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Learning Semantically Rich Network-Based Multi-Modal Mobile

User Interface Embeddings

GARY ANG∗, Singapore Management University

EE-PENG LIM, Singapore Management University

Semantically rich information from multiple modalities - text, code, images, categorical and numerical data - co-exist in the

user interface (UI) design of mobile applications. Moreover, each UI design is composed of inter-linked UI entities which

support diferent functions of an application, e.g., a UI screen comprising a UI taskbar, a menu and multiple button elements.

Existing UI representation learning methods unfortunately are not designed to capture multi-modal and linkage structure

between UI entities. To support efective search and recommendation applications over mobile UIs, we need UI representations

that integrate latent semantics present in both multi-modal information and linkages between UI entities. In this article,

we present a novel self-supervised model - Multi-modal Attention-based Attributed Network Embedding (MAAN) model.

MAAN is designed to capture structural network information present within the linkages between UI entities, as well as

multi-modal attributes of the UI entity nodes. Based on the variational autoencoder framework, MAAN learns semantically

rich UI embeddings in a self-supervised manner by reconstructing the attributes of UI entities and the linkages between them.

The generated embeddings can be applied to a variety of downstream tasks: predicting UI elements associated with UI screens,

inferring missing UI screen and element attributes, predicting UI user ratings, and retrieving UIs. Extensive experiments,

including user evaluations, conducted on datasets from RICO, a rich real-world mobile UI repository, demonstrate that MAAN

out-performs other state-of-the-art models. The number of linkages between UI entities can provide further information on

the role of diferent UI entities in UI designs. However, MAAN does not capture edge attributes. To extend and generalize

MAAN to learn even richer UI embeddings, we further propose EMAAN to capture edge attributes. We conduct additional

extensive experiments on EMAAN, which show that it improves the performance of MAAN and similarly out-performs

state-of-the-art models.

CCS Concepts: · Computing methodologies→ Neural networks; · Human-centered computing→ User interface

management systems; · Information systems→Multimedia and multimodal retrieval.

Additional Key Words and Phrases: network embedding, mobile application user interface, unsupervised retrieval, self-

supervised learning, multi-modal, user interface design

1 INTRODUCTION

The increasingmaturity ofmobile application design/development practicesmeans that amobile UI designer/developer

can easily refer to existing UI repositories as part of the development process. Such repositories include multi-

modal information - network structures consisting of UI screens and UI elements of mobile applications with one

or more links between them, visual information from UI screen images, codes associated with UI elements, textual

description of the associated applications, categorical application genres and numerical application ratings. The
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2 • Ang and Lim

RICO dataset [6, 28] is one such repository. It includes data from more than 9,000 Android applications. Such

repositories are extremely valuable when we search relevant UI objects for design reference or for replacing some

existing UI objects as part of the UI development process. However, manually sifting through UI objects in large

repositories is not feasible. A naive retrieval system based on keywords or genre would not be adequate as such

features are sparse and do not capture rich semantics in UI interface designs.

Latent representations, also known as embeddings, can be developed to better capture underlying similarities.

Embeddings capture semantics of data by projecting semantically similar data close together in the embedding

space. However, most approaches for generating embeddings only capture information from a single modality.

Existing multimedia/multi-modal approaches to represent UI screen images also do not capture the non-Euclidean

nature of network structures linking UI interface components together. Hence, a network-based embedding

approach that captures multi-modal information, i.e. an approach that generates embeddings that captures both

network structure and information from multiple modalities is needed. The state-of-the-art attributed network

embedding models nevertheless generate embeddings that capture structural network information, but not

information from multiple modalities and node types.

On the left of Figure 1, we show an overview of the UI dataset. Two types of nodes, i.e. UI screens and UI

elements exist in the data. The attributes of UI screen and element nodes, i.e. the node attributes, comprise features

from multiple modalities. In this paper, themulti-modal features of a UI screen node include its image, description,

and genre. Similarly, a UI element node’s features include its class name, and component type. Edges are formed

between UI screen nodes and UI element nodes whenever a UI element is part of a UI screen, e.g., an image

element that is part of a gallery screen. As a UI screen can be linked to a UI element multiple times, e.g., a gallery

screen with multiple image elements, the number of such links can be treated as edge attributes. Therefore, in this

paper, edge attributes, or features of the edges, refer to the number of such links for each of these edges. Figure 2

provides an example of a UI screen and its constituent UI elements in its UI view code.

Fig. 1. UI dataset in a network embedding framework.

The middle of Figure 1 shows our proposed multi-modal network embedding framework. In this framework,

we design two multi-modal attention-based attributed network embedding models, MAAN and EMAAN, that

can be used to learn the embeddings representations of UI screens and UI elements in a self-supervised manner.

Speciically, MAAN captures the structural network information present within the linkages between UI screens

and elements, as well as multi-modal attributes of the UI screens and elements to generate semantically rich

embeddings of UI screens and elements. EMAAN further generalizes MAAN to capture edge attributes, e.g., the

number of occurrences of linkages between UI screens and elements, or the depth of the UI element in the UI

view code of the UI screen as shown in Figure 2.

ACM Trans. Interact. Intell. Syst.
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Fig. 2. Example of a UI screen image and its constituent UI elements in the UI view of the screen. The UI screen’s genre

is ’Health & Fitness’, and it is associated with the description ’Geting fit has never been so easy ś or so much fun! Seven

workouts are based on scientific studies to give you the maximum benefits of exercise with only 7-minutes a day...’. The boxed UI

element has the class name android.support.v7.widget.AppCompatImageButon, and is of component type Icon. The UI screen

is associated with multiple elements of the same type, e.g., the two image elements highlighted in pink boxes.

While the UI networks in this paper are deined based on the RICO dataset, this network deinition can be

generalized and potentially applied to other UI datasets with diferent information, e.g., instead of the number of

occurrences of linkages between a pair of UI screen and UI element nodes, the edge attributes may be deined

by the frequency of users interacting with UI elements in the UI screen; and multi-modal node attributes can

represent information from other modalities, e.g., audio modality (e.g., sound associated with the user touching

a UI element), gesture modality (e.g., coordinates and velocity associated with the user interacting with a UI

element) [8, 26].

Both the MAAN and EMAAN embeddings can be used in several downstream tasks, e.g., predicting links

between UI screens and elements for UI layout assistance, rating predictions, missing attribute inference, i.e.

predicting missing UI screen or element node attributes, and UI screen retrieval.

There have been other works that take a network-based approach or used latent representations/embeddings

for tasks relating to user interactions [7, 12, 25, 44, 45], but the use of network embedding models for such mobile

UI development related tasks has not been explored so far.

MAAN and EMAAN aim to incorporate several new requirements: 1) capture correlations between node attributes

from diferent modalities; 2) ensure no one modality dominates the generated embedding; 3) capture semantics

present in multi-modal node attributes together with edge attributes; 4) efectively balance between the increased

number of training objectives. Capturing correlations, or ainities, between information from multiple modalities

(e.g., between visual styles and application genres, or visual structure and code classes) plays a critical role in

generating informative embeddings. The dimensions of modalities could difer substantially (e.g., number of

genres vs. number of words) and simply encoding them together could cause the generated embedding to focus

only on one or two modes. The increased number of modalities also means additional training objectives, and a

need to balance between these objectives that could diverge. Adopting a network-based approach for learning UI

ACM Trans. Interact. Intell. Syst.
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embeddings is useful as the linkages/edges between UI entities contain valuable information about the context

of the UI entity’s role in the UI. In addition to the linkages/edges, being able to capture the attributes of these

linkages/edges can further inform the encoding process, e.g., the number of occurrences of linkages between UI

screens and elements can indicate the relative role and importance of diferent neighboring UI entities.

Both MAAN and EMAAN comprise a novel graph variational autoencoder (GVAE)-based model to generate

multi-modal embeddings of UI screen and element nodes. Speciically, the GVAE in MAAN (and EMAAN) jointly

embeds information from multiple modalities; uses an attention mechanism to discover correlations between diferent

modalities and weight their contribution; and improves existing loss functions used for graph variational autoencoders

to learn more meaningful embeddings. EMAAN further extends MAAN by integrating linear and non-linear

mechanisms within MAAN in a novel manner to capture edge attributes when encoding multi-modal and structural

network information.

The main contributions of our article are as follows:

• To our knowledge, this is the irst work to present a multi-modal network embedding framework that

combines attention mechanisms with the variational autoencoding framework to generate embeddings for

link prediction, attribute inference, regression and retrieval tasks relating to mobile UIs.

• We propose a two-stage encoding process to ensure no one modality dominates the generated embedding.

• We use the attention mechanism to capture relationships between information from diferent modalities,

which is diferent from past works [17] that use attribute-to-attribute matrices.

• The use of the Maximum Mean Discrepancy (MMD) [52] term to more efectively balance between multiple

training objectives has not featured in existing GVAEs.

