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To explore the influence of chunking on the capacity limits of working memory, a model for chunking
in sequential working memory is proposed, using hierarchical bidirectional inhibition-connected neural
networks with winnerless competition. With the assumption of the existence of an upper bound to
the inhibitory weights in neurobiological networks, it is shown that chunking increases the number of
memorized items in working memory from the “magical number 7” to 16 items. The optimal number of
chunks and the number of the memorized items in each chunk are the “magical number 4”.

Keywords: Chunking; working memory; hierarchical structure; capacity; magical numbers.

1. Introduction

It is well known that working memory (WM)1,2 has a
limited capacity.3 Miller4 summarized evidence that
people can remember about “magical number 7”
items in WM tasks. However, recent empirical evi-
dence has led psychologists to propose that this num-
ber is more of a rhetorical device than a real capacity
limit, and to conclude that the capacity limit of WM
averages around “magical number 4”,5 although the
real upper limit is still under debate.6

On the other hand, psychologists agree that
chunking, the process by which individual units of
information are grouped into clusters, increases the
capacity limit of WM.7,8 This makes chunking a use-
ful tool for memorizing large amounts of informa-
tion. For example, a phone number 93208215 may be
chunked into 9320-8215. Combining disparate indi-
vidual elements into large blocks facilitates informa-
tion storage and recall.

Theoretical analysis of the capacity limit of WM
due to chunking is an interesting and open prob-
lem.9,10 Literature studies show that there are very
few works focusing on the theoretical analysis of the
working memory capacity. A recent work by Bick and
Rabinovich11 modeled sequential WM based upon
winnerless competition (WLC)12 among representa-
tions of items and showed that the upper bound of
WM is consistent with the “magical number 7”.

In this paper, based on the Rabinovich’s work,
we propose a hierarchical sequential working memory
(HSWM) model and use it to analyze theoretically
the chunking of sequential information. According
to Cowan’s work, we considered WM as a set of
activations within long-term memory.13 In this case,
chunking with a WM context could be possible. We
further relate our analysis to the relative lateral
inhibition in a neuronal network. Chunks in WM are
modeled as a two-layered hierarchical bidirectional

1350019-1

http://dx.doi.org/10.1142/S0129065713500196


Page Proof

May 14, 2013 16:26 1350019

G. Li et al.

inhibition connected neural network. The model con-
sists of a single activating parent network (PN) con-
nected to several activated child networks (CN).
Each neuron in the PN is connected to a specific
CN respectively and together, form one chunk. The
WLC between neurons in both PN and CN is imi-
tated by generalized Lotka–Volterra equations.12 A
winning neuron in the PN activates its connected
CN. When a recall cue is given, the model presents
a trace containing temporary winner neurons among
the multiple chunks. The trace reflects the sequen-
tial memory recall. The model analysis and simu-
lations suggest what chunking changes the capacity
limit of human WM from seven items to four chunks,
with each chunk consisting of four items (brings the
total capacity to 16 items). On the other hand, we
agree that normal human beings may be unable to
recall sequences of 16 elements in working mem-
ory. 16 items could be the upper bound of WM for
most persons. As shown in Fig. 5 later, the capac-
ity of WM is between 12–16 items through chunk-
ing. So our conclusion is that the upper bound of
WM is four chunks and four items in each chunk.
Actually the items in each chunk is not neces-
sary to be four items. Two or three items are also
possible.

We would like to reiterate that the model pro-
posed here is a theoretical analysis which gives the
upper bound capacity of working memory, it is con-
sidered as a set of activations within long-term mem-
ory.13 However, we understand that it is difficult to
analyze working memory together with long term
memory, especially in terms of memory capacity,
as how to separate the two is still mysterious. In
this paper, the hierarchical structure of the pro-
posed HSWM is considered as the long term mem-
ory. The encoding of working memory can then
be regarded as the neural bias and the inhibitory
weights in HSWM. In analyzing the WM capac-
ity, we mainly focus on the relative inhibition index
of the encoded HSWM, which enables us to ana-
lyze the WM capacity without considering how long
term memory involves in. In fact, the only paper
we have found, from which we could infer such an
upper bound is by Ref. 14. The experiments were
conducted on amnesiac patients and the dependency
of the chunking process on long term memory could
reasonably be ignored. The results of their exper-
iments show that amnesiac patients could recall a

maximum of 15 items in the short term. Based on
current literature, we think that this offers sufficient
experimental justification for our model.

