is negligible when the call is deep out-of-the-money (the demanders only buy little to delta hedge)

but becomes dominant when the call is more in-the-money, hence the U-shaped price impact.

Contributions. Our paper primarily contributes to understanding the links between derivatives

and the liquidity of the underlying assets. A large volume of the literature has studied the impact of

derivatives. For example, the seminal work of Brennan and Cao (1996) studies the contemporaneous

impacts of derivatives on the underlying; Cao (1999), Massa (2002), and Huang (2015) examine

the effects on agents’ information acquisition; and more recently, Smith (2019) studies variance

derivatives and variance risk premium. Compared to these works, our model builds and analyzes

the connection between derivatives to the underlying’s liquidity risk premium. Our angle is similar

to Vayanos and Wang (2012), who, however, do not study derivatives.

Chabakauri, Yuan, and Zachariadis (2017) share with our framework the feature of derivatives

being “informationally irrelevant;” that is, introducing derivatives does not affect learning or

inference about fundamentals. Gao and Wang (2017) study options’ implications for volatility, and

their framework also assumes this irrelevance. This feature distinguishes our mechanism from,

e.g., Dow (1998), who shows that introducing new securities can worsen market liquidity due to

exacerbated adverse selection. The migration of informed trading between the underlying and

its derivatives, e.g., Biais and Hillion (1994) and Easley, O’Hara, and Srinivas (1998), is also

muted in our model. Smith (2019) introduces information asymmetry about the asset payoff’s
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variance. The learning channel, which is affected by the introduction of the variance derivative,

plays a significant role in that framework. Compared to these works, our contribution lies in the

novel, non-informational delta-hedging channel, which drive various market liquidity measures in

possibly divergent directions, disconnecting with the underlying’s ex-ante liquidity risk premium.

Our analysis of options contributes to the REE models with non-normal asset payoffs. See,

for example, Barlevy and Veronesi (2003), Albagli, Hellwig, and Tsyvinski (2012), Breon-Drish

(2015), Malamud (2015), Chabakauri et al. (2017), and Han (2018), among many others. When

the REE models deviate from the standard CARA-normal assumption, the characterization of the

equilibrium and its uniqueness become challenging. For example, Bernardo and Judd (2000) use

numerical approaches to solve models with general distributions and preferences numerically and

show that the REE in Grossman and Stiglitz (1980) is not robust to certain parametric assumptions.

Breon-Drish (2015) obtains a general characterization of price in an economy where investors have

CARA utilities and the payoff of the risky asset belongs to the exponential distribution family.

Different from this strand of the literature, in our model, it is the option derivatives that create

non-normality, while the underlying payoff is normally distributed. We prove the existence and the

uniqueness of the equilibrium in this setup.

Structure of the paper. We first set up the model in Section II, where we also highlight a

general information irrelevance result. The equilibrium is then analyzed backwardly. Section III

characterizes the post-shock equilibrium and then examines the implications of derivatives on

market (il)liquidity measures. Section IV turns to the pre-shock equilibrium and studies the impact

of derivatives on the ex-ante liquidity risk premium. In each section, we compare three cases: the

no-derivative benchmark, introducing a variance swap, and introducing options. We summarize

our findings in Section V before concluding in Section VI.

6



II Model setup

We first set up the general model in Section II.A and then study agents’ information and learning

in Section II.B, where we highlight the information irrelevance of derivatives.

II.A Setup

Timeline. There are three dates: 𝑡 ∈ {0, 1, 2}. At 𝑡 = 0, homogeneous investors arrive and trade.

Between 𝑡 = 0 and 𝑡 = 1, a liquidity shock strikes a subset of investors. Then all investors trade

again at 𝑡 = 1. At 𝑡 = 2, payoffs realize and investors consume.

Assets. There is a risk-free consumption good in perfectly elastic supply serving as the numéraire.

The risk-free rate is normalized to be zero. There is also a risky asset in supply of 𝑋̄ > 0 units,

each paying off a random amount of 𝐷 units of the consumption good at 𝑡 = 2. The asset’s price at

time 𝑡 is denoted by {𝑃𝑡 }.

In addition, there is a derivative maturing at 𝑡 = 2, when its long side receives from the short

side a payoff of 𝑓 (𝐷). The payoff structure 𝑓 (𝐷) is exogenous and the key restriction is that it does

not depend on the underlying’s intermediate price 𝑃1 (but can depend on the initial price 𝑃0 and,

of course, the terminal price 𝑃2 = 𝐷). In other words, we rule out path-dependent derivatives like

lookback, barrier, or Asian options.2 When there is no derivative, our framework reduces to that

of Vayanos and Wang (2012), who share with us the same focus on market liquidity and liquidity

risk but study the effects of information asymmetry and imperfect competition.

Investors. There is a continuum of investors of measure one, indexed by 𝑖 ∈ [0, 1]. They derive

constant absolute risk aversion (CARA) utility, with the same risk-aversion parameter 𝛼 (> 0), over

their 𝑡 = 2 consumption. At 𝑡 = 0, the investors are homogeneous, endowed with the per capita

2 Such path-dependent derivatives create uninteresting “mechanical” (delta-)hedging motives. For example,
suppose 𝑓 (𝐷) = 𝑔(𝐷) + 𝑃1. Then buying a unit of 𝑓 (𝐷) gives exposures to both 𝑔(𝐷) and 𝑃1. The exposure
to 𝑃1 is “redundant” as it can always be replicated by trading the underlying and can be offset by selling a unit of the
underlying at 𝑡 = 1—a mechanical hedging trade. The internet appendix S1 considers a tractable example of such
path-dependent derivatives and examines the robustness of our result in view of mechanical (delta-)hedging motives.
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supply of the risky asset.

Liquidity shock. A liquidity shock hits a fraction 𝜋 ∈ (0, 1) of the investors between 𝑡 = 0

and 𝑡 = 1. These shocked investors are referred to as “liquidity demanders” and the rest (1 − 𝜋)

as “liquidity suppliers.” Specifically, the shocked want to trade the risky asset for two reasons:

First, they each will receive an amount of (𝐷 − 𝐷̄)𝑧 units of the consumption good at 𝑡 = 2,

where 𝐷̄ := E[𝐷], and so they want to hedge this shock at 𝑡 = 1. The realization of the shock 𝑧 is

their private information. The suppliers only know the distribution of 𝑧.

Second, the shocked also receive a private signal 𝑠 := 𝐷 + 𝜀, where 𝜀 is some noise specified

below. To make use of this signal timely, they therefore demand liquidity to buy or sell the risky

asset at 𝑡 = 1. For simplicity, we let the endowment shock 𝑧 and the signal 𝑠 affect the same group

of investors (as in, e.g., Biais, Bossaerts, and Spatt (2010) and Vayanos and Wang (2012)).

Trading. Investors submit demand schedules to maximize their expected utility from consumption

at 𝑡 = 2. We introduce the following notations:

• Prices: {𝑃𝑡 } for the risky asset and {𝑄𝑡 } for the derivative, where 𝑡 ∈ {0, 1, 2}.

• Demand schedules at 𝑡 = 0: 𝑋0(·) for the risky asset and 𝑌0(·) for the derivative.

• The liquidity demanders at 𝑡 = 1: 𝑋1𝑑 (·) for the risky asset and 𝑌1𝑑 (·) for the derivative.

• The liquidity suppliers at 𝑡 = 1: 𝑋1𝑠 (·) for the risky asset and 𝑌1𝑠 (·) for the derivative.

The demand schedules are functions of the assets’ market clearing prices, conditional on all (other)

assets’ current and past prices and the investors’ private information and endowment shocks (if

any). Omitting these arguments for brevity, the market clearing conditions are:

𝑋0(·) = 𝑋̄ and 𝜋𝑋1𝑑 (·) + (1 − 𝜋)𝑋1𝑠 (·) = 𝑋̄ ;(1)

𝑌0(·) = 0 and 𝜋𝑌1𝑑 (·) + (1 − 𝜋)𝑌1𝑠 (·) = 0.(2)

Note that the demanders’ endowment shock (𝐷 − 𝐷̄)𝑧 does not materialize until 𝑡 = 2. These

market clearing conditions then pin down the equilibrium asset prices.
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Equilibrium. There are four prices (two assets, two trading rounds) and six demand schedules

in total (two assets, homogeneous investors at 𝑡 = 0 and demanders vs. suppliers at 𝑡 = 1). To fully

characterize the equilibrium, we would need to solve for all these ten endogenous objects. Some

shortcuts can be taken: We will not explicitly derive the functional form of 𝑋0(·) or 𝑌0(·), as in

equilibrium market clearing implies that, at 𝑡 = 0, the homogeneous investors must hold the per

capita supply, i.e., 𝑋0(·) = 𝑋̄ and 𝑌0(·) = 0. Further, since there is no demand for the derivative at

𝑡 = 0 (𝑌0 = 0), we will not study its price 𝑄0 either. As such, we will only focus on heterogeneous

investors’ trading at 𝑡 = 1, i.e., the demand schedules {𝑋1𝑑 (·), 𝑌1𝑑 (·), 𝑋1𝑠 (·), 𝑌1𝑠 (·)}, as well as the

three asset prices {𝑃0, 𝑃1, 𝑄1}. (Clearly, upon liquidation at 𝑡 = 2, 𝑃2 = 𝐷 and 𝑄2 = 𝑓 (𝐷).)

Parameters and distributions. There are three fundamental random variables in this economy,

{𝐷, 𝑧, 𝜀}, which are jointly normal and pairwise independent, with means {𝐷̄, 0, 0} and variances

{𝐺−1
0 , 𝜏−1

z , 𝜏−1
𝜀 }. To ensure bounded utility (Vayanos and Wang (2012)), we assume that

𝛼2𝐺−1
0 𝜏−1

z < 1.(3)

Intuitively, without this cap, the endowment shock 𝑧 might be too severe (in ex-ante expectation).

II.B Information and learning

Before diving into the equilibrium analysis, we first characterize the agents’ learning post-shock at

𝑡 = 1. Given the private signal 𝑠, the informed demanders have that 𝐷 is conditionally normal with

var1𝑑 [𝐷]−1 = var[𝐷 | 𝑠 ]−1 = 𝐺0 + 𝜏𝜀 := 𝐺1𝑑 and E1𝑑 [𝐷] = E[𝐷 | 𝑠 ] =
1
𝐺1𝑑

(
𝐺0𝐷̄ + 𝜏𝜀𝑠

)
.(4)

Unsurprisingly, this posterior is unaffected by 𝑓 (𝐷). Below we study the learning by the suppliers,

first without and then with the derivative 𝑓 (𝐷).

The suppliers’ learning, without the derivative. Without the derivative, only the underlying

asset is traded and the suppliers obtain a noisy signal of the demanders’ private signal 𝑠 from the
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asset’s equilibrium price 𝑃nd
1 (the superscript “nd” emphasizes that there is no derivative):

𝜂 := 𝑠 − 𝛼

𝜏𝜀
𝑧.

This is a standard result and we defer the formal proof to that of the more general Lemma 1 below.

Therefore, conditional on 𝜂, the suppliers obtain

var𝑛𝑑1𝑠 [𝐷]
−1 = var[𝐷 | 𝜂 ]−1 = 𝐺0 +

𝜏2
𝜀 𝜏z

𝜏𝜀𝜏z + 𝛼2 := 𝐺1𝑠 and E𝑛𝑑1𝑠 [𝐷] =
𝐺0
𝐺1𝑠

𝐷̄ +
(
1 − 𝐺0

𝐺1𝑠

)
𝜂.(5)

The suppliers’ learning, with the derivative. We now reintroduce a derivative with some generic

payoff 𝑓 (𝐷). In addition to the underlying price 𝑃1, the suppliers now also observe the derivative

price 𝑄1. Does the new information set {𝑃1, 𝑄1} affect the suppliers’ learning about 𝐷? No.

Lemma 1 (Information irrelevance of the derivative). Fix the realizations of the fundamental

random variables {𝐷, 𝜀, 𝑧}. Suppose that there is an equilibrium with the derivative of 𝑓 (𝐷).

In this equilibrium, the suppliers’ posterior distribution of {𝐷, 𝜀, 𝑧} conditional on {𝑃1, 𝑄1} is

the same as the posterior in the no-derivative equilibrium conditional only on {𝑃nd
1 }. That is,

𝐷 |{𝑃1,𝑄1} is normally distributed with E1𝑠 [𝐷] = End
1𝑠 [𝐷] and var1𝑠 [𝐷] = varnd

1𝑠 [𝐷] as given in (5).

Learning from the price {𝑃1, 𝑄1} is equivalent to learning from the quantities {𝑋1𝑑 , 𝑌1𝑑}, via the

market clearing conditions (1) and (2). While there seem to be two equations and two unknowns

(𝑠 and 𝑧), as the proof of Lemma 1 shows, the way 𝑠 and 𝑧 enter 𝑋1𝑑 is always exactly the same as

they enter 𝑌1𝑑—in the form of 𝜂 = 𝑠 − 𝛼𝑧/𝜏𝜀 . As such, the suppliers always find it equivalent to

learn from either 𝑋1𝑑 or 𝑌1𝑑 and there is no additional information from the derivative’s trading.

This result is not unique to our model. Similar features are also seen in, among many other

contributions, Brennan and Cao (1996), Cao (1999), Huang (2015), Chabakauri et al. (2017),

and Gao and Wang (2017). In particular, Chabakauri et al. (2017) coin the term “informational

irrelevance” and study the conditions for such irrelevance to hold. The key assumption that

ensures such irrelevance is that there are only one informed type in the economy. The uninformed,

therefore, can always and only infer a jammed signal from that informed type’s demand schedule.
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More generally, if there are more informed types, each will reveal a differently jammed signal to

the uninformed and in such cases introducing derivatives might help the uninformed to learn more.

We do note that such informational irrelevance ignores certain aspects of real-world trading. For

example, it is well known that options can be used to bet on information (Biais and Hillion (1994),

Easley et al. (1998)). In addition, when the new asset’s payoff itself is informative of the existing

asset’s payoff, as in Dow (1998), investors’ learning will be affected. Smith (2019) finds private

information about a stock’s risk generates the variance risk premium. these effects, Lemma 1

highlights the novelty of the channels in our model—they are not about investors’ learning, thus

differentiating our contribution from the above literature.

III The after-shock equilibrium at 𝑡 = 1

We first derive the equilibrium in Section III.A and then study the implications for market illiquidity

measures—price impact and price reversal—in Section III.B. Three cases are compared:

• no derivative as a benchmark (Section III.A.1 and III.B.1);

• a variance swap to articulate the novel channel of delta hedging (Section III.A.2 and III.B.2); and

• a call option to demonstrate robustness and generality (Section III.A.3 and III.B.3).

III.A Equilibrium characterization

III.A.1 The no-derivative benchmark

As a benchmark, we first switch off the derivative by setting 𝑓 (𝐷) = 0. The model essentially

degenerates to Section 3 of Vayanos and Wang (2012).

Note that given 𝑓 (𝐷) = 0, the derivative price is trivially 𝑄1 = 0 and its demand {𝑌1𝑑 , 𝑌1𝑠} are

undefined. We thus only focus on the demand and price for the underlying: {𝑋 nd
1𝑑 , 𝑋

nd
1𝑠 , 𝑃

nd
1 }. At

𝑡 = 1, the liquidity demanders have the same information set of {𝑃nd
0 , 𝑃

nd
1 , 𝑠, 𝑧}, while all suppliers

11



only observe {𝑃nd
0 , 𝑃

nd
1 }. Standard analysis gives the CARA investors’ demand schedules

𝑋 nd
1𝑑 =

End
1𝑑 [𝐷] − 𝑃

nd
1

𝛼varnd
1𝑑 [𝐷]

− 𝑧 and 𝑋 nd
1𝑠 =

End
1𝑠 [𝐷] − 𝑃

nd
1

𝛼varnd
1𝑠 [𝐷]

,

where E𝑛𝑑1 𝑗 [·] and var𝑛𝑑1 𝑗 [·] have been given in Equations (4) and (5). Through the market clearing

condition (1), we solve for the equilibrium and summarize it in the following proposition:

Proposition 1 (Benchmark equilibrium at 𝑡 = 1). At 𝑡 = 1, there is a unique equilibrium. The

liquidity demanders’ demand schedule is

𝑋 nd
1𝑑 (𝑝; 𝑠, 𝑧) = 𝐺1𝑑

𝛼

[(
𝐺0
𝐺1𝑑

𝐷̄ + 𝐺1𝑑 −𝐺0
𝐺1𝑑

𝑠

)
− 𝑝

]
− 𝑧;(6)

the liquidity suppliers’ demand schedule is

𝑋 nd
1𝑠 (𝑝) =

𝐺1𝑠
𝛼

[(
𝐺0
𝐺1𝑠

𝐷̄ + 𝐺1𝑠 −𝐺0
𝐺1𝑠

· 𝐺1𝑝 −𝐺0𝐷̄ + 𝛼𝑋̄
𝐺1 −𝐺0

)
− 𝑝

]
;

and the market clears at

𝑃nd
1 =

(
𝐺0
𝐺1
𝐷̄ + 𝐺1 −𝐺0

𝐺1
𝜂

)
− 𝛼

𝐺1
𝑋̄ ,(7)

where 𝐺1𝑑 and 𝐺1𝑠 are a demanders’ and a suppliers’ respective posterior precision, as given

in Equations (4) and (5); 𝐺1 := 𝜋𝐺1𝑑 + (1 − 𝜋)𝐺1𝑠 is an average investor’s precision; and

𝜂 := 𝑠 − 𝛼
𝜏𝜀
𝑧 is the signal about𝐷 learned by the market. Note that𝐺0 < 𝐺1𝑠 < 𝐺1 < 𝐺1𝑑 because

the suppliers only imperfectly infer 𝑠 from 𝑃nd
1 .