• We show that MAAN consistently out-performs other state-of-the-art models on two datasets across an

extensive set of prediction tasks. User evaluations on retrieval results show that MAAN out-performs the

other models by as much as ive times.

• We further extend MAAN as EMAAN that takes edge attributes into account during the encoding process

and demonstrate that the incorporation of edge attributes into the multi-modal network embedding

framework can lead to improved performance on downstream tasks, e.g., prediction of UI screen ratings,

inference of missing UI features.

• To further validate our indings, we conduct additional experiments with both MAAN and EMAAN on a

larger dataset covering a diferent set of mobile applications. These additional experiments, which include

another set of user evaluations on retrieval results, further demonstrate the advantages of capturing

multi-modal information, structural network information, as well as edge attributes, as we observe similar

improvements in performance on downstream tasks such as prediction of UI screen ratings and inference

of missing UI features.

2 MOTIVATING SCENARIOS

Before we describe the approach proposed for MAAN/EMAAN, we describe these motivating application scenarios

to illustrate how one can utilize the UI embeddings generated by MAAN/EMAAN. Figure 3 provides an overview

of these motivating scenarios.

2.1 UI Layout Assistance

Consider the mobile UI design scenario where a designer/developer has a partially completed layout with a

few UI elements selected from a UI repository, and requires suggestions on potential UI screen designs or

other UI elements to complete the mobile UI design. The embeddings of the selected UI elements generated

by MAAN/EMAAN can be combined to represent the embedding of the partially completed UI screen, and

used to predict the probability of linkages between the partially completed UI screen and other UI elements

ACM Trans. Interact. Intell. Syst.
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Fig. 3. Overview of motivating scenarios for UI embeddings generated by MAAN/EMAAN.

in the UI repository. The links with the highest probabilities represent links to the semantically closest UI

elements in the embedding space that can be presented as suggestions to the designer/developer. Alternatively,

the designer/developer may have assembled a complete set of UI elements for a mobile UI layout, but would like

to reine it, and consider suggestions on alternative UI elements. The embeddings of the assembled UI elements

generated by MAAN/EMAAN can be combined to represent the embedding of the completed UI screen and

predict the probability of linkages between the completed UI screen and other UI elements in the UI repository.

Links with the highest probabilities represent links to the semantically closest UI elements in the embedding

space that can be presented as alternatives to the designer/developer.

2.2 UI Design Evaluation

This is an application scenario where a designer/developer has developed a new mobile UI and would like an

initial evaluation of the potential success of the mobile UI. The multi-modal and structural network information

of the new mobile UI could be used as inputs to MAAN/EMAAN to generate its embedding. The generated

ACM Trans. Interact. Intell. Syst.
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embedding can then be fed as inputs into a regression model trained to predict its UI rating as feedback to the

designer/developer.

2.3 UI Feature Inference

An entity (e.g., company or research lab) has been collecting UI information over time for a mobile UI repository.

However, due to errors during the collection process, certain feature information relating to a number of UIs

are missing. To impute the missing UI information in this mobile UI repository, MAAN/EMAAN can be used to

infer missing features of UI screens and elements based on ainities between UI entity nodes and features. A

pre-trained MAAN/EMAAN (e.g., trained on RICO) or MAAN/EMAAN trained in a self-supervised manner on

this mobile UI repository could be used to infer the missing features.

2.4 Multi-modal UI Retrieval

A designer/developer is conducting research into UIs for a potential mobile application and has come across a few

promising UIs in a mobile UI repository, and would like to retrieve from the repository more UIs that are similar.

The designer/developer is not only interested in UIs that are visually similar, but would like to retrieve UIs that

are similar across multiple modalities, e.g., genre, description, UI view classes used, and that are also similar

in their structures. By capturing information from multiple modalities and structural network information in

the same embedding space, MAAN/EMAAN generates embeddings that can be used for such multi-modal UI

retrieval.

3 RELATED WORK

Key related works in the areas of UI retrieval, evaluation and design, and network embedding models are outlined

in this section.

3.1 UI retrieval, evaluation and design

[2, 18, 25, 36, 48] are examples of recent work that also generate representations or embeddings of UIs. Such

works however only use information from one or two modalities, and also do not utilize the structural network

information present in the linkages between UI screens and elements. For example, Swire [18] is a system that

retrieves UI screen images based on UI sketches. Both UI sketches and UI screenshots are represented as image

embeddings for visual similarity comparison. Swire however only captures information from a single modality,

and does not capture the structural network information present in the linkages between UI screens and elements.

[48] converts UIs into sequences to support retrieval applications. This approach only captures structural network

information of UI objects but not multi-modal information. Screen2Vec [25], a recent work that was published

after MAAN [1], adopts an approach that is similar to MAAN. Screen2Vec generates representations of UI screens

and components that capture the multi-modal information of UIs and UI layouts. However, it does not capture

the structural network information present within the linkages between UI screens and elements.

The comprehensive semantic representations of UIs with multi-modal and structural network information

learnt by a pre-trained MAAN or EMAAN can also be used to complement or augment a range of other UI-related

systems, such as UI object detection and annotation systems [5, 16, 46, 51]. MAAN/EMAAN can also complement

systems that assist UI designers [4, 24, 32]. For example, DesignScape [32] provides suggestions for designers to

brainstorm and reine their graphic design. However, DesignScape was designed for graphic design layouts, and

would not be suitable for UI designs which involve multi-modal and structural network information. GUIComp

[24] developed a design assistant that uses measures of visual complexity [35] to help assess visual complexity

of UI screens. This work focuses on the ranking of UI screens based on heuristics instead of their embedding

ACM Trans. Interact. Intell. Syst.
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representations. MAAN/EMAAN can complement systems such as GUIComp in UI design evaluations with a

data-driven approach that captures multi-modal and structural network information.

3.2 Network embedding models

As UI screens and elements are inter-connected in a large network, we thus review network embedding models.

3.2.1 Homogeneous Networks. DeepWalk [34] and Node2Vec [13] extend the idea of word embeddings to

networks by treating paths as sentences and nodes as words. They however do not utilize the attributes of nodes

when learning network embeddings. Graph neural networks (GNN) learn node embeddings by propagating the

attributes of nodes repeatedly or over multiple neural network layers via a message passing framework [11].

Graph Convolutional Networks (GCN) [23] aggregate features of neighboring nodes and normalize the aggregated

representations by the node degrees. GraphSAGE [14] further considers mean, LSTM or pooling aggregation

methods. While GCN uses the full neighborhood, GraphSAGE samples a ixed number of neighbors. In the Graph

Attention Network (GAT) [41], diferent nodes in the neighborhood are assigned diferent importances during

aggregation. Messages passed between each layer in most GNNs go through non-linear layers such as rectiied

linear activation units (ReLU). [47] inds that similar performance can be achieved even without such layers. The

Graph Variational Autoencoder (GVAE) [22] applies the variational autoencoder (VAE) [21] framework to learn

the node embeddings of homogeneous networks. The Co-Embedding Attributed Network (CAN) [30] uses two

VAE channels to jointly encode and decode the adjacency matrix and a single feature matrix to jointly learn the

representations of both nodes and attributes. Semi-supervised Co-embedding Attributed Network (SCAN) [31]

extends CAN to co-embed both attributes and nodes of partially labelled networks.

3.2.2 Heterogeneous Networks. Such models have also been applied to heterogeneous networks (networks with

multiple node or edge-types). Relational Graph Convolutional Networks [37] and Graph Convolutional Matrix

Completion [39] use multiple GCNs to encode embeddings of multiple adjacency matrices, one for each edge

type, before aggregating them. Neural Graph Collaborative Filtering [43] and LightGCN [15] encode embeddings

for diferent number of hops before aggregating them. [19] captures indirect proximity between the same node

types in bipartite networks. Multinomial VAE [27] is a VAE-based approach that generates embeddings by using

a multinomial distribution instead of the Bernoulli distribution used in GVAE. Heterogeneous Graph Attention

Network [42] and General Attributed Multiplex Heterogeneous Network [3] use multiple GNN-based layers to

encode networks formed from diferent metapaths [9] before using an attention mechanism to aggregate the

embeddings.

While the related works outlined in this section only use information from a single modality, the proposed

MAAN and EMAAN models in this paper use a VAE-based approach to encode information from multiple

modalities. A two step encoding process is used so that no one modality dominates the generated embedding.

Further, we introduce an attention mechanism to capture the correlations between diferent modalities and

allow the underlying importance of each modality to be self-discovered. Instead of just applying the generated

embeddings to common link prediction and attribute inference tasks, we use the generated embeddings to predict

continuous labels (application ratings) and for multi-modal retrieval of the UI screens.

4 MULTI-MODAL ATTENTION-BASED ATTRIBUTED NETWORK EMBEDDING

In this section, we give a detailed description of our two proposed multi-modal attention-based attributed network

embedding models, MAAN and EMAAN. We will irst cover MAAN as it forms the base model for EMAAN.