The significance of this work is that the proposed
HSWM model can explain how chunking influences
the upper bound of WM. While this bound depends
on the inhibitory connections in the network, we will
show that it can be extended to 16 items through
chunking and derive that the optimal number of
chunks and the items of each chunk are both four.
This is notable, as it shows the relationship between
the boundary capacity of WM and the magical num-
bers 7 and 4, which are points of debate in the psy-
chology of WM.

2. Sequential Working Memory Model

WM is known as short-term memory15 that acts as a
kind of scratchpad for temporary recall of the infor-
mation. There are works use the “attractors”,16–20

which involves the points or sets that get close
enough to the attractor remain close even if slightly
disturbed in attractor networks, to model WM. How-
ever, different from attractors, the dynamic in WM
may not stay at any temporary recalled information.
So winnerless competition (WLC) between neural
representations is hypothesized to be the main mech-
anism for memory retrieval in WM.

On the other hand, the generalized Lotka–
Volterra equations are a set of equations more gen-
eral than either the competitive or predator–prey
examples of Lotka–Volterra equations, which can
be used to model competition between an arbitrary
number of species. These species usually form an
inhibited connected network. This is the reason why
the generalized Lotka–Volterra equations can be used
to describe the dynamical process of WLC in an inhi-
bition connected network,12 which is the basis of the
HSWM described later.

As seen HSWM later, the PN neurons govern the
activation of the CN networks. All these sub net-
works can be described by the same WLC process
with different time constants. Usually the transition
between neural activations in the PN is slower than
that in the CN. We therefore modify the generalized
Lotka–Volterra model in Ref. 11 by adding a time
constant τ > 0 as below:

ẋi = τ · xi · (σi − xi + Σj �=iρijxj) + vi (1)

1350019-2
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for i, j = 1, . . . , n, where n is the number of neurons
in the neural network, τ reflects the rate of activation
and decay of neurons, xi ≥ 0 is the output neural
activity of neuron i, σi is the positive neural bias,
ρij ≤ 0 for i �= j is the inhibitory weight from the
neuron j to neuron i, and vi is the external noise
in the interval (0, ε] where ε is a small positive con-
stant. Note that ρij �= ρji ≤ 0 in this bidirectional
inhibition connected network, and σi and ρij ≤ 0 for
all i and j are considered as functions of the input
stimulus.

Remark 1. In (1), each neuron represents one
item, for example, one digital number. The neural
activities, whose values are variable and described
by WLC process by using generalized Lotka–Volterra
equations, basically represent the level of activity
of each neuron in a spiking neural network.21–31 At
any given time, the neuron that possesses the max-
imum neuron activity value is the temporal win-
ner. And the items that neuron represents will be
recalled. The model we proposed may be one possible
way to describe the WM mechanism and definitely
there are many other ways. For example, the mean-
field approach32–34 is a very powerful and influential
way. �

Let x = [x1 · · ·xn]T . We rewrite the equations in
(1) as

ẋ = τ · dF (x)
dx

+ v, (2)

where

dF (x)
dx

=
[
df1(x)

dx
· · · dfi(x)

dx
· · · dfn(x)

dx

]T

dfi(x)
dx

= xi · (σi − xi + Σj �=iρijxj)

(3)

and v = [v1 · · · vn]T . A temporal winner in the
dynamical WLC is the one which preserves the max-
imum activity in x at a given time. We divide the n

neurons into two sets. The first set I has k neurons
which are likely to be winners (connection-friendly)
sometime in the WLC. The other set J contains
n − k neurons which are unlikely to be winners
(connection-unfriendly) in the process. Let

I = {I1, . . . , Ik} (4)

be the neuron indices of the first set. The other set is

J = {J1, . . . , Jn−k}. (5)

As seen in (8)–(10) later, some weights −ρij between
the neurons in the set I (belonging to Sk,µ) are much
smaller that other weights between the neurons in
the set J (belonging to S̃k,µ). This is why the set I

is called connection-friendly and the set J is called
connection-unfriendly.