We briefly explain the interpretation of the equilibrium. A liquidity demander trades on the

difference between her private valuation (a weighted average between the unconditional mean 𝐷̄

and the private signal 𝑠) and the market price 𝑃nd
1 . Her trading aggressiveness, 𝐺1𝑑/𝛼 , on this

difference is increasing in her precision𝐺1𝑑 and decreasing in her risk aversion 𝛼 . She also offloads

the endowment shock 𝑧 (hedging). The same interpretation holds for a liquidity supplier, except

that 1) she does not see the private signal 𝑠 but infers it from 𝑃nd
1 , and 2) she does not have hedging

needs. The market clearing price 𝑃nd
1 is a weighted average between the expected payoff 𝐷̄ and the

signal 𝜂, and is further adjusted for a risk premium of 𝛼𝑋̄/𝐺1.
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III.A.2 Variance swap

We now introduce a “variance swap” derivative, which was written at 𝑡 = 0 and will pay the realized

variance of the underlying, i.e., 𝑓 (𝐷) = (𝐷 − 𝑃0)2, at 𝑡 = 2. The purpose is to present our novel

economic forces in the most tractable and transparent way. The results and intuition generalize to

other nonlinear 𝑓 (𝐷) as later shown with options.3

Consider an investor of type 𝑗 at 𝑡 = 1, where 𝑗 = 𝑑 for a liquidity demander and 𝑗 = 𝑠 for a

supplier. Her terminal wealth is

𝑊2 𝑗 =𝑊0 + (𝑃1 − 𝑃0)𝑋0 + (𝐷 − 𝑃1)𝑋1 𝑗 + (𝑓 (𝐷) −𝑄1)𝑌1 𝑗 + (𝐷 − 𝐷̄)𝑧 𝑗 ,(8)

where 𝑧 𝑗 is her type-specific endowment shock, with 𝑧𝑑 = 𝑧, 𝑧𝑠 = 0, and 𝑓 (𝐷) = (𝐷 − 𝑃0)2. She

chooses her demand𝑋1 𝑗 and 𝑌1 𝑗 to maximize her conditional expected utility, E1 𝑗
[
−𝑒−𝛼𝑊2𝑗

]
, taking

the prices {𝑃1 = 𝑝,𝑄1 = 𝑞} as given. For the demanders, their 𝑋1𝑑 and 𝑌1𝑑 can also depend on the

private signal 𝑠 and endowment shock 𝑧.

Lemma 1 provides the conditional distribution of 𝐷 for both the demanders and suppliers. The

optimization problems can then be evaluated in closed form, yielding the following proposition.

Proposition 2 (Equilibrium at 𝑡 = 1 with variance swap). There exists a unique equilibrium

at 𝑡 = 1. The demand schedules for the underlying are

𝑋1𝑑 (𝑝, 𝑞; 𝑠, 𝑧) = 𝑋 nd
1𝑑 (𝑝; 𝑠, 𝑧) − 2(𝑝 − 𝑃0)𝑌1𝑑 (𝑝, 𝑞; 𝑠, 𝑧); and 𝑋1𝑠 (𝑝, 𝑞) = 𝑋 nd

1𝑠 (𝑝) − 2(𝑝 − 𝑃0)𝑌1𝑠 (𝑝, 𝑞).

The demand schedules for the variance swap are

𝑌1𝑑 (𝑝, 𝑞; 𝑠, 𝑧) = 1
2𝛼

((
𝑞 − (𝑝 − 𝑃0)2

)−1
−𝐺1𝑑

)
; and 𝑌1𝑠 (𝑝, 𝑞) =

1
2𝛼

((
𝑞 − (𝑝 − 𝑃0)2

)−1
−𝐺1𝑠

)
.

The underlying’s market clears at 𝑃1 = 𝑃nd
1 , the same as in the benchmark (Equation 7). The

3 In general, any derivative payoff 𝑓 (𝐷) can be decomposed into a linear and a nonlinear component. Cao (1999)
shows that the linear component is redundant in such frameworks—it is simply a combination of the numéraire and
the underlying. We therefore focus on such a variance swap, which is arguably the simplest nonlinear derivative. In
the proof for Proposition 2 , we consider a more general quadratic derivative and demonstrate that all results presented
here with 𝑓 (𝐷) = (𝐷 − 𝑃0)2 are robust.
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derivative’s market clears at 𝑄1 = (𝑃1 − 𝑃0)2 + 𝐺−1
1 . The conditional precision {𝐺1𝑑 ,𝐺1𝑠,𝐺1}

are the same as those defined in Proposition 1.

The formal proof is deferred to the appendix. We discuss below the equilibrium insights.

(1) Betting on “volatility.” We begin by investigating investors’ derivative demand 𝑌1 𝑗 (𝑝, 𝑞)—

why they trade the derivative. With some rearrangement, it can be seen that

𝑌1 𝑗 ∝
(
𝐺−1

1 𝑗 + (𝑃1 − 𝑃0)2 −𝑄1

)
=

(
𝐺−1

1 𝑗 −𝐺−1
1

)
,

where the equality follows the equilibrium derivative price 𝑄1 = (𝑃1 − 𝑃0)2 + 𝐺−1
1 . Recall from

Proposition 1 that𝐺−1
1 is the market’s average conditional variance of the underlying return 𝐷 − 𝑃0.

Therefore, we see that each investor is trading on the difference between her and the market’s

valuations of the variance of 𝐷 − 𝑃0, as if she engages in a “volatility bet” against the market

average. Such a bet is similar to the underlying trading in the benchmark: after adjusting for the

endowment shock 𝑧 𝑗 , one’s demand for the underlying is𝑋 nd
1 𝑗 +𝑧 𝑗 ∝

(
E1 𝑗 [𝐷] − 𝑃1

)
; that is, everyone

bets her valuation of 𝐷 , E1 𝑗 [𝐷], against the market average 𝑃1.

(2) The (more informed) demanders write the derivative to the suppliers. In equilibrium,

𝑌1𝑑 = −𝐺1𝑑 −𝐺1
2𝛼

< 0 < 𝑌1𝑠 =
𝐺1 −𝐺1𝑠

2𝛼
,

because 𝐺1𝑠 < 𝐺1 < 𝐺1𝑑 . That is, a liquidity demander always takes a short position in the

derivative, betting that the volatility is low, while a supplier always takes a long position, betting on

high volatility. Intuitively, this is because in our framework, the demanders’ signal always points

to a more precise posterior, hence lower posterior volatility.

To compare, in Smith (2019), an agent informed of the underlying’s volatility might either buy

or sell such volatility derivatives. This is because of the different payoff and information structure

assumed: In Smith (2019), the underlying’s payoff 𝐷 is decomposed into a mean component 𝜇

and a variance component 𝑉 , for example, as 𝐷 = 𝜇 + 𝑉𝜐, where 𝜐 follows a standard normal

distribution, so that 𝐷 |𝑉 is normally distributed. An investor informed of𝑉 , therefore, has a better
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understanding only about the scale of the payoff 𝐷 , unlike in the current paper where the informed

have a “pointy” posterior of 𝐷 |𝑠. With a high (low) posterior of the scale, the investors in Smith

(2019) then buy (sell) volatility derivatives.

Our model reveals that, investors more informed of the exact payoff tend to sell “volatility,” as if

selling protection or insurance, to the less informed investors. For example, Gârleanu et al. (2009)

document that non-market-markers, including public customers and firm proprietary trader, write

equity options to the arguably less informed market makers. Since options can be used to replicate

volatility (e.g., through strangles or straddles, etc.), this finding is consistent with our prediction

here. In addition, Mixon and Onur (2014) document from regulatory data that hedge funds—often

considered as informed—have an overall net short position in VIX futures. That is, they tend to

sell volatility to relatively less informed investors.

(3) Trading in the underlying is affected: delta hedging. Proposition 2 shows that investors’

trading in the underlying is affected by the derivative. In particular, compared to the benchmark,

there is a new term of −2(𝑝 − 𝑃0)𝑌1 𝑗 . That is, for every unit of the derivative, the investor trades

against it by 2(𝑝 − 𝑃0) units of the underlying, where 𝑝 = 𝑃1 is the price of the underlying.

This new term turns out to be the investor’s delta hedging and it is the main economic force

driving the subsequent results about illiquidity measures. Write a type- 𝑗 investor’s terminal utility

as 𝑢 (𝑊2 𝑗 ), where𝑊2 𝑗 is a function of the underlying payoff 𝐷 (see Equation (8)). Therefore, her

expected exposure to a small fluctuation in 𝐷 is

E1 𝑗

[
𝜕𝑢 (𝑊2 𝑗 )
𝜕𝐷

]
= E1 𝑗

[
𝑢

′ (𝑊2 𝑗 )
𝜕𝑊2 𝑗

𝜕𝐷

]
=E1 𝑗

[
𝑢

′ (𝑊2 𝑗 )
(
𝑋1 𝑗 + 𝑧 𝑗 + 𝑌1 𝑗 𝑓

′ (𝐷)
)]

=E1 𝑗

[
𝑢

′ (𝑊2 𝑗 )
] (
𝑋1 𝑗 + 𝑧 𝑗 + 𝑌1 𝑗 Ê1 𝑗

[
𝑓
′ (𝐷)

] )
,(9)
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where we write4

Ê1 𝑗

[
𝑓
′ (𝐷)

]
:= E1 𝑗

[
𝑢

′ (𝑊2 𝑗 )
E1 𝑗

[
𝑢 ′ (𝑊2 𝑗 )

] 𝑓 ′ (𝐷)
]
.(10)

That is, measured in multiples of the expected marginal utility E1 𝑗
[
𝑢

′ (𝑊2 𝑗 )
]
, the investor expects

a total exposure to fluctuations in 𝐷 of

𝑋1 𝑗 + 𝑧 𝑗 + 𝑌1 𝑗 Ê1 𝑗

[
𝑓
′ (𝐷)

]
.

In words, she holds 𝑋1 𝑗 units of the underlying and will receive an endowment of 𝑧 𝑗 , and her 𝑌1 𝑗

units of the derivative have a per-unit exposure of Ê1 𝑗
[
𝑓
′ (𝐷)

]
, which is precisely the definition of

the “delta” hedging ratio of the derivative.

Applied to our current example of variance swaps, the hedging ratio is Δ1 𝑗 := Ê1 𝑗 [𝑓
′ (𝐷)] =

Ê1 𝑗 [2(𝐷 − 𝑃0)] = 2(𝑃1 − 𝑃0), and an investor’s delta hedging trade is

−Δ1 𝑗𝑌1 𝑗 (𝑃1, 𝑄1) = −2(𝑃1 − 𝑃0)𝑌1 𝑗 (𝑃1, 𝑄1) = 𝑋1 𝑗 (𝑃1, 𝑄1) − 𝑋 nd
1 𝑗 (𝑃1).(11)

Intuitively, as the investors bet on the volatility through the derivative, they also receive extra

exposure to the underlying through the derivative position 𝑌1 𝑗 . This exposes them to “too much”

𝐷 , and they therefore trade against 𝑌1 𝑗 to neutralize the exposure. Note that the above analysis

is generic for any distribution of 𝐷 , any utility function (subject to standard regularity), and any

(piecewise differentiable) derivative payoff 𝑓 (·).

The expression shown in Equation (11) connects an investor’s demand with and without the

derivative to her delta hedging trade. This is, in fact, a robust result for any type of derivatives 𝑓 (𝐷):

4 Note that the ratioΛ1𝑗 := 𝑢
′ (𝑊2𝑗 )

E1𝑗 [𝑢′ (𝑊2𝑗 )] is a function of𝐷 , is strictly positive, and satisfiesE1𝑗 [Λ1𝑗 ] = 1. It therefore

serves as a Radon-Nikodym derivative and changes the expectation E1𝑗 [·] to a risk-neutral pricing measure Ê1𝑗 [·]. For
example, the first-order condition regarding the underlying holding 𝑋1𝑗 is

E1𝑗

[
𝑢

′ (𝑊2𝑗 )
(
𝜕𝑊2𝑗

𝜕𝑋1𝑗

)]
= E1𝑗

[
𝑢

′ (𝑊2𝑗 ) (𝐷 − 𝑃1)
]
= 0 =⇒ E1𝑗

[
𝑢

′ (𝑊2𝑗 )𝐷
]
= E1𝑗

[
𝑢

′ (𝑊2𝑗 )
]
𝑃1 .

Dividing both sides by the expected marginal utility E1𝑗
[
𝑢

′ (𝑊2𝑗 )
]

yields the risk-neutral pricing formula 𝑃1 = Ê1𝑗 [𝐷].
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Proposition 3 (Net exposure to the underlying). Given the asset prices 𝑝1 and 𝑞1, a type- 𝑗

investor’s net exposure to the underlying asset is the same, with or without the derivative:

𝑋1 𝑗 (𝑝1, 𝑞1) + Δ1 𝑗 (𝑝1, 𝑞1)𝑌1 𝑗 (𝑝1, 𝑞1) = 𝑋 nd
1 𝑗 (𝑝1).(12)

Below in Section III.A.3 we will show that this also holds true for options.

(4) A knife-edge result: the underlying price is unaffected, i.e., 𝑃1 = 𝑃nd
1 . While all investors

delta hedge their derivative positions, the net delta hedging trade (across all investors) is zero:

𝜋 ·
(
𝑋1𝑑 − 𝑋 nd

1𝑑

)
+ (1 − 𝜋)

(
𝑋1𝑠 − 𝑋 nd

1𝑠

)
= −2(𝑃1 − 𝑃0) · (𝜋𝑌1𝑑 + (1 − 𝜋)𝑌1𝑠)︸                   ︷︷                   ︸

=0, by the derivative’s market clearing

= 0.(13)

As such, the net demand for the underlying asset remains exactly the same as in the benchmark. In

other words, there is no price pressure pushing 𝑃1 away from the benchmark 𝑃nd
1 .

However, we would like to emphasize that this is a knife-edge result due to the specific derivative

payoff 𝑓 (𝐷) = (𝐷 − 𝑃0)2. In particular, both the demanders and the suppliers have the same delta

hedging ratio of Δ1𝑑 = Δ1𝑠 = 2(𝑃1 − 𝑃0). More generally, however, different investors’ hedging

ratios are not always the same, and the net delta hedging will be nonzero, pushing the equilibrium 𝑃1

away from 𝑃nd
1 . Such additional price pressure has asset pricing implications and, in particular,

affects empirical measures of illiquidity. Section III.A.3 below shows such examples.

III.A.3 Options

We now turn to options, the most common (nonlinear) derivatives. Specifically, there are 𝑛 (< ∞)

call options written at 𝑡 = 0, each with strike price𝐾𝑖 , 𝑖 ∈ {1, 2, ..., 𝑛}. (The results from this section

generalize to arbitrary combinations of calls or puts, thanks to the put-call parity.) That is, the

𝑖-th call pays max{0, 𝐷 − 𝐾𝑖} at 𝑡 = 2. While the nonlinear payoffs from the options add to the

complication of the analysis, we show that there exists a unique equilibrium characterized by a set

of nonlinear first-order conditions:
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Proposition 4 (Equilibrium with options). At 𝑡 = 1, a type- 𝑗 investor’s optimal demand

for the asset and the options exists and is uniquely characterized by the unique solution to

Equation (A.6). The asset and the option prices are the unique solutions of market clearing

conditions of Equation (A.7).

The equilibrium characterization contributes to the literature of REE models with non-normal

payoffs. In particular, in our framework, it is the option derivatives that necessarily introduce the

non-normality in our model (even though the underlying is still normally distributed).

