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Segment-Wise Time-Varying Dynamic Bayesian Network
with Graph Regularization

XING YANG and CHEN ZHANG, Tsinghua University, China
BAIHUA ZHENG, Singapore Management University, Singapore

Time-varying dynamic Bayesian network (TVDBN) is essential for describing time-evolving directed condi-
tional dependence structures in complex multivariate systems. In this article, we construct a TVDBN model,
together with a score-based method for its structure learning. The model adopts a vector autoregressive
(VAR) model to describe inter-slice and intra-slice relations between variables. By allowing VAR parameters
to change segment-wisely over time, the time-varying dynamics of the network structure can be described.
Furthermore, considering some external information can provide additional similarity information of vari-
ables. Graph Laplacian is further imposed to regularize similar nodes to have similar network structures. The
regularized maximum a posterior estimation in the Bayesian inference framework is used as a score function
for TVDBN structure evaluation, and the alternating direction method of multipliers (ADMM) with L-BFGS-
B algorithm is used for optimal structure learning. Thorough simulation studies and a real case study are
carried out to verify our proposed method’s efficacy and efficiency.

CCS Concepts: « Mathematics of computing — Bayesian networks; « Computing methodologies —
Bayesian network models;

Additional Key Words and Phrases: Time-varying dynamic Bayesian network, structure learning, segment-
wise change, acyclic property, graph Laplacian, ADMM, directed acyclic graph
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1 INTRODUCTION

Directed acyclic graphs (DAGs), also known as Bayesian networks (BNs), get rapid develop-
ment in the past few decades. BN has shown promise for explainable models and causal insights
about an underlying process with multiple variables. Moreover, by denoting different variables as
nodes, and their interactions as directed edges, BN can clearly describe the directed conditional de-
pendence structure between different variables. BNs have been generally applied in various areas,
such as operation and risk analysis [23, 36, 49], biology [14, 35], economics and finance [43, 47]. Pi-
oneer works focus on static BN (SBN) modeling, assuming the values of variables will not change
over time. Later, SBNs are extended to dynamic Bayesian networks (DBNs), which consider
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the variables’ values can evolve and their directed conditional dependence relationships exist both
within and across different time points [13]. Variable interactions within the same time point is
called intra-slice directed conditional dependence relationships. Interactions across different time
points with a time “lag” are called inter-slice directed conditional dependence relationships. There-
fore, DBN provides a flexible mechanism for identifying directed conditional dependencies in mul-
tivariate time-series data, and DBN has also been generally applied to various areas. For example,
they derive both intra-slice and inter-slice causal relationships among different elements such as
genes, proteins, metabolites, and neurons in computational biology based upon multi-dimensional
temporal data. Kim et al. [27] proposed to adopt DBN to analyze the metabolic pathway gene ex-
pression data, which could get better performance (detecting more correct relationships and reduc-
ing the number of false positives) and could estimate gene regulations more effectively compared
with other network estimation methods. Besides, Vinh et al. [48] conducted experiments on large-
scale cyanobacterial genetic networks containing 733 genes on 34 time points, which successfully
reconstructed biologically plausible network structures and managed to produce more enriched
hubs. However, an essential assumption of traditional DBNSs is that stationary processes generate
data, i.e., the conditional probabilities of different variables do not change with time. Hence DBN
is also called time-homogeneous DBN (THDBN). Unfortunately, this assumption yet may not
be valid in many critical settings.

In reality, the network structure may evolve over time [41]. For example, DBN has been used
in reconstructing transcriptional regulatory networks for gene expression data in biology. These
regulatory networks evolve during the development of genes, with specific directed conditional
dependencies between gene products being created as the organism develops and others being
destroyed. DBN has been used to model traffic flow patterns of different roads in transportation.
The dynamic utilization of those roads changes daily during the morning rush, lunch, evening rush,
and weekends. Though in these cases, DBN is still applicable by learning several DBNs for each
subset time interval of the data, with the assumption that in each subset, the data is stationary, yet
in many cases, subsets are not easy to be well defined and depend on researcher’s bias, which may
lead to inaccurate and misleading DBN results.

As such, further integrating temporal variation on the directed conditional dependence struc-
tures of THDBN and relaxing its data stationarity assumption would be more reasonable. This
is the idea of time-varying DBN (TVDBN) [45] or non-homogeneous DBN (NHDBN) [41].
TVDBN shows particularly potential application for non-stationary time-series analysis, such as
biological networks [9], human brain connectivity [53], and transportation networks [5]. A big
advantage of TVDBN is its flexibility to describe directed conditional dependence dynamics of
multivariate data streams. However, this flexibility increases modeling difficulty. On the one hand,
designing the evolving mechanism of TVDBN determines the model’s generality and applicability
in real cases. The unsuitable design may fail to catch the actual evolving mechanism of the system
or lead to underfitting or overfitting. On the other hand, the designed evolving mechanism will
also influence its structure learning process, which aims at estimating the network structure, i.e.,
whether there is a directed edge between two variables and what the edge weights are.

Structure learning for TVDBN is incredibly challenging compared with SBN and THDBN. First,
the learning algorithm should correspond to the time-varying mechanism of structure to ensure
that the learned structure is consistent with the temporal dynamics. Second, since the network
structure is time-varying, the number of parameters to be inferred is enormous, and meanwhile,
the acyclic property should be guaranteed, adding the difficulty of parameter learning. Last, there
can be some external knowledge about the similarity of different nodes, which may provide certain
information about the structure. Take the biology example above, Dondelinger et al. [9] concluded
gene relationships from a biological perspective. These static relationships between genes and also
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implies that there exists a similarity between genes. Then how to incorporate this knowledge into
structure learning to increase credibility should be carefully considered.

In this article, we propose a TVDBN model and a score-based structure learning algorithm. The
model is built upon the vector autoregressive (VAR) model to describe the temporal dynam-
ics of different variables. By allowing the parameters of VAR models to change over time, we
can describe its time-varying dynamics. Considering that network structure may only change at
certain discrete time points but keep consistent between these neighboring changepoints, we fur-
ther impose segment-wise assumptions on the time-varying VAR structure. Then we propose a
Bayesian learning framework for structure learning. Considering the external information can
provide additional similarity information of variables. In the learning algorithm, we further regu-
larize similar nodes to have similar network structures with the graph Laplacian method. Finally,
the regularized maximum a posterior estimation of the network structure is solved by alternating
direction method of multipliers (ADMM) with L-BFGS-B algorithm [56]. Thorough simulation
studies and comparisons with baselines are carried out to verify the efficacy and efficiency of our
proposed method.

