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Earbuds, ear-worn wearables, have attracted growing attention 
from both industry and academia. This trend has witnessed 
manufacturers embedding multiple sensors on earbuds to 
enrich their functionalities. For example, Apple AirPods, Sony 

WF-1000XM3, and Bose QuietControl 30, have been equipped with 
accelerometers for tapping interaction or multiple microphones for 
noise cancellation. On the other hand, the research community regards 
earbuds as a powerful personal-scale human sensing and computing 
platform. By integrating sensors like PPG, barometer, and ultrasonic 
sensors, researchers have been devising a plethora of earable sensing 
applications, such as blood pressure monitoring [1], facial expression 
recognition [2], and authentication [3].
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[HIGHLIGHTS]

Compared to traditional wearables, earbuds 
possess two advantages for human sensing. 
First, the human ear is an ideal position to 
capture various neurological, cardiovascular, 
and dietary signs, which promise great 
sensing potential for health monitoring. 
Second, earbuds are worn in the upper part 
of the body, which not only complements 
the sensing scope of smartphones/smart- 
watches, but also is more robust to intensive 

body artifacts (e.g., hand swing) during 
motion detection [4].

Historically, researchers used Inertial 
Measurement Units (IMU), accelerometers 
in particular, to sense motion. Some 
examples are human activity recognition, 
eating habits monitoring, smoking gesture 
recognition, and gait analysis. However, 
as the human head has a high degree of 
freedom to move/rotate and it does not 

always move accordingly with the rest of 
the body, accelerometers on the earbud 
are affected by head movements. With 
collected data, we observe that (1) when 
there is no head movement, accelerometer 
can detect most intense (walk and run) and 
light (chew) activities, but fails to capture 
extremely weak signals like drink-induced 
vibrations; (2) head movements have 
minor impact on intense activities (walk 
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and run), while completely obfuscating the 
accelerometer readings of light activities as 
the magnitude of head movement is larger.

Besides accelerometers, microphones 
(external facing) have also been adopted to 
detect motion events (e.g., gestures recognition 
[5]. However, microphones achieve poor 
performance on motion detection. To validate 
this, we record the microphone data from  
an earbud when a subject performs different  

activities mentioned above. The collected 
data indicates that (1) compared to 
accelerometer, external-facing microphone 
shows less potential for motion detection 
(only run can be reliably detected). The 
reason is that the external microphone 
measures the air-conducted sound, which 
suffers from strong attenuation, therefore 
only motions producing relatively high 
volume can be detected; (2) in the presence 

of environmental sounds (e.g., music), the 
sensing signals are completely buried in 
the background music. Given that motion-
induced sounds and background music 
are both audible and share most of the 
spectrum, it would be very challenging to 
filter such interference with signal processing 
techniques from the frequency domain.

We explore other alternatives for human 
motion sensing on earbuds. To achieve 
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reliable detection of both intense and light 
human motions, we present OESense, a novel 
acoustic-based in-ear human motion sensing 
system. OESense performs robust motion 
sensing based on two critical design choices. 
First, to tackle environmental noise, OESense 
leverages an inward-facing microphone to 
record motion-induced sounds inside the ear 
canal. As a result, most of the environmental 
noise is naturally suppressed. Further, acoustic 
signals are inherently immune to motion 
artifacts, like head movements. Second, to 
cope with the low SNR of traditional acoustic 
approaches, OESense exploits a phenomenon 
known as occlusion effect to enable the 
detection of both intense and light motions 
in the human ear canal. Concretely, when a 
motion stimulus is applied to the human body, 
the occlusion effect boosts low-frequency 
bone-conducted sounds (most human 
motions are in a few Hertz range) when the 
ear canal orifice is occluded. 