Below we proceed to discuss the properties of the equilibrium, highlighting what inherits from

the variance swap in (1)–(3) as well as what differs in (4). For clarity, the discussion focuses on the

case of a single call option (i.e., 𝑛 = 1) and we shall drop the subscript 𝑖.5

(1) Betting on volatility. The nonlinearity in the call payoff 𝑓 (𝐷) = max{0, 𝐷 − 𝐾} provides

investors with a vehicle to trade on the underlying volatility. To see this, suppose that the call

is (weakly) out-of-the-money at 𝑡 = 1, i.e., 𝐾 ≥ 𝑃1. We can then decompose its payoff as (see

Lemma S1 in the internet appendix)

max{0, 𝐷 − 𝐾} = 1
2
|𝐷 − 𝑃1 | +

1
2
(
1 − 21{𝑃1≤𝐷≤𝐾}

)
(𝐷 − 𝑃1) + 1{𝐷>𝐾} (𝑃1 − 𝐾).(14)

Note that in expectation, the leading term, 1
2 |𝐷 − 𝑃1 |, is exactly (half of) the underlying asset’s

volatility. The same intuition as for the variance swap applies: Because the more informed

demanders value volatility less than do the suppliers, the option is traded to “bet on volatility.”

(2) The (more informed) demanders write options to the suppliers. Figure 1(a) plots an

investor’s (risk-neutral) valuation of the asset’s volatility against the option’s moneyness, defined as

𝑃1−𝐾 : The call is in-the-money (ITM) when 𝑃1−𝐾 > 0, at-the-money (ATM) when 𝑃1−𝐾 = 0, and

out-of-the-money (OTM) when 𝑃1−𝐾 < 0. Indeed, a demander always believes that the conditional

volatility is lower than does a supplier. As a result, the demanders always sell the option to the
5 As will be shown below, our novel insights are largely based on the moneyness of the single option. When there

are multiple options, our results then speak to their average moneyness. In reality, the average moneyness varies across
assets. The model implications, therefore, can be empirically examined in the cross-section of different assets.
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Figure 1: Call option trading at 𝑡 = 1. This figure describes the equilibrium trading of the call option at
𝑡 = 1. Panel (a) plots investors’ (risk-neutral) valuation of the underlying volatility in equilibrium. Panel (b)
plots a demander’s option position. In both panels, the horizontal axes show a range of moneyness of the
call option, defined as the difference between the underlying price and the strike price. The call’s strike is
fixed at 𝐾 = −1.0 and the two state variables—the private signal and the endowment shock—vary to affect
the equilibrium price 𝑃1 and the moneyness. The other primitive parameters are set at 𝐷̄ = 0.0, 𝑋̄ = 0.8,
𝐺0 = 1.0, 𝜏𝜀 = 1.0, 𝜏z = 1.0, 𝜋 = 0.5, and 𝛼 = 0.8.

suppliers, i.e., 𝑌1𝑑 < 0 < 𝑌1𝑠 as seen in Panel (b). Note that only a demander’s equilibrium option

holding is plotted in (b) because by market clearing, a suppliers’ holding immediately follows to be

positive: 𝑌1𝑠 = −𝜋𝑌1𝑑/(1− 𝜋) > 0. Comparing both panels, we see that the demanders write more

calls to the suppliers (more negative 𝑌1𝑑) when their volatility valuations differ more, i.e., when the

call is further away from ATM.

(3) Delta hedging. We next turn to the investors’ delta hedging. A type- 𝑗 ∈ {𝑠, 𝑑} investor

in equilibrium holds 𝑌1 𝑗 units of the call, which also gives her additional underlying exposure.

Following Equation (10), the extra exposure, per unit of the option position, is

Δ1 𝑗 := Ê1 𝑗

[
𝑓
′ (𝐷)

]
= Ê1 𝑗

[
𝜕

𝜕𝐷
max{0, 𝐷 − 𝐾}

]
= Ê1 𝑗

[
1{𝐷>𝐾}

]
= P̂1 𝑗 [𝐷 > 𝐾],
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which has the usual interpretation of an option’s delta: the probability of ending up in-the-money.

Therefore, the investor has an incentive to delta hedge against such extra exposure by trading

−Δ1 𝑗𝑌1 𝑗 units of the underlying, just as in the case of a variance swap. In fact, as shown in

Proposition 3, one’s delta hedging trade −Δ1 𝑗𝑌1 𝑗 is also the only deviation from her no-derivative

benchmark: 𝑋1 𝑗 = 𝑋 nd
1 𝑗 − Δ1 𝑗𝑌1 𝑗 .

(4) Non-zero net delta hedging trade. Different from the case of a variance swap, aggregating

across all investors, the net delta hedging trade

− 𝜋Δ1𝑑𝑌1𝑑 − (1 − 𝜋)Δ1𝑠𝑌1𝑠(15)

is in general not zero. This is because the delta hedging ratios are no longer the same, Δ1𝑑 ≠ Δ1𝑠 .

To see why, note that Δ1 𝑗 = P̂1 𝑗 [𝐷 > 𝐾] depends on the respective information set of the type- 𝑗

investors. Instead, in the case of the variance swap 𝑓 (𝐷) = (𝐷 − 𝑃0)2, Δ1 𝑗 = Ê1 𝑗 [2(𝐷 − 𝑃0)] =

2(𝑃1 − 𝑃0) is common for both 𝑗 ∈ {𝑑, 𝑠}—a knife-edge special case. Below we provide more

discussions to better understand why—and when—Δ1𝑑 ≶ Δ1𝑠 .

(4.1) Δ1𝑑 > (<) Δ1𝑠 when the call is ITM (OTM). Figure 2(a) shows the equilibrium call option

price 𝑄1. It has the well-known property of monotonically increasing in the moneyness, with an

asymptotic slope equal to zero (one) when the call is extremely OTM (ITM). Figure 2(b) plots the

two types of investors’ delta hedging ratios. While at first glance the two Δs seem to overlap, they

differ by a small amount. We zoom in on their difference Δ1𝑑 − Δ1𝑠 in Figure 2(c), plotting it in the

solid line (left axis). It can be seen that Δ1𝑑 > Δ1𝑠 if and only if the call is ITM.

The intuition is as follows. As explained before, a demander always sells the call (betting on

low volatility). When the call is ITM, she knows that she will likely receive a negative shock in

the underlying by 𝑡 = 2 because the call will likely be exercised. To hedge this expected negative

inventory shock, the demander takes a long delta hedge position −Δ1𝑑𝑌1𝑑 > 0, and likewise, a

supplier takes −Δ1𝑠𝑌1𝑠 < 0. The difference is that the more informed demanders are “surer” of

the moneyness of the call than are the suppliers. Therefore, the demanders’ delta hedging ratio
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Figure 2: Equilibrium asset prices at 𝑡 = 1, with a call option. This figure describes the 𝑡 = 1 equilibrium
with a call option. In all panels, the horizontal axes show a range of moneyness of the call option, defined
as the difference between the underlying price and the strike price. The call’s strike is fixed at 𝐾 = −1.0 and
the two state variables—the private signal and the endowment shock—vary to affect the equilibrium price 𝑃1
and the moneyness. The other primitive parameters are set at 𝐷̄ = 0.0, 𝑋̄ = 0.8,𝐺0 = 1.0, 𝜏𝜀 = 1.0, 𝜏z = 1.0,
𝜋 = 0.5, and 𝛼 = 0.8.
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is larger, Δ1𝑑 > Δ1𝑠 , if the call is ITM. Instead, if the call is OTM (unlikely exercised), the surer

demanders will delta hedge less than the not-so-sure suppliers, resulting in Δ1𝑑 < Δ1𝑠 . When the

call is ATM, we have the well-known result of Δ1𝑑 = Δ1𝑠 = 1/2.

The result can also be understood by recalling that an OTM (ITM) call option’s Vanna—the

second-order derivative of the option price over the underlying price and volatility—is positive

(negative). That is, compared to an uninformed supplier (seeing higher volatility), a more informed

demander (seeing lower volatility) always thinks of an OTM (ITM) call as less OTM (more ITM).

She, therefore, always under-(over-)hedges relative to the supplier if the call is OTM (ITM).

Note that when the moneyness becomes extreme, we see thatΔ1𝑑−Δ1𝑠 ↓ 0 again. This is because

the delta of a call is bounded between zero and one: 0 ≤ Δ1 𝑗 = P̂1 𝑗 [𝐷 > 𝐾] ≤ 1. In particular, for

a deep ITM (OTM) call, its delta converges to one (zero), regardless of the information set of the

investor. This explains the flattening tails in the solid line in Figure 2(c).

(4.2) The net delta hedging and option moneyness. The dashed line (right axis) in Figure 2(c)

plots the net delta hedging trade (15) against the call’s moneyness. It tracks the pattern from the

delta hedging ratio difference (the solid line, left axis). This is unsurprising because Equation (15)

is simply the market clearing condition, 𝜋𝑌1𝑑 + (1− 𝜋)𝑌1𝑠 = 0, rescaled by the respective investors’

delta hedging ratios. When the call is ITM, the demanders delta hedge (long) more than the

suppliers (short), and the net delta hedging is positive; vice versa. Summarizing, the following

novel prediction can be empirically tested:

Prediction 1 (Net delta hedging and option moneyness). Investors’ net delta hedging against

their volatility bets has the same sign as the moneyness 𝑃1 − 𝐾 . That is, such net delta hedging

is positive (negative) when the option is an ITM call or OTM put (OTM call or ITM put).

Going beyond the call option, Table 1 extends the above prediction to various combinations of

option types and moneyness. In any case, the sign of the net delta hedging (15) is the same as the

moneyness sign[𝑃1 −𝐾], also the same as the sign of the option’s Vanna (the last row of the table).

This is because what matters for the net delta hedging trade is whether the (informed) demanders
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𝑃1 − 𝐾 < 0 𝑃1 − 𝐾 > 0
OTM-call ITM-put ITM-call OTM-put

(a) Option holdings
a demander’s position 𝑌1𝑑 < 0 < 0 < 0 < 0
a supplier’s position 𝑌1𝑠 > 0 > 0 > 0 > 0

(b) Delta hedging trades
a demander’s −Δ1𝑑𝑌1𝑑 > 0 < 0* > 0* < 0
a supplier’s −Δ1𝑠𝑌1𝑠 < 0* > 0 < 0 > 0*

(c) Net delta hedging trades
−𝜋Δ1𝑑𝑌1𝑑 − (1 − 𝜋)Δ1𝑠𝑌1𝑠 < 0 < 0 > 0 > 0

(d) Sign of the option’s Vanna < 0 > 0

Table 1: Investors’ option holding and delta hedging trades for calls and puts. This table summarizes
investors’ option holding and delta hedging trades for four scenarios: out-of-the-money call, in-the-money
call, in-the-money put, and out-of-the-money put. Panel (a) shows the equilibrium option positions by
the demanders and the suppliers. Panel (b) shows their delta hedging directions. The dominant effect in
each scenario (column) is superscripted with ∗, following which Panel (c) shows the signs of the net delta
hedging. Panel (d) shows the sign of the option’s Vanna, the second-order derivative of the option price over
the underlying price and volatility.

expect a positive or negative cash flow from the option: If the option is ITM, as the writer (seller),

the surer demanders expect negative 𝑡 = 2 cash flows from the option and engage in considerable

delta hedging, which dominates in the aggregate. If the option is OTM, the demanders expect to

enjoy the positive sales from writing the options and engage in little delta hedging, thus making the

suppliers’ delta hedging the dominant force.

(4.3) The effect on the underlying price 𝑃1. The nonzero net delta hedging is the key difference

from the case of a variance swap, where the delta hedging trades always sum to zero; see the

discussion on page 17. Figure 2(d) shows how the nonzero price pressure affects the equilibrium

underlying price. Relative to the no-derivative benchmark 𝑃nd
1 , 𝑃1 increases when the net delta

hedging trade shown in Equation (15) is positive. That is, the underlying price is pushed in the

direction of the net delta hedging, i.e., the sign of option moneyness. Such “price pressure” from

net delta hedging has impacts on the illiquidity measures, which we study later in Section III.B.3.
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We would like to emphasize that the price pressure due to delta hedging is more general

than the specific model studied here. This is because asymmetrically informed investors tend to

assign different values to the necessity (urgency) of delta hedging. The more informed agents (the

demanders in the model) will delta hedge more aggressively than their less informed counterparties

if and only if their derivative positions expect negative cash flows. This intuition is revealed through

two modeling ingredients: the trading of the underlying and the option is linked through investors

who are asymmetrically informed.

III.B Market illiquidity measures

We consider two widely used empirical measures of illiquidity, following Vayanos and Wang

(2012). The first is the price impact of liquidity demanders’ trading, in the spirit of Kyle (1985).

It is defined as the sensitivity of price return with respect to liquidity demanders’ signed volume

(order flow) at 𝑡 = 1. From an empiricist’s point of view, this coefficient is obtained by regressing

the price return 𝑃1 − 𝑃0 on the order flow 𝜋 · (𝑋1𝑑 − 𝑋0) at 𝑡 = 1; that is,

𝜆 :=
cov[𝑃1 − 𝑃0, 𝜋 · (𝑋1𝑑 − 𝑋0)]

var[𝜋 · (𝑋1𝑑 − 𝑋0)]
.(16)

The larger is 𝜆, the more sensitive is price to order flows, implying a less liquid market. Many

empirical works have used proxies in this spirit, including Glosten and Harris (1988), Brennan and

Subrahmanyam (1996), Sadka (2006), and Amihud (2002), just to name a few.

The second measure is price reversal, as in Roll (1984) and Grossman and Miller (1988). The

idea is that the risky asset’s price will deviate from its “fundamental” 𝐷 at 𝑡 = 1, due to the price

pressure of demanders’ hedging. Such price pressure can be equivalently seen as the compensation

required by the suppliers to absorb the shocked investors’ liquidity demand. Eventually (in the long

run, 𝑡 = 2), the price will revert to 𝑃2 = 𝐷 . An empiricist can then compute

𝛾 = −cov[𝐷 − 𝑃1, 𝑃1 − 𝑃0](17)
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to measure market illiquidity. A larger 𝛾 implies a stronger price pressure at 𝑡 = 1, hence low

liquidity. Empirical applications of this measure include Roll (1984), Campbell et al. (1993),

Hasbrouck (2009), and Pástor and Stambaugh (2003).

III.B.1 The no-derivative benchmark

Thanks to Proposition 1, without derivatives, the two liquidity measures can be found as:

𝜆nd =
𝛼

1 − 𝜋
𝐺1 −𝐺0
𝐺1 −𝐺1𝑠

1
𝐺0
, and 𝛾nd =

(
1 − 𝐺0

𝐺1

) (
1 − 𝐺1𝑠

𝐺1

)
1

𝐺1𝑠 −𝐺0
.(18)

Vayanos and Wang (2012) focus on how these two measures are affected by degrees of information

asymmetry and imperfect competition. Our focus below turns to the effect of derivatives.

III.B.2 With variance swap

With the variance swap 𝑓 (𝐷) = (𝐷 − 𝑃0)2, the two liquidity measures can be found, following

Proposition 2, as

𝜆 =
𝛼

1 − 𝜋
𝐺1 −𝐺0
𝐺1 −𝐺1𝑠

1
𝐺1

=
𝐺0
𝐺1
𝜆nd and 𝛾 =

(
1 − 𝐺0

𝐺1

) (
1 − 𝐺1𝑠

𝐺1

)
1

𝐺1𝑠 −𝐺0
= 𝛾nd.

Comparing with the no-derivative benchmark, we have the following corollary:

Corollary 1 (Illiquidity measures with a variance swap). After the derivative of 𝑓 (𝐷) =

(𝐷 − 𝑃0)2 is introduced, the underlying asset has a lower price impact and the same price

reversal; that is, 𝜆 < 𝜆nd and 𝛾 = 𝛾nd.

Price impact 𝜆. Price impact measures the price elasticity with respect to the liquidity demanders’

trading. Recall from Proposition 2 that compared to the benchmark 𝑋 nd
1𝑑 , a new term of −2(𝑃1 −

𝑃0)𝑌1𝑑 rises in 𝑋1𝑑 , reflecting the novel delta hedging by liquidity demanders. Such delta hedging

does not reveal additional information (Lemma 1). Indeed, the informed trading component in

𝑋1𝑑 remains unchanged as in the benchmark 𝑋 nd
1𝑑 . Relatively speaking, therefore, the additional

delta hedging reduces the proportion of informed trading relative to the demanders’ overall trading.
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Consequently, if an empiricist regresses price changes on informed investors’ trading, a lower price

impact will obtain after derivatives are introduced.

Price reversal 𝛾 . As shown in Proposition 2, the 𝑡 = 1 equilibrium price 𝑃1 remains the same

as the benchmark 𝑃nd
1 . Therefore, the negative return autocovariance, 𝛾 , is also unchanged. We

again emphasize that this is a knife-edge result, due specifically to the derivative payoff of 𝑓 (𝐷) =

(𝐷 − 𝑃0)2, under which all investors’ delta hedging trades aggregate to zero (see the discussion on

page 17). When options are introduced, for example, this will no longer be the case: the underlying

price 𝑃1 will deviate from the benchmark 𝑃nd
1 , tilting in the direction of investors’ net delta hedging.

III.B.3 Options

The two illiquidity measures no longer have closed-form expressions when options are introduced.