The main contributions of this article are the following:

— We propose a TVDBN model based on the segmental VAR model. The model can capture
both intra-slice and inter-slice interactions of variables and in the meanwhile guarantee
the acyclic property of the network. Furthermore, the model particularly aims at describing
segmental-varying network structure by imposing sparsity prior to the number of changes
for each time point.

— The model also incorporates external similarity information of variables. By formulating
an additional similarity matrix of variables based on external information, graph Laplacian
regularization is imposed to ensure similar nodes have similar interactions with others in
the whole network.

— We develop a Bayesian estimation framework for structure learning. The regularized max-
imum a posterior is regarded as a score function, with the acyclic constraint formulated in
an algebraic characterization. Then a search algorithm combining ADMM with L-BFGS-B is
developed to efficiently get the maximum solution of the score function.

The remainder of this article is organized as follows. Section 2 reviews related models and algo-
rithms for time-varying networks, including score-based structure learning methods for different
BNs. Section 3 introduces our proposed TVDBN model in detail. Section 4 introduces the structure
learning procedure. Section 5 uses some numerical studies and a case study to demonstrate the effi-
ciency and superiority of the proposed model compared with some other state-of-the-art methods.
Finally, Section 6 concludes this article with remarks and prospects possible future directions.

2 RELATED WORK

We firstly review TVDBN models together with some representative undirected time-varying net-
work models in Section 2.1. Then we review score-based algorithms that are most widely used for
general BN structure learning problems in Section 2.2.

2.1 Time-Varying Dynamic Network

The concept of TVDBN [45] is almost equivalent to the concept of NHDBN [41]. Both aim to
model the time-varying directed conditional dependence structure of DBN (we hereafter use
TVDBN for unification). Since this concept has been proposed, increasing works have been concen-
trated on developing various TVDBN models based on statistical and machine learning algorithms
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considering different time-varying patterns in DBN models and the corresponding structure learn-
ing algorithms.

The current TVDBN models can be mainly categorized into two groups: (i) models that only
allow the network parameters to vary with time [19, 20], and (ii) models that enable the network
structure to change over time as well [24, 41]. We focus on the second group since it offers more
model flexibility than the first. Two types of changes are commonly considered in the literature.
The first is segment-wise change. In particular, Robinson and Hartemink [41] considered node vari-
ables following multinomial distributions. The distribution parameters are allowed to change over
time for dynamics modeling. Sparse regularization on the change-points is imposed by adding an
exponential distribution as prior on the total number of parameter changes to avoid overfitting.
Then a Bayesian Markov chain Monte Carlo (MCMC) estimation framework is used for struc-
ture learning. Dondelinger et al. [9] also considered modeling the number of change-points as a
Poisson distribution. These two models assume the lag of time is fixed. Later Jia and Huan [25]
considered releasing this limitation by proposing a reverse jump MCMC (RJMCMC) estima-
tion algorithm to learn the most suitable lags adaptively. However, their regularization formulas
still render much more change-points than existed and lead to overfitting. Also, the above models
only focus on binary networks whose edges can only be zero or one, yet cannot model TVDBN
with weighted edges. The second type is smooth change. In particular, Song et al. [45] proposed
a linear VAR model to describe the interrelationship between different nodes. The VAR model
parameters are assumed to change smoothly following a Gaussian radial basis function (RBF)
kernel function. To further guarantee causal Markov assumption, Chu et al. [5] extended the model
by using asymmetric kernel for causal boundary correction. However, the above TVDBN models
evade dealing with the acyclicity of BNs by assuming the causal relationship is time-lagged, i.e.,
each node can only influence other nodes or itself in the future but cannot influence other nodes
concurrently. In this way, the structure learning is much simplified, with no need to be concerned
about acyclic property. However, this assumption also limits the models’ applicability in solving
many real-world problems where both intra-slice(concurrent) and inter-slice(lagged) causal rela-
tionships exist.

Besides TVDBN, time-varying undirected network models are also well studied in the literature.
Consider these models may shed light upon our modeling of TVDBN. We review some state-of-art
works as well. Specifically, Kolar and Xing [29] extended graphical LASSO to dynamic cases and
regularized the precision matrix’s dynamics overtime via kernel smoothing. Hallac et al. [21] dis-
cussed different types of time-varying graphical LASSO (TVGL) by adding various penalties
on the change of precision matrix. Tomasi et al. [46] further developed TVGL with latent variables
considering the influence of hidden factors, which provided several patterns for regularization
terms for describing dynamic mechanisms. Besides, Hallac et al. [21] and Tomasi et al. [46] tar-
geted an undirected network, where the relationships are not directed conditional dependence
relationships. These models may enlighten potential extensions to TVDBN by incorporating edge
direction and acyclic properties. However, all the above models only focus on intra-slice correla-
tion modeling but do not address inter-slice correlations. Furthermore, none of them take extra
similarity information of nodes into account.

2.2 Bayesian Network Structure Learning

There are mainly two types of approaches for general BN structure learning: constraint-based and
score-based methods. Constraint-based methods employ statistical hypothesis tests to identify di-
rected conditional independence relationships from the data and construct a Bayesian network
structure that best fits those directed conditional independence relationships. However, constraint-
based methods are built upon two basic assumptions [3]: the directed conditional independence
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model should be faithful to a DAG, and the directed conditional independence tests performed on
data should accurately reflect the independence model, which is generally difficult to be satisfied
in reality. As a result, constraint-based methods are pretty unstable and prone to cascade effects
where a single early error in the learning process can result in a very different DAG structure. For
score-based methods, a scoring function is used to evaluate the goodness of a network structure
for training data fitting, and a searching procedure for the best structure with the highest score is
formulated as a combinatorial optimization problem. In this article, we use the score-based method
for structure learning, and hence mainly review score-based BN learning literature as below. Fur-
thermore, based on the searching mechanism, score-based methods can be further divided into
two categories: exact(global) and approximate(local) search algorithms.