Now we investigate the design of σi and ρij for all
i and j for the network to exhibit its memory trace.
Assume that the trace of temporal winners to encode
into (1) is given as

Ik → Ik+1 → · · · → Ik, (6)

where 1 ≤ k ≤ k in set I. Generally speaking, the
support of longer sequences requires increasing exci-
tation, {σIk

}k
k=1 for the neurons in I is required to

have a geometric growth. Let {σIk
}kk=1 be a sequence

of σIk
with k changing from 1 to k. As in Ref. 11

the Fibonacci sequence is used to encode values for
{σIk

}k
k=1 such that

σI1 = σ0, σI2 = µσI1 , for σ0 > 0, µ >
1
2

(7)

and σIk+1 = σIk
+ σIk−1 when k ≥ 2, where σ0 is a

random value uniformly distributed over the inter-
val (0, 1]. The minus of the inhibition weight −ρij

is designed as a random variable belonging to either
Sk,µ or S̃k,µ as follows:

− ρij ∈
{

Sk,µ i, j ∈ I, and are adjacent in I.

S̃k,µ otherwise.
(8)

Sk,µ =
((

max
k∈{1,...,k−1}

σIk+1

σIk

− 1
2

)
,

min
k∈{1,...,k−1}

σIk+1

σIk

)
, (9)

S̃k,µ =
((

max
k,k′∈{1,...,k}

σIk

σIk′
+ 1
)

, +∞
)

. (10)

The domain of µ in (7) is

µ ∈ µ̄ =
{

µ >
1
2

and Sk,µ �= ∅
}

. (11)

It is well-known that, the value of {σIk+1/σIk
}

in a Fibonacci sequence approaches the “golden
ratio” g =

√
5+1
2 . The first three terms of {σIk

} are
σ0, µσ0, (µ + 1)σ0. If Sk,µ �= ∅, we have µ+1

µ − 1
2 < µ

1350019-3
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and µ − 1
2 < µ+1

µ . It can be solved that

µ ∈ µ̄ =

(√
17 + 1

4
, 2

)
. (12)

Exploring the property of the Fibonacci sequence, we
have σIk

= (a0g
k −b0(1−g)k)σ0 where a0 and b0 are

the parameters such that σI1 = σ0 and σI2 = µσ0.

Remark 2. Once −ρij is assigned to an interval
Sk,µ or S̃k,µ, a value will be chosen uniform randomly
in that interval. Note that both the Sk,µ and S̃k,µ

change with the length of the sequence (denoted as
k) in set I as shown in (8). When an incoming input
is encoded as part of a chunk, the values of −ρij are
chosen based on Eqs. (7) to (11). Once the values
are encoded, they are not subsequently changed dur-
ing the recall process. Therefore, once encoding is
complete, the synaptic connections are independent
of neural activity, but influence the activity of the
neurons, as described in Eq. (1). �
Theorem 1. For system (1) in the presence of a
stimulus with sufficiently small noise, the encoding
process (7)–(10) guarantees that the trace of temporal
winner neurons is {Ik → Ik+1 → · · · → Ik} provided
that the initial activation output state x = AIk

=
[0, . . . , σIk

, . . . , 0] where Ik ∈ I with σIk
is the Ikth

entry.

A mathematical proof of the theorem is given in
Appendix. Now we define the relative lateral inhibi-
tion index of the neural circuit (1) as

ϕ(k, µ) =
inf(S̃k,µ)
sup(Sk,µ)

, µ ∈ µ̄, (13)

which reflects the need of excitation to support the
encoding procedure. A higher relative lateral inhibi-
tion index implies that a higher excitation is required
to encode information in the circuit. It is therefore
necessary to minimize ϕ(k, µ) with respect to µ ∈ µ̄.
Based on the analysis of the Fibonacci sequence, we
have

inf(S̃k,µ) =
σIk

σ0
+ 1 = a0g

k − b0(1 − g)k + 1

sup(Sk,µ) = min

{
µ, 1 +

1
µ

, 1 +
1

1 + 1
µ

, . . .

}
.

(14)

Note that φ(k, µ) is minimum if and only if all the
items in sup(Sk,µ) are equal, which implies that

µ = 1 + 1
µ = g. So the WM capacity is maximum

when µ is exactly the “golden ratio”. In this case,
it is solved that a0 = g−1 and b0 = 0. Thus, we
define a scaling function reflecting the relative lat-
eral inhibition of the dynamical system (1):

φ(k) = ϕ(k, µ = g) =
inf(S̃k,µ=g)
sup(Sk,µ=g)

= gk−2 + g−1. (15)

3. Hierarchical Sequential Working
Memory Model

Memory model is generally considered to possess
a hierarchical structure.35 In this section, we con-
sider the HSWM model in Fig. 1. More specially,
we consider the long term memory as the hierarchi-
cal structure of the proposed HSWM. The encoding
of working memory can then be considered as the
neural bias and the inhibitory weights in HSWM.
The proposed hierarchical neural network contains
two layers: one PN connected to several CNs, where
each PN neuron and its connected CN represents
one chunk. It is assumed that there are excitatory
connections between the different inhibition con-
nected networks (chunks). These excitatory connec-
tions govern the link between PN and CN networks.
Once a neuron in PN network becomes a tempo-
ral winner, the corresponding CN network can be
activated.