They can still be numerically examined, following their definitions in Equations (16) and (17).

Figure 3 illustrates the patterns against various moneyness values of a call option.

Price impact. Figure 3(a) shows a qualitatively similar result to that seen in Section III.B.2: The

price impact is lower with a derivative, i.e., 𝜆 < 𝜆nd. The key driver of the lower price impact is that

the liquidity demanders now delta hedge their volatility bets. Such additional hedging trades are

not informed speculation, making the demanders’ trades less “toxic” overall, thereby reducing price

impact. The effect of such non-informational delta hedging has been examined and recognized

through empirical works, like Ni, Pearson, and Poteshman (2005) and Ni, Pearson, Poteshman,

and White (2021), whose focus lies largely on the impact on underlying asset prices. Further,

after introducing options, the bid-ask spread in the underlying typically also decreases (Damodaran

and Lim (1991), Fedenia and Grammatikos (1992), and Kumar, Sarin, and Shastri (1995)). In

particular, Kumar, Sarin, and Shastri (1998) find that it is the adverse-selection component of

the bid-ask spread that decreases, consistent with our intuition of informed trading being diluted

by delta hedging. Recent evidence by Hu (2017) is also consistent with our channel whereby
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uninformed trading becomes dominant (relative to informed trading) after option listing.

The existing empirical literature typically argues that the price impact or bid-ask spread de-

creases because informed investors migrate from the underlying to the options (see, e.g., Easley

et al. (1998)). While the prediction is the same, our channel of delta hedging is different because

in our model, derivatives are purposefully made informationally irrelevant.

To examine our channel, we propose to investigate how price impact is affected. Figure 3(a)

depicts the patterns regarding how the underlying’s price impact changes with respect to the

moneyness of the call. Starting from the left side of the graph, where the call is deep OTM (𝐾

is very large), we see that 𝜆 ≈ 𝜆nd. This is intuitive because the deep OTM call is valueless. Its

impact on the equilibrium, compared to the no-derivative benchmark, is close to nothing.

As the moneyness increases, we see that 𝜆 first decreases and then increases. This is because

there are two components of the price return 𝑃1 − 𝑃0, and they are affected differently by the

demanders’ trading 𝑋1𝑑 − 𝑋0. To see them, rewrite the price return as

𝑃1 − 𝑃0 = (E1 [𝐷] − E0 [𝐷])︸                ︷︷                ︸
(i) change in the fundamental

+ ((𝑃1 − E1 [𝐷]) − (𝑃0 − E0 [𝐷]))︸                                   ︷︷                                   ︸
(ii) change in the price pressure

,

where we essentially nonparametrically decompose a price 𝑃𝑡 into (i) the time-𝑡 fundamental E𝑡 [𝐷]

and the remainder 𝑃𝑡 − E𝑡 [𝐷], which we refer to as (ii) price pressure. Therefore, the price impact

𝜆 is more precisely the sum of the impact on (i) and that on (ii).6

As the call becomes more ITM, the demanders know that the call they write is more likely

to be exercised eventually, and they delta hedge more. Such increases in delta hedging trades

are uninformative (Lemma 1) and only increase the volume of the demanders’ underlying trading.

Therefore, the price impact in (i) is lower—there is more trading but the fundamental price is

unaffected. However, the price pressure in (ii) grows and can dominate if the call option becomes

deep ITM, thus driving 𝜆 higher, resulting in the U-shape seen in Figure 3(a). The following

6 In the empirical market microstructure literature, trades’ impact on (i) and (ii) are referred to as the permanent
and the transitory price impact, respectively, because changes in (i) are driven by information revealed in trades and
therefore persist, while changes in (ii) will mean-revert to zero in the long run. See, e.g., Glosten and Harris (1988).
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Figure 3: Illiquidity measures, with vs. without a call option. This figure shows how illiquidity measures
are affected by a call option. Panel (a) shows the price impact 𝜆 (with the call, the solid line) and 𝜆nd (no
derivative, dashed), while Panel (b) shows the price reversal 𝛾 (with the call, solid) and 𝛾nd (no derivative,
dashed). In both panels, the horizontal axis is the average moneyness of the introduced call option, calculated
by varying the strike price 𝐾 , solving the underlying price 𝑃1 at 𝑡 = 1, and then taking expectation of the
difference, i.e., E[𝑃1] − 𝐾 . The other parameters are set at 𝜋 = 0.50, 𝐷̄ = 0.0, 𝑋̄ = 0.8, 𝐺0 = 1.0, 𝜏𝜀 = 1.0,
𝜏z = 1.0, and 𝛼 = 0.8.

empirical prediction summarizes the discussion thus far.

Prediction 2 (Price impact and option moneyness). The price impact 𝜆 of the underlying is

U-shaped in the option moneyness.

While the discussion has focused only on a call option, the prediction above does not distinguish

between calls and puts, thanks to put-call parity. (While the moneyness flips between a call and a

put of the same strike, the predicted U-shape still remains U-shaped after the flip.)

Price reversal. In Section III.B.2, the price reversal is unaffected by the variance swap of 𝑓 (𝐷) =

(𝐷 − 𝑃0)2. Such a knife-edge result no longer holds here. Figure 3(b) shows that when the
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moneyness of the call option is moderate (roughly between -1.7 and +1.7), the price reversal 𝛾 is

exacerbated (𝛾 > 𝛾nd); however, when either deep ITM or OTM, 𝛾 is alleviated (𝛾 < 𝛾nd).

Two features of the model can explain this pattern. First, the demanders’ (the suppliers’) delta

hedging trade, −Δ1𝑑𝑌1𝑑 (−Δ1𝑠𝑌1𝑠), always amplifies (dampens) price pressure. To see this, consider

a small positive increase in the equilibrium price 𝑃1, which makes the call option more ITM. As

such, both types of investors would like to delta hedge more than before, as their Δ1 𝑗 increases

(Figure 2b). In particular, the demanders delta hedge more by buying more of the underlying, thus

amplifying the small initial price increase, while the suppliers sell more, dampening the initial price

increase. Whether the net effect is amplifying or dampening depends on whether Δ1𝑑 is more or

less sensitive than Δ1𝑠 to the initial small increase in 𝑃1. That is, the sensitivity of the delta hedging

ratios—the option’s convexity or Gamma Γ—matters.

This leads to the second feature: The demanders’ Δ1𝑑 is more sensitive than the suppliers’ Δ1𝑠

only when the call option’s moneyness is moderate. This can be seen by zooming in on Figure 2(b):

Δ1𝑑 is steeper than Δ1𝑠 for moderate moneyness but flatter when the call is deep ITM or OTM.

Examining this difference more closely, Figure 4 plots the two types of investors’ average delta

hedging sensitivity E[Γ1𝑑] and E[Γ1𝑠] in Panel (a) and their difference in Panel (b).

By combining these two features, we see that the difference in the price reversal𝛾 −𝛾nd is driven

by the delta hedging sensitivity, or gamma, of the call option. Indeed, comparing Figures 3(b)

and 4(b), 𝛾 − 𝛾nd > 0 precisely when the demanders’ delta hedging is more sensitive (Γ1𝑑 > Γ1𝑠),

i.e., for moderate moneyness of the call. In this region, the demanders’ amplifying delta hedging

trades respond to price fluctuations more than the suppliers’ dampening delta hedging trades. We

summarize the discussion in the following empirical prediction.

Prediction 3 (Price reversal and option moneyness). Compared to the no-derivative bench-

mark, the underlying’s price reversal with an option is higher only when the option’s moneyness

is moderate (not too OTM or too ITM).

Barbon and Buraschi (2019) provide consistent evidence. They approximate dealers’ (liquidity
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Figure 4: Investors’ delta hedging sensitivity, gamma. This figure plots investors’ average delta hedging
sensitivity to fluctuations in the underlying price 𝑃1, i.e., their gamma. Panel (a) jointly plots both the
demanders’ and the suppliers’ gammas. Panel (b) plots their difference, namely the demanders less the
suppliers’ gamma. The other parameters are set at 𝜋 = 0.50, 𝐷̄ = 0.0, 𝑋̄ = 0.8, 𝐺0 = 1.0, 𝜏𝜀 = 1.0, 𝜏z = 1.0,
and 𝛼 = 0.8.

suppliers’) aggregate Gamma imbalance and find that when it is negative, there is larger intraday

momentum, i.e., larger price reversal.

IV The pre-shock equilibrium at 𝑡 = 0

As before, we first consider the no-derivative case as the benchmark. In particular we are interested

in the ex-ante (𝑡 = 0) liquidity risk premium and how derivatives affect it. To this end, we then

consider the variance swap of 𝑓 (𝐷) = (𝐷 − 𝑃0)2, with which we can characterize the equilibrium

in closed-form. Finally, we illustrate the robustness of the findings from the variance swap by

considering options.
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The no-derivative benchmark. At 𝑡 = 0, the investors are initially homogeneous: each has the

same probability 𝜋 (resp. 1 − 𝜋) of becoming a liquidity demander (resp. supplier) by 𝑡 = 1. They

choose a symmetric demand schedule 𝑋 nd
0 (𝑝) to maximize expected utility. The market clearing

condition (1) then yields the equilibrium price 𝑃nd
0 , given by the following proposition.

Proposition 5 (Benchmark asset price at 𝑡 = 0). At 𝑡 = 0, each investor holds the per capita

supply 𝑋̄ units of the risky asset. The equilibrium asset price is

𝑃nd
0 = 𝐷̄ −

(
𝛼𝐺−1

0

)
𝑋̄ − 𝜋𝑀nd

1 − 𝜋 + 𝜋𝑀nd (𝛼Σ)𝑋̄ ,

where the parameters 𝑀nd and Σ are given in the proof.

The equilibrium 𝑃nd
0 has two discounts from the unconditional expected payoff 𝐷̄ . First, investors

require a risk premium expressed as the product of an investor’s risk aversion𝛼 and the unconditional

payoff variance varnd [𝐷] = 𝐺−1
0 , scaled by the per capita holding 𝑋0 = 𝑋̄ . Second, there is a

“liquidity risk premium.” The fraction 𝜋𝑀nd

(1−𝜋)+𝜋𝑀nd is the risk-neutral probability for an investor

to receive a liquidity shock, where 𝑀nd is the ratio of demanders’ expected marginal utility over

that of the suppliers. For simplicity, 𝑀nd will be referred to as the marginal utility ratio, or MUR,

henceforth. The term Σ is a variance expression, akin to 𝐺−1
0 in the first discount.

Introducing a variance swap. We now introduce a variance swap 𝑓 (𝐷) = (𝐷 − 𝑃0)2. In this

case, the underlying price 𝑃0 can still be solved in closed-form:

Proposition 6 (Underlying price at 𝑡 = 0, with variance swap). In equilibrium, the underlying

asset price at 𝑡 = 0 is

𝑃0 = 𝐷̄ −
(
𝛼𝐺−1

0

)
𝑋̄ − 𝜋𝑀

1 − 𝜋 + 𝜋𝑀 (𝛼Σ)𝑋̄ ,

where𝑀 is given in the proof and Σ is the same as in the benchmark (Proposition 5). Taking 𝑃0 as

given, both types of investors’ pre-trading utility are higher with the variance swap, i.e.,𝑈0 𝑗 > 𝑈
nd
0 𝑗

for 𝑗 ∈ {𝑑, 𝑠}, and so is the unconditional expected utility,𝑈0 = 𝜋𝑈0𝑑 + (1 − 𝜋)𝑈0𝑠 > 𝑈
nd
0 .

Compared with the benchmark 𝑃nd
0 (Proposition 5), the first two terms—the expected payoff 𝐷̄
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and the risk-premium 𝛼𝐺−1
0 𝑋̄—are the same. Only the third term—the liquidity risk premium—is

affected and only through the marginal utility ratio (MUR) 𝑀 in the risk-neutral probability. We

show in the proof of the proposition that 𝑀 and 𝑀nd differ by a factor of

𝑀

𝑀nd =

√
𝐺1𝑑
𝐺1𝑠

𝑒
−𝐺1𝑑−𝐺1𝑠

2𝐺1 ≷ 1.(19)

Therefore, it is the MUR that determines the liquidity risk premium. Note that 𝑃0 is monotone

decreasing in 𝑀 (and 𝑃nd
0 in 𝑀nd): the underlying’s ex-ante price 𝑃0 features a higher liquidity risk

premium if and only if 𝑀 > 𝑀nd; i.e., 𝑃0 − 𝑃nd
0 < 0, if and only if 𝑀 −𝑀nd > 0.

Whether𝑀 > 𝑀nd or𝑀 < 𝑀nd is driven by model parameters. We focus on𝜋 , the pervasiveness

of the liquidity shock, as it characterizes a key attribute of investor composition.

Corollary 2 (The liquidity risk premium and investor composition). Introducing the variance

swap alleviates the liquidity risk if and only if the liquidity shock is not very pervasive. That is,

there exists a unique 𝜋∗ ∈ (0, 1) such that 𝑀 ≤ 𝑀nd and 𝑃0 ≥ 𝑃nd
0 if and only if 𝜋 ≤ 𝜋∗.

To understand the corollary, recall that Proposition 6 also finds that the investors’ ex-ante expected

utility is higher with the variance swap (𝑈0 > 𝑈 nd
0 ). This higher utility arises from the new trading

gains available at 𝑡 = 1: the variance swap allows the demanders to sell volatility, or insurance,

to the suppliers. However, such trading gain is split unevenly between the demanders and the

suppliers, depending on their relative market share. For example, if 𝜋 is close to 0, this small group

of demanders will extract most of the trading gain, because they are the only derivative writers. In

this case, at 𝑡 = 0, investors expect a substantial boost in their terminal wealth should they receive

a liquidity shock, hence also a lower marginal expected utility. Compared to the benchmark,

therefore, for sufficiently small 𝜋 , the MUR decreases, i.e., 𝑀 < 𝑀nd. (When 𝜋 is large, close to 1,

the derivative trades in a buyers’ market at 𝑡 = 1, and the opposite follows.)

In fact, the difference in the MUR, 𝑀 −𝑀nd, is monotonically increasing in shock pervasive-

ness 𝜋 . Figure 5(a) shows the pattern. As the liquidity shock becomes more likely, the MUR

difference increases and crosses zero once at some threshold 𝜋∗ ∈ (0, 1). That is, introducing the
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Figure 5: Liquidity risk and liquidity shock. This figure illustrates how the introduction of the derivative
of 𝑓 (𝐷) = 𝐷2 affects the equilibrium at 𝑡 = 0, for various levels of liquidity shock pervasiveness 𝜋 ∈ (0, 1).
Panel (a) plots difference in the marginal utility ratio (MUR), with the derivative less without the derivative,
against 𝜋 . The threshold 𝜋∗ is where the two MUR are equal. Translating this into the ex-ante asset
price, Panel (b) plots the difference in the underlying asset price 𝑃0 and 𝑃nd

0 against 𝜋 . The other primitive
parameters are set at 𝐷̄ = 0.0, 𝑋̄ = 0.8, 𝐺0 = 1.0, 𝜏𝜀 = 1.0, 𝜏z = 1.0, and 𝛼 = 0.8.

derivative alleviates the ex-ante liquidity risk if and only if 𝜋 < 𝜋∗ (the MUR between liquidity

demanders and suppliers is reduced). When 𝜋 > 𝜋∗, the liquidity risk is exacerbated instead.

Panel (b) illustrates how the 𝑡 = 0 underlying price is affected. When 𝜋 < 𝜋∗, 𝑃0 > 𝑃nd
0 because

investors require a smaller risk premium, and vice versa. Note that at the two extremes of 𝜋 ↓ 0 and

𝜋 ↑ 1, 𝑃0 = 𝑃nd
0 . This is because in addition to the effect on MUR, 𝜋 is also the physical probability

of receiving a liquidity shock. Recall from Proposition 6 that the risk-neutral probability of a

liquidity shock is 𝜋𝑀/(1 − 𝜋 + 𝜋𝑀). Therefore, in these two extremes, all investors will be of the

same type at 𝑡 = 1, and there will be no open interest for the derivative (𝑌1𝑑 = 𝑌1𝑠 = 0). The prices

with and without the derivative therefore converge.
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Figure 6: Liquidity risk and liquidity shock, with one call option. This figure qualitatively replicates
the patterns shown in Figure 5. The difference is that here we only introduce a single call option at strike
price 𝐾 = −1.0. The other primitive parameters are set at 𝐷̄ = 0.0, 𝑋̄ = 0.8,𝐺0 = 1.0, 𝜏𝜀 = 1.0, 𝜏z = 1.0, and
𝛼 = 0.8.

Introducing options. Finally, we introduce options to the benchmark. Corollary 2 shows that

the ex-ante liquidity risk premium can be either alleviated or worsened after a variance swap of

(𝐷 − 𝑃0)2 is introduced, largely depending on the pervasiveness 𝜋 of the liquidity shock. This

result remains robust and the intuition is the same: With options, investors are now able to trade on

the volatility (through the options’ nonlinear payoffs) of the underlying asset. When the liquidity

shock pervasiveness 𝜋 changes, the ex-ante marginal utility ratio (MUR) might either increase or

decrease, depending on whether the liquidity demanders or the suppliers benefit more.