Approximate algorithms are based on stochastic local research, i.e., heuristic methods, such as
genetic algorithm [30], particle swarm [17], ant colony [7], and so on. They travel through the
solution space using non-deterministic transition among structures and choose the solution with
the highest score. However, these stochastic moves only guarantee a certain probability to reach
the optimum. Consequently, the solution’s accuracy cannot always be ensured. Yet these methods
require a short searching time and can be extended to solve large-scale problems. In contrast, as the
name indicates, exact methods can guarantee the global optimum. However, they require intensive
searching time and are a bit unfriendly to large-scale networks with many nodes. Pioneering exact
algorithms [28, 44] are based on dynamic programming (DP). Their basic idea is the segment-
wise search method, where nodes are sequentially added into sub-networks with acyclic property
guaranteed until obtaining a global network structure. Later many methods [32] were further
proposed to reduce time and memory costs. The above methods are for SBN structure learning.
Recently, Dang et al. [8] also extended this principle to high-order DBNs. Besides DP, integer linear
programming (ILP, Bartlett and Cussens [2]) and linear program (LP, Cussens et al. [6]) are also
widely used, by encoding the acyclic constraint as a linear inequality. They can handle relatively
larger networks than DPs. However, the practical usage of these algorithms is still very restricted
for large-scale problems.

Some other exact algorithms for BN structure learning have been developed to reduce compu-
tation costs. For example, by casting the structure learning as a shortest path finding problem,
Yuan et al. [52] proposed the A* search algorithm. Built upon it, Fan et al. [11] further proposed
to calculate the potentially optimal parent sets of each node, to prune large portions of the search
space, and consequently improved the searching time and space. Zheng et al. [55] represented
acyclic constraints by an algebraic characterization, i.e., a nonlinear constraint of the score func-
tion, and used limited-memory quasi-Newton algorithm [56] for structure learning of SBN. It leads
to a significant reduction in computation complexity to cubic in the number of nodes. Later Pamfil
et al. [38] extended it to THDBN with lag. Our article also adopts this algebraic characterization
algorithm for acyclic constraint formulation in constructing the score function.

3 PROBLEM DEFINITION AND MODEL

We firstly introduce the formulation of THDBN by the VAR model, as the prior knowledge in Sec-
tion 3.1. Then we extend it to TVDBN in Section 3.2. Under the Bayesian framework with maximum
a posterior estimation, a score function for structure learning is constructed in Section 3.3, where
external information is also incorporated into the score function via graph Laplacian constraint.

3.1 Dynamic Bayesian Network

A BN represents a joint probability distribution over a collection of variables 2 = {Xj,..., Xy},
by formulating it as a set of directed conditional (in)dependence relationships between variables.
Here, variables are abstracted from stationary processes. A BN is determined by its graph structure
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t—2 t-1

Fig. 1. THDBN with n = 3 nodes and lag m = 2.

% and a set of directed conditional distribution functions with a parameter set %. ¢ is a directed
acyclic graph with nodes corresponding to random variables in Z". An edge in ¢ directed from
node i to j encodes X;’s directed conditional dependence on X}, and hence X; is called a parent of
X;. A variable X; is independent of its non-descendants given all its parents set 7;. Therefore, the
joint probability distribution over .2~ can be decomposed by the chain rule:

p(2) =] [pXilm). (1)
i=1

In this article we consider linear dependence relationship for a BN model: X; = 3 ;c -, bij- X +¢;,
where ¢; is independent noise with mean E[¢;] = 0 and homoscedastic variance Varl[e;] = 0'02 for
i=1,...,n

A DBN is the extension of a BN to model temporal processes. In DBN, a set of random processes
are represented by 2", and X;(t) is the random variable of process X; at discrete time point . The
network structure ¢ now defines the intra-slice and inter-slice dependency among these variables
over a period of time, i.e., 7; C {Z'(t), Z'(t —1),..., 2 (t —m)} where m is the largest lag consid-
ered. All the conditional distributions are assumed to be stationary. For linear conditions, we have

m
X;(t) = Z Z b Xi(t k) + ei(t)t = 1, L, @)
k=0 jenik
where 7rl.k indicates the k-lag parent set of variable i, with its total parent set as z; = Ukmzoﬁf . For
variable j € nl.k , bfj captures the directional relationship of variable j to variable i with lag = k,
i.e., the influence coefficient of variable j at time ¢ — k on variable i at time ¢. ¢;(¢) is independent
Gaussian noise with E[¢;] = 0 and homoscedastic variance Var|e;] = o for i = 1,...,n and for all
the time points among variables. It is worth mentioning that for every ¢ belongs to the discrete-
time set {1,...,L}, bfj stays the same due to the time homogeneousness assumption of THDBN.
An example of THDBN based on VAR with lage order m = 2 and node number n = 3 is
shown in Figure 1, where each node is a variable and directed edges represent directed conditional
dependencies.

3.2 Time Varying Network Representation

The time-homogeneous assumption is not always valid in real-time. We introduce a TVDBN model
whose network structure and parameters can vary over time. Consider extending Equation (2) to
time-varying cases. A straightforward way is to allow bfj to evolve as a variable of t, i.e., bfj(t) can
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be different for different ¢. Then the data evolving mechanism can be modeled as

m

Xi(t)zz Z bE(t) - Xj(t — k) + &), t = 1,..., L. 3)

k=0 jerk(2)

Denote the time-varying directed conditional dependence relationship as %, = {bfj(t), k =
0,...,m,i,j=1,...,n}. Inreality, we only have the node data .2} = {X;(¢),i = 1,...,n}, and %,
are unknown. Our goal is to construct a learning method for %, as follows.

First, the above model gives too much model flexibility and maybe overfitting. The extra-large
variable space also increases the difficulty of structure learning. As such, we propose to add addi-
tional prior structures on %(t) to regularize its change.

AssumPTION 1. Considering that the directed conditional dependence relationships would be very
sparse in a large-scale network with many nodes. Hence we set the prior distribution ofbfj(t) as a
Laplace distribution, i.e.,

oo (0) = L exp (

It is more prone to end up with many zero-valued coefficients, some moderate-sized coefficients,
and some large-sized coefficients using such prior. Jing et al. [26] noticed that Lasso regression
under Bayesian setting is equivalent to using Laplace prior.