(a)

PN

CN

Connection-friendly
neighborhood

Connection-unfriendly
neighborhood

set Iset J

(b)

Fig. 1. HSWM model. (a) Path of winner neurons in
one chunk; (b) PN and CN networks.
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Now we suppose that there are N chunks
{C1, . . . , CN } in the HSWM. These N chunks are
controlled by a PN with N bidirectional inhibition
connected neurons. Such a hierarchical structure are
described by

ẋi = τpn · xi(σi − xi + Σj �=iρijxj) + vi,

ẋCi

i′ = τCi′ · xCi

i′ (σi′ − xCi

i′ + Σj′ �=i′ρi′j′x
Ci

j′ ) + vi′

(16)

for i, j = 1, . . . ,N and Ci = {C1, . . . , Ci, . . . , CN },
i′, j′ = 1, . . . , nCi , where nCi is the number of neu-
rons in the corresponding CN Ci, τpn and τCi are the
time constants of PN and CNs, respectively. Usually
the time constant τCi in CN sub networks should be
smaller than that in PN network (τpn). Note that
τCi < τpn implies that the dynamic evolving rate in
the CN is faster than that in the PN.

Let

Ich = {CI1 , . . . , CIi , . . . , CIK} (17)

be set of indices of the chunks which are likely to
be the winners among the N chunks. When the Iith
PN neuron becomes the temporal winner in a time
interval T Ii

0 ≤ t ≤ T Ii

1 , CIi will be the temporal
winning chunk during [T Ii

0 , T Ii
1 ). At t = T Ii

0 , the
system switches to the CN CIi which is described
by nCIi

generalized Lotka–Volterra equations. After
t ≥ T Ii

1 = T
Ii+1
0 (T Ii

1 and T
Ii+1
0 are the same time

point), the next temporal winner in the PN and the
corresponding CN is activated.

In each chunk CIi , the full trace of temporal win-
ners means that all likely to be winner neurons (the
number is denoted as K(CIi)) neurons in CIi will be
winners sequentially. However, practically, an exem-
plary trace of CIi depends on the initial activation
state and the time interval during which Iith PN
neuron is the winner. The trace can be denoted as

Trace{CIi} = {ICIi

k → I
CIi

k+1 → · · · → I
CIi

k′ } (18)

for 1 ≤ k ≤ k′ and k′ ≤ K(CIi), where the initial
winning neuron I

CIi

k depends on the neighborhood
to which the initial state belongs. If the initial acti-
vation state is

Intial{CIi} = [0, 0, . . . , σī, . . . , 0], (19)

where ī = I
CIi

k is the index of the corresponding
neuron in chunk CIi , Trace{CIi} starts at the neu-
ron I

CIi

k . As long as T Ii

0 ≤ t < T Ii

1 , the neural output

Working memory trace
Memory trace in one 
chunk

Fig. 2. Memory trace in multiple chunks.

states and the trace order is completely character-
ized and determined by the equations in (16). At
the time t = T Ii

1 , the trace in Ci ends at the ICi

k′ .
When t ≥ T Ii

1 = T
Ii+1
0 , the trace will jump out of

CIi and go to the next temporal winner chunk CIi+1 .
Figure 2 illustrates the process of trace of temporal
winner neurons in multiple chunks.

