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a b s t r a c t 

Since Wiener pointed out that the RSA can be broken if the private exponent d is relatively small com- 

pared to the modulus N , it has been a general belief that the Wiener attack works for d < N 

1 
4 . On the 

contrary, in [1], it was shown that the bound d < N 

1 
4 is not accurate as it has been thought of. Specif- 

ically, for the standard assumption of the two primes p and q that q < p < 2 q , the Wiener continued 

fraction technique is proven to work for d ≤ 1 
4 √ 

18 
N 

1 
4 . In this paper, we consider a general condition on 

the RSA primes, namely q < p < α q , and we give the corresponding bound for the Wiener attack to 

work, which is d ≤ 4 
√ 

α√ 

2(α+1) 
N 

1 
4 . In a special case when α = 2 , this general bound agrees with the result 

of [1] . 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

The RSA cryptosystem is among the most common ciphers used 

in the SSL/TLS protocol which allows sensitive information trans- 

mitted securely over the Internet. It is one of the most popular 

and de facto public-key systems used in practice today. A simpli- 

fied version of the RSA encryption algorithm works as follows. Two 

large primes of the same size p and q are selected to form a prod- 

uct N = pq – which is called the RSA modulus . Two integers e and 

d are chosen so that 

ed = 1 ( mod φ(N)) , 

where φ(N) = (p − 1)(q − 1) is the order of the multiplicative 

group Z 

∗
N . The number e is called the encryption exponent and d 

is called the decryption exponent . This is because to encrypt a mes- 

sage m ∈ Z 

∗
N 
, one calculates the exponentiation c = m 

e ( mod N) , 

and to decrypt a ciphertext c ∈ Z 

∗
N , one performs the exponentia- 

tion m = c d ( mod N) . The pair ( N, e ) is called the public key and 

so that anyone can encrypt, whereas d is called the private key and 

only the owner of d can perform the decryption operation. 

Since the modular exponentiation m = c d ( mod N) takes 

O ( log d) time, to reduce decryption time, one may wish to use a 

relatively small value of d . However, in 1991, Wiener [2] showed 

that if the bit-length of d is approximately one-quarter of that of the 

modulus N , then it is possible to determine the private exponent 

d from the public-key ( N, e ), hence, a total break of the cryptosys- 
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tem. In research literature, there have been two different bounds 

reported for this attack, one is d < N 

1 
4 (for example, in [3–6] ) and 

another one is d < 

1 
3 N 

1 
4 (for example, in [7–11] ). The second bound 

is due to Boneh [7] . 

However, in [1] , it was showed that the first bound d < N 

1 
4 

is not accurate by a counterexample. The counterexample gives a 

concrete value of d = � 1 2 N 

1 
4 � + 1 < N 

1 
4 and shows that the Wiener 

attack fails with this value of d . Also shown in [1] that it is possible 

to improve Boneh’s bound from d < 

1 
3 N 

1 
4 to d ≤ 1 

4 √ 

18 
N 

1 
4 . 

The new bound d ≤ 1 
4 √ 

18 
N 

1 
4 comes partly from the condition on 

the two primes p and q having the same bit length. In this pa- 

per, we consider a general condition on the RSA primes, namely 

q < p < α q , and we give the corresponding bound for the Wiener 

attack to work, which is d ≤ 4 √ 

α√ 

2(α+1) 
N 

1 
4 . In a special case when 

α = 2 , this general bound agrees with the result of [1] . 

The rest of this paper is organized as follows. The next section 

gives a brief introduction to the continued fractions. In Section 3 , 

we give a summary of the result of [1] which shows that the 

Wiener continued fraction technique works for d ≤ 1 
4 √ 

18 
N 

1 
4 when 

q < p < 2 q . In Section 4 , we consider the case q < p < α q 

and show that the bound for the Wiener attack to work is d ≤
4 √ 

α√ 

2(α+1) 
N 

1 
4 . Our new bound is verified experimentally in Section 5 , 

where we show an example with α = 8 , q is a 1024-bit prime, 

p is a 1027-bit prime and that the Wiener attack works for d = 

� 4 √ 

2 
3 N 

1 
4 � . 
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2. Preliminaries 

In this section, we list several well-known results about contin- 

ued fractions which can be found in [12,13] . 