(t)|) Vienk()k=1,....mi=1,....n. (4)

AssuMPTION 2. Consider that local structure change may only occur at discrete time points and
yet keep the same for a time duration between two neighbor changepoints. bk (t) - bfj(t — 1) would be
zero for mostt € 1,. .., L. Hence we further regularize the change bk (t) - bk (t — 1) by assuming it’s
every component follows a Laplace distribution, i.e.,

A
Poz (bl’-‘j(t) — bt - 1)) = ep (——2 bE(t) - bt - 1)|) Vienfthk=1,....m i=1,...n.

®)

An example of this TVDBN with m = 2 and n = 3 is illustrated in Figure 2. Solid lines play the
same role as edges in Figure 1, and yellow dashed lines are used to emphasize that this directed
conditional dependence will disappear at the next time point of ¢ (we no longer see it in t + 1).
Similarly, orange dashed lines are used to emphasize that this directed conditional dependence will
appear at the next time point of ¢, and since then, we can always observe it until its vanishment
at the next change-point.

3.3 Score Function

Based on the above modeling framework, we can develop the score function for structure learning
using the posterior distribution of #y.;. In particular, the posterior distribution of %, given data
2.1 can be expressed as

p(%l:L | <Q//i:L) “P(«%:L | 931:L)P0(<%}1:L), (6)

where

2
Lon Xi(8) = 270 S enn BED) - Xt~ )
p(%;L|<@1;L)=nn\/2;7exp _( k=0 2 2,(;) i) - X; ) -
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Fig. 2. TVDBN with n = 3 nodes and lag m = 2.

and
L L
po(%i.L) = npm(%’z) npoz(%(t) - Bt -1)) (8)
n /11 L n Az /11
o 1;[ exp (—7 ”bi(l)Hl) ]t:! 1:1[ exp (—7 [Ib:(t) — by(t — 1)||1) exp (—? ||b,-(t)||1) ,

where b;(t) = [b7(t), ..., b7 (2), ..., bL (), ..., bL (£),0°(t),...,b° ()] € RV with b2,(¢) = 0,

>7in il >7in
t = 1,...L. The negative log-posterior can thus be calculated as

2
Lono(Xi(t) - X Z'enk()bf-(t)'x'(t_k) L2
—logp%:n%)oczz( — ) I LI

t=1 i=1 t=1 i=1
)

L n

E D 2 i)~ bt~ D)l

=2 i=1
A larger log-posterior indicates a better structure. As such, we would like to minimize Equation
(9) for structure pursuit.
Furthermore, in many real-case problems, we have some additional information on variables’
similarities. Then we can use this prior knowledge of their similar structure for better structure
learning. For example, if X;(t) and X;(¢) are similar to each other, their topological positions, in

the network would be similar, which indicates that b’,j ;(t) and b,’j J.(t) tend to have similar values for
k=0,...,mu=1,...,n Of course, this prior similarity information can also evolve with time.

Consequently, we can define le as the external similarity metric between X;(t) and variable X;(t)
at time ¢, and a higher Wls indicates these two variables are more similar. Then we add another
regularization term )Lg(b,’j l.(t)—b’lj j(t))z Wlt ;inEquation (9). This regularization forces |b’;i(t)—b,’j j(t)l
to be very small when le is large and vice versa. Formulating the similarity matrix as W’ whose
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(i,j) component is le actually this regularization is equivalent to Astr(B¥(t)L(t)B¥(t)'). Here
bE(t) = [bK, (1), ..., b, ()] € R*, BX(t) = [bk(t)’ ., bE()] € R™". L(t) = D! — W', and D* €
R™" with its (i, i) component as Df’i = Wt and other components as 0. This penalization
term is graph Laplacian [15] and we adopt 1t to 1ntegrate the additional information to further
improve model accuracy. Besides, we define B(t) = [B™(t);. . .;B%(t)] € R*™*DX" Then, the final
score function for structure learning can be formulated as

2 L n
B L. Z Z Xit) = ZZb <f>X<t—k>) N LIG]

t m+1 i= Jj=1 k=0 t=1 i=1
n L m (10)
+ 2, Z Dbt =it = Dl + 25 Y 3" er (BEOLOBH 1)),
t=2 i=1 t=1 k=0

s.t. B(t) is acyclic.

Note that here we remove the notation JTl.k(t), since its information can be fully expressed by the
values of nl.k(t) ={Vj=1,...,n, bfj(t) # 0}. Now we need to design an optimization algorithm to
get the best B(¢),t = 1,..., L for Equation (10), which will be described as follows.

4 ALGORITHM

We first introduce a proposition to simplify our score function and translate constraint into alge-
braic characterization in Section 4.1. Then we develop a search algorithm to solve this problem in
Section 4.2.

4.1 Formulation Simplification

Equation (10) consists of four parts: the sum of square errors of VAR, the £;-norm of b;(t) for
network sparsity, the £;-norm of b;(¢) —b;(# — 1) for segment-wise structure change, and the graph
Laplacian to capture variables’ additional information. We first simplify this formulation with the
following proposition.

PROPOSITION 4.1. Definex(t) = [Xy(t—m), ..., Xp(t—=m),....Xi(t),...,Xp(t)] € R D" when

t>m+1, and x(t) € RO gre zeros whent < m, to represent all possible observation variables
L
rmm—— ——

that affect X;(t) with the maximum lag m. Furthermore, define X = diag(x(t), . . .,x(t)) € RIxLm+ln

N —_—— )
diagonally composed by L number of same x(t), and X = diag(X, ...,X) € RE™Lm0n" "y fip.
ther define Y € RE™ composed by Y(i—yrir = [O1xm, Xi(m + 1), Xi(m + 2),...,X;(L)] € RE. Set

D € REm+UnxLim+ln yyhere its (j, j) component is (D);; = —1, and (j,j + (m + 1)n) component
n
- — 2 2
is (D)j(j+(m+1ymy = 1 forj = 1,2,...,(L = 1)(m + 1)n. D = diag(D,...,D) € RL(m+Dn*XL(m+1)n
m+1
e N

is the first order difference matrix. Define L' = diag(L(t),...,L(t)) € RmUmx(m+ln qng J —
diag(L', ..., LF) € REm+DnxLim+Dn Gt — diga(B™(t),...,B%(t)) € RUmInxm+in s harameter
matrix, and B = diag(C',...,Cl) e RUm+DnxLim+On Then the optimization of Equation (10) is
equivalent to a mixed-LASSO problem, i.e.,

min [|Y — Xbl[? + A;[[bll; + A2[|Db]l; + Astr(BLB’),
b

(11)
st. B(t)isacyclic, t=1,...,L,
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where b’ = [b;(1),...,b;(L)] € REm+n anc{f) =[bl,...,b"] € REm*D* It is to be noted that, in
Equation (11) we abuse the notations of 8(t), b and B to represent different forms ofbfj(t) for notation
convenience, but they can be converted to each other.