We prototyped OESense with a pair of 
wired earbuds and a Raspberry Pi. Three 
applications have been selected as instances 
of intense, mixed, and light motion detection 
tasks: step counting, human activity recog- 
nition, and face-tapping gesture interaction. 
We evaluated our claims with 31 subjects, 
demonstrating the superior sensing perform- 
ance of OESense over traditional motion 
sensing approaches. Our results show 
OESense obtains robust performance on the 
three applications under various scenarios. 
Moreover, we demonstrated that OESense is 

compatible with the original functionalities 
of the earbuds, such as playing music and 
picking up phone calls. More details are 
available in [11].

THE OCCLUSION EFFECT
When vibratory stimuli are applied on 
the human body, the generated sound 
will propagate to other parts of the body 
through bone conduction. Ordinarily, bone-
conducted sounds induce the vibration of 
the ear canal wall, and the generated sounds 
will escape through the opening of the 
ear canal. However, when the ear canal is 
blocked, sounds are trapped and reflected 
back to the eardrum [6], as shown in Figure 
1(a). Such occlusion increases the acoustic 
impedance of the ear canal opening at low 
frequencies, repurposing the ear canal as 
a low-pass filter [7]. Therefore, the low-
frequency components of a bone-conducted 
sound will be enhanced in an occluded ear 
canal, defined as the occlusion effect [8]. 
A common instance of this is that people 
perceive echo-like sounds of their own voice 
when an object (like a finger) fills the outer 
portion of the ear canal.  

Quantitatively, the occlusion effect can 
be denoted as the ratio between the sound 
pressure in the occluded ear canal and that 
in the open ear [9]. As measured in [10], it 
can boost the sound below 1000~Hz by up to 
40~dB depending on the frequency. We also 
measure the impact of occlusion effect on 
the ear canal frequency response. We use the 

earbud speaker to transmit a single tone be-
tween 100-1500Hz (100Hz separation) and 
record the reflected sound with an inward-
facing microphone. Figure 1(b) compares 
the frequency response with and without 
occlusion effect (completely blocking the ear 
canal opening). We can see that the blocked 
ear canal produces stronger response at 
frequencies below 900Hz, while the open 
ear canal gains much higher response at 
higher frequencies. In addition, we repeat 
the measurements twice (remove the earbud 
and wear it again) and the response is highly 
consistent, demonstrating the robust and 
reliable presence of the occlusion effect.

OESense SYSTEM
Leveraging the occlusion effect for human 
motion sensing promises three advantages. 
First, due to the occlusion of ear canal 
orifice, the inward-facing microphone 
mainly captures the bone-conducted sound 
in the ear canal and is less susceptible to 
environmental noises like traffic sounds 
and human speech. Second, given that most 
human-produced motions are in relatively low 
frequencies (a few Hertz), the amplification 
gain provided by the occlusion effect can 
improve the SNR of the sensing signal. Third, 
although earbuds are mainly used for delivery 
of sounds (e.g., music or phone calls) to the 
human ear, these sounds are usually in higher 
frequencies so sound delivery and human 
sensing (under 50Hz) can coexist without 
mutual interference. 

FIGURE 1. (a) Illustration of human ear anatomy and the occlusion effect. (b) Impact of occlusion effect (OE) on the frequency response. 
(1 and 2 denote two measurements, which suggests the response is highly consistent.)

(a) (b)
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FIGURE 2. (a) The developed data recording prototype. (b) Illustration of a participant wearing the device.  
(c) Illustration of the designed tapping gestures.

[HIGHLIGHTS]

FIGURE 3. The sensing performance of (a) step counting, (b) activity recognition, and (c) tapping gesture recognition.

Applications
In this work, we explore the performance of 
OESense on three typical applications:
• 	 Step counting (intense): Human walking 

involves big movements of the whole 
body and can be detected at different 
body positions (like foot, waist, and head).

• 	 Human activity recognition (mixed): 
We select five activities including 
walking, running, being still, chewing, 
and drinking, which combines both 
intense body motions and weak surface 
vibrations.

•	 Face-tapping gesture interaction (light): 
Vibrations generated by tapping different 
parts of the human face propagate to 
the ear via different paths. The received 
signals present distinctive patterns, 
enabling the recognition of different 
tapping gestures. This could be a potential 
way to interact with earables in the future.