To cope with both multi-modal features and the heterogeneity of structural network information in UI

designs, we propose a new embedding model known as Multi-modal Attention-based Attributed Network

Embedding (MAAN). It represents UI designs by a bipartite graph G = (V ,E,X ) constructed from a UI design

ACM Trans. Interact. Intell. Syst.



8 • Ang and Lim

Table 1. Summary of Key Notations.

Symbol Description

U Set of UI screen nodes

W Set of UI element nodes

V U ∪W

P Set of UI screen node attributes

Q Set of UI element node attributes

Fp Feature dimension of UI screen node attribute p, p ∈ P

Fq Feature dimension of UI element node attribute q, q ∈ Q

XU ,p /XW ,q Features of attribute p/q of all nodes inU /W (That is, XU ,p is a

|U | × Fp matrix, and XW ,q is a |W | × Fq matrix)

E Set of edges between UI screen nodes and UI elements (⊆ U ×W )

Fe Feature dimension of edge e ∈ E

Xe Feature of attribute of edge e ∈ E (That is,Xe is a |E | ×Fe matrix)

X ′V ,1, ..,X
′
V ,r ∈ R

|V |×d ′ Hiddenmulti-modal representations of nodes after GATmodules

where r ∈ {p,q}

X ′′V ∈ R
|V |×d ′ Hidden node representations after multi-modal attention fusion

Z ∈ R |V |×d Final latent representation/embedding of nodes

Hr ∈ R
Fr×d

′

Hidden representation of feature from the rth modality where

r ∈ {p,q}

Zr ∈ R
Fr×d Final latent representation/embedding of feature from the rth

modality where r ∈ {p,q}

dataset (e.g., RICO), where V comprises two disjoint sets of nodesU andW .U represents UI screen nodes and

W represents UI element nodes. Edges only exist between diferent node-types, i.e. E ⊆ U ×W . ei j represents

the edge between vU ,i and vW , j . X comprises multi-modal features, |P | of these attributes are for UI screens and

|Q | of them are for UI elements, denoted by {XU ,p |p ∈ P }, and {XW ,q |q ∈ Q } respectively. MAAN will jointly

embed the nodes and their multi-modal features as low-dimensional vectors by learning the mapping functions

f : V 7→ Z ∈ R |V |×d for the nodes, and д : XV ,r 7→ Zr ∈ R
Fr×d for features in each modality where r ∈ {p,q} and

d ≪ |V |.

We irst construct a |V | × |V | heterogeneous adjacency matrix A from the network edges E:

A =

[

0 M

MT 0

]

whereM ∈ [0, 1] |U |× |W | is the UI screen to UI element adjacency matrix.

We also construct the multi-modal feature matrices {XU ,p |p ∈ P }, {XW ,q |q ∈ Q }. Each feature matrix XV ,r ∈

R
|V |×Fr for modalities r ∈ {p,q} of nodes V ∈ {U ,W } contains attribute information for all |V | nodes. Where a

feature does not apply to the node, e.g., feature p for a node v inW , the feature matrix XU ,p will have the row

corresponding to node v illed with zeros. MAAN uses one VAE channel to encode/decode the adjacency matrix;

and one VAE channel to encode/decode every feature matrix. Hence, it requires |P | + |Q | + 1 VAE channels. VAE

is chosen because of its expressiveness, generative ability and lexibility to be combined with other deep learning

models. Figure 4 depicts the diferent channels in the MAAN architecture, which consists of a multi-modal

attention-based GAE and several feature VAEs.

ACM Trans. Interact. Intell. Syst.
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Fig. 4. MAAN Architecture for RICO with |P | = 3 VAE channels for UI screen nodes and |Q | = 2 VAE channels for UI element

nodes.

4.1 Multi-modal Atention-based GAE

This module generates the node embeddings. Multiple GATs encode node features from diferent modalities,

which are then fused with an attention mechanism. The fused node features are encoded with GCNs into Gaussian

embeddings, and an inner product decoder used to reconstruct the adjacency matrix by sampling from the learned

Gaussian embeddings.

The module irst takes as inputs the adjacency matrix A and the node features {XU ,p |p ∈ P }, {XW ,q |q ∈ Q }.

It uses |P | + |Q | GAT modules to separately transform a node’s features of diferent modalities to hidden

representations. Encoding each modality with separate GAT modules before combining them avoids any modality

dominating the inal embedding, and allows the model to accommodate any number of modalities. For each layer

in a GAT module, we irst take as input the node feature of node i fromU orW and apply a linear transformation:

ACM Trans. Interact. Intell. Syst.
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s
(l )
i,r =W

(l )x
(l )
i,r (1)

whereW (l ) is the learnable weight matrix of the l th layer, and x
(l )
i,r is either the original feature or the hidden

representation of the node i from an earlier layer of some attribute p or q, i.e., r = p or r = q depending on node

i ∈ U or i ∈W .

We then compute the pair-wise un-normalized attention score between node i and each of its neighbors, say

node j. We concatenate the hidden representations of nodes i and j before taking a dot product of it with a

learnable weight vector a (l ) . A LeakyReLU activation is then applied:

e
(l )
i j = LeakyReLU (a (l )T (s

(l )
i,r | |s

(l )
j,r ′ )) (2)

where r ′ = q if r = p or r ′ = p if r = q, depending on node i ∈ U or i ∈W .

Softmax is then used to compute the attention scores to weight the hidden representations received by node i

from its neighboring nodes N (i ):

α
(l )
i j =

exp (e
(l )
i j )

∑
k ∈N (i ) exp (e

(l )

ik
)

(3)

The inal step in each GAT layer aggregates the hidden representations received by node i from its neighbors

N (i ), weighted by the attention scores.

x
(l+1)
i,r = σ (

∑

j ∈N (i )

α
(l )
i j s

(l )
j,r ) (4)

The steps outlined above are repeated for each layer in the GAT module with node features from each modality,

resulting in each node having |P | + |Q | separate sets of intermediate hidden representations of d ′ dimensions

{X ′U ,p = X
(L)
U ,p
|p ∈ P }, {X ′W ,q = X

(L)
W ,q
|q ∈ Q } after L layers , where d ′ > d . Setting the dimensions of intermediate

node representations to be higher than the inal latent representation of nodes allows for a more gradual

compression of the embedding space.

Next, we use an attention mechanism to fuse representations from diferent modalities into a |V | × d ′ repre-

sentation matrix X ′′V . The use of the attention mechanism here allows the model to self-discover correlations

between diferent modalities, and weight contributions accordingly.

We irst apply a non-linear transformation to each of these representations for each node to obtain a scalar ki,r
for each modality, which represents the importance of each modality.

ki,r =W
(1)
att tanh(W

(0)
attx

′
i,r + b) (5)

where x ′i,r is the intermediate hidden representation of the node for the r th modality where r ∈ {p,q},W
(0)
att and

W
(1)
att are learnable weight matrices and b is the bias vector. The parameters are shared across all modalities.

We then normalize ki,r with a softmax function to obtain the weights:

βi,r =
exp (ki,r )∑R
r=1 exp (ki,r )

(6)

where r ∈ {p,q} and R ∈ {P ,Q }.

Finally, we use these weights to fuse the multiple representations for each node:
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x ′′i =

P∑

p∈P

βi,px
′
i,p +

Q∑

q∈Q

βi,qx
′
i,q (7)

At this point, we denote the resultant aggregated hidden representations for all nodes as X ′′V ∈ R
|V |×d ′ . Two

layers of GCNs are then used to encode the aggregated hidden representations X ′′V into the Gaussian embeddings.

The use of stochastic Gaussian embeddings allows for more expressive embeddings to be generated.

X
′′(1)
V
= ReLU (ÃX ′′VW

(0)
V

) (8)

[µV ,σ
2
V ] = ÃX

′′(1)
V

W
(1)
V

(9)

where Ã = D−0.5AD−0.5 is the symmetrically normalized adjacency matrix with D as the adjacency matrix’s

degree matrix, µV and σ 2
V are the means and variances of the learned Gaussian embeddings of the nodes, and

W
(0)
V

,W
(1)
V

the learnable weight matrices.

The inal embedding of each node can then be computed as -

Zi = µV ,i + σ
2
V ,i ⊙ ϵ (10)

where ϵ is a random variable sampled from a standard normal distribution.

To reconstruct the adjacency matrix, we irst apply an inner product between the embeddings of node i and

node j to obtain:

[µi, j ,σ
2
i, j ] = siдmoid (ZT

i Z j ) (11)

As the edges are binary, the edge between nodes i and j can be reconstructed with:

pθ (Ai j |Zi ,Z j ) = Ber (µi, j ) (12)

where Ber (µi, j ) is the Bernoulli distribution parameterized by µi, j .