As to the acyclic constraint, for a binary adjacency matrix B € {0, 1}"" whose largest eigen-
value has an absolute value smaller than 1, Zheng et al. [55] prove that a matrix exponential form,
ie., tr(B¥) = Z?Zl(Bk)ii, where (BX);; represents the (i, i) component of B¥, actually counts the
number of length-k closed walks in a directed graph. Then we can identify that B has no cycles if
and only if (B¥);; = 0 for all k > 1 and all i. This is equivalent to P ?:l(Bk),-i/k! =tr(eB)—d =
0. For general weighted B, following Zheng et al. [55], the following proposition is also satisfied.

PROPOSITION 4.2. Set B € RE™XL™ yyith B:’tn:(t+1)n = [0¢t—m=-1)nxn; B(t); O(L—t)nxn] fort > m+1
and B, tn:t+1)n = [OLnxrn] fort < m. Then if the following algebraic characterization is satisfied:

tr(e®°B) — Ln = 0, (12)

where o is the Hadamard product of B to ensure a non-negative weighted matrix, we can guarantee
B(t),t =1,...,L is acyclic.

4.2 Optimization via Mixed Algorithm

As apowerful solver for separable convex optimization problems with linear/nonlinear constraints,
the ADMM algorithm has been widely used in many areas. It splits the original optimization prob-
lem into a separable form by replacing some parts of the original objective function with new
variables’ states and constraints, further transforming into an augmented Lagrangian problem
afterward. Then closed-form solutions for each variable’s sub-problem are derived for the aug-
mented Lagrangian problem in an iterative way. The global convergence of the ADMM algorithm
was established in the early 1990s by Eckstein and Bertsekas [10]. In particular, in our scenario,
we introduce two consensus variables Z and 6 for Db and B respectively. Based on them, Equation
(11) with the algebraic characterization can be rewritten as Equation (13) equivalently:

min [[Y — Xb||Z + 4 |[blly + A2l Z]ly + Astr(L6'),
b,0,Z o ) (13)
s.t. tr(e®°B) —Ln = 0,Z = Db,b = g(B) = g(0),

where ¢(-) is the transform function between b and B. The corresponding augmented Lagrangian
is expressed as Equation (14):

Ly(b.0.2.U) = Y = XbI} + Asllbll + 2211Z 11 + Astr(0L0") + al(B)| + £ In(B)P »
14
+ £0Ib - 9(0) + Ul = U1E) + Z11Db - Z + U} - 1U215).

where h(B) = tr(e®°B) — Ln, U = {U;,U,} is the scaled dual variable, p’ and p are augmented
Lagrangian parameters. Denote k as the iteration number, each updating step of ADMM is shown
as follows.

(a) bF*! = arg ming Lp(f), ok, zk uk).

In Equation (14), the part related with b is as follows:

L,(b.0.2.0) = [[Y = Xb} + AslIbll + ala(B)| + Z-1h(B)P -
+ 201IB - 9(0) + UL = 101 15) + £IDb - Z + sl - [1U11).
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The minimization over Equation (15) has no closed-form solution. Hence we apply the L-BFGS-B
method [55] to find the minimum of b. L-BFGS-B algorithm is a proximal quasi-Newton algorithm,
which constructs the proximal Hessian matrix and only stores curvature information of the most
recent iterations in calculating the Hessian matrix. It is both time and memory saving in solving
the convex optimization problem with constraints. In particular, the derivative of smooth part
Fo(b,0,Z,U) = |[Y = Xb||2 + ah(B)] + ZIA(B)? + £(IIb - g(6) + U |2 - [[U1]|?) + 2(IDb - Z +
U,||2 — ||U,]%) of Equation (15) with respect to b is

dF (b, %, Z*, UF)

= = —2X'Y + 2X'Xb + ah'(B) + p’h (B)h(B) + p(b + UX — g(6%) + D'Db

+D'(Uk - ZFy),

(16)
where h'(B) is the gradient of h(1). For computation simplicity, we replace h(13) by its equivalence
[51],ie., h(B) = tr[(I+a(BoB)-"]|—Ln. Then h'(B) = (I+ %)L"‘l 028, where L is identity matrix
and has the same shape with B. Besides, to accelerate speed of L-BFGS-B, we limit the searching
space in possible locations through initial bounds according to the composition of B. In this way,
for a Ln x Ln matrix 1B, there are only L(m + 1)n® parameters to estimate with m < L.

(b) 65! = argmin, £,(b**1, 0, 2%, UF).
The update of 0 has the closed-form solution. The gradient of Equation (14) with respect to  is
dL,(bF*1, 9, ZF UF)
00

where 0 = g_l(f)) transforms b back to the matrix form 6. Taking this gradient function to be zero,
we can get the minimum 6 as Equation (18),

05+ = (UK + b1 (AsL + AL + pI)7L, (18)

= J3(0L + L") + pb — pg~1(UF + b**1), (17)

where I is identity matrix and has the same size as L.
(¢c) Z**! = argmin, L£,(b**1, 051, Z, U%).

Z can be written as the proximal operator of the ¢;-norm, which has the closed-form solution

[4]:

zZk1 = proxﬁ(f)f)k)rl + Ulzc), (19)
where prox, (a) is the element-wise soft—thresh:)ld function defined as
a-k, a>k,
prox, (a) = {0, la| < x, (20)

a+k, a<-kK.

k+1
U

@ UM = [
The update of a scaled dual variable can be easily derived as
Uk+1 Uk Bk+1 _ (ekJrl)
Uk = [ Uk ] = [ ! ]+[ ﬁf)kﬂfzkﬂ : (21)

It is to be noted that we set the initial values of all the parameters to be zeros following a
commonly used and simple way. Some other alternatives can also be adopted to ensure a faster
convergence rate. For example, Ghadimi et al. [16] tested the number of required iterations for
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different initial states. In summary, we split the problem up into a series of sub-problems (a)—(d)
and use iterative optimizations to get the globally optimal solution. For parameter settings, we
follow the advice of Zheng et al. [55], and set p’ > 0 and Lagrange multiplier « = a + p’h(B).
Algorithm 1 shows the detailed procedure. Based on the solved B, we can get the dynamic structure
of ¢,. Hereafter we name the constructed TVDBN, which has Segment-Wise varyINg structure
with Graph information as SWING.