Sensing Pipeline
OESense utilizes customized signal 
processing techniques and machine learning 
for different applications. Collectively, the 
in-ear microphone signal is first processed 
with a low-pass filter (with 50Hz cut-off 
frequency) to eliminate environmental and 
human sounds. 

For step counting, we then apply the 
Hilbert transform on the filtered signal 
to extract its upper envelope and lower 
envelope. Afterward, a low-pass filter 
(<5Hz) is performed on the two envelopes 
separately to smooth them. We apply peak 
detection on the smoothed envelopes, which 
outputs the time index and amplitude of 
each peak. To avoid over-counting (i.e., false 
positives), we further propose two strategies 
to filter the detected peaks: (1) the minimum 
peak interval between adjacent peaks is set 
to 0.3s as normal human walking frequency 

is lower than 3.3Hz, (2) the minimum peak 
amplitude is set to 0.3 times of average 
amplitude of all detected peaks. Any 
peak that fails to satisfy either one of the 
conditions will be omitted. Lastly, to combat 
the sporadic noise that only produces an 
upper peak or a lower peak, we count a step 
only when a pair of upper peak and lower 
peak is aligned, i.e., the time lag between 
them is shorter than 0.2s.

For activity recognition, the recorded 
audio stream is divided into small segments 
using the sliding window technique (with  
50% overlapping ratio). For gesture recog- 
nition, we utilized the same approach of 
detecting steps to extract the gesture signal. 
Afterward, for each instance, we extract 
various frequency-based, structural, and 
statistical audio features, such as Mel-
frequency cepstral coefficients (MFCC), 
chroma of short-time Fourier transform 

Forehead (Left)
Temple (Left)

Cheek (Left)

Jaw (Left)

Nose Philtrum

Forehead (Right)
Temple (Right)

Cheek (Right)

Jaw (Right)

Forehead (Middle)

Chin

Chest Bag

(a)

(a) (b) (c)
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(STFT), contrast of STFT, tonnetz, and root 
mean square error. Finally, the extracted 
features are fed into typical machine learning 
classifiers, such as Logistic Regression (LR) or 
Support Vector Machine (SVM), to identify 
different activities or gestures.

Hardware Prototyping 
We prototyped OESense by adding an 
inward-facing microphone (SPU1410LR5H-
QB) to a commercial earbud (MINISO 
Marvel earphones). As shown in Figure 2(a)  
(enclosed within a green dash box), we 
embedded the microphone at the front 
end of the earbud and moved the original 
speaker to the back end. Such design would 
optimize the SNR of the microphone. Then, 
we developed a data-logger for microphone 
data acquisition. To minimize noise, each 
microphone is connected to a differential 
circuit before sampled by an audio codec.  
We use ReSpeaker Voice Accessory HAT 
as the audio codec, which is controlled by 
a Python program running on a Raspberry 
Pi 4B. We sample the microphone data at 

48~kHz. To avoid affecting the subjects’ 
walking style, all the components are 
enclosed in a chest bag worn by them, 
as shown in Figure 2(b). 31 participants 
(16 males, 15 females, with an age of 
26.6±5.8) were recruited to collect the 
above-mentioned activity data under 
various conditions. Particularly, for face-
tapping gesture recognition, we selected 
12 positions, as shown in Fig 2(c) on 
the human face as the interaction spots. 
Accordingly, twelve gestures are created 
by finger tapping (one-time) on each 
position. (Ethical approval for carrying 
out all the studies has been granted by the 
corresponding institution.)