4.2 Feature VAE

In MAAN, we use feature VAEs to encode node features of each modality. The feature VAE adopts stochastic

Gaussian embeddings to allow for more expressive embeddings. Two linear layers with a tanh activation are irst

used to infer the Gaussian embeddings:

Hr = tanh(XT
V ,rW

(0)
r + b

(0) ) (13)

[µr ,σ
2
r ] = HrW

(1)
r + b

(1) (14)

where µr and σ 2
r are the means and variances of the learned Gaussian embeddings of the features of the r th

modality where r ∈ {p,q}, andW
(0)
r andW

(1)
r are learnable weight matrices. The embedding of each feature can

then be computed as Zr,ar = µr,ar +σ
2
r,ar
⊙ ϵ where ar is the index of the feature in the r th modality, e.g., index of

Social genre for UI screen genre modality, and ϵ is a random variable sampled from a standard normal distribution.

We then reconstruct the feature matrix by irst applying an inner product between the embedding of the nodes

and features:

[µr,i,ar ,σ
2
r,i,ar

] = siдmoid (ZT
i Zr,ar ) (15)

The node to feature edges for feature matrices with continuous values can be reconstructed with:

pθ (Xr,i,ar |Zi ,Zr,ar ) = N (µr,i,ar ,σ
2
r,i,ar

I ) (16)
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where N (µr,i,ar ,σ
2
r,i,ar

I ) is the Gaussian distribution parameterized by µr,i,ar and σ
2
r,i,ar

.

The node to feature edges for feature matrices with binary values are reconstructed with:

pθ (Xr,i,ar |Zi ,Zr,ar ) = Ber (µr,i,ar ) (17)

where Ber (µr,i,ar ) is the Bernoulli distribution parameterized by µr,i,ar .

4.3 Objective Functions

Under the VAE framework, we want qϕ (z) for the encoders in the MAAN model to match the prior distribution

pθ (z) for the decoders in the MAAN model and the evidence lower bound objective (ELBO) is:

LELBO (x ) = Eqϕ (z |x )
[loдpθ (x |z)] − KL(qϕ (z |x ) | |p (z)) (18)

The irst term measures the reconstruction loss while the second term is the Kullback-Leibler (KL) divergence.

During training, the reparameterization trick is used to rewrite the expectation with respect to qϕ (z |x ) such that

the Monte Carlo estimate of the expectation is diferentiable with respect to ϕ [21]. This VAE set-up is known

to sufer from over-itting when the KL divergence term is not strong enough or to generate uninformative

embeddings when the KL divergence term is too restrictive. We use the MMD term [52] instead of the KL

divergence term for the feature VAEs. We do not use α /λ hyper-parameters to balance between the KL divergence

and MMD terms as proposed in [52] as tuning these hyper-parameters did not improve performance substantially.

The use of the MMD term improves training stability and enhances the model’s ability to learn meaningful

embeddings from multiple modalities. The resulting objective function which we use in our model for the

multi-modal attention-based GAE is:

LELBO (x ) = Lr econstruction + LKL = Eqϕ (z |x )
[loдpθ (x |z)] − KL(qϕ (z |x ) | |p (z)) (19)

The resulting objective function which we use in our model for the feature VAEs is:

LELBO (x ) = Lr econstruction + LMMD = Eqϕ (z |x )
[loдpθ (x |z)] +MMD (qϕ (z) | |p (z)) (20)

We use the binary cross-entropy loss for Lr econstruction in the multi-modal attention-based GAE. For the

feature VAEs, we use the binary cross-entropy loss when reconstructing a feature matrix of binary values, and

mean square error loss when reconstructing a feature matrix of continuous values.

4.4 EMAAN: Extensions to Incorporate Edge Atributes

Capturing edge attributes within the message-passing framework enables richer network embeddings to be

generated. Edge attributes, e.g., diferent number of occurrences of linkages between UI screens and elements, can

indicate diferent roles and importances of diferent neighbouring UI entities. We now extend MAAN to handle

edge attributes. We denote edge attributes as Xe , where Xe ∈ R
|E |×Fe is an edge feature matrix with xeu,w ∈ R

Fe

representing the feature vector of an edge (u,w ).

To capture the efect of edge attributes, we extend MAAN by modifying the computation of the attention

score e
(l )
i j in equation (2) when computing the pair-wise attention scores between nodes. This approach has also

been adopted in previous GNN works that model edge attributes [10, 11, 38, 49]. Depending on the nature of the

edge attributes, the efect of edge attributes can be linear or non-linear. Hence, we consider both additive and

multiplicative methods of capturing edge attributes:

• Additive - In EMAAN-A, we capture the efect of edge attributes in a linear fashion with concatenation by

extending equation (2) to be:

e
(l )
i j = LeakyReLU (a (l )T (s

(l )
i,r | |s

(l )
j,r | |W

e, (l )xei, j )) (21)
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• Multiplicative - In EMAAN-M, we capture the efect of edge attributes in a non-linear fashion with

multiplication by extending equation (2) to be:

e
(l )
i j =W

e, (l )xei, j ⊙ (a (l )T (s
(l )
i,r | |s

(l )
j,r )) (22)

In both EMAAN-A and EMAAN-M variants,W e, (l ) is the learnable weight matrix of the l th layer for the edge

attributes, and xei, j is the attribute of the edge between node i and node j.

5 DATASETS AND EXPERIMENT SETUP

In this section, we describe the datasets utilized for experiments in this article, and the experiment setups used to

evaluate MAAN and EMAAN against other baselines to determine the importance of representation learning

using multi-modal and structural network information.

5.1 Datasets

The datasets used in the experiments are extracted from RICO, a repository covering the mobile UIs of 9,384

Android applications. We scraped updated metadata of these applications from Google Play Store and iltered out

applications and UI screens still available for download in Feb 2020. This leaves us 6,583 applications, released

from Jan 10 to Apr 17. The repository includes UI screenshots and their UI elements.

In [1], to ensure that the experiment indings for MAANwere valid for UI datasets with diferent characteristics,

we extracted two datasets from the RICO repository, namely: (i) RICO-N, comprising the most recently released

1000 applications (Oct 15 to Apr 17); and (ii) RICO-O, comprising the earliest released 1000 applications (Jan 10

to Aug 11). The two datasets difer in a number of areas, as shown in Table 2. RICO-O is about twice the size

of RICO-N by number of UI screens, UI elements and edges. The UI elements of both datasets have diferent

dimensions for multi-hot class name vectors. The distributions of the genres in the two datasets are also diferent.

The most popular genre in RICO-N is Social, whereas News and Magazines genre is most popular in RICO-O.

RICO-O and RICO-N share 33 common genres between their UI screens, and RICO-N has three additional genres.

We next extract UI elements occurring within each UI screen from the view hierarchies. A high number of

occurrences of a UI element in a UI screen suggests that the UI element is important to the UI screen. On the

other hand, we observe that a low number of occurrences are often boilerplate elements used to initialize the UI

structure. Hence, we include an edge between a pair of UI screen and UI element only if the UI element occurs

more than ive times in the UI screen.

To evaluate EMAAN so as to determine the informativeness of edge attributes and to strengthen the validity of

result indings, we extract three more datasets from the RICO repository where we do not ilter edges based on

such an empirical approach, and which include edge attributes. These additional datasets are: (iii) W-RICO-N

and (iv)W-RICO-O, which are the RICO-N and RICO-O datasets with edge attributes that represent the number

of occurrences of a UI element in a UI screen; and (v) W-RICO-M, a larger dataset of 2000 applications released

earlier than RICO-N but later than RICO-O (Nov 12 to Sep 14) with the same type of edge attributes. W-RICO-M

is a larger dataset with a larger number of nodes and edges comprising UIs from a diferent period, and hence

enables us to further conirm the validity of our experiments. The details of these datasets are shown in Table 2.

For all datasets, visual information, i.e. the UI screen images, is encoded with a separate autoencoder. Fol-

lowing [6] and based on empirical experiments, we choose an embedding dimension of 64 for encoding the

representations of UI screen images. Textual information is encoded with pre-trained Glove model, chosen based

on empirical experiments, which generates embeddings of dimension 50. We pre-process the class names of the

UI elements by breaking them up by their periods, special characters and camel casing. For example, com.android.

internal.policy.PhoneWindow$DecorView is tokenized as android, internal, policy, phone, window, decor, view. Where

relevant, we generate the class name features by: 1) using a pre-trained Char-NGram (CHAR), chosen based on

ACM Trans. Interact. Intell. Syst.



14 • Ang and Lim

empirical experiments, which generates embeddings of dimension 100; and/or 2) using bag-of-words (BOW)

representation, where the embedding dimension represents the number of unique tokens in the class names.

UI screen ratings are based on the ratings of the applications that they are associated with. Other embedding

dimensions and pre-trained encoders can also be utilized but these were chosen to manage the complexity and

computation requirements while still achieving good performance. In general, the dataset statistics shown in

Table 2 indicate that:

• There are less UI screens and elements in newer mobile applications (e.g., when we compare between the

newer RICO-N dataset with the older RICO-O dataset), which could be indicative of UIs becoming less

complex and more standardized over time.