ALGORITHM 1: To find optimal parameter b for problem (14) with mixed algorithm.

Input: Initial guess (l~)0, 6°,7°,1°) (all zero matrices(vectors)); progress rate c1 € (0,1) and ¢2 > 1,
tolerance €, €; > 0, threshold > 0, iteration times v, v; > 0, penalty Ay, A2, A3, p, p” and max
penalty p;,, step k = 0;

Output: b

1: fork =0tovdo
2 bF*!update via step 3 - 14

3 for j = 0tov; do

4 while p’ < p,0x do

5: Bj,1 = arg min; Lp(f), Ok, VAR a’) with L-BFGS-B approach
6: if h(Bj+1) > cl % h(BJ) then

7 p=p ' Xc2

8 else

9 break;

10: dual gradient ascent a/*! «— o/ + p’h(1B;)
11 if h(Bj+1) < eorp’ > p;, then

12: break

13: else

14: j=j+1

15: 6**! update via Equation (18)

16: Z**! update via Equation (19)

17: U**! update via Equation (21)

18 if L£,(bF*1, 0K, ZK Uk — £ (bK, 6%, ZF, UF) < €, then
19: break;

20: return b

4.3 Complexity

For updating b, similar to Zheng et al. [55], the complexity is O(L2n?|S| + L*n® + Ln|S|T), where S
is an active set of coordinates and T is the number of inner iterations of L-BFGS-B. For updating 0,
the inverse of a matrix with k rows takes O(k®) computation. Then the inverse process in Equation
(18) takes O(L3n*(m + 1)) computation. Generally, p changes little in different iterations. Then we
can prepare the inverse results in advance and save them correspondingly. For updating Z and U,
the time complexities are both O(L*n®(m +1)%). As such, the total computation complexity for one
iteration of Algorithm 1 is O(L?n?|S| + L3n® + Ln|S|T + L3n®(m + 1)°).

5 NUMERICAL EXPERIMENT AND CASE STUDY

To assess the efficacy and efficiency of our proposed SWING, we perform a series of synthetic data
experiments and a real-world case study. We also compare SWING with several state-of-the-art
methods, including:
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—notears [55]: it is a SBN model with linear directed conditional dependence relationships;

— DYnotears [38]: it is a THDBN model with both linear inter-slice and intra-slice directed
conditional dependence relationships;

— EDISON [9]:itis a TVDBN model with only linear inter-slice directed conditional dependence
relationships and segment-wise time-varying dynamic network structure;

— LTGL [46]: it is an undirected network with segment-wise time-varying graph lasso;

— SWIN: it is a simple version of SWING, which does not include graph Laplacian.

We use different criteria to evaluate the performance of SWING and baselines concerning the
divergence of their estimated structures from the true ones. First, define the true/false posi-
tive(TP/FP) as the number of outcomes where the model correctly/incorrectly predicts the ex-
isting edges and true/false negative(TN/FN) as the number of outcomes where the model cor-
rectly/incorrectly predicts the non-existing edges. Then, we use the following four criteria for
performance evaluation.

— accuracy = (TP+TN)/(TP+TN+FP+FN);

— precision = TP/(TP+FP);

—recall = TP/(TP+FN);

— Structural Hamming distance(SHD): the total number of edges required to convert from
the recovered structure into the ground truth, including removing, reversing, and adding

edges.

5.1 Synthetic Experiments

To reasonably verify the performance of SWING and the other five baselines, we generate data
from the following two scenarios:

— Scenario I: We generate data following the model assumption of SWING:

X;(t) = Z BY(1) - X;(1) + Z ibfj(t)-Xj(t—k)+g,~(t),i =1,...,mt=1,....L, (22

0 Kk fe—
jen! jerk k=1

where £;(t) ~ N(0, 6%(t)). We generate C — 1 change-points from uniform distribution U(1 :

L) and get C segments. For each segment ¢ = 1,...,C, we set bfj’c = a{.‘j’cll.’j.’c, where Il(‘j’c is
drawn from Bernoulli distribution with probability w = 0.5 equal to 1 and 1 — w equal to
0, and afj, . is drawn from a uniform distribution U((0.8, 1), (-1, -0.8)). If Il’j . formulates a
cyclic network, we randomly drop certain components to be zero until it becomes acyclic.
Similarity between variable i and j at ¢ is Wl; = m ie., the ith row and jth column
entry of similarity matrix W*.

— Scenario II: We generate data following the model assumption of EDISON, which is a
simplified version of Equation (22). It only considers lag-1 intra-slice directed conditional
dependence with bfj(t) = 0,k # 1 consistently. The data generation process is the same as

k

Scenario I In this case, the acyclic property of the network formulated by I;; .

be satisfied. The similarity matrix is generated as the scenario I.

can always

For both scenarios, we consider segment length v = 6, which means some edges change every
six-time point. For SWING, we manipulate the real network structure by adding noise on its edges
and use the manipulated one as the corresponding similarity matrix for graph Laplacian. We gen-
erate N = 500 sequences of samples to calculate the average precision, recall, accuracy, and SHD,
together with its 90% confidence intervals. The performance of SWING and five baselines consid-
ering different time lengths and numbers of nodes for Scenario I is shown in Figure 3. As expected,
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Fig. 3. Performance comparisons under Scenario I.

in general, SWING and SWIN perform best among all the methods. They stably achieve the best
scores for all the evaluation metrics in all the settings. SWING performs slightly better than SWIN
since it uses extra information which incorporates true network structure information inside. Yet
their slight difference is almost insignificant. This indicates that even without external informa-
tion, our method can still efficiently capture segment-wise dynamics of casual relationships. As to
the other four baselines, generally, DYnotears performs the best since it still considers both intra-
slice and inter-slice directed conditional dependence, followed by LTGL. As to notears, though its
accuracy is not too bad, it has very unsatisfactory precision and recall. This indicates notears tend
to have very high false positives due to their static structure formulation. As to EDISON, since it
ignores intra-slice directed conditional dependence, its estimated network is much sparser than
the true one. Consequently, it has unsatisfactory precision, though its recall is not too bad.