4. The Capacity Boundary Analysis

Biological experiments36,37 validate existence of the
upper bound of the inhibition weights between neu-
rons. In Ref. 37, the probability distribution of the
ratio of neuron weight and mean weight (ρij

|ρ̄| ) is mod-
eled as a triangle distribution (solid line) shown in
Fig. 3, where the weights ρij are inhibitory weights
within a given chunk (PN or CN). They do not
refer to inter-chunk connections, i.e. the connection
between a PN network and a CN network. In this
paper, we use the triangle distribution to model the
inhibition weights ρij for all i, j within PN or CN
networks. In this case, the mean weight ¯|ρ| = 1

S = 2
where S is the area of the triangle, 0 < |ρij | ≤ 20
and

inf(SN,µ) =
σIN

σ
+ 1 ≤ max(ρij ) + 1 ≤ 21, (20)

2 10

0.1

0.01

1

10

4 6 80
0.001

Fig. 3. Distribution of the inhibition weights ρij in real
neurobiological systems: the dotted lines are the possi-
ble distributions from Ref. 37 and the solid line is the
distribution we assume in this paper.
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where N is the length of the sequence to be encoded.
When µ is the golden ratio g, sup(SN,µ) = g. Let
B = 21

g = 12.98 and then

φ(N) =
inf(SN,µ)
sup(SN,µ)

∣∣∣∣∣
µ=g

≤ B. (21)

This implies that in neurobiological systems, the rel-
ative inhibition is less than an upper bound B. This
basically underlies the basis of the capacity bound-
ary of working memory.

Now we compare capacity boundary with and
without chunking. Form our previous analysis, the
scaling function for the non-chunking model is given
by Eq. (16). By chunking, a sequence of length N is
divided into K chunks. Without loss of generality, we
assume that the lengths of the traces in all chunks
are equal, i.e.

K(CI1) = · · · = K(CIK ) = N/K. (22)

The scaling function reflecting the relative lateral
inhibition of the HSWM model becomes

φK
ch(N) = K(g

N
K −2 + g−1)

+ (gK−2 + g−1) + c0, (23)

where K(g
N
K −2+g−1) and gK−2+g−1 are the relative

lateral inhibition of CNs and PN, respectively, and c0

is a constant. Since this reduces to the non-chunking
case when K = 1,

φK
ch(N) = φ(N) (24)

then c0 = −2g−1. Further, we have

φK
ch(N) < φ(N) for some 1 < K < N (25)

and

φK
ch(N) > φ(N) for K = N. (26)

When K = N , which corresponds to the case that
each item is one chunk, we have φK

ch(N) > φ(N)
implying loss of resources for small chunk sizes. Then
the neural circuit can encode a longer trace by chunk-
ing for a given value of B. So our proposed model
is consistent with the point of view that chunking
increases the bound of human WM. For more details,
we consider three cases:

Case 1: In one chunk, there is a maximum length N

for a given B. In the later simulation, we show that

N matches the “magical number 7” as the bound
items of human WM when B = 12.98.

Case 2: By chunking, there is a maximum length
N , which corresponds to an optimal chosen number
of chunks K for a given B. We need to solve the
problem of finding

max{N} subject to φK
ch(N) ≤ B, K ∈ N, (27)

where N is the set of natural numbers. In the later
simulation, it is shown that the result matches the
“magical number 4” for both the number of chunks
and the size of items in each chunk in human WM
when B = 12.98. Also, the bound of the items of
human WM can be increased to 16 items.

Case 3: Assume that B and be greater than 12.98.
There is an optimal number of chunks K0 by mini-

mizing φK
ch(N) with respect to K. By dφK

ch(N)
dK = 0,

one needs to solve the equation

Kg
N
K + KgK ln(g) = Ng

N
K ln(g). (28)

Suppose K0 is the optimal solution, then the optimal
length of the trace in each chunk is

K(C1) = · · · = K(CK) =
[

N

[K0]

]
. (29)

In the later simulation, it is seen that both the opti-
mal number of chunks [K0] and the length of trace
in each chunk [ N

[K0]
] are 4 when B = 12.98.

5. Simulation of Memory Trace

In the simulations below, we consider seven chunks
(C1, . . . , C7 with seven neurons in each chunk) in
the HSWM model. The neurons in each chunk are
divided into two groups: four likely winner neurons
(I) and three unlikely winner neurons (J). Suppose
that the entry point of each chunk is the neuron with
label I1. In addition, if the chunks have different τCi

and the duration [T Ii

0 , T Ii

1 ) lasts sufficiently long, all
the likely winner neurons in each chunk will be fully
activated. Figure 4(a) shows the full memory trace
in the experiments. At beginning, the neuron in the
PN that has the maximum output activity becomes
the temporal winner neuron and the corresponding
CN is activated, which represents the 1st chunk. As
time goes on, the (temporal winner neuron) path in
the PN is

CI1 → CI2 → CI3 → CI4 . (30)
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(a)

(b)

Fig. 4. Memory traces of the memory recall: The vertical axis is the output neural activity and the horizontal axis
is the sampling index with the sampling time interval ∆t = 1ms. At a given moment, the neuron which preserves
the maximum activity is the temporal winner neuron. (a) Full memory trace: all possible temporal winner neurons are
activated sequentially in the CNs of each chunk. (b) An exemplary memory trace: not all the possible temporal winner
neurons in CN are activated. This is believed to be a general case in WM recall.