• There are also less unique tokens for class names for the newer datasets (as indicated by the dimensions of

the multi-hot vectors for UI element class names), which could similarly indicate greater standardization in

newer UIs.

• The distribution of links between UI screens and elements is skewed with fat tails, based on the skewness

(computed using the adjusted Fisher-Pearson skewness coeicient), which is greater than zero for all

datasets.

Edge-lists are then divided into training, validation and testing datasets in the ratios 85%/5%/10% for the link

prediction task. Under the co-embedding framework, we use the same generated embedding to evaluate both

link prediction and attribute inference tasks. Hence, nodes that are part of the edges in the validation and testing

edge-lists are used as validation/testing datasets for the attribute inference task, and their attribute values set to

zero in the training dataset. For the rating prediction task, UI screen ratings are divided into training and testing

datasets in the ratio 80%/20%. We do not utilize validation data for the rating prediction task as we simply use a

simple series of dense layers for regression with the generated embeddings and do not tune any hyper-parameters

for consistent comparisons between MAAN/EMAAN and baselines.

5.2 Experiment Setup

We compare the performance of MAAN and EMAAN with other state-of-the-art models on tasks that could

facilitate the mobile UI design/development process. Each task is evaluated with separate evaluation metrics:

• Link Prediction (UI Layout Assistance) - The UI layout assistance task can be framed as a link prediction

task, where we predict UI screens to be associated to each UI element via unobserved links. Each model

returns the top ranked (or similar) UI screens for each UI element using the embeddings of the UI screens.

To train and evaluate a prediction model with both positive and negative links, we randomly generate

10 pairs of nodes not in E for each positive link (u,w ) ∈ E as negative links. For each model, we use the

inner product of node embeddings, i.e., ZTZ , to predict the probability of a link forming between a pair of

UI screen and UI element nodes. The model then ranks the candidate links in the test data by the inner

product score, i.e., siдmoid (ZTZ ). Area under the receiver operating characteristic curve (AUC) and average

precision (AP) are used as the evaluation metrics.

• Prediction of UI Screen Ratings (UI Design Evaluation) - To evaluate UI designs, we predict UI

screen ratings for the RICO dataset by using generated node embeddings as inputs to a regression model

implemented with a series of ive dense layers. This task is useful for predicting the success of new

applications. We use root mean square error (RMSE) as the evaluation metric.

• Attribute Inference (UI Feature Inference) - We infer missing binary and continuous valued attributes

of UI screens and elements based on ainities between nodes and attributes. For binary valued attributes,

we treat this as predicting links between nodes and attributes, e.g., if a UI screen node has the categorical

genre attribute ’Social’ which is missing, we predict a link between the UI screen node and the categorical

genre attribute ’Social’, where 1 indicates the presence of the link, and 0 indicates the absence of the link.
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Table 2. Dataset Statistics.

RICO-N RICO-O W-RICO-N W-RICO-O W-RICO-M

UI Screens/Elements 5879/1563 9108/2920 5879/1563 9108/2920 15973/3880

Number of Edges 10762 19418 77922 136610 223722

Number of UI elements for each UI screen (Number of UI screens for each UI element)

Average 1.9 (17.6) 1.9 (16.7) 6.6 (24.0) 7.5 (23.4) 7.0 (28.8)

Maximum 6.0 (1004.0) 7.0 (1711.0) 22.0 (5787.0) 21.0 (8954.0) 27.0 (15750.0)

Minimum 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

Skewness 0.9 (7.9) 0.9 (11.1) 0.7 (18.0) 0.6 (23.2) 0.6 (27.7)

Attribute Types and Dimensions

Visual - Latent vectors of UI

screen images (Cont.)

64 64 64 64 64

Textual - Glove vectors

of app. descriptions for UI

screen (Cont.)

50 50 50 50 50

Categorical - Multi-hot vec-

tors of app. genre for UI

screen (Bin.)

36 33 36 33 35

Textual - Multi-

hot/CharNGram vectors of

class name of UI element

(Bin./Cont.)

1548/100 2161/100 1548/100 2161/100 2949/100

Categorical - Multi-hot vec-

tors of UI element compo-

nent type (Bin.)

25 25 25 25 25

Hence, we also sample 10 negative instances for each positive instance as per the link prediction task. We

compare MAAN/EMAAN with CAN as GAT is not designed for attribute inference. The inner-product

of generated node embeddings and attribute/feature embeddings is used to infer missing attributes. For

binary attribute inference which involves UI screen genre, UI element class name BOW, and UI element

component type, we measure the performance by AUC and AP. For UI element class name inference, we

also split the class name into name tokens and compute the multi-label weighted F1 score to assess the

performance of the model in inferring the class name-level attribute (and not just token-level attributes).

The multi-label weighted F1 score returns the average score of all tokens in the class name weighted by

support (number of true instances for each token). For continuous attribute inference which involves UI

screen image, UI screen description, and UI element class name CHAR, RMSE is used.

• Multi-Modal UI Retrieval - This facilitates the retrieval of UI screens for an input UI screen query. The

relevant results should be visually similar UI screens considering their multiple modalities. An overview of

the retrieval evaluation process is shown in Figure 5. In this task, we use human judgement to determine the

relevant UI screen results. We used the Amazon Mechanical Turk (AMT) platform to recruit participants for

evaluating the relevance of retrieval results. To generate the user evaluation surveys, we use 20 randomly

sampled UI screen images as queries to retrieve the top ive results (based on nearest neighbors) from

MAAN/EMAAN and the baseline models. For each query UI screen, we construct survey tasks, one for

each of the models. Each survey task shows the same query UI screen and the result UI screens, one result

UI screen from MAAN/EMAAN and each of the baseline models. Samples of the screen images presented

in the surveys are shown in Figure 6. For quality assurance, we also add either the query UI screen or a
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non-existent UI screen to each survey task. Each survey is then assigned to three AMT workers. Workers

are asked to compare the query with randomly ordered results from MAAN/EMAAN and the baseline

models and select UI screens that are most similar. If a worker fails to select the ground truth duplicate

query UI screen image or selects the non-existent UI screen, the worker’s responses for the entire survey

will be discarded. The survey process is repeated until we obtain three good quality responses for each

survey. Two metrics are used to measure retrieval performance. We use Average Precision@5 (precision@5)

and Normalized Discounted Cumulative Gain (NDCG) to evaluate the retrieval accuracy. For precision@5,

a result is deemed relevant if two or more workers select it as relevant. As workers can select multiple UI

screens for each query UI screen image, a visual check is also conducted to assess the reasonableness of

their responses, and we compute the NDCG metric with the actual number of workers selecting the result

as relevant.

Fig. 5. Retrieval evaluation process.

Baselines and Settings. Co-embedding Attributed Network model (CAN) [30] and Graph Attention Network

(GAT) [41] are chosen as baselines as they represent VAE and GNN-based state-of-the-art models respectively. We

add a linear feature auto-encoder channel to GAT for it to co-embed representations of both attributes and nodes.

For MAAN and EMAAN, we use four single-headed layers for each GAT module, and two layers for the GCN

module. Feature VAEs use dense layers as encoders. We use the radial basis function as the kernel for MMD loss.

Based on experiments with the validation dataset, the dimensions of the hidden node and feature representations

d ′ is ixed at 64, and the dimension of the inal node and feature embeddings d is ixed at 32. Training is run for

1000 epochs to generate the embeddings. The regression model for prediction of UI screen ratings is trained

for 5000 epochs. For all models, an Adam optimizer [20] with a learning rate of 0.02 with a cosine annealing

scheduler is used and dropout is set to 0.1. All models are implemented with Pytorch [33].

6 EXPERIMENT RESULTS

In this section, we present the results of experiments conducted with i) MAAN and baseline models with

the RICO-N and RICO-O datasets; and ii) EMAAN, MAAN and baseline models with the W-RICO-N,

W-RICO-O and W-RICO-M datasets, which involve edge weights.

6.1 Experiment Results with RICO-N/RICO-O

6.1.1 Link Prediction Results. Table 3 shows the results of the experiments relating to link prediction for

the RICO-N and RICO-O datasets. MAAN efectively utilizes multi-modal attributes to generate embeddings
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Fig. 6. Samples of retrieval results shown to AMT workers. For RICO-N, we compared MAAN with five baselines. For

W-RICO-M, we compared MAAN, EMAAN-A and EMAAN-M with five baselines. Results are randomly ordered. Result 4

(let-hand-side) is a dummy non-existent UI screen. Result 3 (right-hand-side) is identical to query.

that consistently outperform baseline models on the link prediction task. CAN and GAT have greater diiculty

utilizing continuous valued attributes to generate embeddings that perform well on the link prediction task,

compared to when binary valued attributes are used. Diferences in GAT performance when using UI element

class names as attributes across the two datasets are likely due to diferences in such attributes across the two

datasets, e.g., diferences in dimensions. VAE-based MAAN and CAN are less afected by such diferences.