Furthermore, as time length increases, DYnotears performs much worse with the increasing
length of time due to its time homogeneousness assumption. The other baselines also have rela-
tively worse performance in lower precision and recall and higher SHD. This is because the number
of segments increases, and the model complexity increases. Consequently, estimation with a fixed
number of samples will become worse. Significantly, more false positives will occur, illustrated
by the surprisingly increased accuracy. Yet SWING and SWIN are much less influenced by this.
Similar conclusions also hold when the number of nodes increases, as shown in Figure 3(b), while
this time, DYnotears do not deteriorate too much.

As to Scenario II shown in Figure 4, the results are similar to those of Scenario I except EDISON.
Again, SWING performs the best in general, followed by SWIN with slightly worse performance.
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Fig. 4. Performance comparisons under Scenario II.

Table 1. Efficiency Comparison with n =5 and L = 21

Methods SWING SWIN EDISON DYnotears notears LTGL
Time(seconds)  3.68 1.14 5.44 0.79 1.42 0.18

Though DYnotears has better precision and recall than other notears and LTGL, its SHD is as bad as
others, especially for cases with larger time lengths. EDISON performs better than Scenario I since
the data generation is consistent with its model assumption. EDISON also performs better than
other baselines, especially under increasing time length. It is because for time-varying models,
increasing time length gives more information to estimate than time-homogeneous models like
DYnotears. But its performance is still worse than SWING. This is reasonable since EDISON is a
special case of SWING, which further demonstrates the robustness of SWING.

In particular, we add an experiment on the efficiency comparison with node numbers n = 5,
length of time series L = 21 and run in the same computer. The time costs of SWING and baselines
are shown in Table 1. We could see that our method is not the most time-consuming one. Both
SWING and SWIN cost less time than EDISON. DYnotears consumes less time than notears because
it is more applicable for the datasets and converges faster. Besides, all these methods are offline
learning methods. Thus this time cost is acceptable in practice.

To further demonstrate the superiority of SWING over DYnotears, we increase the maximum lag
m from zero to five. When m = 0, it is the case without inter-slice directed conditional dependence,
which is the case most similar to the model assumption of notears. When m increases, it tends to
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Fig. 6. Performance comparisons of ablation studies with changing length of time on sparsity and
consistency.

weaken the network difference between different segments, which is the case that the most similar
to the model assumption of DYnotears. When m = 1, it is the case most similar to the model
assumption of EDISON. The results of Scenario I are shown in Figure 5. As expected, DYnotears
achieves better results when time lag increases and notears achieves better results when time lag
decreases. EDISON gets its best performance when lag = 1 and yet the worst when lag = 0 due
to its ignoring of intra-slice directed conditional dependencies. As to LTGL, its model is designed
for undirected intra-slice descriptions. Consequently, it has its best performance when lag = 0.
However, it is unfair to mention the total number of edges required to convert its results to the
ground truth because it is an undirected graph. Hence, we arbitrarily set its SHD = 150 fixedly
without any meaning.

In particular, we do ablation studies on the sparsity regularization term and consistency reg-
ularization term. Here, we conduct three baselines: SWING without sparsity regularization as
SWINGNoSparse, SWING without segment-wise regularization as WING, and SWING without
both segment-wise regularization and sparsity regularization as WINGNoSparse. The performance
comparisons of these three baselines and SWING are shown in Figure 6. We could know that spar-
sity and consistency play important roles in our model. Especially, our model is more sensitive
to sparsity regularization than consistency regularization as SWINGNoSaprse performs worst in
these experiments. However, compared with baselines except for SWIN illustrated in Figure 3(a),
WING, SWINGNoSparse, and WINGNoSparse also outperform them in all four evaluation metrics.

We visualize the estimate bl’.‘j(t) together with the true one for one experiment withn = 5, L = 21,
and m = 3. The whole network structure has two change-points with three segments in total, i.e.,
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Fig. 7. Comparisons of estimated and true weighted values between different pair of variables in lags. This
experiment has SHD = 10, accuracy = 0.9, precision = 0.94, and recall = 1, separately.

[1:7],[8 : 14],[15 : 21]. Yet its weight can be the same for different segments for each edge.
Figure 7 demonstrates the estimated and true values of certain bl’.cj(t) over different time steps. The
estimated weights segment-wisely vary, complying with the true time-varying structure. Though
for time steps without changes, the estimated weights still have small fluctuations due to random
noise’s influence, the fluctuation magnitude is much smaller than the signal’s magnitude. In reality,
we may set a threshold. If the change magnitude of edge weight is larger than the threshold, the
algorithm triggers a structure change alarm. Furthermore, it shows that the estimated weights are
more likely to be stable when they have a longer time duration of nonzero values. By averaging
the estimated bfj(t) for each segment, Figure 8 further plots the averaged estimated bfj(t) and

the true ones for different segments. For each segment, each row plots its bfj(t) fork =3,2,1,0,
respectively. From the heatmap, we can see that although weighted values are not the same for
the estimated and true ones, their difference is quite small.

5.2 Drosophila Muscle Development Gene Regulatory Networks

We apply SWING in a real biological dataset, i.e., Drosophila gene expression data [1], which is
one of the most frequently used datasets for the performance evaluation of TVDBN models. The
dataset contains expression measurements over 66 time points of 4,028 Drosophila genes through-
out development and growth during the embryonic, larval, pupal, and adult stages of life. The true
change-points of the four periods are located at 31, 41, and 59. We chose ten genes (eve, gfl/lmd,
twi, sls, mhe, prm, actn, up, myo61f, and msp300) about Drosophila wing muscle development
for analysis, following many other articles. We firstly do Granger causality hypothesis testing on

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 113. Publication date: September 2022.