A continued fraction expansion of a rational number u 
v is an 

expression of the form 

u 

v 
= x 0 + 

1 

x 1 + 

1 

. . . + 

1 

x n 

, 

where the coefficient x 0 is an integer and all the other coefficients 

x i for i ≥ 1 are positive integers. The coefficients x i are called 

the partial quotients of the continued fraction. Continued fraction 

expansion also exists for irrational numbers although it runs in- 

finitely. In cryptography, finite continued fraction for rational num- 

bers suffices our purpose. 

There is a standard way to generate a unique continued fraction 

from any rational number. By the Euclidean division algorithm, one 

can efficiently determine all the coefficients x 0 , x 1 , . . . , x n of the 

continued fraction. 

Given the above continued fraction of u 
v , by truncating the co- 

efficients, we obtain (n + 1) approximations of u 
v : 

c 0 = x 0 , c 1 = x 0 + 

1 

x 1 
, c 2 = x 0 + 

1 

x 1 + 

1 

x 2 

, . . . , 

c n = x 0 + 

1 

x 1 + 

1 

. . . + 

1 

x n 

. 

The number c j is called the j th convergent of the continued fraction 

and these convergents provide good approximations for u 
v . To write 

the continued fraction expansion for a number u 
v , we use the Eu- 

clidean division algorithm, which terminates in O (log (max ( u, v ))) 

steps. As a result, there are O (log (max ( u, v ))) number of conver- 

gents of u 
v . Thus, the Wiener continued fraction technique runs 

very efficiently. 

The convergents c 0 , c 1 , . . . , c n of the continued fraction of u 
v give 

good approximation to u 
v , however, an approximation to u 

v is not 

always a convergent. The following classical theorem due to Leg- 

endre gives a sufficient condition for a rational number a 
b 

to be a 

convergent for the continued fraction of u 
v . 

Theorem 1 (The Legendre Theorem [14] ) . Let a ∈ Z and b ∈ Z 

+ such 

that ∣∣∣u 

v 
− a 

b 

∣∣∣ < 

1 

2 b 2 
. 

Then a 
b 

is equal to a convergent of the continued fraction of u 
v . 

The following Euler–Wallis Theorem gives us the recursive for- 

mulas to calculate the convergent sequence { c i } efficiently based 

on the coefficients x 0 , x 1 , . . . , x n . 

Theorem 2 (The Euler–Wallis Theorem [12] ) . For any j ≥ 0, the jth 

convergent can be determined as c j = 

a j 
b j 

, where the numerator and 

the denominator sequences { a i } and { b i } are calculated as follows: 

a −2 = 0 , a −1 = 1 , a i = x i a i −1 + a i −2 , ∀ i ≥ 0 , 

b −2 = 1 , b −1 = 0 , b i = x i b i −1 + b i −2 , ∀ i ≥ 0 . 

Based on the Euler–Wallis Theorem, the following identity in- 

volving the numerator a i and the denominator b i of the convergent 

c i can be easily obtained by mathematical induction. 

Theorem 3 [12] . The numerator a i and the denominator b i of the 

convergent c i satisfy the following identity 

b i a i −1 − a i b i −1 = (−1) i , ∀ i ≥ 0 . (1) 

3. Wiener attack for equal size primes 

By using the classical Legendre Theorem on continued fractions, 

Boneh provided the first rigorous proof [7] which showed that the 

Wiener attack works for d < 

1 
3 N 

1 
4 . In [1] , this bound is improved 

to 

d ≤ 1 

4 
√ 

18 

N 

1 
4 . 

Theorem 4 [7] . If the following conditions are satisfied 

(i) q < p < 2 q 

(ii) 0 < e < φ( N ) 

(iii) ed − kφ(N) = 1 

(iv) d ≤ 1 
4 √ 

18 
N 

1 
4 

then k 
d 

is equal to a convergent of the continued fraction of e 
N . 

Thus, the secret information p, q, d, k can be recovered from public 

information ( e, N ) in O (log ( N )) time complexity. 

Remark. Since ed − kφ(N) = 1 , we have gcd (k, d) = 1 . By the 

identity (1) in Theorem 3 , we also have gcd (a i , b i ) = 1 . Therefore, 

if k 
d 

is equal to a convergent of the continued fraction of e 
N , 

k 

d 
= c i = 

a i 
b i 

, 

then we must have k = a i and d = b i . In that case, using the equa- 

tion ed − kφ(N) = 1 , we have eb i − a i φ(N) = 1 , and φ(N) = 

eb i −1 
a i 

. 