6.1.2 UI Screen Rating Prediction Results. Table 3 also sets out the results of regression experiments for the

RICO-N and RICO-O datasets. For reference, the screen ratings range from 1 to 5, and the RMSE using mean of

training dataset is 0.583 and 0.554 for RICO-N and RICO-O respectively. Here, one of the MAAN models returns

the best results for both datasets. The diferences in performance across all models for the UI screen rating

prediction task is more narrow compared with other tasks. A potential reason for this could be that there are

very little diferences in the strength of the relationships between the diferent attributes and UI screen ratings.

6.1.3 Atribute Inference Results. Table 4 sets out the results of the experiments relating to attribute inference

for the RICO-N and RICO-O datasets. The embeddings generated by MAAN consistently outperform embeddings

generated by the baseline models across all modalities on this task. The diferences in performance between

MAAN and CAN using continuous valued attributes and binary valued attributes are even more stark here

compared with the link prediction task. In some cases (e.g. screen description), the RMSE for the CAN model is

around ive times worse than the MAAN model.

6.1.4 Retrieval Evaluation Results. In this task, we use RICO-N dataset only and compare with ive baseline

models. The irst four baseline models are the CAN and GAT models that utilize UI screen image and element

component type attributes as they are likely to return better retrieval results. The ifth baselinemodel is Screen2Vec

[25]. Screen2Vec is a related recent work that was published after MAAN [1]. Screen2Vec is similar to MAAN
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Table 3. RICO-N and RICO-O - Link Prediction and Rating Regression Results. Best and second best performing models per

metric marked in boldface and underlined. Higher (lower) values indicate beter performance for AUC/AP (RMSE). We see

that MAAN generates embeddings that consistently outperform baseline models on the link prediction and rating regression

tasks. For all tables: Comp. refers to component, Desc. refers to description.

Link Prediction Regression

RICO-N RICO-O RICO-N RICO-O

Model AUC AP AUC AP RMSE RMSE

GAT(UI Screen Image) 0.686 0.122 0.761 0.156 0.562 0.517

GAT(UI Screen Desc.) 0.680 0.122 0.729 0.141 0.552 0.522

GAT(UI Screen Genre) 0.939 0.843 0.928 0.658 0.682 0.536

GAT(UI Element Class Name CHAR) 0.379 0.068 0.861 0.716 0.555 0.520

GAT(UI Element Class Name BOW) 0.335 0.065 0.958 0.798 0.579 0.541

GAT(UI Element Comp. Type) 0.934 0.730 0.973 0.829 0.604 0.536

CAN(UI Screen Image) 0.972 0.881 0.960 0.828 0.617 0.534

CAN(UI Screen Desc.) 0.545 0.206 0.903 0.807 0.654 0.522

CAN(UI Screen Genre) 0.967 0.912 0.902 0.799 0.636 0.555

CAN(UI Element Class Name CHAR) 0.502 0.093 0.486 0.086 0.682 0.531

CAN(UI Element Class Name BOW) 0.965 0.856 0.960 0.842 0.593 0.542

CAN(UI Element Comp. Type) 0.963 0.829 0.938 0.866 0.638 0.533

MAAN(All Features Class Name CHAR) 0.981 0.913 0.994 0.957 0.550 0.511

MAAN(All Features Class Name BOW) 0.977 0.905 0.981 0.917 0.585 0.531

Table 4. RICO-N and RICO-O - Atribute Inference. Best performing models per metric marked in boldface. Weighted multi-

label F1 score for UI Element Class Name in brackets. Higher (lower) values indicate beter performance for AUC/AP/F1 score

(RMSE). Embeddings generated by MAAN outperform embeddings generated by the baseline models across all modalities on

the atribute inference task, with the diferences being even clearer than the link prediction task.

AUC/AP for bin. valued attributes RMSE for cont. valued attributes

Model Screen Genre Element Class

Name BOW

Element

Comp. Type

Screen Image Screen Desc. Element Class

Name CHAR

RICO-N

CAN 0.501/0.091 0.817/0.571

(0.170)

0.733/0.198 1.451 8.958 5.685

MAAN 0.776/0.223 0.922/0.663

(0.170)

0.928/0.541 0.994 1.675 1.107

RICO-O

CAN 0.665/0.148 0.929/0.720

(0.196)

0.500/0.090 2.454 12.032 5.806

MAAN 0.800/0.231 0.959/0.784

(0.196)

0.958/0.636 1.097 2.285 1.427

in capturing multi-modal textual and visual information, but does not capture structural network information

(see Section 3 for more details on Screen2Vec). Table 5 sets out the retrieval results. MAAN outperforms all

baseline models by a large margin. Among the baselines, Screen2Vec’s performance is closest to MAAN, which

indicates the importance of capturing multi-modal information. The diference in performance between MAAN

and Screen2Vec could be due to Screen2Vec not capturing network structural information. CAN using the binary
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Table 5. Retrieval Evaluation - RICO-N. Best and second best performing models per metric marked in boldface and

underlined. 20.0% of all results selected as relevant by 2 or more AMT workers. Higher values indicate beter performance.

MAAN outperforms all baseline models by a large margin, with Screen2Vec’s performance being closest to MAAN, which

indicates the importance of capturing multi-modal information.

Model Precision@5 NDCG

GAT(UI Screen Image) 18.0% 46.0%

GAT(UI Element Comp. Type) 18.0% 46.0%

CAN(UI Screen Image) 17.0% 41.2%

CAN(UI Element Comp. Type) 71.0% 82.9%

Screen2Vec 79.0% 84.2%

MAAN 89.0% 92.6%

Table 6. Model Ablation for MAAN with RICO-N - Link Prediction/Regression. Best and second best performing models per

metric marked in boldface and underlined. Higher (lower) values indicate beter performance for AUC/AP (RMSE).

Link Prediction Regression

Modiication AUC AP RMSE

Replace GAT layers with GCN 0.966 0.896 0.594

Use multi-heads (4 heads) for each GAT layer 0.970 0.888 0.636

Replace attention fusion with addition 0.689 0.129 2.570e5

MAAN 0.981 0.913 0.550

Table 7. Model Ablation for MAAN with RICO-N - Atribute Inference. Best and second best performing models per metric

marked in boldface and underlined. Higher (lower) values indicate beter performance for AUC/AP (RMSE).

AUC/AP for bin. valued

attributes

RMSE for cont. valued attributes

Modiication UI Screen

Genre

UI Element

Comp. Type

UI Screen Im-

age

UI Screen

Desc.

UI Element

Class Name

CHAR

Replace GAT layers

with GCN

0.609/0.138 0.761/0.266 0.819 2.186 3.835

Use multi-heads (4

heads) for each GAT

layer

0.771/0.201 0.955/0.680 1.122 1.589 1.037

Replace attention fu-

sion with addition

0.519/0.098 0.686/0.140 2.487 1.059 1.611

MAAN 0.776/0.223 0.928/0.541 0.994 1.675 1.107

valued UI element component type attribute also performs relatively well, in line with what we had observed for

other tasks.

6.1.5 Ablation Studies onMAANwith RICO-N. We irst conduct ablation studies on the main MAANmodel

in this section, before extending it to capture edge attributes in EMAAN in the subsequent sections. Tables 6

and 7 set out the results of the ablation studies for diferent model conigurations of MAAN using the RICO-N

dataset. The choices made in the proposed MAAN lead to better link prediction and regression performance.
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Table 8. Modality Ablation for MAAN with RICO-N - Link Prediction/Regression. Best and second best performing models

per metric marked in boldface and underlined. Higher (lower) values indicate beter performance for AUC/AP (RMSE).

Link Prediction Regression

Modiication AUC AP RMSE

MAAN-Image+Classname 0.977 0.907 0.564

MAAN-Image+Classname+Desc. 0.716 0.617 0.555

MAAN-Image+Classname+Desc.+Genre 0.907 0.828 0.600

MAAN All 0.981 0.913 0.550

Table 9. Modality Ablation for MAAN with RICO-N - Atribute Inference. Best and second best performing models per metric

marked in boldface and underlined. Higher (lower) values indicate beter performance for AUC/AP (RMSE).

Modiication UI Screen

Image

(RMSE)

UI Element

Class Name

CHAR (RMSE)

UI Screen

Desc.

(RMSE)

UI Screen

Genre

(AUC/AP)

MAAN-Image+Classname 1.353 0.712 - -

MAAN-Image+Classname+Desc. 0.729 0.536 0.699 -

MAAN-Image+Classname+Desc.+Genre 0.659 1.152 1.312 0.746/0.193

MAAN All 0.994 1.107 1.675 0.776/0.223

For attribute inference, multi-head can improve performance for some attributes. [40] found that multi-head

attention allows information from diferent representation sub-spaces at diferent positions to be attended to.