1350019-7



Page Proof

May 14, 2013 16:26 1350019

G. Li et al.

More specifically, in the time interval [T Ii
0 T Ii

1 ) for
i = 1, . . . , 4, CIi will be the temporal winner chunk.
And the trace in each the corresponding CN is

I
CIi

1 → I
CIi

2 → I
CIi

3 → I
CIi

4 . (31)

Note that the time constants (τ) for PN and the CNs
are set as 1 and 0.25, respectively. Since, biologically,
the probability distribution from I

CIi

k′ in CIi to I
CIi+1
k

in CIi+1 is usually different from person to person
and is related to the person’s own past experience,
the entry point of each chunk is not necessary to
be the neuron labeled with I1. In addition, the sub-
trace in each chunk in the CNs may jump to another
chunk before all the likely winner neurons have been
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(c)

Fig. 5. The “magical number 7” and “magical number 4” in Cases 1–3 in analyzing the capacity boundary of WM.
(a) The “magical number 7” without chunking (Case 1). (b) The increase of capacity bound to 16 items by chunking
(Case 2). (c) The optimal number of chunks for different length N and the “magical number 4”: four chunks and four
items in each chunk (Case 3).

activated. In this case, a memory trace{
I
CI1
3 → I

CI1
4 → I

CI2
1 → · · · → I

CI2
4

→ I
CI3
1 → · · · → I

CI3
4 → I

CI4
2

→ · · · → I
CI4
4

}
, (32)

which is a subset of the full trace, is shown in the
Fig. 4(b).

6. Magical Number 7 and Magical
Number 4

Following the analysis for Cases 1–3, our model ver-
ifies that sequential WM has a capacity of seven
without chunking (Case 1). The biological basis is

1350019-8
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that weights in an inhibition connected network
are bounded in a very narrow interval (The bound
B = 12.98 was used in the simulations). The results
are shown in the Fig. 5(a). It is interesting to note
that the model shows that WM capacity can be
increased to 16 items as shown in Fig. 5(b) (Case 2)
when the optimal number of chunks is four (see,
for example, 12–16 items as shown in Fig. 5(c). In
Case 3, we derive that optimal number of chunks
[K0] is expected to be around four with four items
in each chunk ([ N0

[K0]
]). This is the “magical number

4”, reported in recent psychological literature as the
capacity of WM. With the analysis above, we have
characterized the relationship between the magical
numbers 7 and 4, and proposed that this change in
capacity is a result of the chunking process.

7. Discussion and Conclusion

Though it is admitted that chunking can increase
human WM, theoretical analysis of chunking remains
an interesting and open problem. To this end, we
have proposed the HSWM chunking model and
defined a relative lateral inhibition index for deriving
WM capacity. Our paper makes two important con-
tributions to the study of chunking. First, we have
shown theoretically that hierarchical chunking can
increase the capacity limit of WM. Second, we sug-
gest what chunking changes the capacity limit of
human WM from seven items to four chunks, with
each chunk consisting of four items (brings the total
capacity to 16 items). The additional contribution
of this paper is that we discover that HSWM model
attains its optimal capacity when the parameter µ

in the designed Fibonacci sequence is exactly the
“golden ratio”. It is to be noted that a possible lim-
itation of the proposed model is that the memory
trace generated in (16) cannot intersect itself. Once a
neuron becomes a winner in WLC, it cannot become
a winner again in the same chunk. For example, when
remembering a phone number of “9232-8715”, as the
digit 2 reoccurs in the same chunk, it needs to be
encoded using multiple neurons. Work is in progress
to improve the model in order to overcome this issue.

Although the model proposed in this paper has
not been experimentally verified, we expect that our
proposal will prompt psychologists to design suit-
able experiments to better understand the capac-
ity limits of WM. Most current studies on WM take

into account many factors when considering chunk-
ing. These factors, including semantic relations and
perceptual features, are dependant on the subject
and associations made by the subject through long
term memory. As a result, WM is not often ana-
lyzed in isolation. Therefore, results often suggest
that chunking can increase memory capacity in an
unlimited manner through training.38 For analyzing
the role of chunking on the capacity limit of WM
it is useful to analyze memory retention shown by
amnesiac patients. For instance, one study14 reports
that the upper bound of immediate recall in amne-
siac patients is around 15 items.