113:18 X. Yang et al.

m
!n 6o 0o 0 0o 0O 0O 0 0 0 © 0o 0 0o o0 0O 0 0 0 0 o0 0o 0 0 0 0O 0 0 0 0 O
= 1.00
0 0| ® 0o @ @ 0 6 0o 0o 0o 0o O 0 0O 0 0 0 0o 0 0 0 O 0 0 0 O O
o o 0o 0o 0O o0 0O 0 0 O © 0 00 0o |l® 0 @ O 0o 0 0 0 O 0 0 0 o0 O
0.75
o 0o 0o 0o 0 O 0O 0 0 O 0o 0o 0o 0o O 0 0O O 0 0 00 0 0 O 0 0 0 o0 0
o o 0o 0o 0O O 0O 0 0 O 0o 0o 0o 0o O 0 0O O 0 0 o0 0 0 O 0 0 0 o0 0 0.50
~N
':‘“ @l 0 0 0 0o @ @ 0 6 O @ 00 0o l0 0 06 00 0 0 0O 0 0 0 0 0
£
o 0 0 o0 o0 0o o o o0 o o 0o 0 0 o o 0o o0 o0 o0 o 0 o0 0 o0 0 0 0 0 o0 0.25

0.00
0 [ 0 0 [ 0 0 0 [ 0 0 0 0 [ 0.62 0 0 [ [N 0.96 0 [ 0 [N 0.92 0 0 0 [ ﬂ

OOOHO 0 0 0 [XKE} O OOOEO 0 0 O |EEEI O o o0 o0 o0 o 0o o0 o o0 o0
-0.25
00 D~0.190000 DO 0-0.150000 0000 0000 0.50
—0.5!

0 0

(U 0.61 0] 0 -033 0 [Ez4 © (U -0.54 VNN 0.61 N} 0 036 O [Xyg O [N -0.84 V) H 0 0 [ [l 0.87 V] [ 0 -0.75
0.95 0 0
0 0 0

lag=1

-1.00

lag=0

[ 19
0 0 0 0 0 0 0 [Vl -0.92 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [ -
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Est, segment = 1 True, segment = 1 Est, segment = 2 True, segment = 2 Est, segment = 3 True, segment = 3

Fig. 8. Comparisons of the estimated and true network of all nodes for the three different segments. This
experiment has SHD = 10, accuracy = 0.9, precision = 0.94, and recall = 1, separately.

inter-slice and intra-slice causal relationships using three methods, i.e., F test using the residual
sum of squares(SSR) as F statistic, Chi-squared test using SSR and likelihood ratio test [18]. Take
time series of twi and eve for instance, p-values in these three tests are smaller than 0.05 (0.0093,
0.0061, 0.0076 separately). Then we can conclude eve has an effect on twi with lag = 1. From a
literature point of view, Dondelinger et al. [9], Li et al. [31], Robinson and Hartemink [40] have
identified that there exists inter-slice causal relationships in this dataset. Besides, Monteiro et al.
[34] applied a DBN model with both inter-slice and intra-slice relationships to this dataset. What’s
more, the biologist has identified that eve has an effect on twi with lag = 0 [39]. Therefore, there
exist both inter-slice and intra-slice causal relationships in this dataset.

Dondelinger et al. [9] concluded gene relationships from a biology perspective, shown in
Figure 9(b), which demonstrates static relationships between genes and also implies that there
exists a similarity between genes. In our experiment, we adopt the identified SBN structure of ten
muscle genes in Figure 9(b) as prior knowledge and assume the similarity matrix is static, i.e., set
W;; be one if variable i and j are connected in Figure 9(b) and otherwise be zero. SWING identifies
the maximum lag number as m = 1. After estimating blkj(t), k=0,1,fori,j=1,...,10, we calculate
the number of changed edges for each time points, i.e., 3,12, }21 koo I(bfj(t) - bll‘j(t —1) #0),and
plot the results in Figure 9(a). The results have much more fluctuations than synthetic data anal-
ysis since the real dataset is noisier. However, we can see that there are three short time intervals
with many changed edges. These three small intervals are consistent with the true stage transition
time points. The only difference is the detected change-points are three small change intervals.
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Fig. 9. Number of change-points between nearby time points and identified interactions of genes.

This is reasonable since the switch of different stages cannot complete suddenly in one time point
but requires a small time interval waiting for the genes’ growth for this real case application.

For each identified stage, we calculate the averaged bffj(t) for each edge and plot the identified
network structure in Figure 10. Though we do not have the true label of the network structure
due to the absence of a gold standard in biology, our estimated network structures show similari-
ties with the identified static network discovered by Formstecher et al. [12], Homyk Jr and Emer-
son Jr [22], Montana and Littleton [33], Nongthomba et al. [37], Sanchez et al. [42], as shown in
Figure 9(b). For instance, we recover the interaction between two genes, eve and twi, in pupal
period and adult period. This interaction is also identified and reported in Dondelinger et al. [9],
while Robinson and Hartemink [41] seem to have missed it. However, SWING identifies these in-
teractions into different stages, which could not be completed with THDBN models like Zhao et al.
[54]. This shows that our dynamic time-varying structure can discover more detailed temporal
information of gene interaction structures than the current works.

Furthermore, Yu et al. [50] found that maternal msp300 plays an important role in actin-
dependent nuclear anchorage during cytoplasmic transport. Similar to Yu et al. [50], Figure 10 also
shows that msp300 is highly connected with other genes. Msp300 can activate several genes in the
embryonic period to promote cellular development. However, its activities will be inhibited in the
later stages, particularly in the adult stage. Besides our consistency with other articles, we also find
different results. [9, 41] only plot genes’ interactions in /ag = 1, and yet miss intra-relationships of
them. We replenish the structure of lag = 0 and present more informative details. For example, we
find that gene mhc and up are gene hubs in embryonic and larval periods. We hope our results in
Figure 10 could shed light upon further drosophila gene studies in related fields. In a conclusion,
our experiment on this real case study shows the efficacy and efficiency of SWING.

6 CONCLUSIONS AND FUTURE WORK

This article targets TVDBN modeling and structure learning. We proposed a VAR-based model
to describe the intra-slice and inter-slice directed conditional dependence structure between vari-
ables while guaranteeing its acyclic property. The model allows the network structure to change
segment-wisely over time. By further introducing graph Laplacian, the model can also incorporate
external information helpful for structure learning. A score-based estimation algorithm based on
ADMM with L-BFGS-B is constructed for structure learning. Thorough simulation studies and a
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Fig. 10. Network structure learned by SWING for different stages in the muscle development.

gene regulatory case are carried out and demonstrated that this method could score satisfying
results. However, this model is just a segment-wise structure and cannot enable the structure to
change segmently definitely. Besides, when time-series length increases to thousands, it is hard to
estimate the structure. We hope to propose a modified model to overcome these shortcomings in
the future.
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