Here, multi-head allows the model to jointly attend to information from diferent nodes. Tables 8 and 9 set out

the results of ablation studies for diferent number of modalities. MAAN-Image+Classname refers to MAAN

with UI screen images and element class-names (CHAR) attributes. We further add the UI screen description for

MAAN-Image+Classname+Desc., and add the UI screen genre for MAAN-Image+Classname+Desc.+Genre. For

link prediction and regression, using more modalities improves performance. For attribute inference, using all

features (i.e. MAAN All) does not necessarily lead to better performance. Diferent combinations of features, i.e.

feature selection, can further improve the performance of MAAN.

6.2 Experiment Results Involving Edge Weights

In this section, we repeat the experiments that were conducted above for MAAN and baselines, but with the two

EMAAN models and on the additional W-RICO-N, W-RICO-O and W-RICO-M datasets.

6.2.1 Link Prediction Results. Table 10 shows the results of the experiments relating to link prediction for the

W-RICO-N, W-RICO-O and W-RICO-M datasets. The key diferences between experiments on the RICO-N/RICO-

O and W-RICO-N/W-RICO-O datasets are the higher number of edges, as shown in Table 2, and the utilization of

edge attributes, which are the the number of occurrences of a UI element in a UI screen, in the EMAAN models.

While MAAN is still able to outperform the baselines, the results show that EMAAN models materially improve

in performance over MAAN. In particular, we see that EMAAN-M shows the best performance, which indicates

a non-linear relationship between the probability of linkages between UI screens and elements and the edge

attributes.

6.2.2 UI Screen Rating Prediction Results. Table 11 sets out the results of regression experiments for the

W-RICO-N, W-RICO-O and W-RICO-M datasets. For reference, RMSE using mean of training dataset is 0.583,
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Table 10. W-RICO-N/W-RICO-O/W-RICO-M - Link Prediction Results. Best and second best performing models per metric

marked in boldface and underlined. Higher values indicate beter performance. While MAAN continues to outperform the

baselines, EMAAN, by further capturing edge atributes, materially improves in performance over MAAN.

W-RICO-N W-RICO-O W-RICO-M

Model AUC AP AUC AP AUC AP

GAT(UI Screen Image) 0.829 0.215 0.283 0.060 0.854 0.244

GAT(UI Screen Desc.) 0.819 0.210 0.787 0.178 0.842 0.232

GAT(UI Screen Genre) 0.795 0.203 0.216 0.056 0.381 0.067

GAT(UI Element Class Name CHAR) 0.617 0.105 0.500 0.083 0.408 0.071

GAT(UI Element Comp. Type) 0.905 0.372 0.914 0.346 0.915 0.508

CAN(UI Screen Image) 0.909 0.841 0.915 0.836 0.903 0.844

CAN(UI Screen Desc.) 0.499 0.096 0.502 0.092 0.512 0.109

CAN(UI Screen Genre) 0.908 0.827 0.922 0.844 0.905 0.846

CAN(UI Element Class Name CHAR) 0.499 0.094 0.503 0.090 0.500 0.092

CAN(UI Element Comp. Type) 0.907 0.840 0.917 0.842 0.905 0.840

MAAN(All Feat.) 0.914 0.846 0.923 0.843 0.919 0.871

EMAAN-A(All Feat.) 0.934 0.855 0.929 0.854 0.933 0.877

EMAAN-M(All Feat.) 0.957 0.872 0.934 0.860 0.949 0.889

0.554 and 0.536 for W-RICO-N, W-RICO-O and W-RICO-M respectively. MAAN and EMAAN outperform all

baselines. The diferences between the EMAAN models and MAAN is however smaller than other tasks. This

could indicate that multi-modal information is more important for the screen rating prediction task than the

structural network information and edge attributes.

6.2.3 Atribute Inference Results. Table 12 sets out the results of the experiments relating to attribute in-

ference for the W-RICO-N, W-RICO-O and W-RICO-M datasets. MAAN and EMAAN similarly outperform all

baselines across all datasets, particularly for the continuous-valued screen image, screen description and element

class name attributes. The utilization of edge attributes by EMAAN leads to an improvement in performance for

a number of modalities, demonstrating the usefulness of capturing edge attributes. For the W-RICO-M dataset,

we notice that EMAAN-M generally shows better performance than EMAAN-A for most modalities. This could

be due to a stronger non-linear relationship between the edge attributes and node attributes in the W-RICO-M

dataset.

6.2.4 Retrieval Evaluation Results. We conduct an additional user evaluation on the W-RICO-M dataset.

Table 13 sets out the retrieval results for the W-RICO-M dataset. MAAN and EMAAN outperform all baseline

models, with EMAAN models generally performing better than MAAN. Among the baselines, Screen2Vec’s

performance is again closest to MAAN and EMAAN, which indicates the importance of capturing multi-modal

information.

7 QUALITATIVE ANALYSIS

In this section, we conduct two sets of qualitative analyses on the MAAN and EMAAN models, by visualizing the

learnt embeddings, as well as the attention weights for multi-modal fusion that were learnt by the key models.

7.1 Visualization of Embedding Space

We use t-Distributed Stochastic Neighbor Embedding [29] with perplexity of 50.0, early exaggeration of 20.0 and

learning rate of 200.0 to project the generated embeddings to two dimensions to visualize the embedding spaces.
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Table 11. W-RICO-N/W-RICO-O/W-RICO-M - Regression Results. Best and second best performing models per metric

marked in boldface and underlined. Lower values indicate beter performance. MAAN and EMAAN again outperform all

baselines.

Model W-RICO-N W-RICO-O W-RICO-M

GAT(UI Screen Image) 0.575 0.544 0.586

GAT(UI Screen Desc.) 0.572 0.547 0.588

GAT(UI Screen Genre) 0.581 0.525 0.589

GAT(UI Element Class Name CHAR) 0.576 0.547 0.587

GAT(UI Element Comp. Type) 0.598 0.536 0.585

CAN(UI Screen Image) 0.613 0.550 0.580

CAN(UI Screen Desc.) 0.666 0.562 0.586

CAN(UI Screen Genre) 0.609 0.544 0.584

CAN(UI Element Class Name CHAR) 0.642 0.555 0.594

CAN(UI Element Comp. Type) 0.607 0.533 0.584

MAAN(All Feat.) 0.550 0.511 0.531

EMAAN-A(All Feat.) 0.549 0.509 0.527

EMAAN-M(All Feat.) 0.556 0.511 0.524

Table 12. W-RICO-N/W-RICO-O/W-RICO-M - Atribute Inference. Best and second best performing models per metric

marked in boldface and underlined. Higher (lower) values indicate beter performance for AUC/AP (RMSE). MAAN and

EMAAN outperform all baselines across all datasets. The utilization of edge atributes by EMAAN leads to an improvement

in performance for a number of modalities, demonstrating the usefulness of capturing edge atributes.

AUC/AP for bin. valued

attributes

RMSE for cont. valued attributes

Model Screen Genre Element

Comp. Type

Screen Image Screen Desc. Element Class

Name CHAR

W-RICO-N

CAN 0.681/0.178 0.920/0.434 1.217 6.107 5.902

MAAN 0.780/0.207 0.965/0.660 0.681 1.211 0.738

EMAAN-A 0.776/0.223 0.928/0.541 0.658 0.966 0.737

EMAAN-M 0.778/0.202 0.966/0.666 0.490 1.010 1.052

W-RICO-O

CAN 0.692/0.141 0.917/0.842 1.388 5.897 5.665

MAAN 0.805/0.250 0.958/0.609 0.581 1.090 0.972

EMAAN-A 0.809/0.250 0.959/0.609 0.539 1.145 0.925

EMAAN-M 0.805/0.246 0.957/0.585 0.669 1.441 1.011

W-RICO-M

CAN 0.686/0.149 0.825/0.367 2.077 6.173 5.993

MAAN 0.788/0.217 0.961/0.640 1.127 2.260 1.188

EMAAN-A 0.792/0.217 0.973/0.727 1.129 1.880 1.314

EMAAN-M 0.792/0.217 0.972/0.725 0.672 1.568 1.216

Figures 7, 8, and 9 visualize the embedding spaces generated for the RICO-N, W-RICO-N and W-RICO-M datasets

respectively. The presence of more clusters seems correlated with better task performance. The embedding
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Table 13. W-RICO-M - Retrieval Evaluation. Best and second best performing models per metric marked in boldface and

underlined. 37.0% of all results selected as relevant by 2 or more AMT workers for W-RICO-M. Higher values indicate beter

performance. MAAN and EMAAN outperform all baseline models, with EMAAN models generally performing beter than

MAAN. Screen2Vec’s performance is again closest to MAAN and EMAAN, which indicates the importance of capturing

multi-modal information.

Model Precision@5 NDCG

GAT(UI Screen Image) 24.0% 63.6%

GAT(UI Element Comp. Type) 24.0% 63.6%

CAN(UI Screen Image) 24.0% 77.7%

CAN(UI Element Comp. Type) 16.0% 70.1%

Screen2Vec 52.0% 84.7%

MAAN 57.0% 90.9%

EMAAN-A 57.0% 91.7%

EMAAN-M 57.0% 91.7%

generated by the MAAN model has more obvious node clusters than those from CAN. For CAN, the embeddings

for modalities where performance is poorer do not have clear node clusters forming.