EVALUATION 
Sensing Performance
We applied the designed signal processing 
and machine learning on the collected 
dataset to evaluate the sensing performance 
of OESense. For step counting, we can 
observe from Fig 2(a) that step counting 
precision and recall are higher than 97.5%  

regardless of walking scenarios, demon- 
strating the superior performance of 
OESense on step counting. For human 
activity recognition, Fig 2(b) indicates that 
(1) SVM always achieves better performance 
than LR; (2) Left and right earbuds achieve 
similar performance; (3) The fused dataset 
obtains the highest recognition precision 
and recall both at around 98.3%. Such 
improvement might arise from the fact that 
the fused dataset gains from two sensing 
channels and is more resilient to signal 
distortions when one of the ear tips is loose. 
For tapping gesture recognition, we can see 
from Fig 2(c) that LR consistently achieves 
better performance, which might be because 
the features from different gestures are likely 
to be separated linearly. As expected, the 
fused dataset (93.2% recall) outperforms the 
two individual datasets (80.1% and 80.5% 
recall for left and right, respectively) on 
the 12 gestures, demonstrating the benefits 
of sensing with both earbuds. For more 
thorough performance analysis, please  
refer to [11].

FIGURE 4. The (a) original signal and (b) low-pass filtered signal for participant walking during music playback,  
(c) low-pass filtered signal for the same participant walking without music playback, (d) spectrogram of the original signal.

[HIGHLIGHTS]
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Robustness
Given that the original functionality of 
earbuds is to deliver sounds (e.g., music and 
phone calls) to the human ear, a common 
question is whether these sounds (usually 
much higher volume) pollute the audio 
sensing signals. To investigate this, we asked 
one participant to walk while the earbuds 
play a song with the built-in speakers at an 
appropriate volume. Figure 4(a) illustrates 
the original signal collected from the left 
earbud and we can see it is dominated by 
the music. Figure 4(b) shows the low-pass 
filtered (<50~Hz) version of the signal, 
where the steps can be clearly observed. 
Then, without music playing, the subject 
walked another trace in the same condition. 
The signal after low-pass filtering is plotted 
in Figure 4(c). Visually, we can see that the 
two filtered versions have high similarity, 
and the step counts can be easily derived. 
We also quantify the similarity of signals 
from frequency domain using the structural 
similarity (SSIM, a well-known metric to 
compare similarity between two images [12]). 
Specifically, we first obtain the spectrogram 
of each signal using a short-time Fourier 
transform (STFT), and then calculating 
the SSIM index between two spectrograms 
(images). Our results show that the SSIM 
index between Figure 4(b) and Figure 4(c) 
is 0.95, suggesting that music playback has 
extremely limited impacts. To further explain 
how OESense combats human speech and 
music, we plot the spectrogram of Figure 4(a) 
in Figure 4(d).  

It is clear that music mainly resides in higher 
frequencies, while step-induced sounds are 
located in extremely low frequencies with a 
strong amplitude.

In terms of phone calls, the frequency 
range of human voice over telephony 
transmission is within 300-3400~Hz [13], 
so that it can be completely removed after 
the low-pass filtering. For low frequency 
noise in the environment (e.g., fan motion), 
OESense leverages the sealing of the ear 
canal, which serves as an additional layer of 
filter to further suppress the noise, making 
the internal microphone less vulnerable to 
external sounds.

LIMITATIONS AND FUTURE WORK
Leveraging the occlusion effect, the presented 
OESense system shows great sensing 
potential for both intense and light human 
activities. However, there are also several 
limitations. First, physical occlusion of the 
ear canal might lead to impaired awareness 
of the surrounding environment (e.g., traffic 
sounds) and incur safety issues. A possible 
solution is to imitate the transparency mode 
on AirPods Pro. Specifically, the external 
microphone can measure the outside 
sounds and replay the meaningful parts 
(like sirens) through the onboard speakers. 
Second, OESense was implemented with 
a Raspberry Pi, which is energy-expensive 
and cumbersome for mobile scenarios. 
Thus, further efforts (advanced audio chips, 
dedicated PCB development and wireless 
design) to implement OESense in an energy-

efficient manner are required. Third, while we 
have demonstrated that OESense can detect 
the three sensing applications separately, 
whether it is able to run these concurrently 
remains unclear. n
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