As an example, Figure 6 qualitatively replicates Figure 5. As 𝜋 increases, the liquidity shock

affects more of the population, the MUR 𝑀 monotonically increases, and there is a threshold 𝜋#

only above which 𝑀 > 𝑀nd. Similarly, there is a threshold 𝜋∗ only above which the liquidity risk
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premium increases (the underlying price 𝑃0 decreases) with the introduction of the call option.7

Empirical evidence. The empirical evidence is mixed regarding how derivatives affect their

underlying prices. Earlier works, like Branch and Finnerty (1981), Conrad (1989), and Detemple

and Jorion (1990), find prices of the underlying increase after option listings, while evidences

from more recent data, like Mayhew and Mihov (2000), document the opposite. More specifically,

Sorescu (2000) find the effect to be positive before 1981 but negative after. Danielsen and Sorescu

(2001) attribute the cutoff to the effective mitigation of short sale constraints due to the introduction

of options. Our model instead provides a novel explanation to the switch of the signs: The switch

coincides in time with the well-known boom of mutual funds in the 1980s. The mutual funds can

be interpreted as the liquidity demanders in our model, as they have private information (at least the

active funds do) and are subject to liquidity shocks driven by fund flows. Thus, the rise of mutual

funds—an increase of parameter 𝜋—can push the price effect of option listings from positive to

negative, as shown in Figure 5(b).

V Disconnection between (il)liquidity measures and liquidity

risk premium

We have seen two sets of implications of derivatives on the underlying: the ex-post (𝑡 = 1) illiquidity

measures like the price impact 𝜆 and the price reversal 𝛾 in Section III; and the ex-ante (𝑡 = 0)

liquidity risk premium in Section IV. In summary, we find that derivatives might disconnect the

empirical illiquidity measures from the liquidity risk premium in asset prices:

(1) illiquidity measures would potentially disagree, with 𝜆 < 𝜆nd but 𝛾 ≶ 𝛾nd.

(2) ex-ante MUR might either increase or decrease, i.e., 𝑀 ≶ 𝑀nd;

7 Note that unlike Figure 5, the two thresholds 𝜋# for MUR and 𝜋∗ for the underlying price are not the same
here. This is because in the case of a variance swap, only the risk-neutral probability of receiving a liquidity shock,
𝜋𝑀/(1 − 𝜋 + 𝜋𝑀), is affected by 𝜋 . In general, the parameter 𝜋 also affects other equilibrium components in the
ex-ante underlying price 𝑃0, the closed-form solution of which we unfortunately do not obtain.
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As such, it is important that the trading in the derivatives be properly accounted for when empirically

analyzing liquidity risk and market illiquidity.

The disconnection. The disconnection between the illiquidity measures and the liquidity risk

premium calls for caution in interpreting empirical findings. For example, the Amihud (2002)

measure, like price impact, is found to associate with stock returns less strongly in recent years

(Drienko, Smith, and von Reibnitz (2019), Harris and Amato (2019), and Amihud (2019)). Our

theory suggests that the rise of derivatives trading in the meantime could contribute to this trend—

the increased delta hedging volume in the underlying dilutes illiquidity measures like price impact.

On the other hand, the market-wide liquidity measure of Pástor and Stambaugh (2003), related

to price reversal, is found to associate with a higher liquidity risk premium in more recent data (Li,

Novy-Marx, and Velikov (2019), Pontiff and Singla (2019), and Pástor and Stambaugh (2019)).

This evidence is also consistent with our prediction from Section III.B.3: the investors’ net delta

hedging trades can exacerbate price pressure and amplify price reversal. Ben-Rephael, Kadan, and

Whol (2015) separately study the “characteristic” liquidity premium and the “systematic” liquidity

premium and find that in recent years, both exist only in (small) NASDAQ stocks but not in NYSE

or AMEX stocks. We argue that the lack of derivatives trading on relatively small NASDAQ stocks

(Mayhew and Mihov (2004)) could explain why their liquidity measures and liquidity premium

differ from those of relatively large stocks.

The novel underlying channel: delta hedging. Our model explains such disconnection through

a novel channel of investors’ delta hedging trades, −Δ1 𝑗𝑌1 𝑗 . (To compare, Vayanos and Wang

(2012) discuss in great detail the impact of other market conditions, like adverse selection and

competition, without derivatives.) Such delta hedging is the joint result of 1) investors’ intrinsic

demand 𝑌1 𝑗 for the derivative and 2) the nonzero delta hedging ratio Δ1 𝑗 ≠ 0. The demand for the

derivative arises from how heterogeneously informed investors bet against each other on the asset’s

variance. While such bets are due to the information asymmetry across investors, their learning is
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unaffected by our derivative, thus differentiating this paper from the extant literature, like Biais and

Hillion (1994), Easley et al. (1998), and Dow (1998).

It is through the nonzero delta hedging that derivatives affect the illiquidity measures: Investors

delta hedge their volatility bets by buying and selling in the underlying, creating uninformed price

pressure, thus lowering the price impact and pushing the price reversal in either direction. We argue

that such a delta hedging effect is a robust feature of the current financial market, as the derivative

contracts almost always have nonzero deltas.8

VI Conclusion

This paper studies how derivatives (with nonlinear payoffs) affect their underlying securities’ liquid-

ity. Through a rational expectations equilibrium model, we examine such derivatives’ implications

for the liquidity risk premium and for empirical illiquidity measures. The key element of the model

is a liquidity shock that randomly strikes a fraction of the otherwise homogeneous population. The

shocked investors then demand liquidity for both information and hedging reasons, while the rest

provide liquidity to them. We contrast equilibrium outcomes with and without derivatives.

In terms of the liquidity risk premium, we find that derivatives have ambiguous effects. In-

troducing derivatives allows investors to trade on some nonlinear structures of the underlying’s

future payoff, creating additional trading gains. However, the split of such trading gains between

liquidity demanders and suppliers depends on model parameters. In general, derivatives affect the

wedge between liquidity demanders’ and suppliers’ ex-ante marginal expected utilities. As such,

before the shock, investors adjust—sometimes amplify—the risk-neutral probability of receiving

the liquidity shock and might demand higher liquidity risk premia.

8 Recall that we focus on derivatives written ex-ante of the liquidity shock, i.e., written at 𝑡 = 0, and are not
path-dependant. That is, E[𝜕𝑓 (𝐷)/𝜕𝑃1] = 0 almost surely. Therefore, ex-post of the liquidity shock, the delta hedging
ratio Δ1𝑗 = Ê1𝑗 [𝑓 ′(𝐷)] becomes a function of the random 𝑃1, and is almost surely nonzero. For example, consider the
variance swap of 𝑓 (𝐷) = (𝐷 − 𝑃0)2, implying Δ1𝑗 = 2Ê1𝑗 [𝐷 − 𝑃0] = 2(𝑃1 − 𝑃0), which is zero when 𝑃1 realizes to be
exactly 𝑃0—a zero probability event.
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In terms of empirical illiquidity measures, we find seemingly “contradictory” messages, de-

pending on the specific measure chosen. The key channel is investors’ delta hedging of their

derivative positions in the underlying. Such new hedging trades dilute the informed trading in the

total trading volume, lowering price impacts—hence yielding better liquidity. On the other hand,

the equilibrium price is now more subject to the price pressure of delta hedging trades, sometimes

amplifying but sometimes dampening the price reversal.

Taken together, the results of our model emphasize the potential disconnect between assets’

liquidity risk premium and their empirical illiquidity measures because of the trading of derivatives.

Empirical studies associating the two sides should carefully control for the activity in the assets’

derivative markets.

Appendix

A Proofs

Lemma 1

Proof. Clearly, the demanders’ learning is unaffected by the derivative: 𝐷 |𝑠 still normally dis-
tributed with var1𝑑 [𝐷] = 𝐺−1

1𝑑 and E1𝑑 [𝐷] = 𝐺0
𝐺1𝑑
𝐷̄ + 𝐺1𝑑−𝐺0

𝐺1𝑑
𝑠. We need to show that the suppliers

do not learn more than they do in the benchmark. That is, fixing the same realizations of {𝐷, 𝜀, 𝑧},
with or without the derivative, the suppliers hold the same posterior that 𝐷 is normally distributed
with var1𝑠 [𝐷] = varnd

1𝑠 [𝐷] = 𝐺
−1
1𝑠 and E1𝑠 [𝐷] = End

1𝑠 [𝐷] =
𝐺0
𝐺1𝑠
𝐷̄ + 𝐺1𝑠−𝐺0

𝐺1𝑠
𝜂.

Consider an arbitrary investor in this economy with type- 𝑗 ∈ {𝑑, 𝑠}. Her terminal wealth is
given in Equation (8). She chooses her demand 𝑋1 𝑗 and 𝑌1 𝑗 to maximize her conditional expected
utility at 𝑡 = 1, i.e., 𝑈1 𝑗 := E1 𝑗

[
−𝑒−𝛼𝑊2𝑗

]
, taking both prices {𝑃1, 𝑄1} as given. It is well-known

that such an optimization problem is strictly concave.9 Therefore, if an equilibrium exists, it must

9 Formally, Hessian 𝐻 of the optimization problem is a symmetric 2-by-2 matrix, with diagonal terms
𝜕2𝑈1𝑗

𝜕𝑋1𝑗
2 = E1𝑗

[
−𝛼2 · (𝐷 − 𝑃1)2𝑒−𝛼𝑊2𝑗

]
=: E1𝑗 [−𝑎(𝐷)2] and 𝜕2𝑈1𝑗

𝜕𝑌1𝑗
2 = E1𝑗

[
−𝛼2 · (𝑓 (𝐷) −𝑄1)2𝑒−𝛼𝑊2𝑗

]
=: E1𝑗 [−𝑏 (𝐷)2],

both strictly negative. The off-diagonal term is 𝜕2𝑈1𝑗
𝜕𝑋1𝑗𝑌1𝑗

= E1𝑗
[
−𝛼2 · (𝐷 − 𝑃1) (𝑓 (𝐷) −𝑄1)𝑒−𝛼𝑊2𝑗

]
= E1𝑗 [−𝑎(𝐷)𝑏 (𝐷)].

It follows that for any nonzero 𝑥 = [𝑥1, 𝑥2]⊤ ∈ R2, 𝑥⊤𝐻𝑥 = E1𝑗 [−𝑎(𝐷)2𝑥2
1 − 2𝑎(𝐷)𝑏 (𝐷)𝑥1𝑥2 − 𝑏 (𝐷)2𝑥2

2] =
E1𝑗 [−(𝑎(𝐷)𝑥1 + 𝑏 (𝐷)𝑥2)2] < 0, i.e., the Hessian is negative definite. Therefore, the optimization problem is convex.
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be interior and the first-order conditions must hold:
𝜕𝑈1 𝑗

𝜕𝑋1 𝑗
= E1 𝑗

[
𝛼 · (𝐷 − 𝑃1)𝑒−𝛼𝑊2𝑗

]
= 0; and,

𝜕𝑈1 𝑗

𝜕𝑌1 𝑗
= E1 𝑗

[
𝛼 · (𝑓 (𝐷) −𝑄1)𝑒−𝛼𝑊2𝑗

]
= 0.(A.1)

Recalling that from a demander’s point of view,𝐷 is conditionally normal. Using the conditional
density, her first-order conditions can be simplified to a two-equation-two-unknown system:

0 =
∫
R
(𝐷 − 𝑃1) · 𝑒−𝛼 𝑓 (𝐷)𝑌1𝑑 · 𝑒−

𝐺1𝑑
2

(
𝐷−𝐷̄−𝜂+ 𝛼

𝐺1𝑑
𝑋1𝑑

)2

d𝐷; and(A.2)

0 =
∫
R
(𝑓 (𝐷) −𝑄1) · 𝑒−𝛼 𝑓 (𝐷)𝑌1𝑑 · 𝑒−

𝐺1𝑑
2

(
𝐷−𝐷̄−𝜂+ 𝛼

𝐺1𝑑
𝑋1𝑑

)2

d𝐷.(A.3)

where 𝜂 := 𝜏𝜀
𝜏𝜀+𝐺0

(
𝑠 − 𝐷̄ − 𝛼

𝜏𝜀
𝑧
)
= 𝜏𝜀

𝜏𝜀+𝐺0

(
𝜂 − 𝐷̄

)
is informationally equivalent to what suppliers can

infer in the benchmark (c.f., Equation A.5).
Now turn to the suppliers. In equilibrium, they know that Equations (A.2) and (A.3) must hold.

They can condition on the equilibrium prices {𝑃1, 𝑄1}. They also observe the demanders’ demand
realizations {𝑋1𝑑 , 𝑌1𝑑}. This is because in equilibrium, the suppliers know their own demand
{𝑋1𝑠, 𝑌1𝑠} and through the market clearing conditions𝜋𝑋1𝑑+(1−𝜋)𝑋1𝑠 = 𝑋̄ and𝜋𝑌1𝑑+(1−𝜋)𝑌1𝑠 = 0,
the suppliers can thus infer perfectly the realizations of {𝑋1𝑑 , 𝑌1𝑑}. Knowing {𝑃1, 𝑄1, 𝑋1𝑑 , 𝑌1𝑑},
therefore, from any supplier’s perspective, each equation in the system (A.2) and (A.3) has one and
only one unknown, 𝜂. Therefore, they can infer, at best, 𝜂.

We further show below that given {𝑃1, 𝑋1𝑑 , 𝑌1𝑑}, the first line of Equation (A.2) has unique
solution of 𝜂. Hence, the suppliers can fully back out 𝜂, learning exactly the same as they do in the
benchmark. (Equation A.3 is redundant for learning, in this sense.)

To prove the uniqueness of the solution, we begin by writing

𝑎(𝐷;𝜂) := 𝑒−𝛼 𝑓 (𝐷)𝑌1𝑑 · 𝑒−
𝐺1𝑑

2

(
𝐷−𝐷̄−𝜂+ 𝛼

𝐺1𝑑
𝑋1𝑑

)2

and 𝑏 (𝐷;𝜂) := 𝐷 − 𝐷̄ − 𝜂 + 𝛼

𝐺1𝑑
𝑋1𝑑 ,

so that 𝜕𝑎(𝐷;𝜂)
𝜕𝜂 = 𝐺1𝑑𝑎(𝐷;𝜂)𝑏 (𝐷;𝜂) and Equation (A.2) can be rearranged as

𝑃1 =

∫
R
𝐷𝑎(𝐷;𝜂)d𝐷∫
R
𝑎(𝐷;𝜂)d𝐷

.(A.4)

Note that this is an equation of 𝜂 and the suppliers try to solve 𝜂 from it. To show the uniqueness
of the solution, take derivative with respect to 𝜂 on the right-hand side to get

𝐺1𝑑(∫
R
𝑎d𝐷

)2

[∫
R
𝐷𝑎𝑏d𝐷

∫
R
𝑎d𝐷 −

∫
R
𝐷𝑎d𝐷

∫
R
𝑎𝑏d𝐷

]
,
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where we omit the arguments of 𝑎(·) and 𝑏 (·) for notation simplicity. Note that 𝑏 can be rewritten
as 𝑏 = 𝐷 − 𝑐 where 𝑐 := 𝐷̄ + 𝜂 − 𝛼

𝐺1𝑑
𝑋1𝑑 is independent of 𝐷 conditional on 𝜂. Plug in 𝑏 = 𝐷 − 𝑐

and simplify to get

𝐺1𝑑(∫
R
𝑎d𝐷

)2

[∫
R
𝐷2𝑎d𝐷

∫
R
𝑎d𝐷 −

(∫
R
𝐷𝑎d𝐷

)2
]
.

Cauchy-Schwarz inequality has that
(∫
R
𝑓 (𝑥)𝑔(𝑥)d𝑥

)2
≤

∫
R
𝑓 (𝑥)2d𝑥

∫
R
𝑔(𝑥)2d𝑥 . Note 𝐷2𝑎 =

𝐷
√
𝑎 ·

√
𝑎 always holds because 𝑎 > 0. Applying the above Cauchy-Schwarz inequality with

𝑓 = 𝐷
√
𝑎 and 𝑔 =

√
𝑎 yields (∫

R
𝐷𝑎d𝐷

)2
≤

∫
R
𝐷2𝑎d𝐷

∫
R
𝑎d𝐷.