If we compare MAAN with the EMAAN models on the W-RICO-N and W-RICO-M datasets, we notice that the

EMAAN models generally produce more clusters that are also more clearly separated. On the W-RICO-N and

W-RICO-M datasets, we similarly observe that the CAN embeddings for modalities where performance is poorer

do not have clear node clusters forming.

7.2 Atention Weights

The attention weights for multi-modal fusion learnt by the MAAN, EMAAN-A and EMAAN-M models for

each of the nodes, i.e. βi,r described in Section 4, are plotted as heatmaps in Figures 10, 11 and 12 for MAAN,

EMAAN-A and EMAAN-M models (for the W-RICO-N dataset) respectively. The attention weights show the

relative importance of each of the modalities. The attention weights in MAAN are focused on the UI screen image

and description modalities (corresponding to the darker colors for screen image and description modalities in

Figure 10), whereas the attention weights in EMAAN-A and EMAAN-M models indicate that these models utilize

features across more modalities, e.g., for EMAAN-A we observe darker colors for the UI screen image, description

and genre, as well as the UI element component type modalities in Figure 11. In general, all three models appear

to have learnt that the UI screen image modality is important. The attention weights in Figure 11 and 12 show

that in addition to the UI screen image and description modalities, the EMAAN-A and EMAAN-M models also

focus on the UI screen genre modality. The diferences between the attention weights for the EMAAN-A and

EMAAN-M model could be due to the diferences in how edge attributes are captured, i.e., linear for EMAAN-A

but non-linear for EMAAN-M. To facilitate comparisons between models and datasets, we also plot the average

attention weights (averaged across all nodes) for the MAAN, EMAAN-A and EMAAN-M models and compare

them across the W-RICO-N, W-RICO-O and W-RICO-M datasets in Table 14. Similarly, a darker shade of blue

indicates higher average attention weights for the modality, relative to the other modalities for the model and

dataset. While there are variations in the average attention weights across the three datasets, we see that the

modality with the highest attention weights is generally in line with what we observed for the W-RICO-N dataset.

8 DISCUSSION

From the experimental results on link prediction, rating prediction and attribute inference across all datasets, we

see that the proposed MAAN and EMAAN models are able to efectively outperform the baseline CAN and GAT
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Fig. 7. Visualization of embedding spaces for RICO-N. We focus on the embeddings of UI screens (blue datapoints) and

elements (brown datapoints) when comparing MAAN and CAN. As MAAN captures multi-modal atributes, it additionally

generates embeddings for the multi-modal features (e.g., cyan, red datapoints). These embeddings were not utilized in the

paper, but we have included them in the figure for completeness.

Fig. 8. Visualization of embedding spaces for W-RICO-N. We focus on the embeddings of UI screens (blue datapoints) and

elements (brown datapoints) when comparing MAAN, EMAAN and CAN. As MAAN and EMAAN capture multi-modal

atributes, it additionally generates embeddings for the multi-modal features (e.g., cyan, red datapoints). These embeddings

were not utilized in the paper, but we have included them in the figure for completeness.

models that only utilize information from a single modality. We also see that being able to capture edge attributes

leads to better performance with the various EMAAN models. In relation to the retrieval task, the two sets of user

evaluations conducted on the RICO-N and W-RICO-M datasets consistently show that the MAAN/EMAAN model

is able to more efectively capture structural network information and information from multiple modalities,

and hence generate embeddings that retrieve more relevant results than the baseline CAN, GAT and Screen2Vec

models.

From the multiple experiments, we see that being able to utilize information from more modalities generally

leads to better performance. However, the ablation studies also show that factor selection is still important as

performance could decline for certain combinations of modalities.

While MAAN/EMAAN generally outperforms both the baseline CAN and GAT models, we do notice that the

diference between MAAN/EMAAN and the baseline CAN and GAT models is more pronounced when attributes
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Fig. 9. Visualization of embedding spaces for W-RICO-M. We focus on the embeddings of UI screens (blue datapoints) and

elements (brown datapoints) when comparing MAAN, EMAAN and CAN. As MAAN and EMAAN capture multi-modal

atributes, it additionally generates embeddings for the multi-modal features (e.g., cyan, red datapoints). These embeddings

were not utilized in the paper, but we have included them in the figure for completeness.

Fig. 10. Visualization of atention weights for MAAN (W-RICO-N).

are continuous-valued. We postulate that the use of the MMD loss term in MAAN/EMAAN helps it to better

utilize continuous valued attributes when generating embeddings.

The use of attention mechanisms generally leads to better performance as seen in the ablation studies. In

addition, we also show that the learned attention weights used for multi-modal fusion are useful in understanding

the relative contribution of information from each modality to the generated embeddings.

The improvement in performance when we include the additive and multiplicative mechanisms to capture

edge attributes in EMAAN further demonstrates the usefulness of capturing edge attributes. We generally see

better performance with EMAAN-M - which could be linked to the non-linear relationship between the edge

attributes and the tasks.

The key idea demonstrated in this paper is that capturing semantics that are available in the network structures

and multimodal information of UI datasets can help improve predictive performance on a range of UI-related
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Fig. 11. Visualization of atention weights for EMAAN-A (W-RICO-N).

Fig. 12. Visualization of atention weights for EMAAN-M (W-RICO-N).

tasks. Section 2 described key scenarios where such predictions can be applied in tasks that can facilitate and

assist UI design processes. Predicting links between UI screen and elements can assist UI developers and designers

in narrowing down designs for viable UI layouts; prediction of UI ratings can help provide an early indication of

UI popularity; UI attribute/feature inference can improve the quality of UI datasets; and being able to retrieve

semantically similar screens can facilitate UI designers and developers in searching for UI designs to use as

reference designs. More importantly, being able to capture and utilize such rich information within UI datasets,

which are likely to increase in volume and variety over time, could enable a more data-driven approach to be

taken in improving the usability of UI designs.

9 CONCLUSION AND FUTURE WORK

Based on the results of our experiments, we see that the MAAN and EMAAN models, due to their use of

1) information from multiple modalities 2) structural network information and edge attributes, 3) attention

mechanisms, and 4) the MMD loss term performs more consistently than the baseline models whose performance

varies based on the nature of the information. We also see that the use of node-wise attention in GAT layers

together with modality-wise attention fusion leads to better performance. The learned attention weights also help

us understand the importance of information from each modality. The experiment results also demonstrate that

MAAN/EMAAN is able to generate UI screen and element embeddings that can be used in a range of downstream

tasks, e.g. predicting links between UI screens and elements for UI layout assistance, UI rating predictions for

UI design evaluation, missing UI attribute/feature inference and UI screen retrieval, and could also potentially
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Table 14. Average atention weights (across all nodes) for MAAN, EMAAN-A, EMAAN-M for the three datasets. A darker

shade of blue indicates higher average atention weights for the modality, relative to the other modalities for the model and

dataset.

MAAN EMAAN-A EMAAN-M

W-RICO-N

UI Screen Image 0.08 0.20 0.17

UI Element Class Name 0.03 0.19 0.00

UI Screen Description 0.85 0.21 0.01

UI Screen Genre 0.01 0.21 0.81

UI Element Component Type 0.02 0.20 0.01

W-RICO-O

UI Screen Image 0.02 0.24 0.18

UI Element Class Name 0.03 0.20 0.11

UI Screen Description 0.55 0.08 0.09

UI Screen Genre 0.11 0.40 0.52

UI Element Component Type 0.28 0.07 0.10

W-RICO-M

UI Screen Image 0.01 0.28 0.13

UI Element Class Name 0.30 0.00 0.12

UI Screen Description 0.60 0.27 0.00

UI Screen Genre 0.02 0.36 0.73

UI Element Component Type 0.07 0.09 0.02

complement other UI development-related systems. Given MAAN/EMAAN’s performance on the ive distinct

datasets that were used for experiments, the model is likely to be equally applicable to iOS applications even if

characteristics of the information difer. Directions for future work include:

• Multiple node and edge-types: The current MAAN/EMAAN models utilize structural network information

for a bipartite network and a single edge-type. Capturing other node and edge types, i.e. heterogeneous

networks, could improve performance.

• Positional information: We did not capture the order of the UI nodes - e.g., order of UI elements in the view

hierarchy. Such positional information could improve task performance.

• End-to-end model: Information from some modalities - e.g., images, descriptions - are encoded separately.

Integrating the encoders within MAAN/EMAAN could lead to better performance.

• Exploring the use of the framework outlined in this paper for UIs in other domains, e.g., web UIs or tangible

UIs, and other tasks relevant for such UIs.

• Generating representations of UI objects for UI networks formed from other types of linkages, e.g., linkages

formed by how users interact with diferent UI objects.

• Application of explainability methods for deep learning and graph neural networks [50] to discover features

that are important for usability in UI designs.
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