From here, we obtain 

S = p + q = N − φ(N) + 1 , 

and with N = pq, we can solve for p and q from the quadratic 

equation 

x 2 − Sx + N = 0 . 

In the Algorithm 1 , we can see that if k 
d 

is equal to a conver- 

gent of the continued fraction of e 
N as asserted in Theorem 4 , then 

the secret information p, q, d, k can be recovered from the public 

information ( e, N ). By the Euclidean division algorithm, we obtain 

O (log ( N )) number of convergents of the continued fraction of e 
N , 

so the Wiener algorithm will succeed to factor N and output p, q, 

d, k in O (log ( N )) time complexity. 

4. A general bound on the Wiener attack for arbitrary size 

primes 

The coefficient 1 
4 √ 

18 
in Theorem 4 comes partly from the condi- 

tion on the two primes p and q having the same bit length. In this 

paper, we consider a general condition q < p < α q and we show 

that the corresponding bound for the Wiener attack to work is 

d ≤
4 
√ 

α√ 

2(α + 1) 
N 

1 
4 . 

When α = 2 , this agrees with the bound in Theorem 4 . 

Theorem 5. If the following conditions are satisfied 

(i) q < p < α q 

(ii) 0 < e < φ( N ) 

(iii) ed − kφ(N) = 1 

(iv) d ≤ 4 √ 

α√ 

2(α+1) 
N 

1 
4 



W. Susilo, J. Tonien and G. Yang / Journal of Information Security and Applications 53 (2020) 102531 3 

Algorithm 1 Factorisation Algorithm Based on Continued Fraction. 

Input : e, N 

Output : (d, p, q ) or ⊥ 

1: Run the Euclidean division algorithm on input (e, N) to obtain 

the coefficients x 0 , x 1 , . . . , x n of the continued fraction of e 
N . 

2: Use the Euler–Wallis Theorem to calculatethe convergents 

c 0 = 

a 0 
b 0 

, c 1 = 

a 1 
b 1 

, . . . , c n = 

a n 

b n 
. 

3: for 0 ≤ i ≤ n do 

4: if a i | (eb i − 1) then 

5: λi = 

eb i − 1 

a i 
� λi = φ(N) if 

a i 
b i 

= 

k 
d 

6: S = N − λi + 1 � S = p + q if λi = φ(N) 

7: Find the two roots p ′ and q ′ by solving the quadratic 

equation 

x 2 − Sx + N = 0 

8: if p ′ and q ′ are prime numbers then 

9: return ( d = b i , p = p ′ , q = q ′ ) � Successfully factorise 

N 

10: end if 

11: end if 

12: end for 

13: return ⊥ � Fail to factorise N 

then k 
d 

is equal to a convergent of the continued fraction of e 
N . 

Thus, the secret information p, q, d, k can be recovered from public 

information ( e, N ) in O (log ( N )) time complexity. 

Proof. Since 1 < 

√ 

p 
q < 

√ 

α, we have 

p + q 

N 

1 
2 

= 

√ 

p 

q 
+ 

√ 

q 

p 
< 

√ 

α + 

1 √ 

α
= 

α + 1 √ 

α
. 

Therefore, 

p + q < 

α + 1 √ 

α
N 

1 
2 . (2) 

From the proof of Theorem 4 , ∣∣∣∣ e 

N 

− k 

d 

∣∣∣∣ < 

p + q 

N 

, 

and hence, ∣∣∣∣ e 

N 

− k 

d 

∣∣∣∣ < 

α + 1 √ 

αN 

1 
2 

The condition d ≤ 4 √ 

α√ 

2(α+1) 
N 

1 
4 , implies ∣∣∣∣ e 

N 

− k 

d 

∣∣∣∣ < 

1 

2 d 2 
, 

and thus by the Legendre Theorem ( Theorem 1 ), k 
d 

is equal to 

a convergent of the continued fraction of e 
N and the theorem is 

proved. �

5. An experimental result 

In this section, we provide an experimental result to support 

our new bound. We select a 2051-bit modulus N and choose a pri- 

vate key 

d = 

⌊
4 
√ 

2 

3 

N 

1 
4 

⌋
= 

⌊ 

4 
√ 

α√ 

2(α + 1) 
N 

1 
4 

⌋ 

, 

where α = 8 . The corresponding public key e is 2050-bit. 