The HSWM model proposes a model and ana-
lyzes the role of chunking in the storage and retrieval
of sequential WM. However, such analysis need not
be limited to sequential information alone, since, in
general, an increase of memory capacity through
chunking is a hierarchical process.39 We therefore
believe that our paper lays important groundwork
for the theoretical analysis of memory formation
and encoding, in both long and short term mem-
ory. As such, our model is an important com-
ponent to be added into memory and cognitive
architectures.
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Appendix

Proof of Theorem 1. The proof is based on the
investigation of the dissipative saddle point A of
ẋ = dF(x)

dx .40 Let Re(λ1) ≥ · · · ≥ Re(λr−1) > 0 >

Re(λr) ≥ · · · ≥ Re(λn) be the ordered real parts
of the eigenvalues of the Hessian matrix ∇2F (x) at
A.41–44 If the saddle value of A defined as

ν(A) =
|Re(λr)|
Re(λ1)

> 1. (A.1)

A is dissipative, which implies that there is a con-
traction of a deviation after pass its neighborhood.
Here we are going to prove that the neurons Ik with
coordinates AIk

for 1 ≤ k < k are dissipative while
AIk is a stable equilibrium point of (1).
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The encoding process is to design the σi and ρij

for 1 ≤ i, j ≤ n. It can be checked that AIk
=

[0, . . . , σIk
, . . . , 0] is a nontrivial fixed point of (1) and

∇2F (x) is given by

[∇2F (x)]ii = σi − 2xi +
∑
j �=i

ρijxj

[∇2F (x)]ij = ρijxi, (i �= j).

(A.2)

In beginning, x = AIk
and obviously the neuron Ik

is the temporary winner. The eigenvalues of ∇2F (x)
at AIk

are as follows:

{σĩ + ρĩIk
σIk

}ĩ∈J

{σIi + ρIiIk
σIk

}Ii∈I,i�=k−1,k,k+1

− σIk

σIk−1 + ρIk−1Ik
σIk

σIk+1 + ρIk+1Ik
σIk

.

(A.3)

We discuss these eigenvalues based on Eqs. (8)–(10)
as follows:

Case 1. ĩ ∈ J :

σĩ + ρĩIk
σIk

< −σIk
< 0 (A.4)

Case 2. Ii ∈ I, i �= k − 1, k, k + 1:

σIi + ρIiIk
σIk

< −σIk
< 0 (A.5)

Case 3. Ii = Ik−1:

− σIk
< σIk−1 + ρIk−1Ik

σIk
< 0 (A.6)

Case 4. Ii = Ik+1:

σIk+1 + ρIk+1Ik
σIk

> 0. (A.7)

If Ik = I1, (9) implies that

σI1 >
1
2
σI1 = σI2 −

(
σI2

σI1

− 1
2

)
σI1

> σI2 + ρI2I1σI1 . (A.8)

If Ik > I1, (9) implies that

(ρIk−1Ik
+ ρIk+1Ik

)σIk
> 2

(
σIk+1

σIk

− 1
2

)
σIk

. (A.9)

For the Fibonacci sequence, we have

2
(

σIk+1

σIk

− 1
2

)
σIk

= σIk+1 + σIk−1 . (A.10)

Then,

|σIk
+ ρIk−1Ik

σIk
| > σIk+1 + ρIk+1Ik

σIk
. (A.11)

Combining above four cases and (A.8)–(A.11), when
either Ik = I1 or Ik > I1 with k �= k, Ik is dissipa-
tive and Ik+1 will be the next temporal winner since
only the eigenvalue σIk+1 +ρIk+1Ik

σIk
is positive and

its eigenvector direct to AIk+1 = [0, . . . , σIk+1 , . . . , 0].
Then, the states will go to the coordinates of the
next neuron in the trace

{Ik → Ik+1 → · · · → Ik} (A.12)

until it reaches the last one. At Ik, all eigenvalues
of ∇2F (x) at AIk = [0, . . . , σIk , . . . , 0] are negative.
The coordinate of Ik is a stable equilibrium point
of (1). Here we would note that, though the noise
is small, it is necessary to avoid the the dynamical
system states stopping at an unstable equilibrium.
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