Therefore, the right-hand side of Equation (A.4) is monotone increasing in 𝜂. That is, so long
the equilibrium exists, suppliers can exactly infer the 𝜂.10 Since 𝜂 is informationally equivalent
to what suppliers can learn without the call options (as in the benchmark), there is no additional
information revealed. □

Propositions 1 and 5

Proof. The two propositions (and their proofs) correspond to Propositions 3.1-3.3 in Vayanos and
Wang (2012). We highlight some notation differences below. The three constants 𝑎, 𝑏, and 𝑐 in
Equation (3.1) of Vayanos and Wang (2012) can be expressed in our notation as 𝑎 = 𝐷̄ − 𝛼𝑋̄/𝐺1,
𝑏 = 1 − 𝐺0/𝐺1, and 𝑐 = 𝛼/(𝐺1𝑑 − 𝐺0). These then help verify our Proposition 1 as a replication
of their Propositions 3.1 and 3.2. The stated 𝑃0 in our Proposition 5 has the same form as the one
in their Proposition 3.3, where our 𝛼Σ replaces their Δ1. That is, our Σ can be expressed in their
notation as

Σ =
𝛼2𝑏𝜎2(𝜎2 + 𝜎2

𝜖 )𝜎2
𝑧

1 + Δ0(1 − 𝜋)2 − 𝛼2𝜎2𝜎2
𝑧

where 𝜎2 = 𝐺−1
0 , 𝜎2

𝑧 = 𝜏−1
z , 𝜎2

𝜖 = 𝜏−1
𝜀 , and Δ0 is given in Their equation (3.7a) and can be

equivalently written in our notation as Δ0 = 1
𝜋2

𝐺0
𝐺1𝑠−𝐺0

(𝐺1−𝐺1𝑠 )2
𝐺2

1
. Finally, the marginal utility ratio

10 More rigorously, one needs to prove the existence of the solution to Equation (A.4) in solving for 𝜂. This is
trivial, because Equation (A.4) is a rewriting of the first-order condition (A.1). Since the equilibrium is assumed to
exist, the first-order condition necessarily holds.
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𝑀nd in Proposition 5 can be expressed as

𝑀nd = exp
(
𝛼

2
Δ2𝜃

2
)√

1 + 𝜋2Δ0

1 + Δ0(1 − 𝜋)2 − 𝛼2𝜎2𝜎2
𝑧

where 𝜃 = 𝑋̄ , 𝜎2 = 𝐺−1
0 , 𝜎2

𝑧 = 𝜏−1
z , and Δ2 is given in their equation (3.7c). In our notation, Δ2 can

be written as

Δ2 =
𝛼3𝜏−1

z 𝐺−2
0

[
1 + 𝐺0

𝐺1𝑑−𝐺0

(𝐺1−𝐺1𝑑 )2
𝐺2

1

]
1 + Δ0(1 − 𝜋)2 − 𝛼2𝜏−1

z 𝐺−1
0

.

We also highlight how the suppliers learn in this equilibrium. The only source of new infor-
mation for the suppliers is the risky asset’s price 𝑃nd

1 , whose closed-form solution is spelled out in
Equation (7). It can be seen that the only “learnable” component is a linear combination of the
private signal 𝑠 and the endowment shock 𝑧:

𝜂 := 𝑠 − 𝛼

𝜏𝜀
𝑧 = 𝐷 + 𝜀 − 𝛼

𝜏𝜀
𝑧.(A.5)

That is, the suppliers are only learning from the above noisy signal 𝜂, which is a linear combination
of all three random variables in this economy. Given this, we have varnd

1𝑠 [𝐷] = var[𝐷
�� 𝑃nd

1 ] = 𝐺−1
1𝑠

and End
1𝑠 [𝐷] = E[𝐷

�� 𝑃nd
1 ] = 𝐺0

𝐺1𝑠
𝐷̄ + 𝐺1𝑠−𝐺0

𝐺1𝑠
𝜂. □

Proposition 2

Proof. This proof considers a more general quadratic payoff 𝑓 (𝐷) = 𝐷2−𝑎𝑃2
0 −𝑏𝐷𝑃0−𝑐𝐷−𝑒𝑃0− 𝑓 .

In particular, the stated result with a variance swap, (𝐷 − 𝑃0)2, is a special case of 𝑎 = −1, 𝑏 = 2,
and 𝑐 = 𝑒 = 𝑓 = 0. Consider a type- 𝑗 investor. Her terminal wealth𝑊2 𝑗 is given by Equation (8).
Lemma 1 ensures that she holds the same posterior distribution for𝐷 with or without the derivative.
In particular, 𝐷 remains conditionally normal. Let 𝑧𝑠 = 0, 𝑧𝑑 = 𝑧, and 𝑊1 = 𝑊0 + (𝑝 − 𝑃0)𝑋0.
Evaluating the expected utility (e.g., Lemma A.1 of Marín and Rahi (1999)) yields,

E1 𝑗
[
−𝑒−𝛼𝑊2𝑗

]
= − 1√

1 + 2𝛼var1 𝑗 [𝐷]𝑌1 𝑗

· exp
[
𝛼
(
−𝑊1 + 𝑋1 𝑗 (𝑝 − 𝑃0) + 𝑧 𝑗 (𝐷̄ − 𝑃0) − 𝑌1 𝑗

(
(1 − 𝑎 − 𝑏)𝑃2

0 − (𝑐 + 𝑒)𝑃0 − 𝑓 − 𝑞
))]

· exp
[
−𝛼

(
𝑋1 𝑗 + 𝑧 𝑗 + ((2 − 𝑏)𝑃0 − 𝑐)𝑌1 𝑗

)
(E1 𝑗 [𝐷] − 𝑃0) − 𝛼𝑌1 𝑗 (E1 𝑗 [𝐷] − 𝑃0)2]

· exp

[
𝛼2var1 𝑗 [𝐷]

(
𝑋1 𝑗 + 𝑧 𝑗 + 𝑌1 𝑗 (2E1 𝑗 [𝐷] − 𝑏𝑃0 − 𝑐)

)2

2
(
1 + 2𝛼var1 𝑗 [𝐷]𝑌1 𝑗

) ]
.
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The first-order condition with respect to 𝑋1 𝑗 yields

𝑋1 𝑗 =
E1 𝑗 [𝐷] − 𝑝
𝛼var1 𝑗 [𝐷]

− 𝑧 𝑗 − (2𝑝 − 𝑏𝑃0 − 𝑐)𝑌1 𝑗 .

Plug this back to E1 𝑗 [−𝑒−𝛼𝑊2𝑗 ] and evaluate the first-order condition with respect to 𝑌1 𝑗 to get:

𝑌1 𝑗 =
1

2𝛼

(
1

𝑞 − 𝑝2 + 𝑎𝑃2
0 + 𝑏𝑃0𝑝 + 𝑒𝑃0 + 𝑐𝑝 + 𝑓

− 1
var1 𝑗 [𝐷]

)
.

Finally, clearing the market with (1) and (2) yields the equilibrium prices 𝑝 = 𝑃1 and 𝑞 = 𝑄1 as
stated in the proposition. (The utility maximization problem is a strictly concave one. Hence, the
above solution implied by the first-order conditions are unique.) □

Proposition 3

Proof. Lemma S2 in the internet appendix shows that a type- 𝑗 investor’s risk-neutral density is
𝜙1 𝑗 (𝐷), whose derivative with respect to 𝐷 can be found as

𝜙′1 𝑗 (𝐷) =
[
−𝛼 · (𝑋1 𝑗 + 𝑓 ′(𝐷)𝑌1 𝑗 ) −𝐺1 𝑗𝐷 + (𝐺0𝐷̄ + (𝐺1 𝑗 −𝐺0)𝜂)

]
𝜙1 𝑗 (𝐷).

Note also that lim𝐷→±∞ 𝜙1 𝑗 = 0, for otherwise the first-order conditions (S2) (i.e., the risk-neutral
prices) would not be well-defined and the equilibrium would not exist. Therefore,∫ ∞

−∞
𝜙′1 𝑗 (𝐷)d𝐷 = Ê1 𝑗

[
−𝛼 · (𝑋1 𝑗 + 𝑓 ′(𝐷)𝑌1 𝑗 ) −𝐺1 𝑗𝐷 + (𝐺1 𝑗 −𝐺0)𝜂

]
= −𝛼𝑋1 𝑗 − 𝛼Δ1 𝑗𝑌1 𝑗 −𝐺1 𝑗𝑝1 +𝐺0𝐷̄ + (𝐺1 𝑗 −𝐺0)𝜂 = 0,

where the last equality holds because
∫ ∞
−∞ 𝜙

′
1 𝑗 (𝐷)d𝐷 = lim𝐷→∞ 𝜙1 𝑗 (𝐷) − lim𝐷→−∞ 𝜙1 𝑗 (𝐷) = 0.

Hence,

𝑋1 𝑗 + Δ1 𝑗𝑌1 𝑗 =
𝐺1 𝑗

𝛼

(
𝐺0
𝐺1 𝑗

𝐷̄ +
𝐺1 𝑗 −𝐺0

𝐺1 𝑗
𝜂 − 𝑝1

)
.

Note from Proposition 1 that the right-hand side above is exactly the demand function𝑋 nd
1 𝑗 (𝑝1). □

Proposition 4

Proof. To begin with, Lemma 1 ensures that these additional call options do not reveal new
information.11 Therefore, both the demanders and the suppliers have the same posterior distribution

11 Lemma 1 only proves the information redundancy result for a single arbitrary derivative. It can be easily
generalized by noting (1) that the demanders’ learning is unaffected; (2) that the suppliers can infer from the market
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of 𝐷 as in the benchmark.
Next, we consider investors’ optimization. A type- 𝑗 ∈ {𝑑, 𝑠} investor’s terminal wealth is

𝑊2 𝑗 =𝑊1 + (𝐷 − 𝑃1)𝑋1 𝑗 +
𝑛∑
𝑖=1

(
(𝐷 − 𝐾𝑖)+ −𝑄1𝑖

)
𝑌1 𝑗𝑖 + (𝐷 − 𝐷̄)𝑧 𝑗 ,

where 𝑊1 = 𝑊0 + (𝑃1 − 𝑃0)𝑋0; 𝑄1𝑖 is the price of the call with strike 𝐾𝑖 (at 𝑡 = 1); 𝑌1 𝑗𝑖 is the
investor’s holding of that call; 𝑧 𝑗 is her endowment shock (𝑧𝑑 = 𝑧 and 𝑧𝑠 = 0). She chooses her
demand 𝑋1 𝑗 and {𝑌1 𝑗𝑖} to maximizes 𝑈1 𝑗 := E1 𝑗

[
−𝑒−𝛼𝑊2𝑗

]
.

We first establish the uniqueness of the optimal demand, taking all prices 𝑃1 and {𝑄1𝑖} as given.
This is because the optimization problem is strictly concave:

𝜕2𝑈1 𝑗

𝜕𝑋1 𝑗
2 = E1 𝑗

[
−𝛼2 · (𝐷 − 𝑃1)2𝑒−𝛼𝑊2𝑗

]
< 0

𝜕2𝑈1 𝑗

𝜕𝑌1 𝑗𝑖
2 = E1 𝑗

[
−𝛼2 ·

(
(𝐷 − 𝐾𝑖)+ −𝑄1𝑖

)2
𝑒−𝛼𝑊2𝑗

]
< 0, ∀𝑖 ∈ {1, ..., 𝑛}.

Therefore, the first-order conditions (if the solution exists) are sufficient for the global optimum:

𝜕𝑈1 𝑗

𝜕𝑋1 𝑗
= E1 𝑗

[
𝛼 · (𝐷 − 𝑃1)𝑒−𝛼𝑊2𝑗

]
= 0; and

𝜕𝑈1 𝑗

𝜕𝑌1 𝑗𝑖
= E1 𝑗

[
𝛼 ·

(
(𝐷 − 𝐾𝑖)+ −𝑄1𝑖

)
𝑒−𝛼𝑊2𝑗

]
= 0, ∀𝑖 ∈ {1, ..., 𝑛}.

(A.6)

While not analytically tractable, it is clear that the first-order conditions (A.6) always have a solution
(existence): Consider the extreme choices of 𝑋1 𝑗 and its implication for 𝑈1 𝑗 for example. When
|𝑋1 𝑗 | → ∞, 𝑈1 𝑗 → −∞ because with infinite holding 𝑋1 𝑗 , the uncertainty associated with the
risky payoff 𝐷 becomes infinity. Such infinite payoff risk makes the investor suffer from infinite
risk. Given that the optimization is strictly concave and that lim𝑋1𝑗→±∞𝑈1 𝑗 = −∞, there exists a
unique 𝑋1 𝑗 that maximizes 𝑈1 𝑗 . The same argument applies to option holdings {𝑌1 𝑗𝑖}.

We have shown that the optimal demand is a unique function of the prices 𝑃1 and {𝑄1𝑖}.
These 𝑛 + 1 prices are pinned down via the 𝑛 + 1 market clearing conditions:

𝜋𝑋1𝑑 + (1 − 𝜋)𝑋1𝑠 − 𝑋̄ = 0; and 𝜋𝑌1𝑑𝑖 + (1 − 𝜋)𝑌1𝑠𝑖 = 0, ∀𝑖 ∈ {1, ..., 𝑛}.

clearing conditions the exact quantities of the demanders’ demand in all assets; (3) that the suppliers effectively learn
from the demanders’ first-order conditions; and (4) that the demanders’ first-order condition for the underlying always
reveals the same information as in the benchmark.
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or, defining 𝐹 : R𝑛+1 ↦→ R𝑛+1:

𝐹 (𝑃1, 𝑄1𝑖, ..., 𝑄1𝑛) :=


𝜋𝑋1𝑑 + (1 − 𝜋)𝑋1𝑠 − 𝑋̄
𝜋𝑌1𝑑1 + (1 − 𝜋)𝑌1𝑠1

...

𝜋𝑌1𝑑𝑛 + (1 − 𝜋)𝑌1𝑠𝑛


=


0
0
...

0


.(A.7)

It turns out that the prices pinned down by 𝐹 (·) = 0 are also unique. We prove this by showing that
the Jacobian matrix of 𝐹 (·)

𝜋 ·



d𝑋1𝑑
d𝑃1

d𝑋1𝑑
d𝑄11

· · · d𝑋1𝑑
d𝑄1𝑛

d𝑌1𝑑1
d𝑃1

d𝑌1𝑑1
d𝑄11

· · · d𝑌1𝑑1
d𝑄1𝑛

...
...

. . .
...

d𝑌1𝑑𝑛
d𝑃1

d𝑌1𝑑𝑛
d𝑄11

· · · d𝑌1𝑑𝑛
d𝑄1𝑛


+ (1 − 𝜋)



d𝑋1𝑠
d𝑃1

d𝑋1𝑠
d𝑄11

· · · d𝑋1𝑠
d𝑄1𝑛

d𝑌1𝑠1
d𝑃1

d𝑌1𝑠1
d𝑄11

· · · d𝑌1𝑠1
d𝑄1𝑛

...
...

. . .
...

d𝑌1𝑠𝑛
d𝑃1

d𝑌1𝑠𝑛
d𝑄11

· · · d𝑌1𝑠𝑛
d𝑄1𝑛


(A.8)

is negative definite. To do so, consider the underlying asset for example (the argument is generic for
any of the 𝑛+1 securities). The first-order condition (A.6) is an implicit function of the demand𝑋1 𝑗

and all 𝑛 + 1 prices. By implicit function theorem, we have

d𝑋1 𝑗

d𝑃1
= −

𝜕2𝑈1 𝑗/
(
𝜕𝑋1 𝑗 𝜕𝑃1

)
𝜕2𝑈1 𝑗/𝜕𝑋1 𝑗

2 =
E1 𝑗

[
𝛼𝑒−𝛼𝑊2𝑗 − 𝛼2 · (𝐷 − 𝑃1)𝑋1 𝑗𝑒

−𝛼𝑊2𝑗
]

E1 𝑗
[
−𝛼2 · (𝐷 − 𝑃1)2𝑒−𝛼𝑊2𝑗

] .(A.9)

Clearly, the denominator is negative (it is the second-order derivative of 𝑈1 𝑗 with respect to 𝑋1 𝑗 ).
The numerator can be further simplified:

E1 𝑗
[
𝛼𝑒−𝛼𝑊2𝑗 − 𝛼2 · (𝐷 − 𝑃1)𝑋1 𝑗𝑒

−𝛼𝑊2𝑗
]
= E1 𝑗

[
𝛼𝑒−𝛼𝑊2𝑗

]
− 𝛼𝑋1 𝑗 E1 𝑗

[
𝛼 · (𝐷 − 𝑃1)𝑒−𝛼𝑊2𝑗

]︸                         ︷︷                         ︸
=0, by the first-order condition (A.6)

> 0.
(A.10)

Therefore, we have d𝑋1 𝑗/d𝑃1 < 0 in equilibrium, which is an intuitive result that the demand for a
security strictly decreases with its price, for both 𝑗 ∈ {𝑑, 𝑠}. Again by implicit function theorem,
∀𝑖 ∈ {1, ..., 𝑛}, we also have

d𝑋1 𝑗

d𝑄1𝑖
= −

𝜕2𝑈1 𝑗/
(
𝜕𝑋1 𝑗 𝜕𝑄1𝑖

)
𝜕2𝑈1 𝑗/𝜕𝑋1 𝑗

2 =
E1 𝑗

[
−𝛼2 · (𝐷 − 𝑃1)𝑌1 𝑗𝑖𝑒

−𝛼𝑊2𝑗
]

E1 𝑗
[
−𝛼2 · (𝐷 − 𝑃1)2𝑒−𝛼𝑊2𝑗

]
where, like before, the numerator can be further simplified as

E1 𝑗
[
−𝛼2 · (𝐷 − 𝑃1)𝑌1 𝑗𝑖𝑒

−𝛼𝑊2𝑗
]
= −𝛼𝑌1 𝑗𝑖E1 𝑗

[
𝛼 · (𝐷 − 𝑃1)𝑒−𝛼𝑊2𝑗

]
= 0

following the first-order condition (A.6). Therefore, d𝑋1 𝑗/d𝑄1𝑖 = 0, ∀𝑖 ∈ {1, ..., 𝑛}.
Following the same steps as above, for each call option 𝑖, we have d𝑌1 𝑗𝑖/d𝑃1 = 0, d𝑌1 𝑗𝑖/d𝑄1𝑖 < 0,
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and d𝑌1 𝑗𝑖/d𝑄1𝑙 = 0 for 𝑙 ≠ 𝑖. Therefore, the Jacobian (A.8) has all off-diagonal terms equal to
zero and all diagonal terms strictly negative. It is negative definite, implying a unique solution to
𝐹 (·) = 0. This unique solution of prices also implies that investors’ demand, pinned down by the
first-order conditions (A.6), is unique.