Using the Euclidean division algorithm, we determine the con- 

tinued fraction expansion of e 
N . This continued fraction has 1181 

convergents: c 0 , c 1 , . . . , c 1180 . We run the Wiener algorithm through 

these 1181 convergents. At the 299th convergent c 299 = 

a 299 
b 299 

, we 

found the correct factorization of the modulus N into an 1027-bit 

primes p and an 1024-bit prime q . Hence, the Wiener algorithm is 

successful in this case which confirms our new bound. 

Here are the experimental values: 

p = 9232360486 8932164714 9596507440 1035192029 

145080960 6 956 6597723 8021105629 7503091019 

9701404738 5807354016 3477738671 1283516912 

2326923882 8750557797 0328512830 5397195543 

6001628828 0368936267 6942772368 7624789705 

4189248270 7903254141 8663345402 4152171374 

6214 923541 13924 84 937 8054438553 5032332198 

1411866929 4194786979 525811431 (1027 bits) 

q = 1414690807 3406269503 3464531560 9070289526 

7868521210 6382410266 7979088203 2254621850 

8341886709 8719117017 5226857360 9463580013 

9726042440 3423970519 3265769414 1980229445 

2471842998 6490503157 0345973482 4307189649 

7718367405 2896673601 2231616340 8382614148 

5236962773 9987832473 84 81583381 957011984 9 

5002627825 9886486977 705010641 (1024 bits) 

N = 130 6093551 08626 6 8129 926 836 8196 7673831028 

1532856930 8290865914 7951674406 8279244280 

9259952291 6182244038 7869678308 8459730618 

74 86 890 6 61 8456214323 5953806292 5623458437 

013926 8819 984 8874679 9567521741 8264705335 

9155783046 6484420789 5843142416 5876756784 

2927515368 2364108842 7277174151 6795647859 

5589300540 4081264070 5667843853 6230692499 

028384 914 9 5134082178 7333492889 2630914169 

8588678650 2174843707 3873090487 5180597934 

2847006449 1342392087 9050136004 5777912483 

5085903845 9463546555 3420085249 8203251335 

2934838732 3760708152 0943106354 4338777875 

0658112157 1154693712 9237649198 0850505236 

1100891099 4357100250 8492693466 7775060445 

2331802800 14437271 (2051 bits) 

e = 6901406503 6860039081 4956132264 1440541732 

9628244881 3775820642 105170 060 0 0321191142 

7858519759 6 894 841336 9045947780 8452677407 

76460 6 6962 6 675830846 3747833979 864 4 470531 

2299175228 3003210592 0196537748 6011696964 

3969608108 0460635232 3629065531 8105403615 

4232675072 5052749363 0 0 02338510 8403090838 

6 46873636 4 0548523349 2036059034 5907417817 

4266397821 8129295747 4393859327 9011867656 

4011369005 7784548163 9157308004 2180541499 
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5964028825 9501600786 0 676 676732 446 6256054 

2014289463 8396713525 3155751963 494 4 481015 

800424 8560 30194 92084 1695596931 0021145182 

26237384 81 54 85792618 9841916250 7915115308 

4060884377 3804491205 2136691114 9676578043 

1890478318 7987207 (2050 bits) 

d = 7535807837 8717456677 9927946434 3898734878 

0802942755 8983797188 5585141967 2560171569 

4204242926 2236041073 3763539081 6820136725 

4144656852 3406101419 2764542263 5543 (512 bits) 

k = 3981925581 0245516299 2117516495 4114612257 

9625753325 9553027437 6979640067 9757747796 

9661867743 8623208508 4033535480 0473441502 

2269818889 4116170989 9344273972 1467 (511 bits) 

In the Algorithm 1 , the continued fraction of e 
N has 1181 con- 

vergents c i , and the 299th convergent c 299 produces the correct 

factorization of the modulus N . 

6. Conclusion 

In this paper, we extend the result of [1] and show that for 

the two RSA primes which satisfy the condition q < p < α q , 

the Wiener attack based on continued fractions works for se- 

cret key d ≤ 4 √ 

α√ 

2(α+1) 
N 

1 
4 . In a special case when α = 2 , this gen- 

eral bound agrees with the result of [1] . Steinfeld-Contini-Wang- 

Pieprzyk [4] showed that Wiener’s attack fails with an overwhelm- 

ing probability for a random choice d ≈ N 

1 
4 

+ ε . It is an open prob- 

lem to extend this negative result to check in the case q < p < α q 

if the Wiener attack will fail for d > 

4 √ 

α√ 

2(α+1) 
N 

1 
4 with an over- 

whelming probability or not. 
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