To sum up, we have characterized the 𝑡 = 1 equilibrium under any arbitrary set of (call) options
in terms of investors’ optimal demand (A.6) and market clearing (A.7). We have also shown that
the solution to the equation system (A.6) and (A.7) is unique. □

Proposition 6

Proof. This proof considers a more general quadratic payoff 𝑓 (𝐷) = 𝐷2−𝑎𝑃2
0 −𝑏𝐷𝑃0−𝑐𝐷−𝑒𝑃0− 𝑓 .

In particular, the stated result is a special case of 𝑎 = −1, 𝑏 = 2, and 𝑐 = 𝑒 = 𝑓 = 0. The proof of
Proposition 2 gives an investor’s expected utility at 𝑡 = 1, E1 𝑗

[
−𝑒−𝛼𝑊2𝑗

]
, taking 𝑝 = 𝑃1 and 𝑞 = 𝑄1

as given. Consider a demander ( 𝑗 = 𝑑) first. Expanding with𝑊1 =𝑊0 + (𝑃1 − 𝑃0)𝑋0 and E1𝑑 [𝐷]
with 𝑠 and 𝑧 gives

E1𝑑
[
−𝑒−𝛼𝑊2𝑑

]
= −

√
𝐺1𝑑
𝐺1

· 𝑒
𝐺1−𝐺1𝑑

2𝐺1 · 𝑒−𝛼 ·(𝑊0+(𝑃1−𝑃0)𝑋0+(𝑃1−𝐷̄)𝑧) · 𝑒−
𝐺1𝑑

2

(
𝐷̄+𝐺1𝑑−𝐺0

𝐺1𝑑
(𝑠−𝐷̄)−𝑃1

)2

where 𝑃1 = 𝑃nd
1 can be further written as a linear combination of 𝑠 and 𝑧. Taking the expectation

of the above over {𝑠, 𝑧} yields the “interim” utility 𝑈0𝑑 of a demander; that is, the expected utility
after the type realizes but before the signal and the endowment shock are observed:

𝑈0𝑑 = −
√
𝐺1𝑑
𝐺1

· 𝑒
𝐺1−𝐺1𝑑

2𝐺1
−𝛼𝑊0𝑑

(
1 + 𝐺0

𝐺1𝑑 −𝐺0

(
1 − 𝐺1𝑑

𝐺1

)2 (
1 + 𝛼2

𝜏𝜀𝜏z

)
− 𝛼2

𝐺0𝜏z

)− 1
2

,

where 𝑊0𝑑 :=𝑊0 + (𝐷̄ − 𝑃0)𝑋0 −
𝛼

𝐺0
𝑋0𝑋̄ + 𝛼

2𝐺0
𝑋̄ 2 − 𝛼

2

[
1 + 𝐺0

𝐺1𝑑 −𝐺0

(
1 − 𝐺1𝑑

𝐺1

)2 (
1 + 𝛼2

𝜏𝜀𝜏z

)
− 𝛼2

𝐺0𝜏z

]−1

·
{(
𝐺1 −𝐺0
𝐺1

)2 ( 1
𝐺0

+ 1
𝜏𝜀

) (
1 + 𝛼2

𝜏𝜀𝜏z

) (
𝑋0 − 𝑋̄

)2

+
(

1
𝐺0

+ 1
𝜏𝜀

)2𝛼2

𝜏z

[
2
(
1 − 𝐺0

𝐺1

) (
1 − 𝐺0

𝐺1𝑑

)
𝑋0𝑋̄ +

[
𝐺0
𝐺1𝑑

(
1 − 𝐺1𝑑

𝐺1

)2
−

(
1 − 𝐺0

𝐺1

)2
]
𝑋̄ 2

]}
.

Similarly, the interim utility 𝑈0𝑠 of liquidity suppliers can be derived as

𝑈0𝑠 = −
√
𝐺1𝑠
𝐺1

· 𝑒
𝐺1−𝐺1𝑠

2𝐺1
−𝛼𝑊0𝑠

(
1 + 𝐺0

𝐺1𝑠 −𝐺0

(
1 − 𝐺1𝑠

𝐺1

)2
)− 1

2

,
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𝑊0𝑠 =𝑊0 + (𝐷̄ − 𝑃0)𝑋0 −
𝛼

2𝐺0
𝑋 2

0 + 𝛼𝐺1𝑠

2𝐺2
1

[
1 + 𝐺0

𝐺1𝑠 −𝐺0

(
1 − 𝐺1𝑠

𝐺1

)2
]−1

·
(
𝑋0 − 𝑋̄

)2
.

At 𝑡 = 0, investors choose𝑋0 to maximize 𝜋𝑈0𝑑 + (1−𝜋)𝑈0𝑠 . The first-order condition, together
with the market clearing condition 𝑋0 = 𝑋̄ , leads to

𝜋 ·
(
𝐷̄ − 𝑝 − 𝛼𝐺−1

0 𝑋̄ − 𝛼Σ𝑋̄
)
𝑀 + (1 − 𝜋)

(
𝐷̄ − 𝑝 − 𝛼𝐺−1

0 𝑋̄
)
= 0,

where 𝑀 = 𝑒
𝐺1𝑠−𝐺1𝑑

2𝐺1

√
𝐺1𝑑
𝐺1𝑠

exp
(𝛼
2
Δ2𝑋̄

2
)√ 1 + 𝜋2Δ0

1 + Δ0(1 − 𝜋)2 − 𝛼2/(𝜏z𝐺0)
,

and Δ0 and Δ2 are the same coefficients as given in the proof of Propositions 5 and 1. (Note that
the second-order conditions are satisfied as well as both 𝑈0𝑑 and 𝑈0𝑠 are monotone transformation
of quadratic terms in 𝑋0.) It can be seen that the above first-order condition is linear in the market
clearing price 𝑝, which then uniquely solves the equilibrium 𝑃0 stated in the proposition.

Conditional on the realization of 𝑃0, in the no-derivative benchmark, following Vayanos and
Wang (2012), the liquidity demanders’ interium utility is

𝑈 𝑛𝑑
0𝑑 = −𝑒−𝛼𝑊 𝑛𝑑

0𝑑

(
1 + 𝐺0

𝐺1𝑑 −𝐺0

(
1 − 𝐺1𝑑

𝐺1

)2 (
1 + 𝛼2

𝜏𝜀𝜏z

)
− 𝛼2

𝐺0𝜏z

)− 1
2

,

where 𝑊 𝑛𝑑
0𝑑 = 𝑊0𝑑 . As 0 < 𝐺1

𝐺1𝑑
< 1,

√
𝐺1𝑑
𝐺1

· 𝑒
𝐺1−𝐺1𝑑

2𝐺1 is a decreasing function of 𝐺1𝑑
𝐺1

. Therefore,√
𝐺1𝑑
𝐺1

·𝑒
𝐺1−𝐺1𝑑

2𝐺1 < 1 and𝑈0𝑑 > 𝑈 𝑛𝑑
0𝑑 . Likewise, for the liquidity suppiers,

√
𝐺1𝑠
𝐺1

·𝑒
𝐺1−𝐺1𝑠

2𝐺1 is an increasing

function of 𝐺1𝑠
𝐺1

because 𝐺1
𝐺1𝑠

> 1. Then
√
𝐺1𝑠
𝐺1

· 𝑒
𝐺1−𝐺1𝑠

2𝐺1 < 1 and𝑈0𝑠 > 𝑈
𝑛𝑑
0𝑠 . □

Corollary 1

Proof. This proof considers a more general quadratic payoff 𝑓 (𝐷) = 𝐷2−𝑎𝑃2
0 −𝑏𝐷𝑃0−𝑐𝐷−𝑒𝑃0− 𝑓 .

In particular, the stated result is a special case of 𝑎 = −1, 𝑏 = 2, and 𝑐 = 𝑒 = 𝑓 = 0. By market
clearing, we have 𝜋 (𝑋1𝑑 − 𝑋̄ ) = −(1 − 𝜋)(𝑋1𝑠 − 𝑋̄ ), where

𝑋1𝑠 =
E1𝑠 [𝐷] − 𝑃1
𝛼var1𝑠 [𝐷]

− (2𝑃1 − 𝑏𝑃0 − 𝑐)𝑌1𝑠 and 𝑌1𝑠 =
1

2𝛼
(𝐺1 −𝐺1𝑠) .

Therefore,

𝜆 =
cov[𝑃1 − 𝑃0, 𝜋 · (𝑋1𝑑 − 𝑋0)]

var[𝜋 · (𝑋1𝑑 − 𝑋0)]
=
−cov

(
𝑃1 − 𝑃0, (1 − 𝜋)

(
𝑋1𝑠 − 𝑋̄

) )
var

[
(1 − 𝜋) (𝑋1𝑠 − 𝑋̄ )

] =
1

1 − 𝜋
(𝐺1 −𝐺0)
(𝐺1 −𝐺1𝑠)

𝛼

𝐺1
.

Compared to Equation (18) in the benchmark, we have 𝜆/𝜆nd = 𝐺0/𝐺1 < 1.
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From Proposition 2, 𝑃1 is unchanged after the introduction of options, 𝑃1 = 𝑃nd
1 . As a result,

the price reversal 𝛾 is unaffected. □

Corollary 2

Proof. From Equation (19), 𝑀
𝑀nd =

√
𝐺1𝑑
𝐺1𝑠
𝑒
−𝐺1𝑑−𝐺1𝑠

2𝐺1 ≷ 1. Define 𝜋∗ ≡ 1
log(𝐺1𝑑/𝐺1𝑠 ) −

𝐺1𝑑
𝐺1𝑑−𝐺1𝑠

, we have

(1) exp
(
𝐺1𝑠−𝐺1𝑑

2𝐺1

)√
𝐺1𝑑
𝐺1𝑠

> 1 only if 𝐺1𝑑−𝐺1𝑠
𝐺1

+ log
(
𝐺1𝑠
𝐺1𝑑

)
< 0, which is equivalent to 𝜋 > 𝜋∗.

(1) exp
(
𝐺1𝑠−𝐺1𝑑

2𝐺1

)√
𝐺1𝑑
𝐺1𝑠

< 1 only if 𝐺1𝑑−𝐺1𝑠
𝐺1

+ log
(
𝐺1𝑠
𝐺1𝑑

)
> 0, which is equivalent to 𝜋 < 𝜋∗.

(1) exp
(
𝐺1𝑠−𝐺1𝑑

2𝐺1

)√
𝐺1𝑑
𝐺1𝑠

= 1 only if 𝐺1𝑑−𝐺1𝑠
𝐺1

+ log
(
𝐺1𝑠
𝐺1𝑑

)
= 0, which is equivalent to 𝜋 = 𝜋∗. □
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S1 Introducing a path-dependent derivative

This internet appendix studies a possibly path-dependent quadratic derivative, 𝑓 (𝐷) = 𝐷2 − 𝑎𝑃2
1 −

𝑏𝐷𝑃1 −𝑐𝐷 − 𝑒𝑃1 − 𝑓 . In particular, we allow 𝑓 (𝐷) to depend on the underlying asset price 𝑃1 (even

though 𝑓 (𝐷) is realized at 𝑡 = 2), hence “path-dependent.”

Proposition S1. With 𝑓 (𝐷) = 𝐷2 −𝑎𝑃2
1 −𝑏𝐷𝑃1 −𝑐𝐷 −𝑒𝑃1 − 𝑓 , there exists a unique equilibrium

at 𝑡 = 1. The demand schedules for the underlying are

𝑋1𝑑 (𝑝, 𝑞; 𝑠, 𝑧) = 𝑋 nd
1𝑑 (𝑝; 𝑠, 𝑧) + [(𝑏 − 2)𝑝 + 𝑐]𝑌1𝑑 (𝑝, 𝑞; 𝑠, 𝑧); and

𝑋1𝑠 (𝑝, 𝑞) = 𝑋 nd
1𝑠 (𝑝) + [(𝑏 − 2)𝑝 + 𝑐]𝑌1𝑠 (𝑝, 𝑞).

The demand schedules for the general variance swap are

𝑌1𝑑 (𝑝, 𝑞; 𝑠, 𝑧) = 1
2𝛼

((
𝑞 +

(
(𝑎 + 𝑏 − 1)𝑝2 + (𝑐 + 𝑒)𝑝 + 𝑓

))−1
−𝐺1𝑑

)
; and

𝑌1𝑠 (𝑝, 𝑞) =
1

2𝛼

((
𝑞 +

(
(𝑎 + 𝑏 − 1)𝑝2 + (𝑐 + 𝑒)𝑝 + 𝑓

))−1
−𝐺1𝑠

)
.

The underlying’s market clears at 𝑃1 = 𝑃nd
1 , the same as in the benchmark (Equation (6)).

The derivative’s market clears at 𝑄1 = 𝐺−1
1 − (𝑎 + 𝑏 − 1)𝑃2

1 − (𝑐 + 𝑒)𝑃1 − 𝑓 . The conditional

precision {𝐺1𝑑 ,𝐺1𝑠,𝐺1} are the same as those defined in Proposition 1.

Proof. Consider a type- 𝑗 investor. Her terminal wealth𝑊2 𝑗 is given by

𝑊2 𝑗 =𝑊0 + (𝑃1 − 𝑃0)𝑋0 + (𝐷 − 𝑃1)𝑋1 𝑗 + (𝑓 (𝐷) −𝑄1)𝑌1 𝑗 + (𝐷 − 𝐷̄)𝑧 𝑗 .(S1)

Lemma 1 ensures that she holds the same posterior distribution for𝐷 with or without the derivative.

In particular, 𝐷 remains conditionally normal. Let 𝑧𝑠 = 0, 𝑧𝑑 = 𝑧, and 𝑊1 = 𝑊0 + (𝑝 − 𝑃0)𝑋0.

2



Evaluating the expected utility (e.g., Lemma A.1 of Marín and Rahi (1999)) yields,

E1 𝑗
[
−𝑒−𝛼𝑊2𝑗

]
= − 1√

1 + 2𝛼var1 𝑗 [𝐷]𝑌1 𝑗
exp

[
𝛼
(
−𝑊1 + 𝑧 𝑗 (𝐷̄ − 𝑝) − 𝑌1 𝑗

(
(1 − 𝑎 − 𝑏)𝑝2 − (𝑐 + 𝑒)𝑝 − 𝑓 − 𝑞

))]
· exp

[
−𝛼

(
𝑋1 𝑗 + 𝑧 𝑗 + ((2 − 𝑏)𝑝 − 𝑐)𝑌1 𝑗

)
(E1 𝑗 [𝐷] − 𝑝) − 𝛼𝑌1 𝑗 (E1 𝑗 [𝐷] − 𝑝)2]

· exp

[
𝛼2var1 𝑗 [𝐷]

(
𝑋1 𝑗 + 𝑧 𝑗 + 𝑌1 𝑗 (2E1 𝑗 [𝐷] − 𝑏𝑝 − 𝑐)

)2

2
(
1 + 2𝛼var1 𝑗 [𝐷]𝑌1 𝑗

) ]
.

The first-order condition with respect to 𝑋1 𝑗 yields

𝑋1 𝑗 =
E1 𝑗 [𝐷] − 𝑝
𝛼var1 𝑗 [𝐷]

− 𝑧 𝑗 − ((2 − 𝑏)𝑝 − 𝑐)𝑌1 𝑗 .

Plug this back to E1 𝑗 [−𝑒−𝛼𝑊2𝑗 ] and evaluate the first-order condition with respect to 𝑌1 𝑗 to get:

𝑌1 𝑗 =
1

2𝛼

(
1

𝑞 + (𝑎 + 𝑏 − 1)𝑝2 + (𝑐 + 𝑒)𝑝 + 𝑓
− 1

var1 𝑗 [𝐷]

)
.

Finally, clearing the market yields the equilibrium prices 𝑝 = 𝑃1 and 𝑞 = 𝑄1 as stated in the

proposition. (The utility maximization problem is a strictly concave one. Hence, the above

solution implied by the first-order conditions are unique.) □

With the variance swap 𝑓 (𝐷) = 𝐷2 − 𝑎𝑃2
1 − 𝑏𝐷𝑃1 − 𝑐𝐷 − 𝑒𝑃1 − 𝑓 , the two liquidity measures

can be found, following Proposition 2, as

𝜆 =
𝛼

1 − 𝜋
𝐺1 −𝐺0
𝐺1 −𝐺1𝑠

1
𝐺1 − 0.5𝑏 (𝐺1 −𝐺0)

=
𝐺0

𝐺1 − 𝑏
2 (𝐺1 −𝐺0)

𝜆nd and

𝛾 =

(
1 − 𝐺0

𝐺1

) (
1 − 𝐺1𝑠

𝐺1

)
1

𝐺1𝑠 −𝐺0
= 𝛾nd.

As can be seen, the possibly path-dependent derivative might change the result of 𝜆 < 𝜆nd from

Corollary 1. This happens if and only if the coefficient 𝑏 ≥ 2, i.e., the loading on 𝐷𝑃1. This

is because with such path-dependent derivatives, the built-in dependence of 𝑓 (𝐷) on 𝑃1 creates

some “mechanical” delta-hedging needs for the investors. In the quadratic example above, the total

delta-hedging ratio is Ê1 𝑗

[
𝜕𝑓
𝜕𝐷

]
= 2𝑃1 −𝑏𝑃1 − 𝑐, and we can see that the term −𝑏𝑃1 contributes to it,
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simply because of the built-in interaction between the actual terminal payoff𝐷 and the intermediate

price 𝑃1. In particular, when 𝑏 ≥ 2, the sign of the delta-hedging ratio above changes, mechanically

affecting the information-to-noise ratio in the underlying and, hence, also the price impact 𝜆.

On the other hand, the price reversal 𝛾 is unaffected, because for both types of investors,

𝑗 ∈ {𝑑, 𝑠}, the above delta hedging ratio remains the same. Hence, the net delta-hedging trading

remains zero, as in the case of a path-independent variance swap in the paper, and there is no

additional price pressure, ensuring 𝑃1 = 𝑃nd. As such, 𝛾 remains unaffected.

Proposition S2. With 𝑓 (𝐷) = 𝐷2−𝑎𝑃2
1 −𝑏𝐷𝑃1−𝑐𝐷−𝑒𝑃1− 𝑓 , the underlying’s 𝑡 = 0 equilibrium

price remains the same as stated in Proposition 6.

Proof. The proof of Proposition S1 gives an investor’s expected utility at 𝑡 = 1, E1 𝑗
[
−𝑒−𝛼𝑊2𝑗

]
,

taking 𝑝 = 𝑃1 and 𝑞 = 𝑄1 as given. Consider a demander ( 𝑗 = 𝑑) first. Expanding with

𝑊1 =𝑊0 + (𝑃1 − 𝑃0)𝑋0 and E1𝑑 [𝐷] with 𝑠 and 𝑧 gives

E1𝑑
[
−𝑒−𝛼𝑊2𝑑

]
= −

√
𝐺1𝑑
𝐺1

· 𝑒
𝐺1−𝐺1𝑑

2𝐺1 · 𝑒−𝛼 ·(𝑊0+(𝑃1−𝑃0)𝑋0+(𝑃1−𝐷̄)𝑧) · 𝑒−
𝐺1𝑑

2

(
𝐷̄+𝐺1𝑑−𝐺0

𝐺1𝑑
(𝑠−𝐷̄)−𝑃1

)2

where 𝑃1 = 𝑃nd
1 can be further written as a linear combination of 𝑠 and 𝑧. Taking the expectation

of the above over {𝑠, 𝑧} yields the “interim” utility 𝑈0𝑑 of a demander; that is, the expected utility

after the type realizes but before the signal and the endowment shock are observed:

𝑈0𝑑 = −
√
𝐺1𝑑
𝐺1

· 𝑒
𝐺1−𝐺1𝑑

2𝐺1
−𝛼𝑊0𝑑

(
1 + 𝐺0

𝐺1𝑑 −𝐺0

(
1 − 𝐺1𝑑

𝐺1

)2 (
1 + 𝛼2

𝜏𝜀𝜏z

)
− 𝛼2

𝐺0𝜏z

)− 1
2

,

where

𝑊0𝑑 :=𝑊0 + (𝐷̄ − 𝑃0)𝑋0 −
𝛼

𝐺0
𝑋0𝑋̄ + 𝛼

2𝐺0
𝑋̄ 2 − 𝛼

2

[
1 + 𝐺0

𝐺1𝑑 −𝐺0

(
1 − 𝐺1𝑑

𝐺1

)2 (
1 + 𝛼2

𝜏𝜀𝜏z

)
− 𝛼2

𝐺0𝜏z

]−1

·
{(
𝐺1 −𝐺0
𝐺1

)2 ( 1
𝐺0

+ 1
𝜏𝜀

) (
1 + 𝛼2

𝜏𝜀𝜏z

) (
𝑋0 − 𝑋̄

)2

+
(

1
𝐺0

+ 1
𝜏𝜀

)2𝛼2

𝜏z

[
2
(
1 − 𝐺0

𝐺1

) (
1 − 𝐺0

𝐺1𝑑

)
𝑋0𝑋̄ +

[
𝐺0
𝐺1𝑑

(
1 − 𝐺1𝑑

𝐺1

)2
−

(
1 − 𝐺0

𝐺1

)2
]
𝑋̄ 2

]}
.
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Note that condition 𝛼2𝐺−1
0 𝜏−1

z < 1 ensures 𝑈0𝑑 is well-defined; in particular, the term inside the

brackets is always positive. Similarly, the interim utility𝑈0𝑠 of liquidity suppliers can be derived as

𝑈0𝑠 = −
√
𝐺1𝑠
𝐺1

· 𝑒
𝐺1−𝐺1𝑠

2𝐺1
−𝛼𝑊0𝑠

(
1 + 𝐺0

𝐺1𝑠 −𝐺0

(
1 − 𝐺1𝑠

𝐺1

)2
)− 1

2

,

where

𝑊0𝑠 =𝑊0 + (𝐷̄ − 𝑃0)𝑋0 −
𝛼

2𝐺0
𝑋 2

0 + 𝛼𝐺1𝑠

2𝐺2
1

[
1 + 𝐺0

𝐺1𝑠 −𝐺0

(
1 − 𝐺1𝑠

𝐺1

)2
]−1

·
(
𝑋0 − 𝑋̄

)2
.

At 𝑡 = 0, investors choose 𝑋0 to maximize

𝜋𝑈0𝑑 + (1 − 𝜋)𝑈0𝑠 .

The first-order condition, together with the market clearing condition 𝑋0 = 𝑋̄ , leads to

𝜋 ·
(
𝐷̄ − 𝑝 − 𝛼𝐺−1

0 𝑋̄ − 𝛼Σ𝑋̄
)
𝑀 + (1 − 𝜋)

(
𝐷̄ − 𝑝 − 𝛼𝐺−1

0 𝑋̄
)
= 0,

where

𝑀 = 𝑒
𝐺1𝑠−𝐺1𝑑

2𝐺1

√
𝐺1𝑑
𝐺1𝑠

exp
(𝛼
2
Δ2𝑋̄

2
)√ 1 + 𝜋2Δ0

1 + Δ0(1 − 𝜋)2 − 𝛼2/(𝜏z𝐺0)
,

and Δ0 and Δ2 are the same coefficients as given in the proof of Propositions 5 and 1. (Note that

the second-order conditions are satisfied as well as both 𝑈0𝑑 and 𝑈0𝑠 are monotone transformation

of quadratic terms in 𝑋0.) It can be seen that the above first-order condition is linear in the market

clearing price 𝑝, which then uniquely solves the equilibrium 𝑃0 stated in the proposition.

Conditional on the realization of 𝑃0, in the no-derivative benchmark, following Vayanos and

Wang (2012), the liquidity demanders’ interium utility is

𝑈 𝑛𝑑
0𝑑 = −𝑒−𝛼𝑊 𝑛𝑑

0𝑑

(
1 + 𝐺0

𝐺1𝑑 −𝐺0

(
1 − 𝐺1𝑑

𝐺1

)2 (
1 + 𝛼2

𝜏𝜀𝜏z

)
− 𝛼2

𝐺0𝜏z

)− 1
2

,

where 𝑊 𝑛𝑑
0𝑑 = 𝑊0𝑑 . As 0 < 𝐺1

𝐺1𝑑
< 1,

√
𝐺1𝑑
𝐺1

· 𝑒
𝐺1−𝐺1𝑑

2𝐺1 is a decreasing function of 𝐺1𝑑
𝐺1

. Therefore,√
𝐺1𝑑
𝐺1

·𝑒
𝐺1−𝐺1𝑑

2𝐺1 < 1 and𝑈0𝑑 > 𝑈 𝑛𝑑
0𝑑 . Likewise, for the liquidity suppiers,

√
𝐺1𝑠
𝐺1

·𝑒
𝐺1−𝐺1𝑠

2𝐺1 is an increasing

function of 𝐺1𝑠
𝐺1

because 𝐺1
𝐺1𝑠

> 1. Then
√
𝐺1𝑠
𝐺1

· 𝑒
𝐺1−𝐺1𝑠

2𝐺1 < 1 and𝑈0𝑠 > 𝑈
𝑛𝑑
0𝑠 . □
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As we have seen above, while the path-dependence of the derivative payoff affects an individual

investor’s delta hedging at 𝑡 = 1, in aggregate, the net delta-hedging trade remains zero. As such,

intuitively, the path-dependent derivative does not create additional trading gains and nor does it

affect the split of the “pie.” One step back to 𝑡 = 0, therefore, the evaluation of the underlying asset

is unaffected.

S2 Additional lemmas

Lemma S1

Lemma S1 (Decomposition of a call). Suppose the underlying price at 𝑡 = 1 is 𝑃1. The 𝑡 = 2

payoff of an out-of-the-money call option with strike 𝐾 ≥ 𝑃1 can be decomposed into

max{0, 𝐷 − 𝐾} = 1
2
|𝐷 − 𝑃1 | +

1
2
(
1 − 21{𝑃1≤𝐷≤𝐾}

)
(𝐷 − 𝑃1) + 1{𝐷>𝐾} (𝑃1 − 𝐾);

and that of an in-the-money call with 𝐾 ≤ 𝑃1 can be decomposed into

max{0, 𝐷 − 𝐾} = 1
2
|𝐷 − 𝑃1 | +

1
2
(
1 + 21{𝐾≤𝐷≤𝑃1}

)
(𝐷 − 𝑃1) + 1{𝐷>𝐾} (𝑃1 − 𝐾).

Proof. Consider the out-of-the-money call with 𝐾 ≥ 𝑃1.

max{0, 𝐷 − 𝐾} = 1
2
|𝐷 − 𝐾 | + 1

2
(𝐷 − 𝐾) = 1

2
|𝑉 − (𝐾 − 𝑃1) | +

1
2
(𝑉 − (𝐾 − 𝑃1))

where 𝑉 := 𝐷 − 𝑃1 as a shorthand notation. Compare |𝑉 − (𝐾 − 𝑃1) | to |𝑉 |:

|𝑉 − (𝐾 − 𝑃1) | − |𝑉 | =



𝐾 − 𝑃1, if 𝑉 < 0

−2𝑉 + (𝐾 − 𝑃1), if 0 ≤ 𝑉 ≤ 𝐾 − 𝑃1

−(𝐾 − 𝑃1), if 𝑉 > 𝐾 − 𝑃1

.

Therefore, |𝑉 − (𝐾 −𝑃1) | = |𝑉 | +1{𝑉<0} (𝐾 −𝑃1) +1{0≤𝑉≤𝐾−𝑃1} (−2𝑉 +𝐾 −𝑃1) −1{𝑉>𝐾−𝑃1} (𝐾 −𝑃1).

Substituting into the call’s payoff expression and simplifying gives the expression stated in the
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lemma. The proof for the decomposition of the in-the-money call repeats the above steps and is

omitted. □

Lemma S2

Lemma S2 (Risk-neutral pricing). The equilibrium underlying price 𝑃1 and the derivative

price 𝑄1 must satisfy

𝑃1 = Ê1 𝑗 [𝐷] =
∫
R
𝐷𝜙1 𝑗 (𝐷)d𝐷 and 𝑄1 = Ê1 𝑗 [𝑓 (𝐷)] =

∫
R
𝑓 (𝐷)𝜙1 𝑗 (𝐷)d𝐷(S2)

where 𝜙1 𝑗 (𝐷) is a type- 𝑗 investor’s risk-neutral density, defined as

𝜙1 𝑗 (𝐷) :=
ℎ1 𝑗 (𝐷)∫
R
ℎ1 𝑗 (𝐷)d𝐷

, with ℎ1 𝑗 (𝐷) := 𝑒−𝛼 ·(𝐷𝑋1𝑗+𝑓 (𝐷)𝑌1𝑗)−𝐺1𝑗
2 𝐷2+(𝐺0𝐷̄+(𝐺1𝑗−𝐺0)𝜂)𝐷 .(S3)

Proof. The risk-neutral pricing formulas follow the first-order conditions

𝜕𝑈1 𝑗

𝜕𝑋1 𝑗
= E1 𝑗

[
𝛼 · (𝐷 − 𝑃1)𝑒−𝛼𝑊2𝑗

]
= 0 and

𝜕𝑈1 𝑗

𝜕𝑌1 𝑗
= E1 𝑗

[
𝛼 · (𝑓 (𝐷) −𝑄1)𝑒−𝛼𝑊2𝑗

]
= 0

which imply

𝑃1 =
E1 𝑗 [𝐷𝑒−𝛼𝑊2𝑗 ]
E[𝑒−𝛼𝑊2𝑗 ]

=

∫
R
𝐷𝑒−𝛼𝑊2𝑗𝜙1 𝑗 (𝐷)d𝐷∫
R
𝑒−𝛼𝑊2𝑗𝜙1 𝑗 (𝐷)d𝐷

and 𝑄1 =
E1 𝑗 [𝑓 (𝐷)𝑒−𝛼𝑊2𝑗 ]
E[𝑒−𝛼𝑊2𝑗 ]

=

∫
R
𝑓 (𝐷)𝑒−𝛼𝑊2𝑗𝜙1 𝑗 (𝐷)d𝐷∫
R
𝑒−𝛼𝑊2𝑗𝜙1 𝑗 (𝐷)d𝐷

where 𝜙1 𝑗 (𝐷) is the type- 𝑗 investor’s posterior density (conditional on the prices) of 𝐷 . Letting

𝜙1 𝑗 (𝐷) := 𝑒−𝛼𝑊2𝑗𝜙1𝑗 (𝐷)∫
R
𝑒−𝛼𝑊2𝑗𝜙1𝑗 (𝐷)d𝐷

, one obtains the risk-neutral pricing formula given in the lemma. It

remains to simplify the expression of 𝜙1 𝑗 (𝐷). To do so, recall𝑊2 𝑗 =𝑊1 + (𝐷 − 𝑃1)𝑋1 𝑗 + (𝑓 (𝐷) −

𝑄1)𝑌1 𝑗 + (𝐷 − 𝐷̄)𝑧 𝑗 , where𝑊1 =𝑊0 + (𝑃1 − 𝑃0)𝑋0 and 𝑧 𝑗 is a type- 𝑗 investor’s endowment shock

(𝑧𝑑 = 𝑧 and 𝑧𝑠 = 0). In addition, by Lemma 1,𝜙1𝑑 (𝐷) is the normal density with mean 𝐺0
𝐺1𝑑
𝐷̄+𝐺1𝑑−𝐺0

𝐺1𝑑
𝑠

and variance 𝐺−1
1𝑑 ; and 𝜙1𝑠 (𝐷) is the normal density with mean 𝐺0

𝐺1𝑠
𝐷̄ + 𝐺1𝑠−𝐺0

𝐺1𝑠
𝜂 (with 𝜂 := 𝑠 − 𝛼

𝜏𝜀
𝑧)

and variance 𝐺−1
1𝑠 . The simplified expression of 𝜙1 𝑗 (𝐷) with ℎ1 𝑗 (𝐷) follows by plugging these

expressions into 𝜙1 𝑗 (𝐷) and offsetting common terms in the numerator and the denominator. □
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